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Abstract. For online resource allocation problems, we propose a new demand arrival
model where the sequence of arrivals contains both an adversarial component and a
stochastic one. Our model requires no demand forecasting; however, because of the
presence of the stochastic component, we can partially predict future demand as the
sequence of arrivals unfolds. Under the proposed model, we study the problem of
the online allocation of a single resource to two types of customers and design online
algorithms that outperform existing ones. Our algorithms are adjustable to the relative size
of the stochastic component; our analysis reveals that as the portion of the stochastic
component grows, the loss due to making online decisions decreases. This highlights the
value of (even partial) predictability in online resource allocation. We impose no conditions
on how the resource capacity scales with the maximum number of customers. However, we
show that using an adaptive algorithm—which makes online decisions based on observed
data—is particularly beneficial when capacity scales linearly with the number of customers.
Our work serves as a first step in bridging the long-standing gap between the two well-
studied approaches to the design and analysis of online algorithms based on (1) adversarial
models and (2) stochastic ones. Using novel algorithm design, we demonstrate that even if
the arrival sequence contains an adversarial component, we can take advantage of the limited
information that the data reveal to improve allocation decisions. We also study the classical
secretary problem under our proposed arrival model, and we show that randomizing over
multiple stopping rules may increase the probability of success.
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1. Introduction
E-commerce platforms host markets for perishable
resources in various industry sectors ranging from
airlines to hotels to internet advertising. In these
markets, demand realizes sequentially and the firms
need tomake online (irrevocable) decisions regarding
how (and at what price) to allocate resources to ar-
riving demand without precise knowledge of future
demand. The success of any online allocation algo-
rithm depends crucially on a firm’s ability to predict
future demand. If demand can be predicted, then
under some conditions on the amount of available
resources, making online decisions incurs little loss
(as shown in Agrawal et al. (2014), among others).
However, in many markets, demand cannot be per-
fectly predicted because of unpredictable compo-
nents, such as traffic spikes and strategy changes by
competitors. The emergence of sharing-economy plat-
forms, such as Airbnb, which can scale supply at

negligible cost andon short notice (Zervas et al. 2017), has
significantly added to unpredictable variability in demand
even for products that are not new (e.g., existing hotels).
In such cases, firms can take a worst-case approach

and assume that demand is controlled by an imagi-
nary adversary and thus is unpredictable. Such an
approach, however, usually results in online policies
that are too conservative (as studied in Ball and
Queyranne (2009) and others). Instead, firms may
wish to employ online policies based on models that
assume the future demand can partially be predicted,
avoiding being too conservative while not being re-
liant on fully accurate predictions. This paper aims to
investigate to what extent the above goal is achiev-
able. We propose a new demand model, called par-
tially predictable, that contains both adversarial (thus
unpredictable) and stochastic (predictable) compo-
nents. We design novel algorithms to demonstrate
that even though demand is assumed to include an
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unpredictable component, firms can make use of the
limited information that the data reveal and improve
upon the completely conservative approach.

We study a basic online allocation problem of a
single resource with an arbitrary capacity to a se-
quence of customers, each of which belongs to one of
two types. Each customer demands one unit of the
resource. If the resource is allocated, the firm earns a
type-dependent revenue. Type-1 and -2 customers
generate revenue of 1 and a < 1, respectively. Our
demandmodel takes a parameter 0 < p < 1 andworks
as follows. An unknown number of customers of each
typewill be revealed to the firm in an unknown order.
Both the number and the order of customers are as-
sumed to be controlled by an imaginary adversary.
However, a fraction p of randomly chosen customers
does not follow this prescribed order and instead ar-
rives at uniformly random times. This group of cus-
tomers represents the stochastic component of the
demand that is mixed with the adversarial element.
Althoughwe cannot identify which customers belong
to the stochastic group, we can still partially predict
future demand, because this group is almost uniformly
spread over the time horizon. Therefore, parameter p
determines the level of predictability of demand.

From a practical point of view, our demand model
requires no forecast for the number of customers of
each type prior to arrival; instead, it assumes a rather
mild “regularity” in the arrival pattern: a fraction p of
customers of each type is spread throughout the time
horizon. We motivate this through a simple example.
Suppose an airline launches a new flight route for
which it has no demand forecast. However, using
historical data on customer booking behavior, the
airline knows that there is heterogeneity in booking
behavior of customers, namely, the time they request
a booking varies across customers of each type. Such
heterogeneity results in the gradual arrival of a por-
tion of customers of each type. For example, CWT
(2016) illustrates a significant disparity in the ad-
vanced booking behavior of business travelers based
on their age, gender, and travel frequency. Therefore,
the airline can reasonably assume that demand from
business travelers (who correspond to type-1 in our
model) is, to some degree, spread over the sale horizon.

From a theoretical point of view, our demand model
aims to address the limitations of the main two ap-
proaches that have been taken so far in the literature: (1)
adversarial models and (2) stochastic ones.1 Under the
adversarial modeling approach, the sequence of ar-
rivals is assumed to be completely unpredictable. The
online algorithms developed for these models aim to
perform well in the worst-case scenario, often
resulting in very conservative bounds (see Ball and
Queyranne (2009) for the single-resource revenue
management [RM] problem and Mehta et al. (2007)

and Buchbinder and Naor (2009) for online allocation
problems in internet advertising). On the other hand,
the stochastic modeling approach assumes that de-
mand follows an unknown distribution (Kleinberg
2005, Devanur and Hayes 2009, Agrawal et al. 2014).2

In this case,we can predict future demand after observing
a small fraction of it. For example, after observing the first
10% of the demand, if we observe that 15% of cus-
tomers are of type-1, we can predict that roughly 15%
of the remaining customers are also of type-1. The
limitation of such an approach is that it cannot model
variability across time. In some cases, real data do not
confirm the stochastic structure presumed in these
models, as shown in Wang et al. (2006) and Shamsi
et al. (2014). In fact, as discussed inMirrokni et al. (2012)
and Esfandiari et al. (2015), large onlinemarkets (such
as internet advertising systems) often use modified
versions of these algorithms to make them less reliant
on accurate demand prediction. Our model provides
a middle ground between the aforementioned ap-
proaches by assuming that the arrival sequence contains
both an adversarial component and a stochastic one.
For the above problem, we design two online al-

gorithms (a nonadaptive and an adaptive one3) that
perform well in the partially predictable model. We
use the metric of competitive ratio, which is com-
monly used to evaluate the performance of online
algorithms. Competitive ratio is the worst-case ratio
between the revenue of the online scheme to that of a
clairvoyant solution (see Definition 1). The compet-
itive ratio of our algorithms is parameterized by p,
and for both algorithms the ratio increases with p: as
the relative size of the stochastic component grows, the loss
due to making online decisions decreases. We further
show that using an adaptive algorithm is particularly
beneficial when the capacity scales linearly with
the maximum number of customers. Our algorithms
are easily adjustable with respect to parameter p.
Therefore, if a firm wishes to use different levels of
predictability for different products, then it can use
the same algorithm with different parameters p.
In designing our algorithms, we keep track of the

number of accepted customers of each type and we
decide whether to accept an arriving type-2 customer
by comparing the number of already accepted type-2
customers with optimally designed dynamic thresh-
olds.4 Our nonadaptive algorithm strikes a balance
between “smoothly” allocating the inventory over
time (by not acceptingmany type-2 customers toward
the beginning) and not protecting toomuch inventory
for potential late-arriving type-1 customers (see Al-
gorithm 1 and Theorem 1). Our adaptive algorithm
frequently recomputes upper bounds on the number
of future customers of each type based on observed
data and uses these upper bounds to ensure that we
protect enough inventory for future type-1 customers.
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We show that such an adaptive policy significantly
improves the performance guarantee when the initial
inventory is large relative to the maximum number of
customers (see Algorithm 2 and Theorem 2). Both
algorithms could reject a type-2 customer early on but
accept another type-2 customer later. This is consis-
tent with practice. For example, in online airline
booking systems, lower fare classes can open up after
being closed out previously (Cheapair 2016).

From a methodological standpoint, an analysis of
the competitive ratio of our algorithms presentsmany
new technical challenges arising from the fact that our
arrival model contains both an adversarial and a sto-
chastic component. Our analysis crucially relies on a
concentration result that we establish for our arrival
model (see Lemma 1) as well as fairly intricate case
analyses for both algorithms. Further, to prove the
lower bound on the competitive ratio of our adaptive
algorithm, we construct a novel factor-revealing non-
linearmathematicalprogram(see (MP1) and Section 5.2).

The two extreme cases of our model where all or
none of the customers belong to the adversarial group
(i.e., p � 0 and p � 1) reduce to the adversarial and
stochastic modeling approaches that have been mainly
studied in the literature thus far (for instance, Ball
and Queyranne (2009) study the former model and
Agrawal et al. (2014) study the latter). Our algorithms
recover the known performance guarantees for
these two extreme cases. For the regime in between
(i.e., when 0 < p < 1), we show that our algorithms
achieve competitive ratios better than what can be
achieved by any of the algorithms designed for
these extreme cases (or even any combination of
them). This highlights the need to design new algo-
rithms when departing from traditional arrival models.

We also study the classic secretary problem under
our partially predictable arrival model. The secretary
problem, a stopping time problem, corresponds to the
setting in which we initially have one unit of inven-
tory; each customer is of a different type, and we wish
to maximize the probability of allocating the inventory to
the type generating the highest revenue. We show that,
unlike the classic setting (which corresponds to p � 1 in
our model), the celebrated deterministic stopping rule
policy based on a deterministic observation period is no
longer optimal. Because of the presence of the adver-
sarial component, randomizing over the length of the
observation period may result in improvement (see
Algorithm3, Theorem 3, and the ensuing proposition).

We conclude this section by highlighting our mo-
tivations and contributions. For many applications,
demand arrival processes are inherently prone to
contain unpredictable components that even advanced
information technologies cannot mitigate. An allocation
policy whose design is based on stochastic modeling
cannot incorporate the presence of such unpredictable

components. At the same time, taking a worst-case
adversarial approach usually leads to allocation polices
that are too conservative. We introduce the first arrival
model that contains both adversarial (thus unpredictable)
and stochastic components. Through novel algorithm
design, we show that (1) we can take advantage of
even limited available information (because of the
presence of the stochastic component) to improve a
firm’s revenue when compared with algorithms that
take a worst-case approach and that (2) there is an
unavoidable loss due to the presence of an adversarial
component, which emphasizes the value of stochastic in-
formation and predictability in online resource allocation.
The rest of the paper is organized as follows. In

Section 2, we review the related literature and high-
light the differences between the current paper and
previous work. In Section 3, we formally introduce
our demand arrival model and our performance met-
ric and prove a consequential concentration result for
the arrival process. Sections 4 and 5 are dedicated to
description and analysis of our two algorithms. In
Section 6, we present upper bounds on the perfor-
mance of any online algorithm and compare the per-
formance of our algorithms with that of existing ones.
Section 7 studies the secretary problemunder our new
arrival model. In Section 8, we conclude by outlining
several directions for future research. For the sake of
brevity, we include proofs of only selected results in the
main text. Detailed proofs of the remaining statements
are deferred to clearly marked online appendices.

2. Literature Review
Online allocation problems have broad applications
in revenue management: internet advertising and
scheduling appointments (throughweb applications)
in healthcare, just to name a few. Thus, it has been
studied in various forms in operations research and
management as well as computer science. As dis-
cussed in the introduction, the approach taken in
modeling the arrival process is the first consequential
step in studying these problems. Therefore, in this
literature review, we categorize related streams of
research by modeling approach rather than by the
particular problem formulation and application.
First, we note that the single-leg revenue man-

agement problem and its generalizations have been
extensively studied using frameworks other than
online resource allocation problems and competitive
analysis. Earlier papers assumed low-before-highmodels
(where all low-fare demand realizes before high-fare
demand) with known demand distributions (Belobaba
1987, 1989; Brumelle and McGill 1993; Littlewood 2005)
or assumed the arrival process is known, and formulated
the problem as a Markov decision problem (Lee and
Hersh 1993, Lautenbacher and Stidham Jr. 1999). We
refer the reader to Talluri and Van Ryzin (2006) for a
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comprehensive review of RM literature. Further,
many recent papers in revenue management study
dynamic pricing when the underlying price-sensitive
demand process is unknown. See, for example,
seminalwork by Besbes andZeevi (2009) andAraman
and Caldentey (2009). For the sake of brevity, we will
not review these streams of work.

