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Abstract

This paper deals with online resource allocation problems whereby buyers with a limited total
budget want to purchase items which become available one at a time and which consume some
amount of various limited resources upon allocation. A central resource allocation platform is
in charge of allocating the items to the potential buyers, with the goal of maximizing the total
revenue subject to budget and resource constraints. Sponsored search advertising is a typical
example: in order to maximize revenue, search engines try to choose the best available adver-
tisement to display on a web page resulting from a search query.

Two main approaches have been proposed to address such online problems, depending on the
assumptions made about the input sequence: one is trying to guarantee a performance against a
worst case scenario (sometimes called the adversarial model); the other one, based on specific
probabilistic assumptions about the input, is concerned with expected performance guarantee.
However, combining the strengths of these two approaches could potentially outperform both
in some settings. In this paper we propose such a practical method which goes beyond the
adversarial model but requires only a limited amount of information about the future. We provide
extensive computational results which demonstrate settings under which the performance of the
proposed algorithm becomes attractive.

Keywords: resource allocation, online optimization, primal-dual algorithm, stochastic
optimization, L-Shaped method, adwords problem

1. Introduction

According to Bloomberg Businessweek (2006), “Google didn’t make money until it started
auctioning ads that appear alongside the search results. Advertising today accounts for 99% of
the revenue”. Google’s advertisements generated more than 59 billion dollars in 2014 (Google,
2014). Online optimization techniques are useful in such settings and combined with modern
statistical tools can lead to significant benefits.
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For such online optimization problems, detailed information (about users, clients, and/or ad-
vertisements) is typically revealed step by step, and irrevocable decisions must be taken along the
way. The AdWords problem (introduced in (Mehta et al., 2007)) is a typical online advertising
example: many advertisers compete to display their advertisements on a given web page which
would result from a search query within a search engine, or which would simply be known to
attract traffic from internet users. An online advertising service aims at maximizing its revenue
by choosing the best possible advertisement to display on a web page (i.e. an impression). For
each impression, only one among many advertisements is displayed, thus generating a profit
for the advertising service according to the advertisement chosen. The goal is to maximize the
total revenue of all allocations without knowing the whole sequence of requests for displaying
an advertisement. There are also variations of this problem which consider the possibilities of
bounding the number of allocations to a client or a web page, limiting clients budget, displaying
several advertisements on a web page, and/or managing different advertisements dimensions. In
the remainder of this paper, we will refer to this class of problems as online bipartite resource
allocation problems.

A wide range of other applications can be modeled by this class of problems, such as in rout-
ing, revenue management, and scheduling. For example, Google has published two anonymous
sets of real-data about their computer clusters (Reiss et al., 2011). Tasks with different priori-
ties are continuously arriving from several services and must be placed in the clusters’ workload
while respecting a number of constraints: first, hardware constraints dealing with disk space,
memory space, bandwidth and the number of CPUs, and, second, software constraints ensuring
the right configuration of virtual machines. Online bipartite resource allocation problems also
appear in the hotel, rail, and airline industries, to name a few. In these settings, clients typi-
cally purchase a service from a company which must price it beforehand according to the current
availability of its key resource (hotel rooms, train seats, or plane seats, respectively). Other ap-
plications of interest correspond to patient scheduling problems. Patients arriving in hospitals or
clinics must be able to obtain an appointment while resources should also be kept available for
future possible high priority patients (Legrain et al., 2014).

Given the uncertainty about the arrival of future requests, it is challenging to balance re-
sources among different categories of items and also infer future resource needs to avoid under-
or over-provisioning. In general, it is difficult to design general-purpose algorithms which per-
form well under all types of uncertainty. One way of handling uncertainty is through stochas-
tic optimization techniques (e.g., multistage stochastic programs (Birge and Louveaux, 2011),
Markov decision processes (Puterman, 2014)), or via robust optimization (Bertsimas and Sim,
2003). These approaches provide good results when uncertainty can be reasonably well ap-
proximated by probability distributions. Uncertainty can also be handled through competitive
analysis approaches (Borodin and El-Yaniv, 1998; Jaillet and Wagner, 2010) which correspond
to designing online algorithms with worst-case guarantees against any future requests. In this
approach, the competitive ratio of an online algorithm for a maximization problem is defined as

c = min
I∈χ
{

Objonline(I)
Objoptimal(I)

}, where Objonline(I) is the value of the objective for the solution given

by the online algorithm, Objoptimal(I) is the value of the objective for the offline solution for an
instance I, and χ is the set of all possible instances. We then say that the online algorithm is
c-competitive. Such an approach about handling uncertainty is often referred to as an adversarial
model: the online algorithm designer is facing an all powerful adversary who can choose any
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specific instance and can solve the offline problem on that instance.

Different versions of the online bipartite resource allocation problems have been studied un-
der the adversarial model when the total number of requests in the instance is known to the online
algorithm designer. Karp et al. (1990) deal with a simple form of this problem maximizing the
number of requests matched to buyers. The author proposed a best possible 1 − 1

e -competitive
randomized algorithm. Kalyanasundaram and Pruhs (2000) provide a 1 − 1

e -competitive algo-
rithm for the b-matching problem, which is defined as an online bipartite resource allocation
problem where each buyer can be matched at most b times. They also prove that this competi-
tive ratio is the best possible. Mehta et al. (2007) introduce the Adwords problem and propose
a 1 − 1

e -competitive algorithm. Buchbinder et al. (2007) show that a primal-dual algorithm can
be designed for this problem with the same competitive ratio. Jaillet and Lu (2011) propose
a 1

2 -competitive primal-dual algorithm for the online bipartite resource allocation problem in a
special homogeneous case. Aggarwal et al. (2011) give a 1 − 1

e -competitive algorithm for the
vertex-weighted bipartite matching problem.

