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Abstract

This note identifies and corrects some errors in the recent paper “News from the online

traveling repairman,” S. O. Krumke, W. E. de Paepe, D. Poensgen, L. Stougie, Theoretical

Computer Science, 295, pp. 279-294, 2003. We also provide additional results that corroborate

our corrections. Finally, we consider a new online algorithm that is motivated by an algorithm

in the above paper and we prove a technical result for this new algorithm.

1 Introduction

In this note, we identify and correct some mistakes in the paper “News from the online traveling

repairman,” S. O. Krumke, W. E. de Paepe, D. Poensgen, L. Stougie, Theoretical Computer Science,

295, pp. 279-294, 2003. We refer the reader to the original paper for details about the terminology

which we use here without additional explanation.

We first identify a feasibility error in the definition of algorithm INTERVALα (and consequently

RANDINTERVALα). This error led to erroneous statements of certain theorems as well as an

incorrect result associated with the upper bound on the competitive ratio of RANDINTERVALα.

We provide corrections. We also provide a general framework for minimizing the upper bounds on

the competitive ratios. Finally, we define a new online algorithm that is motivated by algorithm

INTERVALα; we then provide a proof of a critical lemma from Krumke et al. (2003) for this new

algorithm (which also serves as an alternate proof of the original result).
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2 A feasibility error and corrected theorems

The range of parameters for which algorithm INTERVALα is feasible is not correct. In Krumke et

al. (2003) the β parameter is defined as

β =
(α+ 1)
α(α − 1)

for the range α ∈ [1 +√
2, 3]. The design of the algorithm requires β ≥ 1, but this in turn requires

that α ≤ 1 +
√
2. As a result, Theorem 7 is not entirely correct as stated. Instead it should read:

Theorem 7 Algorithm INTERVALα is α(α + 1)/(α − 1)-competitive for the L-OLDARP for any

α ∈ (1, 1 +√
2]. For α = 1 +

√
2, this yields a competitive ratio of (1 +

√
2)2 < 5.8285.

Results related to algorithm RANDINTERVALα must also be restated:

Theorem 11 Algorithm RANDINTERVALα is (α+1)/(lnα)-competitive for the L-OLDARP against

an oblivious adversary, where α ∈ (1, 1 +√
2]. Choosing α = 1 +

√
2 yields a competitive ratio of

(2 +
√
2)/(ln (1 +

√
2)) < 3.8738 against an oblivious adversary.

Corollary 12 For α = 1 +
√
2, algorithmRANDINTERVALα is (2 +

√
2)/(ln (1 +

√
2))-competitive

for the OLTRP.

Note that the new upper bounds on the competitive ratio are larger than those in Krumke et al.

(2003). The original bounds of 4/ ln (3) < 3.6410, calculated using α = 3, are not necessarily true.

2.0.1 Optimizing α and β: A general approach using nonlinear programming

It is possible to define two associated nonlinear programs, in α and β, that can be used to mimimize

the upper bounds on the appropriate competitive ratios.

For the deterministic case, we relax all definitions of α and β, other than α > 1 and β ≥ 1. We

notice that for the algorithms to be well-formed, schedule i must finish before schedule (i + 1) is

slated to start. We distinguish between i = 1 and i > 1. For i = 1, we require that B1+B1 = 2B1 ≤
βB2 = βαB1, which can be rewritten as 2

α ≤ β. For i > 1, we require βBi + Bi + Bi−1 ≤ βBi+1,

which can be rewritten as α+1
α(α−1) ≤ β. Define X as

X = {(α, β) | 2
α

≤ β,
α+ 1

α(α − 1)
≤ β, α > 1, β ≥ 1}.

For the deterministic algorithm INTERVALα, it can be seen that the solution to the following

nonlinear program minimizes the upper bound on the competitive ratio:

minα2β

s.t. (α, β) ∈ X .
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Likewise, for the randomized algorithm RANDINTERVALα, it can be seen that the solution to the

following nonlinear program minimizes the upper bound on the competitive ratio:

min αβ(α−1)
ln α

s.t. (α, β) ∈ X .