2.1. Adversarial Models
Ball and Queyranne (2009) studied the single-leg
revenue management problem under an adversarial
model and showed that, in the two-fare case, the
optimal competitive ratio is 1

2−awhere a < 1 is the ratio
of two fares. As discussed in the introduction, our
model reduces to that of Ball and Queyranne (2009)
for p � 0. In this special case, our nonadaptive algo-
rithm reduces to the threshold policy of Ball and
Queyranne (2009) and recovers the same perfor-
mance guarantee. However, when 0 < p < 1, we show
that for a certain class of instances, our algorithms
perform better than that of Ball andQueyranne (2009)
(see Subsection 6.2), indicating the need for new al-
gorithms for our new arrival model. Further, we point
out that Ball and Queyranne (2009) extended their
analysis to a setting with more than two types. In
particular, they show that if the value of types is in in-
terval [vH , vL] where 0 < vL ≤ vH , then the tight com-
petitive ratio is 1

1+log(vH/vL). More recently, Ma and
Simchi-Levi (2019) studied a generalized online as-
sortmentproblemwithmultiple types aswell asmultiple
resources to offer, again, in the adversarial setting.

Several papers studied the adwords problem under
the adversarial model (Mehta et al. 2007, Buchbinder
and Naor 2009). This problem concerns allocating ad
impressions to budget-constrained advertisers. As
mentioned in Mehta et al. (2007), even though the
optimal competitive ratio under an adversarial model
is 1 − 1/e, one would expect to do better when sta-
tistical information is available. Later, Mirrokni et al.
(2012) showed that it is impossible to design an al-
gorithm with a near-optimal competitive ratio under
both adversarial and random arrival models. Such an
impossibility result affirms the need for new mod-
eling approaches to serve as a middle ground be-
tween these twomodels. Our paper takes a step in this
direction. (In Online Appendix EC.1, we show that
under our setting, it is not possible to design an online
algorithm that simultaneously achieves the best pos-
sible competitive ratio in the adversarial model as
well as the random order model.)

2.2. Stationary Stochastic Models
A general form of these models is the random order
model, which assumes that the sequence of arrivals

is a random permutation of an arbitrary sequence
(Kleinberg 2005, Devanur and Hayes 2009, Agrawal
et al. 2014). In such a model, after observing a small
fraction of the input, one can predict pattern of future
demand. This intuition is used to develop primal- and
dual-based online algorithms that achieve near-optimal
revenue, under appropriate conditions on the relative
amount of available resources to allocate. These al-
gorithms rely heavily on learning from observed data,
either once (Devanur and Hayes 2009) or repeatedly
(Kleinberg 2005, Agrawal et al. 2014, Kesselheim et al.
2014). As discussed in the introduction, arrival pat-
terns could experience high variability across time,
limiting the performance of these algorithms in
practice (Mirrokni et al. 2012, Esfandiari et al. 2015).
We note that assuming independent and identically
distributed (i.i.d.) arrivals with known or unknown
distributions also falls into this category of modeling
approaches. Several revenue management papers pro-
vided asymptotic analysis of linear programming –
based approaches for such settings; see Talluri and
Ryzin (1998), Cooper (2002), and Jasin (2015).
Our model reduces to a special case of the model

studied by Agrawal et al. (2014) only for p � 1; and
like their algorithm, ours also achieves near-optimal
revenue when p � 1. However, when 0 < p < 1, we
show, in Subsection 6.2, that for a certain class of
instances our algorithms perform better than that of
Agrawal et al. (2014). We point out that Devanur and
Hayes (2009), Kleinberg (2005), and Kesselheim et al.
(2014) also studied similar settings that can be viewed
as a generalized version of our online resource allo-
cation problem but only when p � 1.

2.3. Nonstationary Stochastic Models
Motivated by advanced service reservation and sched-
uling, Wang and Truong (2015) and Stein et al. (2020)
studied online allocation problems where demand
arrival follows a known nonhomogeneous Poisson
process. For such settings, they developed online
algorithms with constant competitive ratios. Further,
Ciocan and Farias (2012) considered another inter-
esting setting where the (unknown) arrival process
belongs to a broad class of stochastic processes. They
proved a constant factor guarantee for the case where
arrival rates are uniform. Our modeling strategy
differs from both approaches by assuming that (1 − p)
fraction of the input is adversarial. Even for the sto-
chastic component, we assume no prior knowledge of
the distribution. However, we limit the adversary’s
power by assuming that these two components are
mixed. Also, we note that the aforementioned papers
studied more general allocation problems in settings
like network revenue management.
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2.4. Other Models
Several earlier papers also acknowledged and addressed
the limitation of both the adversarial and random or-
der (or stochastic) models using various approaches.
Mahdian et al. (2007) and Mirrokni et al. (2012)
considered allocation problems where the demand
can either be perfectly estimated or adversarial. They
designed and analyzed algorithms that have good per-
formance guarantees in both worst-case and average-
case scenarios. Unlike these works, our demand model
contains both stochastic and adversarial components
at the same time; and we design algorithms that take
advantage of partial predictability.

Another approach to address unpredictable pat-
terns in demand is to use robust stochastic optimi-
zation (Ben-Tal and Nemirovski 2002, Bertsimas et al.
2004). These papers aim to optimize allocations when
the demand belongs to a class of distributions (or
uncertainty set). This approach limits the adversary’s
power by restricting the class of demand distribu-
tions. Here, we take a different approach. We do not
limit the class of distribution that the adversary can
choose from; instead, we assume that a fraction p of
the demand will not follow the adversary.

Lan et al. (2008) also took a robust approach,
studying the single-leg multifare class revenue man-
agement problem in a very interesting setting, where
the only prior knowledge about demand is the lower
and upper bounds on the number of customers from
each fare class. Lan et al. (2008) used fixed upper and
lower bounds to develop optimal static policies in the
form of nested booking limits and also showed that
dynamically adjusting these policies can improve the
competitive ratio. Unlike their work, we do not assume
prior knowledge of lower and upper bounds on the
number of customers from each class. Instead, in our
model, we learn the bounds as the sequence unfolds.

Shamsi et al. (2014) used a real data set fromdisplay
advertising at AOL/Advertising.com to show that
arrival patterns do not satisfy the crucial property
implied by assuming a random order model for de-
mand. In particular, they showed that the dual prices
of the offline allocation problem at different times can
vary significantly. They used a risk minimization
framework to devise allocation rules that outperform
existing algorithms when applied to AOL data. Even
though the results are practically promising, the
paper provides no performance guarantee nor does it
offer insights on how to model traffic in practice.

Further, Esfandiari et al. (2015) also considered a
hybrid arrival model where the input comprises known
stochastic i.i.d. demand and an unknown number of
arrivals that are chosen by an adversary (which is mo-
tivated by traffic spikes). They do not assume any
knowledge of the traffic spikes; but the performance
guarantee of their algorithm is parameterized by λ,

roughly the fraction of the revenue in the optimal
solution that is obtained from the stochastic (pre-
dictable) part of the demand. Parameter λ plays a
similar role as parameter p in our model, in that it
controls the adversary’s power. However, the un-
derlying arrival processes in these two models differ
considerably and cannot be directly compared. In
particular, we do not assume any prior knowledge of
the stochastic component; instead we partially pre-
dict it. However, we do assume that the adversary
determines only the initial order of arrivals (i.e., be-
fore knowing which customer will eventually follow
its order).
Our work is also closely related to the literature on

the secretary problem. In the original formulation of
the problem, n secretarieswith unique values arrive in
uniformly random order; the goal is to maximize the
probability of hiring the most valuable secretary. The
optimal solution to this problem is an observation-
selection policy: observe the first n/e secretaries, then
select thefirst onewhose value exceeds that of the best
of the previously observed secretaries (Lindley 1961,
Dynkin 1963, Freeman 1983, Ferguson 1989). Re-
cently, Kesselheim et al. (2015) relaxed the assump-
tion of uniformly random order and analyzed the
performance of the above policy under certain classes
of nonuniform distribution over permutations. Here,
we study the secretary problem in our new arrival
model (i.e., only a p fraction of secretaries arrive in
uniformly random order) and show that a deter-
ministic observation period is not optimal.

3. Model and Preliminaries
A firm is endowedwith b (identical) units of a product
to sell over n > 24 periods, where n ≥ b.5 In each pe-
riod, at most one customer arrives demanding one
unit of the product; customers belong to two types
depending on the revenue they generate. Type-1 and
type-2 customers generate revenue of 1 and 0 < a < 1,
respectively. Upon the arrival of a customer, the firm
observes the type of the customer and must make an
irrevocable decision to accept this customer and al-
locate one unit or to reject this customer. If a firm
accepts a type-1 (type-2) customer, it will earn $1 ($a).
Our goal is to devise online allocation algorithms that
maximize the firm’s revenue. We evaluate the perfor-
mance of an algorithm by comparing it to the optimum
offline solution (i.e., the clairvoyant solution).
Before proceeding with the model, we introduce a

few notations and briefly discuss the structure of the
problem. We represent each customer by the value of
revenue the customer generates if accepted and the se-
quence of arrival by �v� (v1,v2, . . . ,vn), where vi ∈ {0, a, 1};
vi � 0 implies that no customer arrives at period i. We
denote the number of type-1 (type-2) customers in the
entire sequence as n1 (n2). Note that the optimum
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offline solution that we denote by OPT(�v) has the
following simple structure: accept all the type-1 cus-
tomers and if n1 < b, then acceptmin{n2, b − n1} type-2
customers. Therefore,

OPT �v
( ) � min b,n1{ } + amin n2, b − n1( )+{ }, (1)

where (x)+ ≜ max{x, 0}, and we use the symbol “≜ ”
for definitions. At each period, a reasonable online
algorithm will accept an arriving type-1 customer if
there is inventory left. Thus, the main challenge for an
online algorithm is to decide whether to accept/reject
an arriving type-2 customer facing the following
natural trade-off: accepting a type-2 customer may
result in rejecting a potential future type-1 customer
because of limited inventory; on the other hand,
rejecting a type-2 customer may lead to having un-
used inventory at the end. Therefore, any good online
algorithm needs to strike a balance between accepting
too few and too many type-2 customers. We denote by
ALG(�v) the revenue obtained by an online algorithm.

Next we introduce our partially predictable demand
arrival model that works as follows. The adversary
determines an initial sequence, which we denote by
�vI � (vI,1, vI,2, . . . , vI,n), where vI,j ∈ {0, a, 1}, for 1 ≤ j ≤ n.
However, a subset of customers will not follow this
order. We call this subset the stochastic group, which
we denote by S. Each customer joins the stochastic
group independently andwith the same probability p.
Other customers are in the adversarial group denoted
byA. Customers in the stochastic group are permuted
uniformly at random among themselves. Formally, a
permutation σS : S → S is chosen uniformly at ran-
dom and determines the order of arrivals among the
stochastic group. In the resulting overall arriving
sequence, the adversarial group follows the adver-
sarial sequence according to �vI; and those in the
stochastic group follow the randomorder given by σS .
Given �vI, we denote the random customer arrival se-
quence by �V � (V1,V2, . . . ,Vn) and the realization of it
by �v � (v1, v2, . . . , vn).We highlight thatwe assume the
initial sequence is determined without knowing which
customer will belong to the stochastic group. Said dif-
ferently, first an adversary determines the initial se-
quence �vI. Then “nature” decides randomly which cus-
tomers belong to the stochastic and adversarial groups.