As the adversarial model may be too conservative, other models have been proposed. The
random permutation model allows some mild assumptions on the request arrival process. The
set of requests remains unknown, but the order of the sequence of requests is random instead
of being chosen by an adversary. Goel and Mehta (2008) prove that a greedy algorithm is a
1 − 1

e -competitive algorithm for the AdWords problem. Devanur et al. (2011); Agrawal et al.
(2014); Eghbali et al. (2014); Molinaro and Ravi (2014); Kesselheim et al. (2014)) all propose
near-optimal algorithms for various settings of the online bipartite resource allocation and online
packing problems under the random permutation model.

Other authors (Feldman et al. (2009); Karande et al. (2011); Manshadi et al. (2012); Jail-
let and Lu (2014)) combine online and stochastic ideas for applications where statistics on the
probability distribution of the future requests is either known or learnable. They study the on-
line bipartite matching problem under such a probabilistic model and improve the bounds on the
competitive ratio from 1 − 1

e for the adversarial model up to 0.706 for the probabilistic model
(Jaillet and Lu, 2014), using statistics about offline strategies. These papers assume that the re-
quests are independent and identically distributed from a known probability distribution.

Other papers present algorithms for solving the online bipartite resource allocation problems
with adaptive updates of stochastic information, when an offline linear programming problem
is used to update the future strategy. For example, Ciocan and Farias (2012) have obtained an
expected worst case guarantee of 0.342 with the following procedure. Based on known statistics
of the distribution, the algorithm computes an initial strategy allocating a percentage of item k
to buyer i. Primal problems are then solved during the allocation process to update this strategy
given the new information. In contrast, Feldman et al. (2010) and Jaillet and Lu (2012) use dual
solutions to improve current strategy. Jaillet and Lu (2012) also try to infer the total number of
requests T (instead of assuming to be known ahead of time).

Finally, Van Hentenryck and Bent (2009) develop practical algorithms for online stochastic
combinatorial optimization. They propose three architectures to build an online procedure with
stochastic information. These architectures use the same ideas: first, the future is sampled and
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then an offline algorithm is used to solve the problem with the sampled scenarios. There is no
assumption made on the distribution which can dynamically evolve during the resolution: these
algorithms just need to retrieve a sampled scenarios set upon each request arrival. Although
these architectures propose efficient ways to solve general online allocation problems, they do
not provide any competitive ratio against any model.

Most of the aforementioned articles analyze the algorithms from a theoretical perspective.
However, many assumed parameters in these approaches remain unknown in reality. In this
paper, we propose several improvements to current approaches so as to solve practical online
bipartite resource allocation problems, making use of available stochastic information. Our pa-
per is not about deriving new competitive ratios under any classical (adversarial, random per-
mutation, or probabilistic) models as described above. Our work builds upon the primal-dual
algorithm presented in Buchbinder et al. (2007) and the online stochastic algorithms proposed
by Van Hentenryck and Bent (2009). We design a new data-driven algorithm taking advantages
of any probabilistic underlying structures, which are more common with the rise of the big data
era. Our main contributions are as follows:

A Stochastic online algorithm: We assume that an underlying stochastic process describes
the arrival of requests. Our algorithm takes into account future requests to infer the expected
revenue from an allocation. We make the best decision for the current request by maximizing
this revenue. This procedure provides high quality solutions, but remains computationally de-
manding.

A Re-optimized primal-dual algorithm: The previous algorithm is modified to estimate the
dual variables in the primal-dual procedure. As deterministic algorithms may make poor deci-
sions, leading to a significant deterioration of the solution, we aim at correcting these mistakes
by performing updates of the dual variables during the process.

An estimation of the future: We assume that the stochastic process of the demand is initially
unknown. We first use machine learning tools to infer the probability distribution of the arrival
rates of M types of items based on historical data. Upon each arrival of a request, we then use
an optimization problem to estimate the number of remaining future requests. The quality of this
last inference is crucial to obtain an overall good solution.

Computational experiments: We conduct numerical tests over different scenarios to com-
pare four algorithms. We also analyze the sensitivity of our scheme to different parameters. The
results show that our procedure performs very well for most scenarios leading to an empirical
competitive ratio above 0.9.

The rest of this paper is organized as follows. Section 2 mathematically defines the online
bipartite resource allocation problem. Section 3 introduces the stochastic online algorithm. Sec-
tion 4 presents different modifications on the algorithm to solve more realistic problems. Section
5 provides extensive numerical results. Finally, conclusions are drawn in Section 6.

2. Online bipartite resource allocation problem

We consider a general class of resource-constrained allocation problems where items arrive
one by one and must be allocated upon arrival among a set of buyers. More formally, the online
bipartite resource allocation problem can be described as follows:
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• each buyer in a set {1 . . .N} is interested in purchasing one or more items from a set
{1 . . . M} of distinct object types;

• a total of T items come one at a time (T requests);

• buyer i ∈ {1 . . .N} is willing to pay cik for each item of type k ∈ {1 . . . M} and has a limited
total budget Bi;

• an allocation of an item to a buyer consumes some specific amount of L distinct and limited
resources; more specifically:

– a total of Fk ∈ RL
+ amounts of these L distinct resources are available for the overall

allocations of items of type k ∈ {1 . . . M};

– each item of type k ∈ {1 . . . M} consumes amounts dik ∈ RL
+ of resources Fk and

provides a revenue cik to the operator when allocated to buyer i ∈ {1 . . .N};

• a central resource allocation platform (the “operator”) is in charge of allocating items to
potential buyers, with the goal of maximizing total revenue subject to budget and resource
constraints.

