
On the Quickest Flow Problem in Dynamic Networks – A Parametric Min-Cost
Flow Approach∗

Maokai Lin † Patrick Jaillet ‡

October 2014

Abstract
We consider the quickest flow problem in dynamic networks
with a single source s and a single sink t: given an amount
of flow F , find the minimum time needed to send it from s
to t, and the corresponding optimal flow over time.

We introduce new mathematical formulations and de-
rive optimality conditions for the quickest flow problem.
Based on the optimality conditions, we develop a new cost-
scaling algorithm that leverages the parametric nature of
the problem. The algorithm solves the quickest flow prob-
lem with integer arc costs in O(nm log(n2/m) log(nC)) time,
where n, m, and C are the number of nodes, arcs, and the
maximum arc cost, respectively.

Our algorithm runs in the same time bound as the cost-
scaling algorithm by Goldberg and Tarjan [10, 11] for solving
the min-cost flow problem. This result shows for the first
time that the quickest flow problem can be solved within
the same time bound as one of the fastest algorithms for the
min-cost flow problem. As a consequence, our algorithm will
remain one of the fastest unless the quickest flow problem
can be shown to be simpler than the min-cost flow problem.

1 Introduction

Static network flow models have been extensively stud-
ied and widely used in the past decades to formulate
many real-world problems. Many applications, how-
ever, require a time dimension to be considered: instead
of a picture of the network at one instant, we need to
consider a video of the network flow over a period of
time. These applications arise from various fields of
studies, including transportation [14], evacuation plan-
ning [23, 12], job scheduling [2], electronic communi-
cation [5, 16], network routing [18, 3, 19], and parallel
computing [15]. Such a requirement leads to the dy-
namic network flow model [8, 4, 13]. It is also called
network flow over time [6].

A generic approach for solving optimization prob-
lems in dynamic networks is due to Ford and Fulk-
erson [8]. They showed that one can use the time-
expansion technique to convert dynamic networks with

∗Accepted, ACM-SIAM Symposium on Discrete Algorithms,

SODA 2015
†Operations Research Center, MIT, Cambridge, MA, 02139;

lmk@csail.mit.edu
‡Department of Electrical Engineering and Computer Science,

and Operations Research Center, MIT, Cambridge, MA, 02139;
jaillet@mit.edu

discrete time horizon into static networks, then solve the
problem using algorithms developed for static networks.
This approach, however, leads to pseudo-polynomial al-
gorithms because the number of nodes and arcs in time-
expanded networks are normally proportional to the
time horizon T , which is exponential in the input size
log T .

Although the general approach fails to provide
polynomial-time algorithms for every problem in dy-
namic networks, there are efficient algorithms for some
special problems. Ford and Fulkerson [7] showed that
the dynamic max-flow problem, which is to send as much
dynamic flow as possible through a single-source-single-
sink network in a given time T , can be formulated as a
min-cost flow problem in a slightly modified static net-
work. As a result, the dynamic max-flow problem can
be solved by various min-cost flow algorithms in poly-
nomial time.

A closely related optimization problem in dynamic
networks is the quickest flow problem, which is to find
the minimum time T ∗ needed to send a given amount
of dynamic flow F from a source node s to a sink
node t. An immediate approach is to use binary search
to find the minimum time T such that the maximum
amount of dynamic flow that can be sent from s to t
within time T exceeds F . This naive approach, however,
does not automatically yield a fully polynomial-time
algorithm. Burkard et al. [4] improved the naive
approach and developed polynomial-time algorithms
by using Newton’s method and Megiddo’s parametric
search [17]. Their algorithms need to repeatedly call
subroutines that solve the min-cost flow problem.

An open question remains: since the quickest flow
problem is so similar to the dynamic max-flow problem,
is it possible to develop an algorithm that solves the
quickest flow problem within the same time bound as
the min-cost flow problem? This would be impossible if
we need to repeatedly solve the min-cost flow problem
as a subroutine.

In this paper, we provide an affirmative answer to
this question. We observe that the quickest flow prob-
lem is essentially a parametric min-cost flow problem.

By extending the cost-scaling algorithm introduced by
Goldberg and Tarjan [10, 11], we design a new cost-
scaling algorithm for the quickest flow problem that
runs in the same time bound as Goldberg and Tar-
jan’s algorithm. Because their algorithm remains one
of the fastest for solving the min-cost flow problem in
terms of the worst-case time bound, our result shows
that the quickest flow problem can be solved within the
same time bound as one of the best algorithms for the
min-cost flow problem. Moreover, unless the quickest
flow problem can be shown to be simpler than the min-
cost flow problem, our algorithm will remain one of the
fastest for solving the quickest flow problem.

In addition, our result shows that the preflow push
algorithm framework is well suited for parametric ex-
tensions. Gallo et al. [9] showed that by extending the
preflow push algorithm for the maximum flow problem,
one could solve the parametric max-flow problem within
the same time bound as of the maximum flow prob-
lem. Our result shows that a similar extension can be
obtained for the quickest flow problem, which can be
viewed as a parametric min-cost flow problem with a
single source and a single sink.

1.1 Related Work The dynamic max-flow problem
and the quickest flow problem are two fundamental
optimization problems in dynamic networks. Consider
a network G = (V,E) with a single source s and a
single sink t. In this network, each arc e is associated
with an arc cost (also called transition time) τe and an
arc capacity (also called maximum flow rate) ue. The
dynamic max-flow problem is to send as much flow as
possible from s to t within a given time T , and the
quickest flow problem is to find the minimum time T ∗

needed to send a given amount of flow F from s to t.
To solve the dynamic max-flow problem, Ford

and Fulkerson [7] introduced a solution form called
temporally-repeated flow. With any feasible static flow
x in a network, we can obtain a temporally-repeated
solution in the following way: Perform a flow decom-
position on flow x to obtain a set of paths P and the
corresponding flow x(p) for each path p ∈ P . Send flow
on each path p ∈ P in a constant rate x(p) from time 0
to t(p) := max{T − τ(p), 0}, where τ(p) :=

∑
e∈p τe is

the cost of path p.
Ford and Fulkerson [7] showed that any temporally-

repeated solution corresponding to a feasible static flow
x is a feasible dynamic flow, and there exists an optimal
solution to the dynamic max-flow problem that is in
a temporally-repeated form. Using this result, they
further showed that a dynamic max-flow problem can
be formulated as a min-cost flow problem by adding an
arc (t, s) with cost τts = −T and infinite capacity to

the original network. After solving this min-cost flow
problem, one can transform the optimal static flow into
a temporally-repeated flow, which is an optimal solution
to the original dynamic max-flow problem.

The quickest flow problem is closely related to the
dynamic max-flow problem. Burkard et al. [4] showed
that the maximum amount of flow that can be sent
through a network increases with time T . Thus, one
can do a binary search over time T and solve a dynamic
max-flow problem in each iteration, until the minimum
time needed to send the given amount of flow F is
found. Burkard et al. [4] further used Newton’s method
to improve the naive binary search and obtained a time
bound of O(log(nU)MCF(n,m)), where n, m, and U
are the number of nodes, arcs, and the maximum arc
capacity, respectively, and MCF(n,m) is the time bound
for solving one min-cost flow problem. They also showed
that the quickest flow problem can be solved in strongly-
polynomial time using Megiddo’s parametric search [17].

1.2 Our Results In this paper, we consider the
quickest flow problem in dynamic networks with a single
source s and single sink t. Given a static flow x, we call a
temporally-repeated flow converted from x a temporally-
repeated flow of x. By transforming the formulation by
Ford and Fulkerson [7], we show that the quickest flow
problem can be formulated with the following fractional
programming problem:

(1.1)

T ∗ = min
F +

∑
e∈E τe · xe
v

s.t.
∑
e∈δ+w

xe −
∑
e∈δ−w

xe =

v w = s

−v w = t

0 otherwise

0 ≤ xe ≤ ue ∀e ∈ E

For any optimal solution x∗ of (1.1), a temporally-
repeated flow of x∗ is an optimal dynamic flow for
the quickest flow problem, and T ∗ is the shortest time
needed to send F amount of flow from s to t.