The example presented in Figure 1 illustrates the
arrival process. The top row (gray nodes) shows the
initial sequence (�vI). The middle row shows which
customers belong to the stochastic group (the black
nodes) and which belong to the adversarial group
(the white ones). The bottom row shows both the
permutation σS and the actual arrival sequence. In
this example, S � {2, 5, 6, 8}, and σS(2) � 6, σS(5) � 2,
σS(6) � 5, and σS(8) � 8.
Note that the extreme cases p � 0 and p � 1 corre-

spond to the adversarial and random order models
that have been studied before (e.g., Ball and Queyranne
2009 andAgrawal et al. 2014, respectively). Hereafter,
we assume that 0 < p < 1. For a given p ∈ (0, 1), at any
time over the horizon, we can use the number of past
observed type-1 (type-2) customers to obtain bounds
on the number of customers of each type to be ex-
pected over the rest of the horizon. This idea is for-
malized later in Subsection 3.2 along with further
analysis of our model.
Having described the arrival process, we now de-

fine the competitive ratio of an online algorithm
under the proposed partially predictable model
as follows:

Definition 1. An online algorithm is c-competitive in
the proposed partially predictable model if for any
adversarial instance �vI,

E ALG �V
( )[ ]

≥ cOPT �vI
( )

,

where the expectation is taken over which customers
belong to the stochastic group (i.e., subset S), the
choice of the random permutation σS , and any pos-
sibly randomized decisions of the online algorithm.

Note thatOPT(�V) �OPT(�vI) and, thus, inDefinition 1,
E[ALG(�V)] ≥ cOPT(�vI) is equivalent to E[ALG(�V)] ≥
cE[OPT(�V)].

In Sections 4 and 5, we present two online algo-
rithms that perform well in the proposed partially
predictablemodel for various ranges of b and n. Before
introducing our online algorithms, in the following
subsections, we introduce a series of notations used
throughout the paper and state a consequential con-
centration result that will allow us to partially predict
future demand using past observed data.

Figure 1. Illustration of the Customer Arrival Model
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3.1. Notational Conventions
Throughout the paper, we use uppercase letters for
random variables and lowercase ones for realizations.
We have already used this convention in defining �V
versus �v. We normalize the time horizon to 1, and
represent time steps by λ � 1/n, 2/n, . . . , 1. First, we
introduce notations related to the random customer
arrival sequence �V. At any time step λ, for j � 1, 2, the
number of type-j customers to be observed by the
online algorithms up to time λ is denoted by Oj(λ).
Further, we denote by OS

j (λ) the number of type-j
customers in the stochastic group that arrive up to
time λ in �V. Note that the online algorithm cannot
distinguish between customers in the stochastic group
and customers in the adversarial group. Therefore, the
online algorithm does not observe the realizations of
OS

j (λ). We denote realizations of Oj(λ) and OS
j (λ) by

oj(λ) and oSj (λ), respectively.
Next, we introduce notations related to the initial

adversarial sequence �vI. As discussed earlier, we
denote the total number of type-j customers in �vI by nj.
In addition, given the sequence �vI, we denote the total
number of type-j customers among the first λn cus-
tomers by ηj(λ). Note that both nj and ηj(λ) are de-
terministic. Also, we define õj(λ)≜ (1 − p)ηj(λ) + pλnj
and õSj (λ)≜ pλnj, which will serve as deterministic
approximations forOj(λ) andOS

j (λ), respectively (see
Lemma 1 and the subsequent discussion for moti-
vation of this definition).

Here we return to the example in Figure 1 and
review the notations. Suppose λ � 5/8 and p � 0.5; in
this example, looking at the bottom row that shows
the sequence �v, we have o1(5/8) � 3, oS1 (5/8) � 1,which
are realizations of random variables O1(5/8) and
OS

1 (5/8), respectively. Looking at the top row that
shows sequence �vI, wehaven1 � 4, η1(5/8) � 3, õ1(5/8) �
0.5 × 3 + 0.5 × 4 × (5/8) = 2.75, and õS1 (5/8) � 0.5 × 4 ×
(5/8) � 1.25 that are all deterministic quantities. Sim-
ilarly, for type-2 customers, o2(5/8) � 2, oS2 (5/8) � 1,
n2 � 2, η2(5/8)�1, õ2(5/8)�0.5×1+0.5×2×(5/8)�1.125,
and õS2 (5/8) � 0.5 × 2 × (5/8) � 0.625.

For convenience of reference, in Table 1, we present
a summary of the defined notations.

Finally, to avoid carrying cumbersome expressions
in the statement of our results for second-order quan-
tities (e.g., bounds on approximation errors), we use
the following approximation notations.

Definition 2. Suppose f , g : X → R are two functions
defined on set X . We use the notation f � O(g) if there
exists a constant k such that f (x) < kg(x) for all x ∈ X .

Definition 3. Suppose f , g : N → R are two functions
defined on natural numbers. We use the notation f �
o(g) if limn→∞ f (n)

g(n) � 0 and the notation f � ω(g) if
limn→∞ f (n)

g(n)| � ∞
⃒⃒⃒

.

3.2. Estimating Future Demand
At time λ < 1, upon observing oj(λ), j � 1, 2 (but not nj
and ηj(λ)), we wish to estimate future demand, or
equivalently the total demand nj. To make such an
estimation, we establish the following concentra-
tion result:

Lemma 1. Define constants α≜ 10 + 2
̅̅
6

√
, ε̄≜ 1/24, and

k≜ 16. For any ε ∈ [1n , ε̄], with probability at least 1 − ε, all
the following statements hold:
• If n1 ≥ k

p2 logn, then for all λ ∈ {0, 1/n, 2/n, . . . , 1},
O1 λ( ) − õ1 λ( )| | < α

̅̅̅̅̅̅̅̅̅̅̅
n1 log n

√
, and (2a)

O1 λ( ) +O2 λ( ) − õ1 λ( ) + õ2 λ( )( )| | < α
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n1 + n2( ) log n√

(2b)

• If n2 ≥ k
p2 logn, then for all λ ∈ {0, 1/n, 2/n, . . . , 1},

O2 λ( ) − õ2 λ( )| | < α
̅̅̅̅̅̅̅̅̅̅̅
n2 log n

√
, and (3a)

OS
2 λ( ) − õS2 λ( )⃒⃒ ⃒⃒

< α
̅̅̅̅̅̅̅̅̅̅̅
n2 logn

√
. (3b)

The lemma is proven in Online Appendix EC.2. Given
that there are two layers of randomization (selection
of subsetS and the randompermutation), proving the
above concentration results requires a fairly delicate
analysis that builds upon several existing concen-
tration bounds. Because proving concentration re-
sults is not the main focus of our work, we will not
outline the proof in the main text and refer the in-
terested reader to Online Appendix EC.2.6 Here we
focus on the following two questions: (i) What is our
motivation for using deterministic approximations
õj(λ) and õSj (λ)? (ii) How do such approximations help
us to estimate nj?

Table 1. Notations

�vI �vI � (vI,1, vI,2, . . . , vI,n), initial customer sequence

S Subset of customers in the stochastic group
A Subset of customers in the adversarial group
�V �V � (V1,V2, . . . ,Vn), random customer arrival sequence
�v �v � (v1, v2, . . . , vn), a realization of �V (what online

algorithm actually observes)
nj Number of type-j, j � 1, 2, customers in �vI (which is the

same as in �V)
λ Normalized time: λ � 1/n, . . . , 1
Oj(λ) Randomnumber of type-j customers arriving up to time

λ
oj(λ) A realization of Oj(λ)
OS

j (λ) Random number of type-j customers in S arriving up to
time λ

oSj (λ) A realization of OS
j (λ)

ηj(λ) Number of type-j, j � 1, 2, customers among the first λn
ones in �vI

õj(λ) (1 − p)ηj(λ) + pλnj (a deterministic approximation of
Oj(λ))

õSj (λ) pλnj (a deterministic approximation of OS
j (λ))
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To answer the first question, let us count the num-
ber of type-j customers in Oj(λ) that belong to the
stochastic and adversarial groups separately. We
start with the stochastic group. Roughly, a total of pnj
type-j customers belong to the stochastic group, and a
λ fraction of them arrive by time λ because these
customers are spread almost uniformly over the en-
tire time horizon. As a result, there are approximately
pnjλ type-j customers from S arriving up to time λ.
Nowwemove on to the adversarial group: there are a
total of ηj(λ) of type-j customers in the first λn cus-
tomers in �vI. Because with probability 1 − p each of
them will be in the adversarial group, the total num-
ber of type-j customers from the adversarial group
arriving up to time λ is approximately (1 − p)ηj(λ).
Combining these two approximate counting argu-
ments gives us

Oj λ( ) ≈ 1 − p
( )

ηj λ( ) + pλnj � õj λ( ). (4)
A similar argument shows that OS

j (λ) ≈ pλnj � õSj (λ).
Lemma 1 confirms that these approximations hold
with high probability. Lemma 1 also provides upper
bounds on the corresponding approximation errors.
Further, we note that õj(λ) 
� E[Oj(λ)], as shown in
Online Appendix EC.2.1. However, the difference
between the two is very small and vanishing in n.
Given that õj(λ) provides a very intuitive determin-
istic approximation for random variable Oj(λ) and
admits a simple closed-form expression, we use it
instead of the E[Oj(λ)].

Now, let us answer the second posed question.
There are simple relations between nj and ηj(λ), such
as nj ≥ ηj(λ) and ηj(λ) + (1−λ)n≥nj.7 Combining these
with our deterministic approximations leads us to
compute upper bounds on the total number of cus-
tomers as established in a lemma in Section 5.1.

Finally, based on Lemma 1, we partition the sample
space of arriving sequences into two subsets, E and its
complement Ē, and define event E as follows:

Definition 4. Given the initial sequence �vI , event E
occurs if the realized arrival sequence �v satisfies all the
conditions of Lemma 1, that is,

• If n1 ≥ k
p2 logn, then for all λ ∈ {0, 1/n, 2/n, . . . , 1},

o1 λ( ) − õ1 λ( )| | < α
̅̅̅̅̅̅̅̅̅̅̅
n1 logn

√
and

o1 λ( ) + o2 λ( ) − õ1 λ( ) + õ2 λ( )( )| | < α
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n1 + n2( ) log n√

,

• If n2 ≥ k
p2 logn, then for all λ ∈ {0, 1/n, 2/n, . . . , 1},

o2 λ( ) − õ2 λ( )| | < α
̅̅̅̅̅̅̅̅̅̅̅
n2 logn

√
and

oS2 λ( ) − õS2 λ( )⃒⃒ ⃒⃒
< α

̅̅̅̅̅̅̅̅̅̅̅
n2 log n

√
.

If n1 < k
p2 logn and n2 < k

p2 logn, then event E occurs
as well.

Lemma 1 confirms that event E occurs with high
probability. In all our analyses, we use the above
definition to focus on the event that the deterministic
approximations (i.e., õj(λ)) are in fact “very close” to
the observed sequence. This greatly helps us simplify
the analysis and its presentation. We conclude this
section by remarking that in Online Appendix EC.3,
we discuss how to use Lemma 1 to estimate parameter
p when n1 and n2 are large enough and the firm has
access to multiple past runs of the arrival process.

4. A Nonadaptive Algorithm
In this section, we present and analyze our first online
algorithm for the resource allocation problem and the
demandmodeldescribedinSection 3. First, inSection 4.1,
we describe the algorithm. Then, in Section 4.2, we
present the analysis of its competitive ratio.