All mathematical notations are summarized in Appendix A. A mathematical programming
formulation corresponding to this problem can be written as follows:

max
N∑

i=1

T∑
j=1

cik j xi j (1a)

subject to:
N∑

i=1

xi j ≤ 1 ∀ j = 1 . . . T (1b)

T∑
j=1

cik j xi j ≤ Bi ∀i = 1 . . .N (1c)

N∑
i=1

T∑
j=1|k j=k

dikxi j ≤ Fk ∀k = 1 . . . M (1d)

xi j ∈ {0, 1} ∀i = 1 . . .N,∀ j = 1 . . . T (1e)

The objective (1a) is to maximize the revenue of the operator for T requests. Constraints (1b)
ensure that a request is allocated no more than once. Constraints (1c) are budget constraints lim-
iting the total expense for each buyer i. Finally, constraints (1d) ensure that all allocated items
of type k do not consume more than the available resources, for example the available space on
a web page or the maximum number of allocations to a web page. In the online case, the type k j

of the jth request is unknown ahead of time and the total number of items of type k out of the T
requests (say nk) is also a priori unknown. In some cases the fraction of requests of type k, ( nk

T )k,
can be assumed to follow some (known or estimated) stochastic processes. The challenge for an
online strategy is to decide the allocation of each request without knowing the exact sequence of
future requests.
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The different resource allocation problems presented in the introduction are special cases of
the online bipartite resource allocation problem defined above. The matching problem corre-
sponds to the case without constraints (1d) and with Bi = 1, cik = 1. The b-matching problem
corresponds to the case without constraints (1d) and with Bi = b, cik = 1. The AdWords problem
corresponds to the case without constraints (1d).

3. Stochastic algorithm

In this section, we present a stochastic optimization formulation and an algorithm to solve the
online bipartite resource allocation problem (1) in an online fashion. The proposed procedure
tries to infer the future and use the information in order to improve the current primal-dual
algorithm. We assume here that the number of requests is known and the demand (i.e., the type
of each request) is described by a stochastic process (Xk

j ): Xk
j = 1 if the jth request is an item of

type k, 0 otherwise. So we suppose that we have the following information:

• T the total number of requests;

• the distribution of the stochastic process (Xk
j )

T
j=1.

From this information, those next parameters can be computed:

• T j the number of requests left after the jth request. So T j = T − j;

• Ω j the set of the future sample scenarios i.e., the future scenarios. Each scenario ω ∈ Ω j

has the same number of elements T j;

• pω is the probability of the scenario ω ∈ Ω j;

• Tω
jk is the number of requests for items of type k in the scenario ω. So T j =

∑M
k=1 Tω

jk.

An important point to note is that the specific order in the sequence of the future requests as-
sociated with a given scenario does not matter when solving a whole scenario with an offline
algorithm, as decisions on how to allocate them under this particular scenario would be done
with the full knowledge of the scenario, and thus all at once.

3.1. Stochastic optimization formulation

We present here a two-stage stochastic integer program with fixed recourse (Birge and Lou-
veaux, 2011) for solving online decisions for our problem. We suppose that the jth request has
just arrived and that we have to make a decision. The objective is to maximize the expected rev-
enue considering all possible future requests as given by all the scenarios ω ∈ Ω j. Let us define
the following new variables:

• Ble f t
i is the budget left for the buyer i;

• xi is equal to 1 if the jth request is allocated to the buyer i, 0 otherwise

• yωik is the number of items of type k allocated to the buyer i for the scenario ω.
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At the time of the jth request, we obtain the following formulation:

max
N∑

i=1

cik j xi+
∑
ω∈Ω j

pω
N∑

i=1

M∑
k=1

cikyωik (2a)

subject to:

N∑
i=1

xi ≤ 1 (2b)

N∑
i=1

yωik ≤ Tω
jk ∀ω ∈ Ω j,∀k = 1 . . . M (2c)

cik j xi +

M∑
k=1

cikyωik ≤ Ble f t
i ∀ω ∈ Ω j,∀i = 1 . . .N (2d)

xi ∈ {0, 1}, yωik ∈ N ∀ω ∈ Ω j,∀i = 1 . . .N,∀k = 1 . . . M (2e)

The objective (2a) maximizes the revenue for the jth request and the expected revenue of
remaining future requests. The constraint (2b) ensures that the jth request is allocated to a
maximum of one buyer. The number of items of type k allocated to all buyers for the scenario ω
is bounded by Tω

jk in constraints (2c). Finally, the constraints (2d) prevent exceeding the budget
for each buyer and each scenario. The formulation (2) is the simplest to consider in order to
describe locally the best decisions to be made upon the arrival of a new request. At the same
time this is a very large and difficult problem to solve. The relaxation of the integer constraint
(2e) on yωik is a first way to simplify the model. The L-Shaped method, presented in the next
section, is a second way to improve the computational time.

3.2. L-Shaped method
In their book, Birge and Louveaux (2011) study different stochastic problems and show how

to use the L-Shaped method to solve them. This technique is based on a Benders decomposition
(Benders, 1962). Concentrating on our specific problem, the idea is to decompose the optimiza-
tion problem (2) in a master problem and slave problems and then approximate the objective of
each slave problem using some cuts.

For the master problem, we replace the part of the objective dealing with scenarios in (2a)
by a recourse function Q, which becomes the objective function in the slave problems. Then, we
obtain the problems presented in Table 1.

The recourse function Q has to be computed for each value of the variable x and for each
scenario ω. In order to have an approximation of Q, we use the dual of the slave problems. In
our case, the solution of this problem gives a cut for the master problem. Table 2 presents a new
master problem where the cuts approximate the recourse function Q.

Note that the weak duality theorem justifies these approximations:

∀x ∈ [0, 1]N , ω ∈ Ω j, Q(x, ω) ≤
M∑

k=1

Tω
jkα

ω
k +

N∑
i=1

(Ble f t
i − cik j xi)βωi (3)
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Master Problem Slave Problems