By setting θ := 1/v and substituting xe with x′e :=
xe/v = xe · θ, we can linearize the objective function of
(1.1) and obtain a linear programming problem (1.2):

(1.2)

T ∗ = minF · θ +
∑
e∈E

τe · xe

s.t.
∑
e∈δ+w

xe −
∑
e∈δ−w

xe =

1 w = s

−1 w = t

0 otherwise

0 ≤ xe ≤ ue · θ ∀e ∈ E

Let (θ∗, x∗) be an optimal solution to the linear program
(1.2), then a temporally-repeated flow of the static

flow x∗/θ∗ is an optimal solution to the quickest flow
problem.

Observe that if we fix v in (1.1), it becomes a min-
cost flow problem, with supply at s and demand at t
both equal to v. Therefore, the quickest flow problem
is essentially a parametric min-cost flow problem with
respect to v. Using this observation, we derive the
following optimality conditions for the quickest flow
problem:

Theorem 1.1. A temporally-repeated flow of a feasible
static flow x is optimal if and only if x is a min-cost
flow with respect to its flow value v, and satisfies

(1.3) −dts ≤
F +

∑
e∈E τe · xe
v

≤ dst

where the flow value v is the amount of static flow sent
from node s to t, and dts and dst are the costs of the
shortest t-s path and s-t path in the residual network of
flow x, respectively.

Based on these optimality conditions, we introduce
a new algorithm for solving the quickest flow problem
with integer arc costs. Our algorithm adds an extra step
to each scaling phase of the cost-scaling algorithm by
Goldberg and Tarjan [11] for solving the min-cost flow
problem, but still runs in O(n3 log(nC)) time. It can be
further improved to run in O(nm log(n2/m) log(nC))
time by applying the dynamic tree data structure de-
veloped by Sleator and Tarjan [21, 22]. Here n, m, and
C are the number of nodes, arcs, and the maximum arc
cost, respectively.

Organization: In Section 2, we show that the
quickest flow problem can be formulated in terms of
the fractional programming problem in (1.1) and derive
optimality conditions based on this formulation. In
Section 3, we introduce the new cost-scaling algorithm
with analysis of its correctness and time complexity. We
conclude the paper in Section 4 with some final remarks.

2 Mathematical Models and Optimality
Conditions

2.1 Preliminaries
Network: G = (V,E) is a network with a set of

nodes V and arcs E. Let n := |V | be the number of
nodes, and m := |E| be the number of arcs. We only
consider networks with a single source s ∈ V and a
single sink t ∈ V . Each arc e = (w,w′) ∈ E is associated
with a cost, or free-flow transition time τe ≥ 0, and a
capacity, or maximum flow rate ue ≥ 0. In this paper,
we assume τe and ue do not change over time. We define
δ+
w := {(w,w′) ∈ E,∀w′ ∈ V } as the set of outgoing arcs

from node w, and δ−w := {(w′, w) ∈ E,∀w′ ∈ V } as the
set of incoming arcs into node w.

Feasible Flow: If a static flow x satisfies the flow
conservation conditions

(2.4)
∑
e∈δ+w

xe −
∑
e∈δ−w

xe =

v w = s

−v w = t

0 otherwise

where v ≥ 0, and the capacity constraints

(2.5) 0 ≤ xe ≤ ue e ∈ E

then we call x a feasible flow. We call v the flow value
of x, and x a feasible flow with flow value v.

Preflow and Node Excess: A preflow x̂ is a
static flow that satisfies the capacity constraints (2.5)
but not necessarily the flow conservation condi-
tions (2.4). For a preflow x̂, we define flow excess e(w)
on a node w ∈ V as the sum of incoming flow minus the
sum of outgoing flow. Formally, we have

(2.6) e(w) :=
∑
e∈δ−w

x̂e −
∑
e∈δ+w

x̂e ∀w ∈ V

In a preflow, e(w) ≥ 0 for every w ∈ V \{s, t}. In this
paper, we will use x to denote a preflow in order to
simplify notations. If x also satisfies the conservation
constrains (2.4), we will emphasize that x is a feasible
flow.

Flow Decomposition: It is well known (see
Ahuja et al. [1], Sect. 3.5 for example) that for any fea-
sible flow x, there exists a flow decomposition 〈P, x(p)〉,
where P is a set of s-t-paths and cycles in G, and
x(p) ≥ 0,∀p ∈ P is the flow on the path or cycle p.

Residual Network: Residual networks are widely
used for solving network flow problems. A residual
network G(x) = (V,E(x)) with respect to a given flow
x is defined as follows: Replace each arc e = (w,w′) in
the original network G by a forward arc e′ = (w,w′) and
a backward arc e′′ = (w′, w). The forward arc e′ has a
cost τ̂e′ := τe and residual capacity re′ := ue − xe. The
backward arc e′′ = (w′, w) has a cost τ̂e′′ := −τe and
residual capacity re′′ := xe. In this paper, we use τ̂e to
indicate the cost of an arc e in a residual network. We
have the following theorem in a residual network with
respect to flow x:

Theorem 2.1. (Theorem 9.1, Ahuja et al. [1]) If
there does not exist any cycle with negative cost in the
residual network G(x), flow x is a min-cost flow.

For further discussions of residual networks, we refer
the reader to Ahuja et al. [1], Sect. 2.4.

Node Potentials and Reduced Cost: Node po-
tentials arise from the dual formulation of the min-cost
flow problem. They are the dual variables corresponding

to the flow conservation constraints (2.4). With a set of
node potentials π, the reduced cost of arc e = (w,w′) in
the residual network is defined as cπe := πw′ + τ̂e − πw,
where τ̂e is the cost of arc e in the residual network
G(x).

Shortest Simple Path: A simple w-w′ path is
defined as a path from node w to w′ without loop. We
use dst(x) to denote the cost of a shortest simple s-t path
in the residual network G(x), and dts(x) the cost of a
shortest simple t-s path in G(x). Such costs could be
either positive or negative. Note that although the cost
of a shortest path between two nodes could be minus
infinity in a residual network with negative cycles, the
cost of a shortest simple path is always bounded. In
this paper, we use shorthands dst and dts if the flow
they correspond to is clear in the context.

Dynamic Flow (Flow over Time) A dynamic
flow consists of a set of Lebesgue-integrable functions
fe(t) that represents the rate of flow on each arc e ∈ E
over time t. The dynamic flow excess over time on node
w ∈ V is defined as:

(2.7) gw(t) :=
∑
e∈δ−w

∫ t−τe

0

fe(s)ds −
∑
e∈δ+w

∫ t

0

fe(s)ds

A feasible flow f must satisfy the capacity constraints
fe(t) ≤ ue,∀e ∈ E,∀t ≥ 0, and the node excess gw(t)
must be non-negative at all time for all nodes. See
Sect. 1 of Skutella [20] for a complete discussion of the
definition of dynamic flows.

Temporally-Repeated Flow: First introduced
by Ford and Fulkerson [7], temporally-repeated flow is a
special type of dynamic flow. It turns any feasible static
flow x into a feasible dynamic flow. For any feasible
static flow x and a time horizon T , one can perform a
flow decomposition on x and obtain a tuple 〈P, x(p)〉,
where P is a set of paths and x(p) is the flow on each
path p ∈ P . A temporally-repeated flow sends flow over
each path p ∈ P at a constant rate x(p) from time 0 to
t(p) := max{T − τ(p), 0}, where τ(p) :=

∑
e∈p τe is the

cost of path p. Mathematically, a temporally-repeated
flow f corresponding to a flow decomposition 〈P, x(p)〉
of a feasible static flow x and time horizon T is defined
as:

(2.8) fe(t) :=
∑

p∈Pe(t)

x(p), ∀e = (w,w′) ∈ E, t ∈ [0, T)

where Pe(t) := {p ∈ P : e ∈ P and τ(ps,w) ≤
t and τ(pw′,t) < T − t)}. In the definition, τ(ps,w) is
the sum of costs of the arcs from node s to node w
on path p, and τ(pw′,t) is the sum of costs of the arcs
from node w′ to node t on path p. Again, see Sect. 1 of
Skutella [20] for a complete discussion.