4.1. The Algorithm
Our first algorithm is a nonadaptive online algorithm
that uses predetermined dynamic thresholds to ac-
cept or reject customers. This algorithm combines
some ideas from the primal algorithm of Kesselheim
et al. (2014) and the threshold algorithm of Ball and
Queyranne (2009) to generate maximal revenue from
both the stochastic and adversarial components of
the demand.
In particular, our nonadaptive algorithmmakes use

of the fact that customers from the stochastic group
are uniformly spread over the entire horizon. Therefore,
at least a fraction p of the inventory should be allocated
at a roughly constant rate. To this end, we define an
evolving threshold that works as follows: at any time λ,
accept a type-2 customer if the total number of ac-
cepted customers by this rule does not exceed �λpb�.
However, the arrival pattern of the other 1 − p

fraction can take any arbitrary form. In particular, if
the adversary puts many type-2 customers at the very
beginning of the time horizon but none toward the
end, then we may reject too many type-2 customers
early on. To prevent this loss, we keep another quota
for a type-2 customer rejected by the evolving thresh-
old.We only reject that customer if the number of such
type-2 customers accepted so far exceeds the fixed
threshold of θ≜ 1−p

2−a. When p � 0, this is the same
threshold as in Ball and Queyranne (2009).
The formal definition of our algorithm is presented

in Algorithm 1. Note that q1, q2,e, and q2,f , respectively,
represent counters for the number of accepted type-1
customers, the number of type-2 customers accepted
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by the evolving threshold, and the number of type-2
customers accepted by the fixed threshold.

Algorithm 1 (Online Nonadaptive Algorithm (ALG1))
1. Initialize q1, q2,e, q2,f ← 0, and define θ≜ 1−p

2−a.
2. Repeat for time λ � 1/n, 2/n, . . . , 1, accept cus-

tomer i � λn arriving at time λ if there is remaining
inventory and one of the following conditions holds:

a. vi � 1; update q1 ← q1 + 1.
b. Evolving threshold rule: vi � a and q1 + q2,ė <

�λpb�; update q2, e ← q2, e + 1.
c. Fixed threshold rule: vi � a and q2,f <�θb�; update

q2, f ← q2, f + 1.

We prioritize the evolving threshold rule if both of
the last two conditions are satisfied.

4.2. Competitive Analysis
In this subsection, we analyze the competitive ratio of
Algorithm 1. Our main result is the following theorem:

Theorem 1. For p ∈ (0, 1), the competitive ratio of Algo-

rithm 1 is at least p + 1−p
2−a −O( 1

a(1−p)p
̅̅̅̅̅
log n
b

√
) in the partially

predictable model.

Before proceeding to the proof of Theorem 1, we
make the following remarks:

Remark 1. When p � 0, our model reduces to an ad-
versarial model. This setting was studied in Ball and
Queyranne (2009), which developed a nonadaptive
algorithm with competitive ratio of 1

2−a. Further they
show this is the best possible competitive ratio for this
setting. On the other hand, when p � 1, our model
reduces to the so-called random orderedmodel studied
in several papers, including Agrawal et al. (2014)
among others. The online algorithm of Agrawal et al.
(2014) is learning based and, thus, it is adaptive. The
competitive ratio of their algorithms—when applied to
our setting—is 1 −O( ̅̅̅̅̅̅̅̅̅̅

log n/b
√ ).8

Remark 2. Our competitive analysis of Algorithm 1 is

tight (up to an O(
̅̅̅̅̅
log n
b

√
) term). In particular, for the

following instance, Algorithm 1 can attain only a p + 1−p
2−a

fraction of the optimum offline solution: Suppose b � n
and all customers are of type-2. The revenue of the
optimum offline algorithm is ab. On the other hand, if
we employ Algorithm 1, at the end we will have q1 � 0,
q2,e ≤ pb, and q2,f ≤ θb. This results in a competitive
ratio of at most p + θ� p + 1−p

2−a.

Remark 3. In Subsection 6.1, we prove that no online
algorithm can have a competitive ratio larger than p +
1−p
2−a + o(1)when b � o( ̅̅

n
√ ). On the other hand, Theorem 1

indicates that Algorithm 1 achieves a competitive ratio

of p + 1−p
2−a − o(1) when b � ω(logn). Combining the two

results implies that for fixed a and p, Algorithm 1
achieves the best possible competitive ratio (up to an
o(1) term) in the regime where conditions b � ω(log n)
and b � o( ̅̅

n
√ ) hold simultaneously.

Remark 4. Note that even though p + 1−p
2−a is the convex

combination of the competitive ratios of Ball and
Queyranne (2009) and of Agrawal et al. (2014), it
cannot be achieved by simply randomizing between
these two algorithms. Suppose we flip a biased coin;
with probability p, we follow the algorithm of Agrawal
et al. (2014) (or any other algorithms designed for a
random order model, such as Kesselheim et al. (2014));
andwith probability (1 − p), we follow the fixed thresh-
old algorithm of Ball and Queyranne (2009). In Sub-
section 6.2, we show that for a certain class of instances,
such a randomized algorithm does not generate p + 1−p

2−a
fraction of the optimum offline solution.

Proof of Theorem 1. We start the proof by making the
following observation: Theorem 1 is nontrivial only if̅̅̅̅̅

log n
b

√
is small enough, such that the approximation

term O(·) is negligible. Therefore, without loss of
generality, we can restrict attention to the case where̅̅̅̅̅

log n
b

√
is small. In particular, recalling that we defined

constant ε̄ � 1/24 in Lemma 1, if 1
a(1−p)p

̅̅̅̅̅
log n
b

√
≥ ε̄, then

O( 1
a(1−p)p

̅̅̅̅̅
log n
b

√
) becomes O(1) and Theorem 1 becomes

trivial. Therefore, without loss of generality, we assume
1

a(1−p)p
̅̅̅̅̅
log n
b

√
< ε̄, or equivalently,

b >
1
ε̄2

log n

a2 1 − p
( )2p2 . (5)

We denote the random revenue generated by Algo-
rithm 1 by ALG1(�V). To analyze E[ALG1(�V)], we
condition it on the event E. Thus, we have

E ALG1 �V
( )[ ]

OPT �vI
( ) ≥

E ALG1 �V
( )

|E
[ ]

P E

OPT �vI
( ) .

Define ε≜ 1
a(1−p)p

̅̅̅̅̅
logn
b

√
. For b that satisfies condition (5),

and assuming that n > 24, we have 1
n ≤ ε ≤ ε̄. There-

fore, we can apply Lemma 1 to get

E ALG1 �V
( )[ ]

OPT �vI
( ) ≥

E ALG1 �V
( )

|E
[ ]

P E

OPT �vI
( )

≥
E ALG1 �V

( )
|E

[ ]
OPT �vI

( ) 1 − ε( ).
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This will allow us to focus on the realizations that
belong to event E. In the main part of the proof, we
show that, for any realization �v belonging to event E,

ALG1 �v
( )

OPT �vI
( ) ≥ p + 1 − p

2 − a
−O ε( ).

Fixing a realization �v that belongs to event E, we
define q1(λ), q2,e(λ), and q2,f (λ) to be the values of
counters q1, q2,e, and q2,f right after the algorithm
determineswhether to accept the customer arriving at
time λ. Further, we define Δ≜α

̅̅̅̅̅̅̅̅̅
b log n

√
(constant α is

defined in Lemma 1). To analyze the competitive
ratio, we analyze three cases separately.

Case (i). n1 ≥ k
p2 log n, and Algorithm 1 exhausts

the inventory.

Note that when n1 ≥ k
p2 logn, we can apply the

concentration result (2a) from Lemma 1. When Al-
gorithm 1 exhausts the inventory, it is possible that
the algorithm accepts too many type-2 customers,
which results in rejecting type-1 customers and losing
revenue. We control for this loss by establishing the
following upper bound on the number of type-2
customers accepted by the evolving threshold.9 In
particular, we have the following lemma:

Lemma 2. Under event E, if n1 ≥ k
p2 log n, then

q2,e 1( ) ≤ p b − n1( )++Δ.

Proof. We assume, without loss of generality, that
n1 ≤ b. Otherwise, we construct a modified adversarial
instance, denoted by �vI,M, as follows: keep an arbitrary
subset of type-1 customers with size b in �vI (before the
random permutation), and remove the remaining type-
1 customers (e.g., set their revenue to be zero). For the
same realization of the stochastic group and random
permutation, we claim that at any time λ ∈ {1/n, . . . , 1},
the number of type-2 customers accepted through the
evolving threshold rule in the original instance is not
larger than that in the modified one. This holds be-
cause o1(λ, �v) ≥ o1(λ, �vM), where the second argument
is added to o1(·, ·) to indicate the corresponding in-
stance. Note that because the algorithm accepts all
type-1 customers, this implies q1(λ, �v) ≥ q1(λ, �vM),
which proves our claim (i.e., q2,e(λ, �v) ≤ q2,e(λ, �vM)).
Thus, without loss of generality, we assume n1 ≤ b.
Further, note that because of condition (5), we have
n1(�vM) � b ≥ k

p2 log n.
10 Thus, we are still in Case (i)

for the modified instance.
If no type-2 customer is accepted by the evolving

threshold, then q2,e(1) � 0 and the proof is complete.
Otherwise, let λ̄ ≤ 1 be the last time that a type-2

customer is accepted by the evolving rule. Then
we have

q2,e 1( ) � q2,e λ̄
( ) ≤ λ̄pb − o1 λ̄

( )
Evolving threshold rule
( )

≤ λ̄pb − λ̄pn1 + 1 − p
( )

η1 λ̄
( ) − Δ

( )) ((2a))
≤ p b − n1( ) + Δ. η1 λ̄

( ) ≥ 0,n1 ≤ b, and λ̄ ≤ 1
( )

The reason for each inequality appears in the same
line. We remark that in the second inequality, we
crucially use the concentration result of Lemma 1.
This completes the proof.

Using Lemma 2, we prove, in Online Appendix
EC.4, the following lemma that gives a lower bound
on the competitive ratio for Case (i):

Lemma 3. Under eventE, if n1 ≥ k
p2 log n and q1(1) + q2,e(1)

+q2,f (1) � b, then ALG1(�v)
OPT(�v) ≥ p + 1−p

2−a − (1−a)Δ
ab .

Case (ii). n1 ≥ k
p2 log n, and Algorithm 1 does not exhaust

the inventory.

In this case, all type-1 customers are accepted.
Therefore, the ratio between ALG1(�v) and OPT(�v) can
be expressed as

ALG1 �v
( )

OPT �v
( ) � n1 + a q2,e 1( ) + q2,f 1( )[ ]

n1 + amin n2, b − n1( ){ } .

The only “mistake” that the algorithmmaymake is to
reject too many type-2 customers. The following
lemma establishes a lower bound on the number of
accepted type-2 customers:

Lemma 4. Under event E, if n1 ≥ k
p2 log n and q1(1) +

q2,e(1) + q2,f (1) < b, then one of the following condi-
tions holds:
a. q2,e(1) + q2,f (1) � n2,
b. q2,f (1) � �θb� and n1 > bp − 3Δ, or
c. q2,f (1) � �θb�, n1 ≤ bp − 3Δ, and q2,e(1) ≥ (p(n1+

n2) −n1 − 5Δ)+.
Proof. First note that q2,f (1) < �θb� means that Algo-
rithm 1 never rejects a type-2 customer. This implies
that q2,e(1) + q2,f (1) � n2, that is, condition (a) holds.
Now suppose q2,f (1) � �θb�. If n1 > bp−3Δ, then con-
dition (b) holds. The most interesting case is when
q2,f (1) � �θb� and n1 ≤ bp − 3Δ. In the following, we
show that in this case, condition (c) will hold.

In this case, without loss of generality, we can as-
sume n1 + n2 ≤ b. Otherwise, we construct an alter-
native adversarial instance, denoted by �vI,A, as fol-
lows: keep an arbitrary subset of type-2 customers
with size b − n1 in �vI (before the random permutation)

Hwang, Jaillet, and Manshadi: Online Allocation Under Partially Predictable Demand
Operations Research, 2021, vol. 69, no. 3, pp. 895–915, © 2021 INFORMS904



and remove the remaining type-2 customers (e.g., set
their revenue to be zero). With the same realization of the
stochastic groupand randompermutation,weclaim that

q2,e λ, �v
( ) ≥ q2,e λ, �vA

( )
, λ ∈ 0, 1/n, . . . , 1{ }. (6)

To show (6), we use induction. The base case, cor-
responding to taking λ � 0, is trivial. Suppose (6)
holds for λ − 1/n. We show it will hold for λ as
well. At time λ, if q2,e(λ, �vA) � q2,e(λ − 1/n, �vA), then (6)
holds because q2,e(λ, �v) ≥ q2,e(λ − 1/n, �v). Otherwise,
q2,e(λ, �vA) � q2,e(λ − 1/n, �vA) + 1. This implies that a
type-2 customer arrives at time λ in �vA, and thus also
in �v. If q2,e(λ, �v) � q2,e(λ − 1/n, �v) + 1, then (6) again
holds. Otherwise, under customer arrival sequence �v,
we do not accept the type-2 customer at time λ by
the evolving threshold rule, which means that o1(λ, �v)+
q2,e(λ, �v) � �λpb�. Because o1(λ, �vA) + q2,e(λ, �vA) ≤ �λpb�,
and o1(λ, �v) � o1(λ, �vA), we can conclude that (6) holds
in the last case as well. This concludes the induction.
Thus, without loss of generality, we assume n1 + n2 ≤ b.