max
N∑

i=1

cik j xi +
∑
ω∈Ω j

pωQ(x, ω) Q(x, ω) = max
N∑

i=1

M∑
k=1

cikyωik

subject to: subject to:
N∑

i=1

xi ≤ 1
N∑

i=1

yωik ≤ Tω
jk ∀k = 1 . . . M

M∑
k=1

cikyωik ≤ Ble f t
i − cik j xi ∀i = 1 . . .N

xi ∈ {0, 1} ∀i = 1 . . .N yωik ∈ N ∀i = 1 . . .N,∀k = 1 . . . M

Table 1: Decomposition in sub-problems

Master Problem Dual Slave Problems

max
N∑

i=1

cik j xi +
∑
ω∈Ω j

pωθω min
M∑

k=1

Tω
jkα

ω
k +

N∑
i=1

(Ble f t
i − cik j xi)βωi

subject to: subject to:
N∑

i=1

xi ≤ 1 αωk + cikβ
ω
i ≥ cik ∀i = 1 . . .N,∀k = 1 . . . M

θω ≤

M∑
k=1

Tω
jkα

ω
k +

N∑
i=1

(Ble f t
i − cik j xi)βωi ∀ω ∈ Ω j

xi ∈ {0, 1} ∀i = 1 . . .N αωk , β
ω
i ≥ 0 ∀i = 1 . . .N,∀k = 1 . . . M

Table 2: Benders decomposition

1. Set x = 0
2. Solve all the dual slave problems and add every cut to the master problem
3. Solve the master problem:

• if the solution x remains the same, STOP.

• otherwise GO TO 2.

Figure 1: The L-Shaped procedure

The L-Shaped algorithm, presented in Figure 1, stops as soon as the optimum is reached,
otherwise some cuts are generated. We make an additional simplification, and assume that the
master problem is solved only once. In addition to decreasing the computational time, this also
allows us to make an easy link with the primal-dual algorithm as explained in Section 3.3.

For each request, Algorithm 1 chooses first the buyer that offers the highest bid, then, if the
master problem gives the same solution, this is the global optimum; otherwise the solution of
the master problem is only a local optimum depending on the current cuts. This algorithm does
provide promising results as confirmed by our computational tests in Section 5.
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Algorithm 1 Re-optimized primal-dual Algorithm with continuous reviews
xi j = 0
for each jth request do

Use a greedy algorithm to set x
Solve all the dual slave problems and add every cut to the master problem
Solve the master problem and keep this solution x

end for

3.3. Links with the primal-dual

The inequalities (3) become equalities in the master problem; indeed, as this is a maximiza-
tion problem, each variable θω will take on a value at optimality, which will be the corresponding
upper bound defined by the constraint (3). So with this new formulation, we are able to write:

∀x ∈ [0, 1]N , ω ∈ Ω j, θ
ω =

M∑
k=1

Tω
jkα

ω
k +

N∑
i=1

(Ble f t
i − cik j xi)βωi

With all those equalities, the variables θω can be eliminated from the formulation. The updated
cuts can thus be integrated in the objective:

N∑
i=1

cik j xi +
∑
ω∈Ω j

pω[
M∑

k=1

Tω
jkα

ω
k +

N∑
i=1

(Ble f t
i − cik j xi)βωi ]

All the constants are taken off the objective to obtain
∑N

i=1 cik j xi(1 − [
∑
ω∈Ω j

pωβωi ]). The cost
of the variable xi in this objective is exactly the same as its cost in the primal-dual algorithm
(cik j (1 − ri)); the only difference is the way to compute the dual variables ri. The primal-dual
algorithm updates ri with ri = ri(1 +

cik j

Bi
) +

cik j

(c−1)Bi
. In our case, we use stochastic information to

build the dual variables ri =
∑
ω∈Ω j

pωβωi . The cost cik j −cik j ri can be interpreted as the difference
between two revenues:

• cik j is the benefit that the operator earns immediately if the jth request is allocated to the
buyer i;

• cik j ri is the expected loss if such an allocation is chosen (the future budget Ble f t
i will be

reduced by cik j ).

The re-optimized primal-dual algorithm with continuous reviews is just seeking an equilibrium
between the instant revenue cik j and the expected loss.

3.4. Generalized problems

We apply those techniques to the general model (1). This leads to the following stochastic
optimization where Fle f t

k is the remaining amount of resources left for allocating future items of
type k. This is the new master problem:

max
N∑

i=1

{cik j − [
∑
ω∈Ω j

pω(cik jβ
ω
i + (dik j )

Tγωk j
)]}xi
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subject to:

N∑
i=1

xi ≤ 1

xi ∈ {0, 1} ∀i = 1 . . .N

with the dual slave problems:

min
M∑

k=1

Tω
jkα

ω
k +

N∑
i=1

[(Ble f t
i −cik j xi)βωi − (dik j )

Tγωk j
]xi +

M∑
k=1

(Fle f t
k )Tγωk

subject to:

αωk + cikβ
ω
i + (dik)Tγωk ≥ cik, ∀i = 1 . . .N,∀k = 1 . . . M

αωk , β
ω
i , γ

lω
k ≥ 0, ∀i = 1 . . .N,∀k = 1 . . . M,∀k = 1 . . . L

The slave problems have more variables and the dual variables ri are now equal to
∑
ω∈Ω j

pω(βωi +
1

cik j
(dik j )

Tγωk j
). This new algorithm follows the same procedure as before.

3.5. Re-optimized primal-dual
On average, Algorithm 1 should improve on the primal-dual algorithm, as the updates of the

dual variables ri use stochastic information. However, this algorithm is too slow in a real time
environment: solving a linear problem at each arrival of a request is much more demanding in
computational time. Consequently, we are proposing a ∆-re-optimized algorithm, for which the
linear problem will be solve only each ∆ requests.

Algorithm 2 ∆-re-optimized primal-dual Algorithm
xi j = 0, ri = 0
for each jth request do

if j ≡ 0 (mod ∆) then
MAKE one step of the re-optimized primal-dual Algorithm with continuous reviews 1
UPDATE ri = ρri + (1 − ρ)[

∑
ω∈Ω j

pωβωi ], ∀i = 1 . . .N
end if
FIND a buyer i who MAXIMIZES cik j (1 − ri) such that: ri < 1 AND there is enough
budget Bi left
SET xi j = 1
UPDATE ri = ri(1 +

cik j

Bi
) +

cik j

(c−1)Bi
if a re-optimization has not been made

end for

Most of the time, Algorithm 2 use the same updates as the primal-dual algorithm. How-
ever, each ∆ requests, Algorithm 2 will use corrective updates to fix mistakes, which may have
been made during the previous steps, by updating the dual variables with a step similar to Algo-
rithm 1. Furthermore, a parameter ρ will allow us to smooth the value of the dual variables at
each re-optimization. Results are shown in Section 5. In the next section, we propose additional
modifications to use this algorithm in specific practical settings of interest.
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4. Practical modifications

In this section, we propose some ideas to transform Algorithm 2 and adapt it to make it more
practical to use in realistic situations.