2.2 Formulations and Optimality Conditions
Ford and Fulkerson [7] showed that for the dynamic
max-flow problem, there exists an optimal solution in
the temporally-repeated form. Therefore, a dynamic
max-flow problem with time horizon T can be formu-
lated as:

(2.9)

F ∗(T) = maxT · v −
∑
e∈E

τe · xe

s.t.
∑
e∈δ+w

xe −
∑
e∈δ−w

xe =

v w = s

−v w = t

0 otherwise

0 ≤ xe ≤ ue ∀e ∈ E

Lemma 2.1. (Burkard et al. [4]) F ∗(T) is non-
decreasing as time T increases.

Lemma 2.1 implies that finding an optimal solution to
the quickest flow problem with a given amount of flow
F is equivalent to finding the minimum time T ∗ such
that F ∗(T ∗) ≥ F . This observation is used to prove
Theorem 2.2.

Theorem 2.2. The quickest flow problem can be for-
mulated as the fractional programming problem (1.1)
shown in Section 1.2.

Proof. By Lemma 2.1, the quickest flow problem can be
formulated as:

(2.10)

T ∗ = minT

s.t. T · v −
∑
e∈E

τe · xe ≥ F

∑
e∈δ+w

xe −
∑
e∈δ−w

xe =

v w = s

−v w = t

0 otherwise

0 ≤ xe ≤ ue ∀e ∈ E

In this formulation, T , x, and v are variables. The first
constraint in (2.10) can be rearranged as:

(2.11) T ≥
F +

∑
e∈E τe · xe
v

Note that v 6= 0. Because if v = 0, no flow will be
sent, and the first constraint in (2.10) cannot hold.
Since (2.11) is the only constraint for the variable T ,
we can move it to the objective function and obtain the
fractional programming formulation (1.1). �

Note that by setting θ := 1/v and substituting xe
with x′e := xe/v = xe · θ, we can linearize (1.1) and
obtain the linear form (1.2).

In (1.1), if we consider v as a parameter, the
objective function becomes a summation of the term
F/v and 1/v times the optimal value of a min-cost flow
problem. In order to use this property to prove the
optimality conditions in Theorem 1.1, we first define the
following function for the min-cost flow problem with
flow value v:

(2.12)

g(v) = min
∑
e∈E

τe · xe

s.t.
∑
e∈δ+w

xe −
∑
e∈δ−w

xe =

v w = s

−v w = t

0 otherwise

0 ≤ xe ≤ ue ∀e ∈ E

We further define function T ∗(v) as:

(2.13) T ∗(v) :=
F + g(v)

v

Using this definition, we can express the optimal time
T ∗ defined in (1.1) as:

(2.14) T ∗ = min
v>0

T ∗(v)

We are now in a position to prove Theorem 1.1. We first
show that the optimality condition (1.3) is satisfied if
and only if v is a local minimum of function T ∗(v). We
then show that T ∗(v) is unimodal, which implies that a
local minimum of T ∗(v) is also a global minimum. Using
this result, we finally establish the optimality conditions
stated in Theorem 1.1.

Lemma 2.2. Flow value v is a local minimum for func-
tion T ∗(v) if and only if

(2.15) −dts ≤ T ∗(v) ≤ dst

Proof. See Appendix A. �

Lemma 2.3. Function T ∗(v) is unimodal.

Proof. See Appendix A. �

With Lemma 2.2 and Lemma 2.3, we can now prove
Theorem 1.1 given in Section 1.2.

Proof. [Proof of Theorem 1.1] From Lemma 2.2 and
Lemma 2.3, we know that v∗ is an optimal flow value
for T ∗(v) if and only if −dts ≤ T ∗(v∗) ≤ dst.

Note that if x∗ is a feasible flow with flow value v∗,
then g(v∗) =

∑
e∈E τe ·x∗e if and only if x∗ is a min-cost

flow. Hence, T ∗(v∗) =
(
F +

∑
e∈E τe · x∗e

)
/v∗ if and

only if flow x∗ is a min-cost flow with flow value v∗.

Joining the two equivalence relationships above, we
conclude that a feasible flow x∗ with flow value v∗

is an optimal solution to the fractional programming
formulation (1.1) if and only if 1) x∗ is a min-cost flow,
and 2) −dts ≤

(
F +

∑
e∈E τe · x∗e

)
/v∗ ≤ dst. Therefore

a temporally-repeated flow of x∗ is an optimal solution
to the quickest flow problem if and only if the two
optimality conditions above hold. �

3 Cost-Scaling Algorithm

In this section, we introduce a new cost-scaling algo-
rithm for solving the quickest flow problem with in-
teger arc costs. We prove the correctness of the al-
gorithm by showing that when it terminates, the op-
timality conditions in Theorem 1.1 are met. For the
time complexity, we show that the algorithm runs in
O(n3 log(nC)) time, and can be further improved to
run in O(nm log(n2/m) log(nC)) time with the dynamic
tree data structure introduced by Sleator and Tar-
jan [21, 22]. Here n, m, and C are the number of nodes,
arcs, and the maximum arc cost, respectively.

Recall that there are two requirements in the opti-
mality conditions: 1) Flow x must be a min-cost flow,
and 2) the inequality −dts ≤

(
F +

∑
e∈E τexe

)
/v ≤ dst

must be satisfied.
In order to find a min-cost flow, our algorithm fol-

lows the cost-scaling framework developed by Goldberg
and Tarjan [10, 11]. For some ε > 0, we allow the re-
duced cost cπe in the residual network G(x) to be neg-
ative, but require that cπe ≥ −ε. A pair of flow x and
node potentials π meeting this requirement is called ε-
optimal. We start with a big ε and iteratively reduce ε
by half and modify x and π to satisfy the ε-optimality.
Such iterations continue until ε is so small that the sum
of reduced costs through any cycle in G(x) is greater
than -1. Since we assume that all arc costs are integers,
there must be no negative cycles in G(x). Therefore x
is a min-cost flow. We refer the reader to Goldberg and
Tarjan [11] and Ahuja et al. [1], Sect. 10.3 for a more
comprehensive discussion.

In order to have the ratio r :=
(
F +

∑
e∈E τexe

)
/v

between −dts and dst when the algorithm ends, we add
an extra step to each scaling phase. It turns out that
πs − πt serves as a good approximation of both −dts
and dst. Therefore, we push extra flow from s to t to
guarantee that the upper bound of the gap between the
ratio r and πs−πt is reduced by half after each iteration.
At the end of the scaling phases, such gap will be less
than 1. Using the assumption that all arc costs are
integers, we can obtain an optimal solution by solving
at most one extra max-flow problem.

The complete algorithm is described from Algo-
rithm 1 to 5. The main procedure is Algorithm 1. It has

a main loop with a sequence of ε-scaling phases and a
final saturation subroutine. Each scaling phase consists
of a Refine subroutine that modifies a 2ε-optimal flow
into an ε-optimal flow, and a Reduce-Gap subroutine
that closes the gap between the ratio r and πs − πt. In
the subroutines, we call a node w active if its flow excess
e(w) > 0. We call an arc in G(x) admissible if its re-
duced cost cπe < 0. We define the admissible network of
G(x) as the sub-network consisting solely of admissible
arcs.