To prove that condition (c) holdswhen q2,f (1) � �θb�
and n1 ≤ bp − 3Δ, we make two important observa-
tions: (i) In this case, the number of type-2 customers
is large enough to apply the concentration results
of (3b). In particular, we have

n2 ≥ θb ≥ k logn
p2

, (7)

where the last inequality holds because of (5), and
definitions of θ � 1−p

2−a and k (defined in Lemma 1). (ii)
The number of type-1 customers is so small that after
a certain time the evolving threshold accepts a suf-
ficient number of type-2 customers that ensures
condition (c) holds. In particular, define

λ̄≜
1
n
�n n1 1 − p

( ) + 3Δ
( )

p b − n1( ) �.

Note that λ̄ ≤ 1 when n1 ≤ bp − 3Δ. For any λ ≥ λ̄,
we have

o1 λ( ) + oS2 λ( ) − oS2 λ̄
( )

≤ λpn1 + 1 − p
( )

η1 λ( ) + Δ + λpn2 + Δ − λ̄pn2 − Δ
( )

((2a), (3b))
≤ λpn1 + 1 − p

( )
n1 + λ − λ̄

( )
pn2 + 3Δ

η1 λ( ) ≤ n1
( )

� λ̄pn1 + 1 − p
( )

n1 + λ − λ̄
( )

p n1 + n2( ) + 3Δ

≤ λ̄pn1 + 1 − p
( )

n1 + λ − λ̄
( )

pb + 3Δ
n1 + n2 ≤ b( )

≤ λpb.

definition of λ̄).(

Note that because o1(λ) + oS2 (λ) − oS2 (λ̄) is an integer,
the above inequality also implies

o1 λ( ) + oS2 λ( ) − oS2 λ̄
( ) ≤ �λpb� for all λ ≥ λ̄. (8)

Further, the above inequality implies that for λ ≥ λ̄,
there is a gap between o1(λ) and the evolving threshold
�λpb�, which in turn implies that the evolving threshold
will accept type-2 customers. Next, for λ ≥ λ̄, we
establish a lower bound on the number of type-2
customers that the evolving threshold accepts. In
particular, we show that

q2,e λ( ) ≥ oS2 λ( ) − oS2 λ̄
( )

for all λ ≥ λ̄. (9)
We show (9) by induction. The base case λ � λ̄ is
trivial. Suppose (9) holds for λ − 1/n ≥ λ̄. We show it
will also hold for λ: If the arriving customer is not a
type-2 customer belonging to the stochastic group,
then oS2 (λ) � oS2 (λ − 1/n); but q2,e(λ) ≥ q2,e(λ − 1/n), and
thus (9) holds. Otherwise, we have oS2 (λ) � oS2 (λ−
1/n) + 1. Now if this customer is accepted by the
evolving threshold rule, then both sides of (9) are
increased by one, and thus inequality (9) still holds.
Otherwise, if the customer is not accepted, it implies
we have reached the threshold. Therefore,

q2,e λ( ) � �λpb� − o1 λ( ). (10)
Now we utilize the gap between �λpb� and o1(λ) that
we established above in (8). Combining (10) and (8)
proves that (9) holds in this case as well. This com-
pletes the induction and thus the proof of (9).
We complete the proof of the lemma by using (9)

with λ � 1, to have the following lower bound:

q2,e 1( ) ≥ oS2 1( ) − oS2 λ̄
( ) ((9))

≥ pn2 − Δ − λ̄pn2 + Δ
( ) ((3b))

≥ pn2 − n1 1 − p
( ) + 3Δ

( ) − 2Δ (b − n1 ≥ n2( ))
� p n1 + n2( ) − n1 − 5Δ.

This completes the proof.
Using Lemma 4, we prove, in Online Appendix EC.4,
the following lemma that gives a lower bound on the
competitive ratio for Case (ii):

Lemma 5. Under event E, if n1 ≥ k
p2 log n and q1(1)+

q2,e(1) + q2,f (1) < b, then

ALG1 �v
( )

OPT �v
( ) ≥ p + 1 − p

2 − a
− 5Δ
θb

.

Case (iii). n1 < k
p2 log n.

The competitive ratio analysis for Case (iii) is fairly
similar to that for Case (ii). It follows from the next
two lemmas. The proofs are deferred to Online Ap-
pendix EC.4.
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Lemma 6. Under event E, if n1 < k
p2 log n, then one of the

following conditions holds:
a. q1(1) + q2,e(1) + q2,f (1) � b,
b. q1(1) � n1 and q2,e(1) + q2,f (1) � n2, or
c. q1(1)�n1,q2,f (1)��θb�andq2,e(1)≥pn2− k

p2 logn−4Δ.
Using Lemma 6, the following lemma (proven in

Online Appendix EC.4) gives a lower bound on the
competitive ratio for Case (iii):

Lemma 7. Under event E, if n1 < k
p2 log n, then

ALG1 �v
( )

OPT �v
( ) � n1 + a q2,e 1( ) + q2,f 1( )[ ]

n1 + amin n2, b − n1( ){ }

≥ min p + 1 − p
2 − a

−
k
p2 log n

ab
, p + 1 − p

2 − a

{

−
k
p2 log n + 4Δ

θb

}
.

Using Lemmas 3, 5, and 7, we have lower bounds on
the competitive ratio of Algorithm 1 for all possible
cases. We complete the proof of the theorem by the
following lemma (proven in Online Appendix EC.4)
that ensures that the error terms in Lemmas 3, 5, and 7
are O(ε).
Lemma 8. The error terms in Lemmas 3, 5, and 7 are
O(ε), that is, we have (a) (1−a)Δ

ab � O(ε), (b) 5Δ
θb � O(ε), (c)

k
p2
log n

ab � O(ε), and (d)
k
p2
log n+4Δ
θb � O(ε).

This completes the proof of Theorem 1.

5. The Adaptive Algorithm
In the design of Algorithm 1, we used the observation
that in the partially predictable model, the demand
has a stochastic component that is uniformly spread
over the entire horizon. This observationmotivated us
to define the evolving threshold rule. We remark that
in Algorithm 1, neither the evolving threshold rule
nor the fixed threshold rule adapts to the observed
data, which makes Algorithm 1 a nonadaptive al-
gorithm. As noted in Remark 4, when the initial in-
ventory b is small compared with the horizon n, the
competitive ratio of Algorithm 1, p + 1−p

2−a, is in fact the
best possible and can be achieved with our non-
adaptive algorithm. Therefore, in this regime, adapt-
ing to the data, that is, setting thresholds based on the
observed data, would not improve the performance.
More precisely, when b � o( ̅̅

n
√ ), the inventory is so

small compared with the time horizon that there may
not be enough time to effectively adapt to the ob-
served data. The adversary can mislead us to allocate
all the inventory before we can observe a sufficient
portion of the data. However, as b becomes larger,
we will have more chance to observe and adapt to
the data before allocating a significant part of the

inventory. In this section, in fact, we design an adaptive
algorithm that achieves a better competitive ratio for
large enough b (relative to n). In Section 5.1, we first
present the ideas behind our adaptive algorithm
alongwith its formal description. Then, in Section 5.2,
we analyze the competitive ratio of our algorithm.

5.1. The Algorithm
In this section, we describe our adaptive algorithm,
denoted by ALG2,c, which takes c ∈ [0, 1] as a pa-
rameter. For a certain range of c, we show that ALG2,c
attains a competitive ratio of c (up to an error term);
however, if c becomes too large (for example if c � 1),
then ALG2,c no longer guarantees a c fraction of the
optimum offline solution. We call this algorithm
adaptive because it makes decisions based on the
sequence of arrivals it has observed so far. In par-
ticular, this algorithm repeatedly computes upper
bounds on the total number of type-1/-2 customers
based on the observed data and uses these up-
per bounds to decide whether to accept an arriving
type-2 customer or not. Before proceeding with the
algorithm, we first introduce two functions, u1(λ)
and u1,2(λ), that will prove useful in constructing
the aforementioned upper bounds. In particular
we define

u1 λ( )≜
b if λ< δ (not enough data observed).
min o1 λ( )

λp ,
o1 λ( )+ 1−λ( ) 1−p( )n

1−p+λp
{ }

if λ≥ δ.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u1,2 λ( )≜

b if λ< δ (not enough data observed).
min o1 λ( )+o2 λ( )

λp ,
o1 λ( )+o2 λ( )+ 1−λ( ) 1−p( )n

1−p+λp
{ }

if λ≥ δ,

⎧⎪⎪⎨⎪⎪⎩
where δ≜ (1−c)b

(1−a)n. Note that u1(λ) and u1,2(λ) are func-
tions of the observed data o1(λ) and o2(λ). In the
following lemma, we show how u1(λ) and u1,2(λ)
provide upper bounds on n1 and n1 + n2 when the
realized sequence, �v, belongs to event E and the
number of type-1 customers as well as the initial
inventory b are large enough (as specified in the
lemma’s statement). Recall that we defined Δ to be
α

̅̅̅̅̅̅̅̅̅
b log n

√
, where the constant α itself is defined in

Lemma 1.

Lemma 9. Under event E, suppose n1 ≥ k
p2 log n and

b > (1ε̄
n

̅̅̅̅̅
logn

√
(1−c)2ap3/2)

2
3, where constants k and ε̄ are defined in

Lemma 1. Then for all λ ∈ {1/n, 2/n, . . . , 1},

u1 λ( ) ≥ min b,n1 − 2Δ
δp

{ }
, and (11a)

u1,2 λ( ) ≥ min b,n1 + n2 − 2Δ
δp

{ }
. (11b)

Lemma 9 is proven in Online Appendix EC.5.
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Having defined u1(λ) and u1,2(λ), now we describe
how the adaptive algorithm determines whether to
accept an arriving type-2 customer when there is
remaining inventory. In the following, qj(λ), j � 1, 2
represents the number of type-j customers accepted
by the algorithm up to time λ (for a particular reali-
zation �v ). Suppose the arriving customer at time λ is
of type-2. If u1,2(λ) < b, then we accept the customer,
because (11b) implies that the total number of type-1
and type-2 customers will not exceed b (neglecting
the error term); thus, we will have extra inventory at
the end. On the other hand, if u1,2(λ) ≥ b, we may
want to reject this customer to reserve inventory for
a future type-1 customer. The decision of whether
to accept the customer is based on the following
two observations:

Observation 1. If u1(λ) ≥ n1, then

OPT �v
( ) ≤ min n1, b{ } + a b − n1( )+

� 1 − a( )min n1, b{ } + ab ≤ min u1 λ( ), b{ }
× 1 − a( ) + ab.

Observation 2. If we accept the current type-2 cus-
tomer, then the maximum revenue we can get is (b −
(q2(λ − 1/ n) + 1)) + a(q2(λ − 1/n) + 1).