4.1. Improvement of the computational time

The set of the sample scenarios Ω j is huge and it is impossible to compute the slave prob-
lems for all scenarios ω. Table 3 presents the empirical competitive ratios for different size of
Ω j. Those tests have been made with 300 requests, which were independently and identically
distributed (i.i.d.) and each empirical competitive ratio is an average over 500 draws.

|Ω j| = 1 2 3 5 10
Competitive ratio 0.995 0.995 0.996 0.996 0.996

Table 3: Empirical competitive ratio as a function of |Ω j | for the re-optimized primal-dual algorithm with continuous
reviews

As the empirical competitive ratio does not really increase with the size of the sample set
Ω j, we propose to solve the dual slave problems (Table 2) for only one random scenario ω0.
Indeed, the cuts (3) θω ≤

∑M
k=1 Tω

jkα
ω0
k +
∑N

i=1[(Ble f t
i − cik j xi)β

ω0
i − (dik j )

Tγω0
k j

xi] +
∑M

k=1(Fle f t
k )Tγω0

k
remain valid inequalities for each scenario ω. As the constraints of the dual slave problems are
independent of the scenarios, the dual solution for the scenario ω0 remains feasible for every
scenario, and thus the cuts always hold.

Furthermore, the generation of one random scenario ω0 instead of a deterministic one leads
to a randomized algorithm. According to Karp (1991), a randomized algorithm may avoid worst-
case behaviors associated with a deterministic algorithm.

With only one scenario, the objective function now becomes
∑N

i=1{cik j−(cik jβ
ω0
i +(dik j )

Tγω0
k j

)}xi

and the computational time decreases dramatically.

4.2. Bayesian inference

In practice, it is rare to know the distribution of the stochastic process (Xk
j )

T
j=1. That is why

we propose to use Bayesian Statistics (Bolstad (2004)) to infer this distribution from the current
historical data. We first focus on one type of item; we forget the index k of the process. Let us
assume that (X j)T

j=1 is a Bernoulli process: that is, the stochastic process (X j)T
j=1 is i.i.d. and each

X j follows a Bernoulli distribution of mean µ in [0, 1].

X j =

1 with probability µ
0 otherwise

Assume that µ is unknown, but that it follows a prior distribution P[µ|α]. Then, it is well-known
that ∀ j ∈ {1 . . . T }, P[µ|(Xl)

j
l=1, α] is a beta distribution β(a j, b j), if the prior distribution P[µ|α]

is also a beta distribution β(a, b). Furthermore, a j = a +
∑ j

l=1 Xl and b j = b +
∑ j

l=1(1 − Xl). We
can now estimate µ̂ j+1 = P[X j+1 = 1|(Xl)

j
l=1, a, b]:

µ̂ j+1 = E[µ|(Xl)
j
l=1, a, b] =

a j

a j + b j
=

a +
∑ j

l=1 Xl

a + b + j

11



We obtain an estimation of the probability pk that an item of type k arrives on the ( j+1)th request.
As all the probabilities must be inferred at the same time, let us now consider that (Xk

j )
T
j=1 follows

a Bernoulli process for each item k:

Xk
j =

1 if k = k j

0 otherwise
∀ j ∈ 1 . . . T, ∀k = 1 . . . M

Note that
∑M

k=1 Xk
j = 1, ∀ j = 1 . . . T . With the same notations as before, we obtain that

∀ j = 1 . . . T,∀k = 1 . . . M, Xk
j follows a beta distribution β(ak

j, b
k
j) and that µ̂k

j =
ak+
∑ j

l=1 Xk
l

ak+bk+ j .
As we have no information before the first request, we suppose that all requests are equiprobable
(E[β(ak, bk)] = 1

M ) and i.d. (ak = a, bk = b). So ak + bk = Mak = Ma. We also remark that:

M∑
k=1

µ̂k
j =

M∑
k=1

a +
∑ j

l=1 Xk
l

Ma + j
=

Ma +
∑ j

l=1
∑M

k=1 Xk
l

Ma + j

=
Ma + j
Ma + j

= 1 ∀ j = 1 . . . T

Consequently, µ̂k
j can be interpreted as an estimation of the probability that the ( j + 1)th request

is an item of type k. We use this method to infer every pk and sample the scenarios ω.

4.3. Adaptive horizon

Most papers suppose that the total number of requests is known. However, in practice, this
number is unknown (see also a discussion and theoretical treatment of this issue in (Jaillet and
Lu, 2012)). In our case, we will present two ways to deal with this issue. First, we will infer the
number of requests left T j using a linear program. Second, we will consider a different model of
request arrivals, and assume as in Jaillet and Lu (2012), that the distribution governing the arrival
times of the requests is known.
Table 4 shows different empirical competitive ratios obtained using tests with 300 requests, av-
eraged over 500 i.i.d. draws.

greedy primal-dual re-optimized primal-dual
real T j T j = 50

mean of the 0.901 0.957 0.995 0.933 real probability
competitive ratio 0.988 0.929 inferred probability

Table 4: Comparison of empirical competitive ratios

Table 4 shows that the choice of the value T j has a stronger impact on the quality of the
solution than the inference of the probabilities. If the number of requests left T j is not esti-
mated correctly, the re-optimized primal-dual algorithm with continuous reviews is worse than
the primal-dual procedure. It is thus important to estimate T j accurately. The optimization
model (4) seems to work well to infer T j, but other estimation of T j could be used depending on
the specific particularity of a given application.

min T j (4a)

12



subject to:

N∑
i=1

[
j−1∑
l=1

cikl xil +

M∑
k=1

cikyik] ≥
N∑

i=1

Bi (4b)

N∑
i=1

yik ≤ pkT j ∀k = 1 . . . M (4c)

yik ≥ 0 ∀i = 1 . . .N, ∀k = 1 . . . M (4d)

The idea is to calculate the minimum T j such that there are enough potential future requests to
fill the remaining budget. Constraints (4b) force the optimization problem to fill the whole bud-
get, while constraints (4c) ensure that the number of allocated items of type k does not exceed
the expected number pkT j of items of type k. As two linear problems have now to be solved,
the computational time of the ∆-re-optimized primal-dual algorithm is double (tests have been
made). However, if we make few re-optimizations, doubling the computational time should not
affect significantly the algorithm. Results and a sensitivity analysis will be presented in Section
5.1.4.