Algorithm 1 : Cost Scaling

Set ε := C, flow x := 0, node potentials π := 0
while ε ≥ 1/(8n) do

Refine(ε, x, π)
Reduce-Gap(ε, x, π)
ε := ε/2

end while
Saturate(x)
Return optimal flow x

Algorithm 2 : Refine(ε, x, π)

Set xe := 0 for all {e ∈ E : cπe > 0} and xe := ue for
all {e ∈ E : cπe < 0}
Compute flow excess e(w) for all w ∈ V ; Put all nodes
in a list L
while there exists an active node do

Choose the first active node w in L
Push/Relabel(w)

end while

Throughout the cost-scaling algorithm, a key metric
that we focus on is the gap between the ratio r and
πs − πt. Define

(3.16) γ(x, π) :=
F +

∑
e∈E τe · xe
v

− (πs − πt)

The main goal of the subroutine Reduce-Gap is to
reduce the upper bound of the gap γ(x, π) in each scal-
ing phase, while maintaining a lower bound of γ(x, π)
in order to leave some buffer for future operations.

Subroutine Reduce-Gap consists of two levels of
loops. The outer loop runs two main tasks before
starting the inner loop: 1) Relabel the source node s
if all admissible arcs outgoing from s are saturated, and
2) generate extra flow from node s. The inner loop
then iteratively pushes the newly generated flow down
to the sink. In order to avoid sending too much flow in
one iteration, which might breach the lower bound of
γ(x, π), we do not relabel the source node s in the inner
loop, and set the excess e(s) to 0 when all admissible
arcs outgoing from s are saturated.

Algorithm 3 : Reduce-Gap(ε, x, π)

Put all nodes except t in a list L
while

(
F +

∑
e∈E τexe

)
/v − (πs − πt) > 7nε do

Relabel πs := πs + ε if there is no outgoing
admissible arc from s in G(x)
Set the excess of s to e(s) :=[(
F +

∑
e∈E τexe

)
− (πs − πt + 5nε) · v

]
/6nε

while there exists an active node in L do
Choose the first active node w in L
if w is the source node s then

while e(s) > 0 and G(x) contains an admis-
sible arc e = (s, w′) do

Push δ := min {e(s), re} units of flow from
s to w′

end while
Set e(s) := 0

else
Push/Relabel(w)

end if
end while

end while

Algorithm 4 : Push/Relabel(w)

while e(w) > 0 and G(x) contains a node w′ such
that arc e = (w,w′) is admissible do

Push δ := min {e(w), re} units of flow from w to w′

end while
if e(w) > 0 then

Relabel πw := πw+ε, and move w to the beginning
of list L

end if

Algorithm 5 : Saturate(x)

Compute dst, the cost of a shortest s-t path in G(x)
if dst <

(
F +

∑
e∈E τexe

)
/v then

Form a sub-network G′(x) that only includes arcs
that lie on some shortest s-t-path in G(x)
Send maximum amount of flow from s to t in G′(x)

end if

As a summary, we prove the following lemmas
before showing the correctness of the algorithm and
analyzing its time complexity:

1. Lemma 3.1 shows that γ(x, π) does not change too
much after executing the subroutine Refine.

2. Lemma 3.2 shows that πs − πt serves as a good
approximation of −dts and dst during the execution
of the subroutine Reduce-Gap.

3. Lemma 3.3 establishes the lower bound of γ(x, π)
in the subroutine Reduce-Gap.

4. Lemma 3.4 shows that the ratio r is non-increasing
after each iteration of the outer loop in the subrou-
tine Reduce-Gap.

5. Lemma 3.5 implies that node s is relabeled at least
once in every two iterations of the outer loop in the
subroutine Reduce-Gap.

6. Lemma 3.6 and Lemma 3.7 show that all nodes
are relabeled at most O(n) times in the subroutine
Reduce-Gap.

In Lemma 3.1, we use x2ε and π2ε to denote the flow
and node potentials when the 2ε-scaling phase ends, and
xε and πε to denote the flow and node potentials when
the subroutine Refine ends in the ε-scaling phase.

Lemma 3.1. If we have

(3.17) 5n · 2ε ≤ γ(x2ε, π2ε) ≤ 7n · 2ε

when the 2ε-scaling phase ends, we have

(3.18) 5nε ≤ γ(xε, πε) ≤ 18nε

when the subroutine Refine ends in the ε-scaling phase.

Proof. See Appendix B. �

The following lemmas show how the range of
γ(xε, πε) changes during the execution of subroutine
Reduce-Gap. Because they all involve only x and π in
the ε-scaling phase, we drop the superscript ε to simplify
notations.

Lemma 3.2. Throughout the ε-scaling phase, we have:

(3.19) −dts − nε ≤ πs − πt ≤ dst + nε

Proof. See Appendix B. �

In the following lemmas, we assume that x, v, and
π are the flow, flow value, and node potentials when
the inner loop of the subroutine Reduce-Gap starts,
respectively, and x′, v′, and π′ the flow, flow value,
and node potentials when the the inner loop ends,
respectively.

Lemma 3.3. When the inner loop of the subroutine
Reduce-Gap ends, the gap γ(x′, π′) ≥ 5nε.

Proof. See Appendix B. �

Remark: A direct corollary of Lemma 3.3 is that
when the subroutine Reduce-Gap ends, we have 5nε ≤
γ(x′, π′) ≤ 7nε. Therefore, if the assumption that
5n · 2ε ≤ γ(x2ε, π2ε) ≤ 7n · 2ε in Lemma 3.1 holds
when the 2ε-scaling phase ends, the inequality 5n · ε ≤
γ(xε, πε) ≤ 7n · ε will also hold when the ε-scaling phase
ends.

Lemma 3.4. When the inner loop of the subroutine
Reduce-Gap ends, we have

(3.20)
F +

∑
e∈E τe · x′e
v′

≤
F +

∑
e∈E τe · xe
v

Proof. See Appendix B. �

Lemma 3.5. If the source node s is not relabeled in one
iteration of the outer loop of the subroutine Reduce-
Gap, either it will be relabeled in the next iteration, or
we will have γ(x′, π′) ≤ 7nε and the subroutine Reduce-
Gap will terminate.

Proof. See Appendix B. �

We are now in a position to prove the correctness of
the algorithm and show that it runs in O(n3 log(nC))
time.

Correctness: Theorem 3.1 shows that the two
optimality conditions in Theorem 1.1 are both satisfied
when Algorithm 1 terminates. Therefore a temporally-
repeated flow of the final static flow x is an optimal
solution to the quickest flow problem.

Theorem 3.1. When Algorithm 1 terminates, flow x
and node potentials π satisfy the optimality conditions:
1) Flow x is a min-cost flow with respect to its flow value
v, and 2) −dts ≤ (F +

∑
e∈E τexe)/v ≤ dst.

Proof. See Appendix B. �

Time complexity: There are O(log (nC)) cost-
scaling phases. Within each cost-scaling phase, we run
the subroutine Refine once and Reduce-Gap once. The
Refine subroutine is the same as the wave implementa-
tion of the cost-scaling algorithm for the min-cost flow
problem. Therefore it runs in O(n3) time. If we can
bound the time complexity of the Reduce-Gap subrou-
tine by O(n3) as well, we can claim that the overall
time complexity of the cost-scaling loop is bounded by
O(n3 log (nC)).

To show that the subroutine Reduce-Gap indeed
runs in O(n3) time, we first show that the source node
s is relabeled at most O(n) times. Based on this result,
we then prove that other nodes are also relabeled at
most O(n) times. These two bounds lead to three key
conclusions: 1) The Reduce-Gap subroutine performs
at most O(n2) relabeling operations, 2) the number of
saturating pushes is bounded by O(nm), and 3) the
number of non-saturating pushes is bounded by O(n3).
Therefore the execution time of the subroutine Reduce-
Gap is bounded by O(n3).

Lemma 3.6. The source node s is relabeled at most 11n
times in the subroutine Reduce-Gap.

Proof. First, consider the first cost-scaling phase. Be-
cause ε = C, πs − πt can increase from 0 to at most nε.
Thus, node s can be relabeled at most n times in the
first scaling phase.