Tohaveacompetitive ratioof at least c, Observations 1
and 2 motivate us to accept the type-2 customer
only if

b − q2 λ − 1/n( ) + 1
( )( ) + a q2 λ − 1/n( ) + 1

( )
min u1 λ( ), b{ } 1 − a( ) + ab

≥ c. (12)
After rearranging terms, we get the following threshold
for accepting the type-2 customer:

q2 λ − 1/n( ) + 1 ≤ 1 − c
1 − a

b + c b − u1 λ( )( )+. (13)

Thus, when u1,2(λ) ≥ b, we use condition (13) to ac-
cept/reject a type-2 customer. For notational conve-
nience, we define φ≜ 1−c

1−a. We point out the right-hand
side of (13) may not be an integer; thus, in our al-
gorithm, we use a slightly modified version of it,
defined as follows:

q2 λ − 1/n( ) ≤ �1 − c
1 − a

b + c b − u1 λ( )( )+�. (14)

Note that by the definition of the threshold given in (14),
we always accept the first �φb� type-2 customers. The
formal definition of our algorithm is presented in
Algorithm 2. In Algorithm 2, qj represents the counter
for the number of accepted customers of type-j so far.

Algorithm 2 (Online Adaptive Algorithm (ALG2,c))
1. Initialize q1,q2 ← 0, and defineφ≜ 1−c

1−a, and δ≜ φb
n .

2. Repeat for time λ � 1/n, 2/n, . . . , 1:

a. Calculate functions u1(λ) and u1,2(λ) (to con-
struct upper bounds for n1 and n1 + n2):

u1 λ( )≜
b if λ< δ (not enough data observed).
min o1 λ( )

λp ,
o1 λ( )+ 1−λ( ) 1−p( )n

1−p+λp
{ }

if λ≥ δ.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u1,2 λ( )≜

b if λ< δ (not enough data observed).
min o1 λ( )+o2 λ( )

λp ,
o1 λ( )+o2 λ( )+ 1−λ( ) 1−p( )n

1−p+λp
{ }

if λ≥ δ.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
b. Accept customer i � λn arriving at time λ if
there is remaining inventory and one of the
following conditions holds:

vi � 1;update q1 ← q1 + 1.
vi � a and u1,2(λ) < b; updateq2 ← q2 + 1.
vi � a and q2 ≤ �φb+ c(b−u1(λ))+�; updateq2 ← q2+1.

We prioritize the second condition if both the
second and the third ones hold.
Before we analyze the algorithm, we highlight two

key properties of threshold �φb + c(b − u1(λ))+�: (i) The
threshold is decreasing in u1(λ); the smaller u1(λ)
is, the less inventory we reserve for future type-1
customers. (ii) The threshold is decreasing in c as
well (the right-hand side of (14) can be expressed
as � 1

1−a b − c( b
1−a − (b − u1(λ))+)�).When c is too large, we

may reject too many type-2 customers, which in turn
hurts the revenue in a certain class of instances. Said
another way, note that inequality (14) only gives a
“necessary” condition for achieving c-competitiveness.
We identify the sufficient condition for c-competitiveness
by solving the factor-revealing mathematical program
presented in (MP1). We will explain the construction
of this program in the analysis of the competitive ratio
(in Section 5.2). On a high level, we construct the
feasible region such that it contains any valid instance
that can violate the c-competitiveness; by minimizing
over c, we find the smallest value of c for which the
feasible region is not empty.

Minimize c
l,n1,n2,η1,η2,c( ) (MP1)

subject to

c ≥ a n2 − õ2 + b
1−a

( ) + n1
amin n1 + n2, b{ } + 1 − a( )n1 + a2b

1−a + amin ũ1, b{ } ,

(15a)
ũ1,2 ≥ b, (15b)
l ≤ 1, (15c)
η1 + η2 ≤ ln, (15d)
η1 ≤ n1, (15e)
η2 ≤ n2, (15f)
n1 ≤ b, (15g)
n1 + n2 ≤ n, (15h)
n1 + n2 ≤ η1 + η2 + 1 − l( )n, (15i)
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where õ1 ≜ (1 − p)η1 + pn1l, õ2 ≜ (1 − p)η2 + pn2l, ũ1≜
min{õ1lp , õ1+(1−l)(1−p)n(1−p+lp) }, and ũ1,2≜min{õ1+õ2lp , õ1+õ2+(1−l)(1−p)n(1−p+lp) }.
Before we analyze Algorithm 2, we also evaluate the
solution of (MP1). Denote the optimal objective value
of (MP1) by c∗. As will be stated in Theorem 2,ALG2,c∗
achieves a competitive ratio of c∗ (minus an error
term). First, we solve (MP1) numerically for the re-
gime where b � κn (where 0 < κ ≤ 1 is a constant) and
show that if b/n > 0.5, then Algorithm 2 achieves a
better competitive ratio than Algorithm 1.

In Figure 2, we fix a � 0.5, 0.7 and plot c∗ for p �
0.05, 0.1, . . . , 0.95 for three cases of b/n � 0.9, 0.7, and
0.5. Figure 2 leads us to make the following obser-
vation: The competitive ratio of ALG2,c∗ is at least that
of ALG1, and it is significantly larger when (i) p is
small and (ii) b/n is large. This observation highlights
the power of adapting to the data, even though it
contains an adversarial component: Consider a � 0.7,
b � 0.7n, and p � 0.2; this means that 80% of the de-
mand belongs to the adversarial group. Our adaptive
algorithm guarantees 10% more revenue than the
nonadaptive algorithmdoes. In addition,we note that
as the initial inventory b becomes larger (for a fixed
time horizon n), the adversary’s power naturally
declines. Thus, one would expect that a “smart” al-
gorithm achieves a higher competitive ratio. Our
adaptive algorithm indeed attains a higher competitive
ratio as the initial inventory increases. In contrast,
the competitive ratio of our nonadaptive algorithm
remains the same.We conclude our study of (MP1) by
establishing a lower bound on its optimum solution.
The following proposition states that c∗ is at least
p + 1−p

2−a, which is the competitive ratio of Algorithm 1
(ignoring the error term).

Proposition 1. For any b ≤ n, we have c∗ ≥ p + 1−p
2−a.

Further, if b � n, then c∗ � 1.

5.2. Competitive Analysis
In this section, we analyze the competitive ratio of
Algorithm 2 and prove the following theorem:

Theorem 2. For p ∈ (0, 1), let c∗ be the optimal objective
value of (MP1). For any c ≤ c∗ such that c < 1, ALG2,c is

c −O( 1
(1−c)2ap3/2

̅̅̅̅̅̅̅̅
n2 log n

b3

√
) competitive in the partially pre-

dictable model.

Theorem 2 implies that if c∗ < 1, then ALG2,c∗ is c∗ −
O( 1

(1−c∗)2ap3/2
̅̅̅̅̅̅̅̅
n2 log n

b3

√
) competitive. However, the same

does not hold when c∗ � 1. For this special case, we
have the following corollary of Theorem 2:

Corollary 1. When c∗ � 1, for c � 1 − 3
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

ap3/2

̅̅̅̅̅̅̅̅
n2 log n

b3

√√
the

competitive ratio of ALG2,c is 1 −O(3
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

ap3/2

̅̅̅̅̅̅̅̅
n2 logn

b3

√
)

√
.

Remark 5. Theorem 2 combined with Proposition 1
shows that in the asymptotic regime (where n and b

both grow), if the scaling factor
̅̅̅̅̅̅̅̅
n2 log n

b3

√
(which appears

in the error term of the competitive ratio) is vanishing
(i.e., order of o(1)), then our adaptive algorithm
outperforms our nonadaptive one. For instance, the
aforementioned condition holds if b � κn where 0 <
κ ≤ 1 is a constant.

Proof of Theorem 2. Similar to the proof of Theorem 1,
we start by making the observation that Theorem 2

is nontrivial only if
̅̅̅̅̅̅̅̅
n2 log n

b3

√
is small enough such that

the approximation term O(·) is negligible. Therefore,
without loss of generality, we can restrict attention

to the case where
̅̅̅̅̅̅̅̅
n2 log n

b3

√
is small. In particular, if

1
(1−c)2ap3/2

̅̅̅̅̅̅̅̅
n2 log n

b3

√
≥ ε̄, then O( 1

(1−c)2ap3/2
̅̅̅̅̅̅̅̅
n2 log n

b3

√
) becomes

O(1) and Theorem 2 becomes trivial (recall that con-
stant ε̄� 1/24 is defined in Lemma 1). Therefore, without

Figure 2. (Color online) Solution of (MP1), c∗, vs. p for a � 0.50 and 0.70

Hwang, Jaillet, and Manshadi: Online Allocation Under Partially Predictable Demand
Operations Research, 2021, vol. 69, no. 3, pp. 895–915, © 2021 INFORMS908



loss of generality, we assume 1
(1−c)2ap3/2

̅̅̅̅̅̅̅̅
n2 log n

b3

√
< ε̄

or, equivalently,

b
3
2 >

1
ε̄

n
̅̅̅̅̅̅̅
log n

√
1 − c( )2ap3/2 . (16)

We remark that we impose the same condition on b in
Lemma 9. We denote the random revenue generated
by Algorithm 2 by ALG2,c(�V). Similar to the proof of
Theorem 1, we define an appropriate ε that allows us
to focus on the realizations that belong to event E. In

particular, let ε � 1
(1−c)2ap3/2

̅̅̅̅̅̅̅̅
n2 log n

b3

√
. For b that satisfies

condition (16), and assuming that n > 24, we have
1
n ≤ ε ≤ ε̄. Therefore, we can apply Lemma 1 to get

E ALG2,c �V
( )[ ]

OPT �vI
( ) ≥

E ALG2,c �V
( )

|E
[ ]

P E

OPT �vI
( )

≥
E ALG2,c �V

( )
|E

[ ]
OPT �vI

( ) 1 − ε( ).

In the main part of the proof, we show that for any
realization �v belonging to event E,

ALG2,c �v
( )

OPT �vI
( ) ≥ c −O ε( ).

To analyze the competitive ratio, we analyze three
cases separately.

Case (i). When n1 ≥ k
p2 log n, and Algorithm 2 exhausts

the inventory. When n1 ≥ k
p2 log n, we can apply (2a)

from Lemma 1 and Lemma 9. Because Algorithm 2
exhausts the inventory, we know that n1 + n2 ≥ b. Now
we have either (a) n1 + n2 − 2Δ

δp ≤ b or (b) n1 + n2− 2Δ
δp > b.

If (a) happens, then (according to Lemma 9) we may
have u1,2(λ) < b, which may result in accepting a type-2
customer through the second condition that we should
have rejected. However, in this case, we also have a
tight upper bound on the optimum offline solution. As
shown in the proof of Lemma 11—which analyzes
the competitive ratio of the two cases (a) and (b)
separately—such a bound allows us to establish the
desired lower bound on the competitive ratio. Case (b)
is the more interesting case, which accepts type-2
customers through the third condition of Algorithm 2.
It is possible that the algorithm accepts too many
type-2 customers through this condition, resulting
in rejecting type-1 customers and thus in revenue
loss. In the following lemma, we control for this loss
by establishing an upper bound on the number of
accepted type-2 customers. The proof of the lemma,
which uses similar ideas to those in Lemma 2, is
deferred to Online Appendix EC.5.

Lemma 10. Under event E, if n1 ≥ k
p2 log n, then one of the

following conditions holds:
a. n1 + n2 − 2Δ

δp ≤ b or
b. n1 + n2 − 2Δ

δp > b
and q2(1) ≤ 1−c

1−a b + c(b − n1)+ + c 2Δ
δp + 1.

Using Lemma 10 and the discussion before the
lemma, in Online Appendix EC.5, we prove the fol-
lowing lemma, which gives a lower bound on the
competitive ratio for Case (i):

Lemma 11. Under event E, if n1 ≥ k
p2 log n and q1(1) +

q2(1) � b, then

ALG2,c �v
( )

OPT �v
( ) ≥ c − 3Δ

abδp
.