The second method to estimate the number of requests T j requires that we change our way
to model the problem. Instead of defining a problem by its number of requests T , we propose
to solve the online bipartite resource allocation problem over a planing horizon as Jaillet and
Lu (2012) did. Requests arrive now randomly over this horizon: each request is modeled by
a stochastic process (Xk

t )t∈[0,T ]. T now represents the end of the process, is assumed known
and, consequently, does not need to be inferred. We introduce a daily Adwords problem where
the algorithm maximizes the search engine revenue over one day (T = 24 hours) and Bi is the
daily budget of buyer i. In the next section, we present some numerical results integrating these
practical modifications.

5. Numerical results

All the tests have been computed on the following computer: Intel(R) Xeon(TM) CPU
2.66GHz with 1 Gb of Memory. The software CPLEX 12.4 is used to solve the linear pro-
grams (Table 2) and (4). The sequences of requests (k j) j=1...L follow a multinomial distribution.
They are non-trivial, i.e., the number of requests is big enough to allow the spending of an im-
portant part of the entire budgets. Otherwise, a greedy algorithm is the best, as it can always
choose the best bid without violating any constraints.

5.1. Sensitivity analysis

The same problem instance is used for the tests: it has 3 buyers (N =3), 8 items (M =8), and
300 requests (T =300). As the sequence of requests follows a multinomial law, the number of
items of each type is different from one draw to another one. We generate and solve this problem
instance 500 times to obtain good averages for each output of interest. The probabilities pk and
the number of requests T are supposed to be known.
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∆

1 3 6 15 30 60 150 300

ρ

0 0.995 0.989 0.989 0.983 0.978 0.972 0.971 0.965
0.01 0.996 0.994 0.990 0.982 0.977 0.972 0.969 0.966
0.1 0.996 0.994 0.990 0.984 0.980 0.972 0.969 0.966
0.2 0.996 0.994 0.991 0.986 0.981 0.974 0.968 0.964
0.413 0.996 0.994 0.991 0.985 0.981 0.973 0.968 0.964
0.6 0.996 0.995 0.992 0.986 0.980 0.972 0.966 0.961

Table 5: Tuning of the parameters ∆ and ρ

5.1.1. Analysis of parameters
Table 5 illustrates the evolution of the empirical competitive ratios for different values of the

pair (∆, ρ). The tests have been performed for the ∆-re-optimized primal-dual Algorithm 2.
Table 5 shows that the empirical competitive ratios tend to be very sensible to the number of

re-optimizations made. The absence of re-optimization deteriorates the solutions up to 3%. The
parameter ρ is less important for the quality of the empirical competitive ratio: ρ = 0.2 appears
to be a good value according to those results. Indeed, for each value of the parameter ρ, the
gap between the best (bold face) and the worst values remains less than 0.5%. This value (0.2)
is kept for ρ and the behavior of the ∆-re-optimized primal-dual algorithm as a function of the
number of re-optimizations is presented in the next paragraphs.

5.1.2. Trade-off between computational time and empirical competitive ratio
Computational time is an important criteria for online optimization. The greedy and primal-

dual algorithms need about one millisecond (ms) to solve 300 requests. The re-optimized primal-
dual procedure with continuous reviews (Algorithm 1) needs on average 1400 ms for the 300
requests, implementing a special case of the ∆-re-optimized primal-dual with ∆ = 1 and ρ = 0.

Figure 2: Trade-off between computational time and empirical competitive ratio

Figure 2 illustrates the evolution of the computational time as a function of the number of
re-optimizations (b T

∆
c). The results are intuitive as the computational time depends linearly on

the number of re-optimizations. At the same time, the second figure shows a fast increase of
the ∆-re-optimized primal-dual empirical competitive ratio before leveling off. It proves that this
algorithm performs well with a small number of re-optimizations. ∆ = 30 (10 re-optimizations)
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is used in the next comparisons, as the ∆-re-optimized primal-dual procedures keeps a good
empirical competitive ratio (0.981) while the computational time stays at 50 ms on average. The
parameter ∆ has to be chosen according to the computational time and computing resources
available in reality.

5.1.3. Comparison between the re-optimized primal-dual and Ciocan’s algorithms
The ∆-re-optimized primal-dual algorithm is compared to Ciocan’s algorithm (Ciocan and

Farias, 2012). Both algorithms approximately have the same computational time as a function of
the number of re-optimizations.

Number of re-optimizations 1 2 5 10 20 50 100 300 Policy

Competitive
ratio

∆-re-optimized primal 0.964 0.968 0.974 0.981 0.986 0.991 0.994 0.996 T j and pk

Ciocan’s method 0.977 0.984 0.99 0.993 0.994 0.995 0.994 0.996 known
∆-re-optimized primal 0.971 0.974 0.978 0.978 0.979 0.981 0.982 0.983 T j and pk

Ciocan’s method 0.962 0.948 0.957 0.966 0.972 0.976 0.977 0.977 inferred

Table 6: Comparison between two algorithms

Table 6 evaluates two policies: one ideal when the number of requests left T j and the prob-
abilities pk are known and one more realistic where these parameters are inferred. These two
algorithms tend to react in the same way when the number of re-optimizations rises as they both
increase. Furthermore, it is clear that Ciocan’s algorithm, which relies on a primal formulation,
is more efficient for the first policy while the ∆-re-optimized primal-dual algorithm, which relies
on a dual formulation, perform better for the second policy. It shows that Ciocan’s procedure
needs to know the probabilities pk as well as the number of requests left T j. The strength of the
∆-re-optimized primal-dual algorithm is to work well without these parameters. The probabil-
ities pk are easily inferred by machine learning tools. However the estimation of T j remains a
key problem. The sensitivity of the optimization formulation (4) is studied in the next paragraph.
Finally, we note that 10 re-optimizations (∆ = 30) remains a good parameter for this last test.