For all the subsequent iterations, Lemma 3.1 shows
that when the subroutine Reduce-Gap starts, we have
5nε ≤ γ(x, π) ≤ 18nε. Because the subroutine Reduce-
Gap ends when γ(x, π) ≤ 7nε, γ(x, π) decreases by at
most 18nε− 7nε = 11nε.

Lemma 3.4 shows that the ratio r does not increase,
while each time s is relabeled, πs−πt increases by ε. As
a result, the gap γ(x, π) = r− (πs− πt) decreases by at
least ε each time s is relabeled. Hence, node s can be
relabeled at most 11n times. �

Lemma 3.7. Any node w ∈ V is relabeled at most 13n
times in the subroutine Reduce-Gap.

Proof. See Appendix B. �

Theorem 3.2. The time complexity of the cost-scaling
Algorithm 1 is O(n3 log (nC)).

Proof. From Lemma 3.6 and Lemma 3.7, we con-
clude that the total number of relabeling operations is
bounded by O(n2). Further, because all nodes are rela-
beled at most O(n) times, we can use the same analysis
as in Goldberg and Tarjan [11] to obtain a O(nm) bound
for the number of saturating pushes.

For the number of non-saturating pushes, we note
that if the subroutine Reduce-Gap does not relabel any
node within n consecutive node examinations, there
must be no active node. We will either start a new
iteration of the outer loop of Reduce-Gap, or terminate
the subroutine Reduce-Gap altogether. Lemma 3.5
implies that we must relabel node s at least once in
two consecutive iterations of the outer loop. Thus,
there is at least one node relabeling in 2n consecutive
node examinations. Since the number of total relabeling
operations is bounded by O(n2), the number of node

examinations is bounded by O(n3). Because there is at
most one non-saturating push per node examination,
we obtain the bound O(n3) for the number of non-
saturating pushes.

In conclusion, the time complexity of the cost-
scaling loop is bounded by O(n3 log (nC)). The final
subroutine Saturate might invoke a max-flow algorithm
to saturate all shortest paths in the residual network.
Since the time complexity of many well-known max-
flow algorithms are bounded by O(n3 log n), it is not
a bottleneck of the algorithm. Thus, the overall time
complexity of the cost-scaling algorithm for the quickest
flow problem is O(n3 log (nC)). �

If we apply the dynamic tree data structure intro-
duced by Sleator and Tarjan [21, 22], the time com-
plexity of the cost-scaling Algorithm 1 can be further
improved to O(nm log (n2/m) log (nC)).

Theorem 3.3. The quickest flow problem can be solved
in O(nm log (n2/m) log (nC)) time.

Proof. See Appendix B. �

4 Conclusions and Future Research

In this paper, we show that the quickest flow problem
in dynamic networks can be formulated as a fractional
programming problem or a linear programming prob-
lem. We then derive optimality conditions that lead
to a new cost-scaling algorithm for the quickest flow
problem. The new algorithm follows the cost-scaling
framework designed to solve the min-cost flow problem.
We add an extra step in each scaling phase to guar-
antee that the optimality conditions are met when the
algorithm ends. We show that the algorithm runs in
O(n3 log (nC)) time. We can further improve the time
complexity to O(nm log (n2/m) log (nC)) by applying
the dynamic tree data structure.

The result is significant because it shows for the first
time that the quickest flow problem can be solved in the
same time bound as one of the fastest algorithms for
the min-cost flow problem. It implies that the quickest
flow problem might not be strictly harder than the min-
cost flow problem if measured by time complexity. As
a consequence, unless the quickest flow problem could
be shown to be simpler than the min-cost flow problem,
the dynamic tree implementation of our algorithm will
remain one of the fastest algorithms for the quickest flow
problem in terms of worst-case time complexity.

We observe that the quickest flow problem is essen-
tially a parametric flow problem. This is evident from
the fractional programming formulation (1.1). The rea-
son that the cost-scaling algorithm can solve the quick-
est flow problem within the same time bound as the

min-cost flow problem might be attributed to this para-
metric nature of the problem. Gallo et al. [9] showed
that the parametric max flow problem can be solved
within the same time bound as the maximum flow prob-
lem using the preflow-push algorithm. In this paper, we
show that the quickest flow problem, as a parametric
min-cost flow problem, can also be solved within the
same time bound as the min-cost flow problem. Similar
to what Gallo et al. [9] observed, the preflow-push algo-
rithm framework exhibits great elasticity for parametric
extensions.

Our new formulations and algorithms for the quick-
est flow problem lead to several new research opportu-
nities. An open question is whether one can modify the
cost-scaling algorithm to obtain a strongly-polynomial
algorithm. If this is possible, we expect the time bound
of such an algorithm to be better than the strongly-
polynomial algorithm introduced by Burkard et al. [4].
Secondly, our algorithm might be extended to solve
more general parametric min-cost flow problems, such
as determining the optimal flow value of any s-t min-
cost flow that satisfies extra side constraints. Lastly, the
cost-scaling approach introduced in this paper might in-
spire the development of new algorithms for a more gen-
eral optimization problem in dynamic networks – the
quickest transshipment problem. The quickest trans-
shipment problem is similar to the quickest flow prob-
lem except it allows multiple source nodes and multiple
sink nodes with their respective supplies and demands.
Hoppe and Tardos [13] introduced the only polynomial-
time algorithms for this problem. Similar to the ap-
proach used by Burkard et al. [4], their algorithms also
search over time T to find an optimal solution. Our cost-
scaling approach provides a different angle for looking
at this problem, and new algorithms might be developed
to reach better time bounds.

Acknowledgment

We thank Prof. James B. Orlin for the help to simplify
the proofs for the optimality conditions.

References

[1] Ravindra K Ahuja, Thomas L Magnanti, and James B
Orlin. Network flows: theory, algorithms, and applica-
tions. 1993.

[2] Luiz F Bittencourt and Edmundo RM Madeira. To-
wards the scheduling of multiple workflows on compu-
tational grids. Journal of grid computing, 8(3):419–
441, 2010.

[3] Luiz F Bittencourt and Edmundo RM Madeira. Hcoc:
a cost optimization algorithm for workflow scheduling
in hybrid clouds. Journal of Internet Services and
Applications, 2(3):207–227, 2011.

[4] Rainer E Burkard, Karin Dlaska, and Bettina Klinz.
The quickest flow problem. Zeitschrift für Operations
Research, 37(1):31–58, 1993.

[5] YL Chen and YH Chin. The quickest path prob-
lem. Computers & Operations Research, 17(2):153–
161, 1990.

[6] Lisa K Fleischer. Faster algorithms for the quickest
transshipment problem. SIAM journal on Optimiza-
tion, 12(1):18–35, 2001.

[7] Lester Randolph Ford and Delbert Ray Fulkerson.
Constructing maximal dynamic flows from static flows.
Operations research, 6(3):419–433, 1958.

[8] LR Ford and DR Fulkerson. Flows in networks, volume
1962. Princeton Princeton University Press, 1962.

[9] Giorgio Gallo, Michael D Grigoriadis, and Robert E
Tarjan. A fast parametric maximum flow algo-
rithm and applications. SIAM Journal on Computing,
18(1):30–55, 1989.

[10] Andrew Goldberg and Robert Tarjan. Solving
minimum-cost flow problems by successive approxima-
tion. In Proceedings of the nineteenth annual ACM
symposium on Theory of computing, pages 7–18. ACM,
1987.

[11] Andrew V Goldberg and Robert E Tarjan. Finding
minimum-cost circulations by successive approxima-
tion. Mathematics of Operations Research, 15(3):430–
466, 1990.

[12] Horst W Hamacher, Stephanie Heller, and Benjamin
Rupp. Flow location (flowloc) problems: dynamic net-
work flows and location models for evacuation plan-
ning. Annals of Operations Research, 207(1):161–180,
2013.