Case (ii). When n1 ≥ k
p2 log n, and Algorithm 2 does not

exhaust the inventory. First note that in this case
OPT(�v) � n1+ amin{b−n1,n2}. Also, in this case, we
accept all type-1 customers. Therefore, q1(1) � n1. To
lower-bound the competitive ratio, we need to show
only that we do not reject too many type-2 customers,
that is, q2(1) is large enough. Note that if for all
λ∈ {1/n, 2/n, . . . , 1}, condition (14) holds, then all type-2
customers are accepted, and we have q2(1) � n2. This
implies that ALG2,c(�v) � OPT(�v). The more interesting
case is when there exists at least one time step for which
condition (14) is violated. Let l be the last time that we
reject a type-2 customer. This means that at time l,
we have

u1,2 l( ) ≥ b, (17)
q2 l( ) ≥ 1 − c

1 − a
b + c b − u1 l( )( )+. (18)

This also provides the following lower bound on the
number of accepted type-2 customers:

q2 1( ) � q2 l( ) + n2 − o2 l( )[ ] ≥ 1 − c
1 − a

b + c b − u1 l( )( )+

+ n2 − o2 λ̄
( )[ ]

.

(19)
Therefore, when q1(1) + q2(1) < b,

ALG2,c �v
( )

OPT �v
( ) ≥ n1 + a 1−c

1−a b + c b − u1 l( )( )+ + n2 − o2 l( )[ ]( )
n1 + amin b − n1,n2{ } .

(20)
For afixed c, if for all possible instances the right-hand
side of (20) is greater than c, then ALG2,c would
be c-competitive. However, if c is too large, then there
will be instances for which the right-hand side of (20)
will be less than c. We identify a superset of these
instances by all possible combinations of (l,n1,n2,
η1(l), η2(l)) that satisfy certain constraints to ensure
they correspond to valid instances. As a reminder,
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ηj(l) represents the number of type-j customers by
time l in the initial sequence (determined by the ad-
versary, i.e., �vI). As we describe these constraints, it
becomes clear that (1) any instance of the problem
would satisfy all these constraints, and (2) these
constraints correspond to the feasible region of the
mathematical program in (MP1). We start with the
straightforward constraints: for every instance,
n1 + n2 ≤ n. Also, η1(l) ≤ n1, and η2(l) ≤ n2. Further, in
the initial customer sequence �vI, at time l, we cannot
have more than ln customers, thus η1(l) + η2(l) ≤ ln.
Similarly, after time l, we cannot have more than (1 −
l)n customers, and therefore n1 + n2 − [η1(l) + η2(l)] ≤
(1 − l)n. By definition of l, we have l ≤ 1. We also add
the condition n1 ≤ b, which is always true under the
case when q1(1) + q2(1) < b. Note that these are con-
straints (15c)–(15i) in (MP1), where, in (MP1), with a
slight abuse of notation, we simplify by substituting
ηj for ηj(l). For amoment, suppose oj(l) � õj(l). First, we
remind the reader that õj(l) � (1 − p)ηj(l) + plnj is the
deterministic approximation of oj(l) that we intro-
duced in Section 3 and also is redefined in (MP1) (at
the bottom). Further, note that this is just to explain
the idea behind constructing (MP1). Later in the
proof, we address the difference between õj(l) and
oj(l). In this case, we have

ũ1,2 l( )≜min
õ1 l( )+ õ2 l( )

lp
,
õ1 l( )+ õ2 l( )+ 1− l( ) × 1−p

( )
n

1−p+ lp
( ){ }

�u1,2 l( ) ≥ b,

(21)
where the last inequality is the same as inequality (17).
Further note that rejecting a customer at time l implies that
l ≥ φb

n � δ and thus by definition u1,2(l) �min{o1(l)+o2(l)lp ,
o1(l)+o2(l)+(1−l)(1−p)n

1−p+lp }.11 Note that inequality (21) is con-
straint (15b), where in (MP1), again with a slight
abuse of notation, we simplify by substituting ũ1,2
for ũ1,2(l) and õj for õj(l). Further, the most interest-
ing constraint, constraint (15a), comes from condi-
tion (20). By rearranging terms, we can show that the
right-hand side of (20) being smaller or equal to c is
equivalent to

c ≥ a n2 − o2 l( ) + b
1−a

( ) + n1
amin n1 + n2, b{ } + 1 − a( )n1 + a2b

1−a + amin u1 l( ), b{ },
(22)

which is constraint (15a) after substituting o2(l)with õ2
and u1(l)with ũ1. Overall, the above conditions define
the feasible region of the math program (MP1). By
minimizing c, we find the threshold for making (MP1)
infeasible: Let c∗ be the solution of (MP1); for any
c < c∗, (MP1) is infeasible, and the only constraint that

(l,n1,n2, η1(l), η2(l), c) can violate is (15a) (same as (22)).
This implies that ALG2,c is c-competitive. We now go
back and address the issue that õj(l) and oj(l) are not
equal. Because of the difference between oj(l) and
õj(l), (1) constraint (15b) might be violated (even
though (17) is satisfied) and (2) violating constraint
(15a) does not imply violating (22). To address these
issues, first in Lemma 12, we give a slightly modified
tuple that satisfies constraints (15b)–(15i); then, in
Lemma 13, we prove that for any c ≤ c∗, if con-
straint (15a) is violated, then ALG2,c(�v)

OPT(�v) ≥ c − 4Δn
φ2b2p. The

proofs of both lemmas are deferred to Online Ap-
pendix EC.5, and they amount to applying the con-
centration results of Lemma 1 and carefully analyzing
the error terms. These two lemmas complete the
analysis of competitive ratio in Case (ii).

Lemma 12. Under event E, if n1 ≥ k
p2 log n and q1(1) +

q2(1) < b, then the tuple (l′,n′1,n′2, η′1, η′2, c′)≜ (l, n1,n2 +
ξ, η1(l), η2(l) + ξ̄, c) satisfies constraints (15b)–(15i),where

ξ≜
0 if n1 + n2 ≥ b,

min n − n1 + n2( ), Δnφbp

{ }
if n1 + n2 < b;

{

ξ̄≜
0 if n1 + n2 ≥ b,
min ξ, ln − η1 l( ) + η2 l( )( ){ }

if n1 + n2 < b,

{
and where Δ � α

̅̅̅̅̅̅̅̅̅
b logn

√
, φ � 1−c

1−a, and l is the last time
that we reject a type-2 customer.

Lemma 13. Under event E, if n1 ≥ k
p2 log n and q1(1) +

q2(1) < b, then
ALG2,c �v

( )
OPT �v

( ) ≥ c − 4Δn
φ2b2p

.

Case (iii). When n1 < k
p2 log n. The competitive ratio

analysis for this case uses ideas similar to those in the
previous two cases, and it follows from the next two
lemmas. The proofs are deferred to Online Appen-
dix EC.5.

Lemma 14. Under event E, if n1 < k
p2 log n, then one of the

following three conditions holds:
a. q1(1) + q2(1) � b;
b. q1(1) � n1 and q2(1) � n2; or
c. q1(1) � n1 and q2(1) ≥ cb.

Using Lemma 14, in the following lemma, we
establish a lower bound on the competitive ratio
for Case (iii):

Lemma 15. Under event E, if n1 < k
p2 logn, then

ALG2,c(�v)
OPT(�v) ≥ c.

Having Lemmas 11, 13, and 15, we have lower
bounds on the competitive ratio of Algorithm 2 for all
possible cases. We complete the proof of the theorem
by the following lemma (proven in Online Appendix
EC.5) that ensures that the error terms in Lemmas 11
and 13 are O(ε).
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Lemma 16. The error terms in Lemmas 11 and 13 are O(ε),
that is, (a) 3Δ

abδp � O(ε) and (b) 4Δn
φ2b2p � O(ε).

This completes the proof of Theorem 2.

6. Discussion of the Model
In this section, we further study the performance of
online algorithms in our demand model. First, in
Section 6.1, we present an upper bound on the com-
petitive ratio achievable by any online algorithm under
our demand model when the initial inventory b is
small—more precisely, b � o( ̅̅

n
√ ). Next, in Section 6.2,

we highlight the need for our new online algorithms
by presenting a problem instance for which our al-
gorithms outperform existing ones in our partially
predictable model.

6.1. Upper Bounds
In this section, we present an upper bound on the com-
petitive ratio of any online algorithm when b � o( ̅̅

n
√ ).

We start with a warm-up example that illustrates a
fundamental limit of any online algorithm in the
partially predictable model. Figure 3 shows two in-
stances with n � 8. The bottom row shows the se-
quence that the online algorithm will see; as a re-
minder, we represent the nodes of the stochastic
group as filled (even though the online algorithm
cannot distinguish between the two groups of cus-
tomers). Suppose b � 4; in the instance presented on
the left, the optimum offline solution rejects all type-2
customers, and in the instance on the right, it accepts
all of them. Now, by time λ � b/n �4/8, online algo-
rithms cannot distinguish between these two in-
stances and, hence, cannot perform as well as the
optimal offline algorithm on both of these instances.
Similar to this example, in the following proposition,
we establish the upper bound by constructing two
problem instances that are “difficult” for online al-
gorithms to distinguish between up to time b

n, and
show that the trade-off between accepting too many
or too few type-2 customers limits the competitive
ratio of any online algorithm.

Proposition 2. Under the partially predictable arrival
model, and for any p ∈ (0, 1), no online algorithm, deter-
ministic and randomized, can achieve a competitive ratio
better than 1−p

2−a + p +O(pb2n ). Therefore, when b � o( ̅̅
n

√ ), no
online algorithm can achieve a competitive ratio better
than 1−p

2−a + p + o(1).

The details of the proof are deferred to Online
Appendix EC.6. As explained above, the main idea of
the proof is to construct two instances that are almost
indistinguishable up to time b

n to any online algorithm.
In the proof, we show that the following two instances
�vI and �wI serve our purpose:

vI,j �
a, 1 ≤ j ≤ b,
0, b < j ≤ 2b,
0, j > 2b.

wI,j �
a, 1 ≤ j ≤ b,
1, b < j ≤ 2b,
0, j > 2b.

⎧⎪⎪⎪⎨⎪⎪⎪⎩⎧⎪⎪⎪⎨⎪⎪⎪⎩
6.2. Comparison with Existing Algorithms
In this section, we show that, under our demand
arrival model, there exists a class of instances for
which our algorithms achieve higher revenue than
algorithms designed for either the worst-case (Ball
and Queyranne 2009) or the random-order model
(Devanur andHayes 2009, Agrawal et al. 2014), which
respectively correspond to p � 0 and p � 1 in our
model. To this end, we consider instance �vI where

vI,j � a for 1 ≤ j ≤ b,
0 for j > b.

{
(23)

Table 2 presents the ratio between the expected revenue
of different online algorithms and that of the optimum
offline solution for the instance defined in (23). In the
following, we will explain how we compute these
bounds. Before that, we discuss the implications of
this example. This instance class shows that, for any
p ∈ (0, 1), when b � ω( ̅̅̅̅̅̅̅

log n
√ ) and b � o(n) the ratio for

both of our algorithms is better than existing ones.
Further, note that the ratio for Algorithm 1 is in fact its
competitive ratio; thus, the same ratio holds for any
other instance as well. This implies that the com-
petitive ratio of our nonadaptive algorithm is higher
than those of Ball and Queyranne (2009) and Agrawal
et al. (2014) under the partially predictable model. Also
note that for the same instance, randomizing between the
algorithm of Ball and Queyranne (2009) (with prob-
ability 1−p) and that of Agrawal et al. (2014) (with
probability p) leads to a ratio of 1−p2−a + p2 + o(1), which is
not the convex combination of the competitive ratios
of these two algorithms (as also pointed out in
Remark 4). Next,we calculate the ratios listed inTable 2.
The offline solution is OPT(�vI) � ab. The algorithm
of Ball and Queyranne (2009), proposed for the
adversarial model, has a fixed threshold of 1

2−a b for

Figure 3. Two Problem Instances Between Which Online Algorithms Cannot Distinguish at Time b
n, Where b � 4 and n � 8
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accepting type-2 customers and, hence, accepts 1
2−a b

type-2 customers. Next we compute the ratio for al-
gorithms designed for the random-order model (e.g.,
Devanur and Hayes 2009, Agrawal et al. 2014, and
Kesselheim et al. 2014). We note that, for the sake of
brevity, we present an analysis based on the idea
of these papers, which is allocating inventory at a
roughly uniform rate over the entire horizon. In
particular, these algorithms accept roughly λb cus-
tomers at any time λ ∈ [0, 1]. As a result, for this in-
stance, they accept at most b2/n type-2 customers up
to time λ � b/n. According to our model, in the ar-
riving instance �v, there are approximately (1 − b/n)bp
type-2 customers arriving after time b/n. Therefore,
these algorithms can accept at most b2/n + (1 − b/n)bp
type-2 customers, which corresponds to a ratio of at
most p + b

n (1 − p). Note that p + b
n (1 − p) < p + 1−p

2−a for
any b < n

2−a. OurAlgorithm 1 achieves a ratio of at least
its competitive ratio as given in Theorem 1, and the
ratio is tight for this instance (up to an additive error
term of O( 1

a(1−p)p
̅̅̅̅̅
logn
b

√
)). For Algorithm 2, let c ∈ (0, 1)

be an arbitrary constant. We show that ALG2,c ach-
ieves the ratio of one because the third condition
in Algorithm 2, that is, the dynamic threshold, is
never violated. To see this we compute the threshold
as follows:

�φb + c b − u1 λ( )( )+� � �φb� λ < δ � φb
n�φb + cb� λ ≥ δ
,

{
whereweuse the fact thatu1(λ)�b for λ<δ and u1(λ) � 0
for λ ≥ δ. In both cases, we have �φb+c(b−u1(λ))+�>λ,
which implies that the algorithm never rejects a type-2
customer because o2(λ) ≤ λ < �φb + c(b − u1(λ))+�.