5.1.4. Competitive ratios as a function of the number T j of requests left
Let consider that the probabilities pk and the number of requests T j are now unknown. The

probabilities pk are estimated by Bayesian inference, as shown in Section 4.2, and T j is in-
ferred using the optimization formulation (4). Constraints (4b) (

∑N
i=1[
∑ j−1

l=1 cikl xil +
∑M

k=1 cikyik] ≥∑N
i=1 Bi) are slighty modified in order to analyze the impact of the inferred value T j. They are

replaced by
∑N

i=1[
∑ j−1

l=1 cikl xil +
∑M

k=1 cikyik] ≥ ε
∑N

i=1 Bi, where ε is a parameter.
Figure 3 presents the evolution of the empirical competitive ratio as a function of ε (for the

same instance as before) and the graph seems to be intuitive. First, for ε close to 0, the ∆-re-
optimized primal-dual algorithm has the same behavior as the greedy. Indeed, with ε = 0, T j

is also equal to 0 and then the dual variables ri are null. Second, if ε is too big, the algorithm
gives too much weight to the future. It waits to maximize revenue with future requests, thus
decreasing its performances. In this case, the dual variables ri are close to 1. Also it seems better
to underestimate the number of requests left at the beginning and overestimate it at the end. At
the beginning, important bids are chosen (underestimate T j), but later, the algorithm should be
more careful (overestimate T j), as bad decisions could be costly and not easy to compensate.
The optimization model (4) follows this evolution, and the parameter ε is then set on 0.8. The
parameter ε is linked to the instance, it should be chosen carefully depending on the environment.
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Figure 3: Evolution of the empirical competitive ratio

5.2. Empirical competitive ratios of various algorithms

The following tests present some results for the greedy algorithm, the primal-dual algorithm,
the ∆-re-optimized primal-dual algorithm (Algorithm 2) and Ciocan’s algorithm (Ciocan and
Farias, 2012). We compare these algorithms on different instances with their empirical com-
petitive ratios computed over 500 draws. Although the primal-dual algorithm has been designed
under the adversarial model, our goal is to use it as a benchmark in order to measure the improve-
ments one can get by doing stochastic updates in the ∆-re-optimized primal-dual algorithm.

Table 7 describes six instances generated following different criteria: the number of buyers,
items, and requests, then the coefficient of variations of the distribution and the bids cik. These
instances also have a reasonable coefficient of variation of the capacity amounts dik. The coeffi-
cient of variation is considered to be small for the interval [0.3, 0.5], reasonable for [0.5, 1] and
huge for [1, 2].

number of
N M T

coefficient of variation of
the instance the distribution the bids
1 3 8 300 small reasonable
2 3 8 500 small reasonable
3 4 10 400 small reasonable
4 3 8 300 small small
5 3 8 450 huge reasonable
6 3 8 300 huge reasonable

Table 7: Description of the instances

Let define the parameter δ = ∆
T as the proportion of re-optimizations in Algorithm 2: as this

ratio is independent of the instance, it will be used to fix the number of re-optimizations for any
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instance. For all the next tests, ρ = 0.2, ε = 0.8, and the probabilities pk and the number of
requests left are inferred.
Tables 9-12 present the results of the comparison in 4 different situations. The “Gain against
greedy” is defined as cre−opt−cgreedy

cgreedy
, where cre−opt and cgreedy are the empirical competitive ratios

of the ∆-re-optimized primal-dual and greedy algorithms. “Gain against primal-dual” and “Gain
against Ciocan” are similarly defined.

We compare the four previous algorithms on four different cases: the AdWords problem, the
general problem, the daily AdWords problem, and finally the daily general problem. These cases
represent four different problems which are summarized in Table 8.

Problem case Horizon Constraints
in requests in hours allocation budget resource

AdWords yes no yes yes no
General yes no yes yes yes
Daily AdWords no yes yes yes no
Daily general no yes yes yes yes

Table 8: Description of the cases

The columns horizon describe for a given instance whether the horizon is counted with a total
number of requests T or in hours. The columns constraints list the active constraints in a given
problem: the allocation constraints ensure that each request is allocated no more than once, the
budget constraints limit the total expense for each buyer, and the resource constraints ensure that
the resource consumption does not exceed the available resources.

5.2.1. The AdWords problem case
Table 9 presents the empirical competitive ratios of the ∆-re-optimized primal-dual procedure

for the AdWords problem: these ratios are very good and always over 0.96. The gains are also
always positive except for the instance 5 against Ciocan’s algorithm. As shown in Section 5.1.3,
the ∆-re-optimized primal-dual algorithm has a better behavior than Ciocan’s algorithm when
parameters pk and T are unknown. Furthermore, the ∆-re-optimized primal-dual procedure is an
hybrid method taking advantage of the strengths of the primal-dual algorithm and of the stochas-
tic optimization. The primal-dual algorithm is 1 − 1

e -competitive, while the re-optimizations
improve this ratio with stochastic optimization but might sometimes worsen it.