[13] Bruce Hoppe and Éva Tardos. The quickest transship-
ment problem. Mathematics of Operations Research,
25(1):36–62, 2000.

[14] Ekkehard Köhler, Rolf H Möhring, and Martin
Skutella. Traffic networks and flows over time. In
Algorithmics of Large and Complex Networks, pages
166–196. Springer, 2009.

[15] Kai Li and Shan-lin Yang. Non-identical parallel-
machine scheduling research with minimizing to-
tal weighted completion times: Models, relaxations
and algorithms. Applied mathematical modelling,
33(4):2145–2158, 2009.

[16] Yi-Kuei Lin. System reliability of a stochastic-flow net-
work through two minimal paths under time thresh-
old. International journal of production economics,
124(2):382–387, 2010.

[17] Nimrod Megiddo. Combinatorial optimization with ra-
tional objective functions. Mathematics of Operations
Research, 4(4):414–424, 1979.

[18] Britta Peis, Martin Skutella, and Andreas Wiese.
Packet routing: Complexity and algorithms. In Ap-
proximation and Online Algorithms, pages 217–228.
Springer, 2010.

[19] Britta Peis and Andreas Wiese. Universal packet rout-
ing with arbitrary bandwidths and transit times. In
Integer Programming and Combinatoral Optimization,

pages 362–375. Springer, 2011.
[20] Martin Skutella. An introduction to network flows over

time. In Research Trends in Combinatorial Optimiza-
tion, pages 451–482. Springer, 2009.

[21] Daniel D Sleator and Robert E Tarjan. A data struc-
ture for dynamic trees. In Proceedings of the thir-
teenth annual ACM symposium on Theory of comput-
ing, pages 114–122. ACM, 1981.

[22] Daniel D Sleator and Robert E Tarjan. A data
structure for dynamic trees. Journal of computer and
system sciences, 26(3):362–391, 1983.

[23] Hong Zheng, Yi-Chang Chiu, Pitu B Mirchandani, and
Mark Hickman. Modeling of evacuation and back-
ground traffic for optimal zone-based vehicle evacua-
tion strategy. Transportation Research Record: Jour-
nal of the Transportation Research Board, 2196(1):65–
74, 2010.

A Proofs of Some of the Results in Section 2

Proof. [Proof of Lemma 2.2] By definition, flow value
v is a local minimum if and only if for any arbitrarily
small ε > 0, we have:

(A.1) T ∗(v) =
F + g(v)

v
≤ F + g(v + ε)

v + ε
= T ∗(v + ε)

and

(A.2) T ∗(v) =
F + g(v)

v
≤ F + g(v − ε)

v − ε
= T ∗(v − ε)

Increasing a flow value v by a tiny amount ε in function
g(v) means to send an extra ε amount of flow from s
to t while maintaining a min-cost flow. In order to
achieve this goal, we need to send the extra flow through
a shortest path in the residual network G(x∗(v)), where
x∗(v) is a min-cost flow with flow value v. The extra
cost incurred by sending the extra ε amount of flow is
ε · dst. Therefore we have:

(A.3) g(v + ε) = g(v) + ε · dst

Using (A.3), we can reduce (A.1) to:

(A.4)

F + g(v)

v
≤ F + g(v) + ε · dst

v + ε

⇒ dst ≥
F + g(v)

v
= T ∗(v)

Similarly, decreasing v by a tiny amount ε in g(v) means
to to pull ε amount of flow back from t to s. In order
to keep the flow optimal, the extra flow needs to be
pulled from a shortest t-s path in the residual network.
Therefore the change of cost is ε · dts. Note that dts is
negative. We have:

(A.5) g(v − ε) = g(v)− ε · (−dts)

Using (A.5), we can reduce (A.2) to:

(A.6)

F + g(v)

v
≤ F + g(v)− ε · (−dts)

v − ε

⇒ − dts ≤
F + g(v)

v
= T ∗(v)

From (A.4) and (A.6), we conclude that v is a local
minimum for T ∗(v) if and only if −dts ≤ T ∗(v) ≤ dst.
�

Proof. [Proof of Lemma 2.3] Function g(v) defines a
linear programming problem with parameter v, and it
is a minimization problem, therefore g(v) is convex and
piecewise linear with respect to v. As a result, we can
express g(v) as:

(A.7) g(v) =

λ0 · v + β0 0 = α0 ≤ v < α1

λ1 · v + β1 α1 ≤ v < α2

· · ·
λK · v + βK αK ≤ v <∞

where K is the total number of break points, and αi is
the i’th break point. In (A.7), we have λ0 < λ1 < · · · <
λK and β0 > β1 > · · · > βK .

Based on this expression, we have: T ∗(v) =
(F + g(v)) /v = λi + (F + βi)/v for v between αi and
αi+1.

Let k be the smallest index of the pieces such that
F + βi < 0. Mathematically, we define k := mini{i :
F + βi < 0}. Let k be K + 1 if F + βi ≥ 0 for all i.
Then for all i < k, we have F + βi ≥ 0. Consequently,
T ∗(v) = λi + (F + βi)/v is non-increasing on each piece
i if i < k. On the other hand, for all i ≥ k, we have
F + βi < 0. Therefore T ∗(v) = λi + (F + βi)/v is
monotone increasing on each piece i if i ≥ k.

Because function T ∗(v) is continuous, we conclude
that T ∗(v) is non-increasing when v < αk and increasing
when v ≥ αk. Hence, T ∗(v) is unimodal. �

B Proofs of Some of the Results in Section 3

In order to prove Lemma 3.1, we first prove a technical
lemma:

Lemma B.1. Let x be any ε-optimal flow with flow
value v, and let x∗ be a min-cost flow with the same
flow value v. If the admissible network is acyclic, we
have

(B.8)
∑
e∈E

τex
∗
e ≤

∑
e∈E

τexe ≤
∑
e∈E

τex
∗
e + nε · v

Proof. The left inequality is by definition. For the
right inequality, consider an ε-optimal flow x and node
potentials π. Let A be the set of arcs in the original

network whose forward arc or backward arc in the
residual network G(x) is admissible. We alter the cost
of each arc e = (w,w′) ∈ A in the following way: set
τ ′e := πw − πw′ ,∀e ∈ A. For the arcs not in set A, we
keep τ ′e = τe. Note that after this change, cπe′ ≥ 0 for
every arc e′ in G(x). Therefore flow x is optimal in the
network with the altered arc costs τ ′e. Mathematically,
we have:

(B.9)
∑
e∈E

τ ′exe ≤
∑
e∈E

τ ′ex
∗
e

Due to the ε-optimality of x and π, we have πw′ + τe −
πw ≥ −ε and πw−τe−πw′ ≥ −ε for all e = (w,w′) ∈ A.
Therefore we have

(B.10) −ε ≤ τe − τ ′e ≤ ε

Note that x and x∗ are both feasible flows with flow
value v, so the flow on any arc cannot exceed v. That
is,

(B.11) 0 ≤ xe ≤ v, 0 ≤ x∗e ≤ v, ∀e ∈ E

Combining all the inequalities above, we have
(B.12)∑
e∈E

τexe =
∑
e∈A

(τ ′e + (τe − τ ′e)) · xe +
∑
e 6∈A

τ ′e · xe

≤
∑
e∈E

τ ′e · x∗e +
∑
e∈A

(τe − τ ′e) · xe by (B.9)

=
∑
e∈A

(τe + (τ ′e − τe)) · x∗e

+
∑
e 6∈A

τe · x∗e +
∑
e∈A

(τe − τ ′e) · xe

=
∑
e∈E

τe · x∗e +
∑
e∈A

(τe − τ ′e) · (xe − x∗e)

≤
∑
e∈E

τe · x∗e +
∑
e∈A

ε · v by (B.10) and (B.11)

To complete the proof, we use the assumption that
the admissible network of the residual network G(x)
is acyclic. It implies that the number of arcs in set
A cannot exceed n − 1. Combining this result with
inequality (B.12), we obtain

∑
e∈E τe·xe ≤

∑
e∈E τex

∗
e+

nε · v, which is the right inequality of (B.8). �

Proof. [Proof of Lemma 3.1] We use v2ε and vε to denote
the flow value of x2ε and xε, respectively. Because
Subroutine Refine does not send extra flow from s to
t, we have vε = v2ε.