7. The Secretary Problem Under Partially
Predictable Demand

In this section, we study the online secretary problem
under our new arrival model. In our setting, the
secretary problem corresponds to having one unit of
inventory, that is, b � 1, and n customers, where vI,j ∈
R+ for 1 ≤ j ≤ n, that is, we relax the assumption that
there are only two types. The objective is to maximize
the probability of selecting the highest-revenue cus-
tomer in the asymptotic regime, where n → ∞. In the
classical setting, the arrival sequence is assumed to
be a uniformly random permutation of n customers,

which corresponds to the extreme case of p � 1 under
our partially predictable model. In this setting, it is
well known that the best-possible online algorithm
is the following deterministic algorithm (Lindley 1961,
Dynkin 1963, Freeman 1983, Ferguson 1989): Observe
the first γn

⌊ ⌋
customers, where γ � 1

e; then accept
the next one that has the highest revenue so far (if
any). The success probability of this algorithm ap-
proaches 1

e ≈ 0.37 as n → ∞. We generalize the clas-
sical setting by studying the problem under our de-
mand model. First, we analyze the success probability
of a similar class of algorithms for any p ∈ (0, 1]. Next,
we show that under our demand model where
p < 1—that is, in the presence of an adversarial
component—this class of algorithms is not neces-
sarily the best possible. For any γ ∈ (0, 1), we define
the Observation-Selection Algorithm (OSAγ), which
works similarly to the classical algorithm described
earlier in this paragraph. The formal definition of the
algorithm is presented in Algorithm 3.

Algorithm 3 (Observation-Selection Algorithm (OSAγ,
γ ∈ (0, 1)))

1. Initialize vmax ← 0.
2. Observation period: Repeat for customer

i � 1, 2, . . . , �γn�: reject customer i and update
vmax ← max{vmax, vi}.

3. Selection period: Repeat for customer
i � �γn� + 1, �γn� + 2 . . . ,n:

• If vi ≥ vmax, then select customer i and stop
the algorithm.

• Otherwise, reject customer i.

In Online Appendix EC.7, we analyze the success
probability of Algorithm 3 and prove the follow-
ing theorem:

Theorem 3. Under the partially predictable model, in the
limit n → ∞, the success probability of OSAγ approaches
γp log 1

γp+1−p.

By optimizing over γ, we obtain the following
corollary:

Corollary 2. Let γ∗ ∈ (0, 1) be the unique solution to

log γ∗p + 1 − p
( ) + γ∗p

γ∗p + 1 − p
� 0;

then OSAγ∗ achieves the highest success probability among
OSAγ for all γ ∈ (0, 1).

Table 2. Ratio Between the Expected Revenue of Different Algorithms and the Optimum Offline Solution for the Instance
Defined in (23)

Algorithm Worst case Random order Algorithm 1 Algorithm 2

(Ball and Queyranne 2009) (Idea of Agrawal et al. 2014) (Nonadaptive algorithm) (Adaptive algorithm)
Ratio 1

2−a At most p + b
n (1 − p) p + 1−p

2−a −O( 1
a(1−p)p

̅̅̅̅̅
logn
b

√
) 1
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Table 3 presents the optimal length of the obser-
vation period, γ∗ and the success probability ofOSAγ∗

for different values of p. We observe that as the size of
the stochastic component increases, that is, as p in-
creases, the length of the observation period de-
creases, whereas the success probability increases.
Next, in the following proposition, we establish a
lower bound on the success probability when we
randomize over the length of the observation period
(γ); further, we present an example that shows such
randomization increases the success probability for
p < 1. This illustrates the benefit of employing ran-
domized algorithms in the presence of an adversarial
component in the arrival sequence.

Proposition 3. Under the partially predictable model, for
any 0 < γ1 < γ2 < 1 and 0 < q < 1, the randomized algo-
rithm that runs OSAγ1 with probability q and OSAγ2 with
probability 1 − q has an asymptotic success probability of
at least

qs1 + 1 − q
( )

s2 +min 1 − q
( )

p 1 − p
( )

1 − γ2
( )

,

{
× q 1 − p

( )γ2 − γ1

1 − γ1
s1

}
where for i � 1, 2, si denotes the success probability
of OSAγi .

The proposition is proven in Online Appendix EC.7.
Suppose p � 0.5; randomizing over γ1 � 0.427 and
γ2 � 0.69with q � 0.824 results ina successprobabilityof
at least 0.083 (utilizing the result of Proposition 3). On
the other hand, the success probability of the best
possible deterministic observation period OSAγ, given
in Theorem 3 and Corollary 2, is 0.072.

8. Conclusion
Online resource allocation is a central problem in the
operations of numerous online platforms ranging
from airline booking systems to hotel booking sys-
tems to internet advertising. Despite advances in
information technology, demand arrival processes
are rarely perfectly predictable. The presence of un-
predictable patterns limits the performance of most
allocation algorithms that rely on fully accurate pre-
diction of future demand based on observed data. At
the same time, ignoring available information and
taking a completelyworst-case approach usually leads

to online allocation policies that are too conservative.
In this paper, we take a middle-ground approach and
introduce the first arrival model that contains both
adversarial (thus unpredictable) and stochastic (pre-
dictable) components. Our demand model requires no
forecast of demand; however, the stochastic component
allows us to partially predict future demand as the se-
quence of arrivals unfolds. In ourmodel, the relative size
of the stochastic component, p, represents the level of
predictability of the demand. Under our proposed
demand model, we study the basic yet fundamental
problem of allocating a single resource with an ar-
bitrary initial inventory to a sequence of customers
that belong to two types, with type-1 generating
higher revenue. For this problem, we design a non-
adaptive algorithm as well as an adaptive one. We
analyze the competitive ratios of our algorithms and
show that they outperform existing ones under our
proposed demand model. The first implication of our
analysis is that, by employing our algorithms, we can
take advantage of limited available information (be-
cause of the presence of the stochastic component) to
improve the revenue of thefirm comparedwith a fully
conservative approach. Indeed, the competitive ratios
of our algorithms are parameterized by p; for both
algorithms, the ratio increases with p (the relative
size of the stochastic component), which highlights
the value of even partial predictability. Further, we
show that our adaptive algorithm—which repeatedly
computes upper bounds on the total number of cus-
tomers of each type based on observed data andmakes
online decisions based on those bounds—achieves a
higher competitive ratio when the initial inventory b
is sufficiently large. This underlines the significance
of adapting to the data, even though it contains an
adversarial component. Analyzing the adaptive al-
gorithm, however, is considerably more challenging.
We establish a lower bound on the competitive ratio
by constructing a novel factor-revealing mathemati-
cal program. On the other hand, when b is small (more
precisely, when b � o( ̅̅

n
√ )), we prove an upper bound

on the competitive ratio of any deterministic or ran-
domized online algorithm that matches the competi-
tive ratio of our nonadaptive algorithm (up to an error
term). This implies (1) our nonadaptive algorithm is
the best possible in this regime and (2) when the initial
inventory is small relative to the time horizon, wemay
not be able to effectively adapt to observed data before

Table 3. The Optimal Length of the Observation Period, γ∗, and the Success Probability of
OSAγ∗ vs. p

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

γ∗ 0.4935 0.4863 0.4784 0.4696 0.4597 0.4482 0.4348 0.4184 0.3975 0.3679
OSAγ∗ 0.0026 0.0105 0.0244 0.0448 0.0724 0.1081 0.1533 0.2095 0.2796 0.3679
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allocating most of the inventory. We also have heu-
ristic arguments—in which we do not characterize the
error terms—that indicate that (1) our adaptive al-
gorithm achieves the best possible competitive ratio
in the regime where b � κn (where κ ∈ (0, 1] is a
constant) and (2) underestimating parameter p does
not affect the competitive ratio of our adaptive al-
gorithm, whereas (3) if we overestimate p by (a small
amount), its competitive ratio decreases only slightly.
Because making the above results rigorous will make
the paper prohibitively long, these results are not
included in the paper. To illustrate the application
of our model to other online allocation problems,
we study the secretary problem under our demand
model. We analyze the celebrated policy of selecting
the highest revenue customer after an observation
periodwith a deterministic length of γ under our new
model and find the optimum value of γ (which is
parameterized by p). We further show that, in the
presence of an adversarial component and unlike
the classical setting, randomizing over the length of
the observation periodmay increase the probability of
selecting the highest revenue customer. In this paper,
we use a discrete timemodel and also assume that the
arrival times of customers from the stochastic group
are randomly permuted among their predetermined
positions. We believe similar results can be obtained
for a model where a total of n customers from the two
groups (i.e., the stochastic and adversarial group)
arrive according to independent Poisson processes
with rates p and 1 − p.We leave the rigorous treatment
of this alternativemodel for future research. Studying
other online allocation problems under our new de-
mand model is a promising direction for future re-
search. Our consequential concentration result from
Lemma 1 can be extended to any finite number of
types. Further, we believe that by combining our
ideas for adaptively computing bounds on the de-
mand of each type with those of Lan et al. (2008), and
utilizing the concentration results, one can generalize
our algorithms to a setting with any finite number of
types. Such extensions are, however, beyond the
scope of this paper.

Acknowledgments
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Endnotes
1A few papers consider arrival models outside these two categories.
We carefully review them and compare them with our model in
Section 2.
2 In fact, these papers assume a more general model, the random
order model, that we discuss in Section 2.

3We call an algorithm “adaptive” if it makes decisions based on the
sequence of arrivals it has observed so far.
4We always accept a type-1 customer if there is remaining inventory.
5The condition on n is needed for technical reasons as it becomes clear
later in Lemma 1.
6We present the values of the constants, defined in the statement of
the lemma, only to clarify that they exist and do not depend on n;
however, they are not optimized.
7The first inequality follows from definition of ηj(λ). The second one
also follows from definition of ηj(λ) and from the observation that the
number of type-j customers arriving between λ and one cannot be
more than the number of remaining time steps, that is, (1 − λ)n.
8Algorithms developed in other papers for random order model,
such as Devanur and Hayes (2009) and Kesselheim et al. (2014), are
also adaptive.
9Note that we already have an upper bound on the number of type-2
customers accepted by the fixed threshold: q2,f (1) ≤ θb.
10This follows from condition (5) and the fact that 1

a2(1−p)2 > 1 and by

definition (given in Lemma 1) 1
ε̄2 ≥ k, which imply 1

ε̄2
1

a2(1−p)2 ≥ k.
11Note that when l < δ, Algorithm 2 never rejects a customer, be-
cause q2(l) ≤ ln < δn � φb.
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