The solution to both these nonlinear programs is (α∗, β∗) = (1 +
√
2, 1), which agrees with the

corrected statements of Theorems 7 and 11.

3 A new online algorithm and a technical result

In this section we consider a new online algorithm, motivated by algorithm INTERVALα, for the

situation where the repairman receives a fixed amount of advanced notice; i.e., if a city is released

at time r, then the repairman learns of the city at time (r − a) for some fixed a.

Let λ = (1 +
√
2), b0 equal the first release date rj such that rj > a

λ and bi = λib0. Also, let

b̃i = bi − a. The latter b̃i parameters are the breakpoints where the online algorithm BREAK (to

be defined shortly) will generate some re-optimization. This is a generalization of INTERVALα by

Krumke et al. (2003), which re-optimizes at times bi. Let Qi, i ≥ 1 denote the set of cities released

up to and including time bi; clearly Qi ⊆ Qi+1. Note that at time b̃i the online salesman knows Qi.

Let Ri denote the set of cities served by algorithm BREAK in the interval [̃bi, b̃i+1] and R∗
i the set of

cities served by the optimal offline algorithm in the interval [bi−1, bi]. Finally, let w(S) =
∑

i∈S wi.

Online algorithm BREAK is as follows:

Definition 1 Online algorithm BREAK:

1. Remain idle at the origin until time b̃1.

2. At time b̃1 calculate a path of length at most b1 to serve a set of cities R1 ⊆ Q1 such that

w(R1) is maximized.

3. At time b̃i, i ≥ 2, return to the origin and then calculate a path of length at most bi to serve

a set of cities Ri ⊆ Qi \
⋃

j<i Rj such that w(Ri) is maximized.

We now prove Lemma 4 from Krumke et al. (2003) for the new algorithm BREAK, assuming

the optimal parameters α = (1 +
√
2) and β = 1. This proof also serves as an alternate proof of

Lemma 4 from Krumke et al.; we need only set a = 0.

Lemma 4
∑k

i=1 w(Ri) ≥
∑k

i=1 w(R∗
i ) for k = 1, 2, . . . .

Proof Consider iteration k ≥ 2 and let R =
⋃k

l=1 R∗
l \ ⋃k−1

l=1 Rl. If a server were at the origin at

time zero, he could obviously serve all the cities in the set R by time bk.

Now, consider an online server at time b̃k. Suppose he knew the set R. Then by returning to

the origin, taking at most bk−1 time units (due to the definition of algorithm BREAK), the server
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could serve the cities in R by time b̃k + bk−1 + bk = b̃k+1 (equality since α = (1 +
√
2) and β = 1).

Thus, in iteration k, if faced with the set R, the server could serve cities of total weight w(R).

Unfortunately, it is not clear whether the online server will encounter the set R, since the R∗
i

are not known until all cities are released. However, the server’s task is to find a subset of S =

Qk \ ⋃k−1
l=1 Rl. Since Qk ⊇ ⋃k

l=1 R∗
l , S ⊇ R, and the online server is able to choose a subset of S to

serve in iteration k of total weight at least w(R), since choosing R as the subset is a feasible choice.

A similar argument holds for k = 1. Now, for any k,

w(Rk) ≥ w(R)

=
∑

j∈Sk
l=1 R∗

l
\Sk−1

l=1 Rl

wj

=
k∑

l=1

w(R∗
l )−

∑

j∈(Sk
l=1 R∗

l )
T(Sk−1

l=1 Rl)
wj

≥
k∑

l=1

w(R∗
l )−

∑

j∈Sk−1
l=1 Rl

wj

=
k∑

l=1

w(R∗
l )−

k−1∑

l=1

w(Rl),

which gives the result. �
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