Let x∗ be a min-cost flow with flow value vε.
Because the Subroutine Reduce-Gap and Refine both

use the push/relabel algorithm that yields admissible
networks that are acyclic (see Corollary 5.6 in [11]), by
Lemma B.1, we have:

(B.13)
∑
e∈E

τe ·x∗e ≤
∑
e∈E

τe ·x2ε
e ≤

∑
e∈E

τe ·x∗e +n ·2ε ·v2ε

and

(B.14)
∑
e∈E

τe · x∗e ≤
∑
e∈E

τe · xεe ≤
∑
e∈E

τe · x∗e + n · ε · vε

Putting (B.13) and (B.14) together, we have:
(B.15)∑
e∈E

τe · xεe − nε · vε ≤
∑
e∈E

τe · x2ε
e ≤

∑
e∈E

τe · xεe + 2nε · vε

Moreover, Goldberg and Tarjan [11] showed that Sub-
routine Refine could only increase each node’s poten-
tial by at most 3nε (Lemma 5.8 in [11]). That is,
0 ≤ πεs − π2ε

s ≤ 3nε and 0 ≤ πεt − π2ε
t ≤ 3nε. Therefore,

(B.16) π2ε
s − π2ε

t − 3nε ≤ πεs − πεt ≤ π2ε
s − π2ε

t + 3nε

Using (3.17), (B.15) and (B.16), we have
(B.17)
πεs − πεt ≥ π2ε

s − π2ε
t − 3nε by (B.16)

≥
F +

∑
e∈E τe · x2ε

e

v2ε
− 17nε by (3.17)

≥
F +

∑
e∈E τe · xεe − nε · vε

vε
− 17nε by (B.15)

=
F +

∑
e∈E τe · xεe
vε

− 18nε

and
(B.18)
πεs − πεt ≤ π2ε

s − π2ε
t + 3nε by (B.16)

≤
F +

∑
e∈E τe · x2ε

e

v′2ε
− 7nε by (3.17)

≤
F +

∑
e∈E τe · xεe + 2nε · vε

vε
− 7nε by (B.15)

=
F +

∑
e∈E τe · xεe
vε

− 5nε

Combining (B.17), (B.18), and the definition of γ(x, π)
(3.16), we obtain (3.18). �

Proof. [Proof of Lemma 3.2] The pair of flow x and node
potentials π is ε-optimal throughout the ε-scaling phase.
Consider any shortest simple path pst from s to t in the

residual network G(x). We have∑
e∈pst

cπe =
∑

e=(w,w′)∈pst

(πw′ + τ̂e − πw)

= πt − πs +
∑
e∈pst

τ̂e

= πt − πs + dst

Since cπe ≥ −ε, we have πt−πs+dst =
∑
e∈Pst

cπe ≥ −nε.
This is equivalent to the right inequality of (3.19).

Applying a similar argument on a shortest simple
path pts from t to s in G(x), we can obtain the left
inequality of (3.19). �

We next consider the change of node potentials and
the ratio (F +

∑
e∈E τe · xe)/v during the execution of

the subroutine Reduce-Gap.
Let x, v, and π be the flow, flow value, and node

potentials when the inner loop of the subroutine Reduce-
Gap starts, and let x′, v′, and π′ be the flow, flow value,
and node potentials when the the inner loop ends. Let
∆v = v′ − v be the change of the flow value. Note that
because there is excess on node s when the inner loop
starts, but no excess when it ends, we have v′ ≥ v.

In order to prove Lemma 3.3, Lemma 3.4, and
Lemma 3.5, we first prove the following lemma:

Lemma B.2. When the inner loop of Subrou-
tine Reduce-Gap ends, we have
(B.19)
F +

∑
e∈E τe · x′e
v′

≥
F +

∑
e∈E τe · xe + (πs − πt − nε) ·∆v

v + ∆v

and
(B.20)
F +

∑
e∈E τe · x′e
v′

≤
F +

∑
e∈E τe · xe + (πs − πt + nε) ·∆v

v + ∆v

Proof. If we decompose the flow x′ − x in the residual
network G(x), we have a set P of feasible s-t paths in
G(x). Let τ(p) and x(p) be the cost and flow on each
path p ∈ P . Recall that dst(x) is the cost of a shortest
simple s-t path in the residual network G(x). By the
right inequality of (3.19), we have

(B.21) τ(p) ≥ dst(x) ≥ πs − πt − nε

Similarly, dts(x
′) is the cost of a shortest simple t-s path

in G(x′). Note that the reverse path of p is a feasible t-s
path in the residual network G(x′), therefore we have

dts(x
′) ≤ −τ(p). Hence, by the left inequality of (3.19),

we have

(B.22) τ(p) ≤ −dts(x′) ≤ π′s − π′t + nε

Note that we do not relabel the source node s in the
inner loop of Subroutine Reduce-Gap, and the sink node
t is never relabeled. Therefore πs = π′s and πt = π′t.
Based on (B.21) and (B.22), we have

F +
∑
e∈E τe · x′e
v′

=
F +

∑
e∈E τe · xe +

∑
p∈P τ(p) · x(p)

v + ∆v

≥
F +

∑
e∈E τe · xe + (πs − πt − nε) ·∆v

v + ∆v

and

F +
∑
e∈E τe · x′e
v′

=
F +

∑
e∈E τe · xe +

∑
p∈P τ(p) · x(p)

v + ∆v

≥
F +

∑
e∈E τe · xe + (π′s − π′t + nε) ·∆v

v + ∆v

�

Proof. [Proof of Lemma 3.3] At the beginning of an
iteration of the outer loop, we generate an extra amount
of excess

[
(F +

∑
e∈E τexe)− (πs − πt + 5nε) · v

]
/6nε

at the source node s. No other excess is generated before
the next iteration of the outer loop. Therefore,

∆v ≤
(F +

∑
e∈E τe · xe)− (πs − πt + 5nε) · v

6nε

⇒ (πs − πt + 5nε) · v + 6nε ·∆v ≤ F +
∑
e∈E

τe · xe

⇒ (πs − πt + 5nε) · (v + ∆v)

≤ F +
∑
e∈E

τe · xe + (πs − πt − nε) ·∆v

⇒ πs − πt + 5nε

≤
F +

∑
e∈E τe · xe + (πs − πt − nε) ·∆v

v + ∆v

⇒ πs − πt ≤
F +

∑
e∈E τe · x′e
v′

− 5nε by (B.19)

Because we do not relabel node s in the inner loop of
Subroutine Reduce-Gap, and the sink node t is never
relabeled in Subroutine Reduce-Gap, we have πs = π′s,
and πt = π′t. Therefore, we have γ(x′, π′) ≥ 5nε. �

Proof. [Proof of Lemma 3.4] By Lemma 3.3, we have
γ(x, π) ≥ 5nε, or equivalently,

(B.23) πs − πt ≤
F +

∑
e∈E τe · xe
v

− 5nε

Using (B.20) and (B.23), we have

F +
∑
e∈E τe · x′e
v′

≤
F +

∑
e∈E τe · xe + (πs − πt + nε) ·∆v

v + ∆v

≤
(
F +

∑
e∈E τe · xe

)
+
(
F +

∑
e∈E τe · xe

)
· ∆v
v

v + ∆v

by (B.23)

=

(
F +

∑
e∈E τe · xe

)
·
(
1 + ∆v

v

)
v + ∆v

=
F +

∑
e∈E τe · xe
v

�

Proof. [Proof of Lemma 3.5] According to Subrou-
tine Reduce-Gap, if there is no outgoing admissible arc
from s at the end of an iteration of the outer loop, s will
be relabeled in the next iteration. Therefore, we only
need to show that if there exists an outgoing admissible
arc from s at the end of an iteration of the outer loop,
we must have γ(x′, π′) ≤ 7nε.