Instance 1 2 3 4 5 6
Empirical competitive ratio 0.978 0.986 0.977 0.999 0.962 0.994
Gain against greedy (%) 8.3 2.8 2.6 0.7 0.5 1.2
Gain against primal-dual (%) 2.3 0.0 0.1 0.2 0.5 0.3
Gain against Ciocan (%) 1.3 3.5 1.3 1.3 -0.2 1.8

Table 9: Results for the Adwords problem

5.2.2. The general problem case
In the general problem case, the dual variables updates of Jaillet and Lu (2011) are used

for the primal-dual and for the ∆-re-optimized primal-dual algorithms. Furthermore, only one
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resource (L = 1) is used in the following instances. The results presented in Table 10 are also
good in this case. However, the ∆-re-optimized primal-dual algorithm is not always the best
(especially for the instance 2), but the gains remain close to 0 when negative. It also outperforms
the greedy and the primal-dual algorithms, and obtain approximately the same results as those
from Ciocan’s algorithm.

Instance 1 2 3 4 5 6
Empirical competitive ratio 0.985 0.889 0.968 0.977 0.992 0.994
Gain against greedy (%) 10.2 11.3 5.9 9.5 -0.4 -0.5
Gain against primal-dual (%) 3.4 6.0 4.4 8.7 0.8 0.2
Gain against Ciocan (%) 0.2 -1.7 -0.8 1.9 1.4 0.7

Table 10: Results for the general problem

5.2.3. The daily AdWords problem case
The ∆-re-optimized primal-dual procedure is also tested on the daily AdWords problem.

Instead of re-optimizing every ∆ requests, re-optimizations are performed every two hours (12
re-optimizations). The number of requests T is now drawn from an exponential distribution as
in (Jaillet and Lu, 2012). However, the number of request left T j need to be stabilized as the
variance of an exponential law is large. Let T exp

j be the number drawn from the exponential
distribution and T opt

j the value of the solution obtained with the optimization model (4). As T opt
j

is more stable, we define T j as the mean of T exp
j and T opt

j .

Instance 1 2 3 4 5 6
Average number of requests 359 480 394 313 456 311
Empirical competitive ratio 0.984 0.994 0.989 0.999 0.969 0.994
Gain against greedy (%) 8.7 3.4 3.9 0.8 1.4 1.2
Gain against primal-dual (%) 0.8 1.1 1.4 0.2 1.3 0.3
Gain against Ciocan (%) 1.0 0.6 0.4 1.2 2.8 3.4

Table 11: Results for the daily Adwords problem

Table 11 shows that the ∆-re-optimized primal-dual algorithm has the best results with high
empirical competitive ratios. It proves that this algorithm performs even better when the total
number of requests T varies. Indeed, the re-optimizations always compute good updates, as the
dual slave problems (presented in Table 2) will remain feasible whenever T changes.

5.2.4. The daily general problem case
In this paragraph, we propose to solve the general problem over a day with a daily budget for

each buyer.
Table 12 shows that the gains remain big for most of the instances with the exception of

instances 5 and 6. Although the greedy algorithm beats the ∆-re-optimized primal-dual algorithm
by a small percentage, the empirical competitive ratio remains high. Finally, the ∆-re-optimized
primal-dual procedure still outperforms Ciocan’s algorithm.
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Instance 1 2 3 4 5 6
Average number of requests 360 480 396 312 456 312
Empirical competitive ratio 0.982 0.921 0.977 0.974 0.987 0.991
Gain against greedy (%) 9.7 15.0 6.5 9.9 -0.9 -0.8
Gain against primal-dual (%) 3.3 8.2 5.2 9.1 0.4 -0.1
Gain against Ciocan (%) 0.2 0.3 -0.1 1.7 0.9 0.7

Table 12: Results for the daily general problem

6. Conclusions

In this paper, we consider a class of online bipartite resource allocation problems with budget
and resource constraints. The main goal has been to extend current online algorithms towards
more practical settings where additional information about future requests can be available. In
particular, we propose to re-optimize the primal-dual algorithm in order to make use of such
information. At each re-optimization, based on the current historical data, we generate a random
scenario that represents one sequence of future requests, and we seek an optimal solution for
such a scenario, using the L-Shaped method: the dual solution of the subproblems of the Ben-
ders decomposition updates the dual variables of the primal-dual algorithm.

This new procedure gives very good results and improves on the greedy and the basic primal-
dual algorithms for the Adwords and the general online bipartite resource allocation problems.
The results also show that the re-optimized primal-dual procedure is generally better than the
algorithm of Ciocan and Farias (2012). Furthermore, some added practical modifications allow
us to solve some problem instances within a more realistic framework: computational time is
reduced to a more reasonable level, a learning process estimates the distribution (when unknown)
of the items type from the current historical data, and an efficient inference about the number of
remaining requests removes the need to know the total number of requests ahead of time.

Appendix A. Summary of all mathematical notations

Global parameters
Notation Description
N Total number of buyers
M Total number of items
L Total number of resources
T Total number of requests

Global data
Notation Description
nk Total number of items of type k out of the T requests
Bi Total budget of buyer i
Ble f t

i Total budget left of buyer i for the jth request
cik Price that buyer i is willing to pay for item of type k
Fk Vector of size L representing the resources available for items of type k
dik Vector of size L representing the resources consumption of items of type k allocated to buyer i
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Stochastic data
Notation Description
Ω j Set of future scenarios for the jth request
pω Probability of the scenario ω ∈ Ω j
T j Number of requests left after the jth request. T j = T − j
Tω

jk Number of requests for items of type k in the scenario ω

Primal variables
Notation Description
Xk

j =1 if the jth request is an item of type k, =0 otherwise
Q(x, ω) Recourse function
xi j or xi =1 if the jth request is allocated to buyer i, =0 otherwise
yωik Number of items of type k allocated to buyer i for scenario ω

Dual variables
Notation Description (for a scenario ω)
αωk Dual variable associated to the allocation constraint of items of type k
βωi Dual variable associated to the budget constraint of buyer i
γωk Vector of dual variables associated to the resource constraints of items of type k

Algorithms parameters
Notation Description
∆ Number of requests to wait for a re-optimization
δ Proportion of re-optimizations (= ∆

T )
ε Minimum proportion of the expected total budget consumption
ρ Smooth the updates of the re-optimization

Table A.13: Summary of all notations
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