We first show that if there exists an outgoing
admissible arc from s when an iteration ends, all the
extra flow generated at node s at the beginning of the
iteration has been sent to the sink. Mathematically, we
will show that ∆v = [(F +

∑
e∈E τe · xe) − (πs − πt +

5nε) · v]/6nε.
When s is the first active node in the list L, we keep

pushing excess e(s) to other nodes until either e(s) = 0
or the the residual network G(x) does not contain any
admissible arc outgoing from s. Note that any arc
e = (s, w) in G(x) cannot become admissible again after
it is saturated unless s is relabeled. Since there is still
an admissible arc outgoing from s when the iteration
ends, we must have e(s) = 0 every time we are done
pushing excess from node s to other nodes. Therefore,
setting e(s) := 0 after the pushes does not reduce
the overall flow excess. Moreover, we do not lose any
flow excess when performing push/relabel operations on
other nodes. Thus, we can claim that all extra flow
generated at the beginning of a iteration has been sent
to the sink when the iteration ends.

With ∆v = [(F +
∑
e∈E τe · xe)− (πs − πt + 5nε) ·

v]/6nε, we have:

(πs − πt + 5nε) · v + 6nε ·∆v = F +
∑
e∈E

τe · xe

⇒ (πs − πt + 7nε) · (v + ∆v)

≥ F +
∑
e∈E

τe · xe + (πs − πt + nε) ·∆v

⇒ πs − πt + 7nε

≥
F +

∑
e∈E τe · xe + (πs − πt + nε) ·∆v

v + ∆v

⇒ πs − πt ≥
F +

∑
e∈E τe · x′e
v′

− 7nε by (B.20)

Because we do not relabel node s in the inner loop of
Subroutine Reduce-Gap, and the sink node t is never
relabeled in Reduce-Gap, we have πs = π′s, and πt = π′t.
Therefore we have γ(x′, π′) ≤ 7nε. �

Proof. [Proof of Theorem 3.1] The first condition is
satisfied because when the algorithm terminates, any
cycle C in the residual network has cost

∑
e∈C c

π
e ≥

−nε > −1/8. Since all costs are integers, there does
not exist any negative cycle in the residual network. By
Theorem 2.1, the flow is a min-cost flow.

Now we show that the optimality condition (1.3)
is satisfied when the final subroutine Saturate ends.
Assume that the flow and node potentials are x and
π respectively when the last scaling phase ends, and x∗

and π∗ are the flow and node potentials when the final
subroutine Saturate ends. The termination condition
of the subroutine Reduce-Gap and Lemma 3.3 indicate
that when the last scaling phase ends, we have

(B.24) πs−πt+5nε ≤
F +

∑
e∈E τexe

v
≤ πs−πt+7nε

Using the left inequality of (3.19) in Lemma 3.2, we have

−dts − nε ≤ πs − πt ≤
F +

∑
e∈E τexe

v
− 5nε

Or equivalently,
(B.25)

−dts ≤
F +

∑
e∈E τexe

v
− 4nε <

F +
∑
e∈E τexe

v

Therefore, the left inequality of the optimality condition
(1.3) is satisfied. For the right inequality of (1.3), we use
the right inequality of (3.19) in Lemma 3.2:

F +
∑
e∈E τexe

v
− 7nε ≤ πs − πt ≤ dst + nε

Or equivalently,

F +
∑
e∈E τexe

v
≤ dst + 8nε

When the scaling loop ends, we have 8nε < 1. There-
fore,

(B.26)
F +

∑
e∈E τexe

v
< dst + 1

If
(
F +

∑
e∈E τexe

)
/v ≤ dst, the optimality condition

(1.3) is met, and we do not need to execute the step of
sending extra flow in the final subroutine Saturate.

On the other hand, if (F +
∑
e∈E τexe)/v > dst, the

subroutine Saturate invokes a maximum flow algorithm
to saturate all the paths with cost dst in the residual
network G(x). Note that all the extra flow we send
are through the shortest s-t paths whose costs are all
dst(x) in the residual networkG(x). The reverse of these
paths exist in the residual network G(x∗). Therefore
we have −dts(x∗) = dst(x), because otherwise we could
find a negative cycle in the residual network G(x), which
contradicts the fact that x is a min-cost flow.

Assume the extra amount of flow sent from s to t is
∆v, we have

F +
∑
e∈E τex

∗
e

v∗
=
F +

∑
e∈E τexe + dst(x) ·∆v

v + ∆v

≥ dst(x) = −dts(x∗)

On the other hand, dst strictly increases when all the
shortest paths are saturated. Since all costs are integer,
we have dst(x

∗) ≥ dst(x) + 1. From (B.26), we have:

F +
∑
e∈E τex

∗
e

v∗
=
F +

∑
e∈E τexe + dst(x) ·∆v

v + ∆v

< dst(x) + 1 ≤ dst(x∗)

Now both the left and right inequalities of the optimality
condition (1.3) are satisfied, and there is no negative
cycle in the residual network. Therefore any temporally-
repeated flow of the final solution x∗ is an optimal
solution to the quickest flow problem. �

Proof. [Proof of Lemma 3.7] The arguments we use here
are similar to the ones used in Lemma 5.7 and 5.8 by
Goldberg and Tarjan [11], where they showed that any
node potential πw could increase by at most 3nε in the
Subroutine Refine.

Let x and π be the flow and node potentials when
Subroutine Reduce-Gap starts in the ε-scaling phase,
and x′ and π′ be the flow and node potentials at any
step within Subroutine Reduce-Gap.

Consider any node w that is to be relabeled. Ac-
cording to Subroutine Reduce-Gap, w must have a posi-
tive flow access e(w), and all the excess must have came
from the source node s. If we perform a flow decom-
position on flow x′ − x in the residual network G(x),
we can obtain a set of paths from s to t and from s to
all the nodes with positive access, including w. This
implies that there exists a path psw from s to w in the
residual network G(x) and its reverse path p′ws from w
to s in the residual network G(x′). Since both (x, π)
and (x′, π′) are ε-optimal, we have:

(B.27)

−nε ≤
∑
e∈psw

cπe

=
∑

e=(w′,w′′)∈psw

(πw′′ + τ̂e − πw′)

= πw − πs +
∑
e∈psw

τ̂e

and

(B.28)

−nε ≤
∑
e∈p′ws

cπ
′

e

=
∑

e=(w′,w′′)∈p′ws

(π′w′′ + τ̂e − π′w′)

= π′s − π′w +
∑
e∈p′ws

τ̂e

where τ̂e is the cost of arc e in the residual networks.
Because path p′ws is the reverse path of psw, we have∑

e∈p′ws
τ̂e = −

∑
e∈psw τ̂e. Summing (B.27) and (B.28),

we obtain

(B.29) π′w − πw ≤ π′s − πs + 2nε ≤ 13nε

The last inequality holds because by Lemma 3.6, the
source node s is relabeled at most 11n times, and each
time it is relabeled, πs increases by ε.

Since each relabeling increases the node potential of
w by ε, we conclude that any node w ∈ V is relabeled
at most 13n times. �

Proof. [Proof of Theorem 3.3] We can apply the same
analysis by Goldberg and Tarjan [11] here. Note that
in their analysis, all computational costs are either
attributed or amortized to the number of relabeling
operations at each node in each scaling phase. Since
we have shown that in our cost-scaling algorithm the
number of relabeling operations on each node in each
scaling phase is also bounded by O(n), we can apply
the same analysis and show that the computational time
can be improved to O(nm log (n2/m) log (nC)) by using
the dynamic tree data structure. Since the analysis is
the same as in [11], it is omitted here. �

