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Abstract

We consider online versions of the Traveling Salesman Problem (TSP) and Traveling Repair-

man Problem (TRP) where instances are not known in advance. Cities (points) to be visited

are revealed over time, while the server is en route serving previously released requests. These

problems are known in the literature as the Online TSP (TRP, respectively). The correspond-

ing offline problems are the TSP (TRP) with release dates, problems where each point has to

be visited at or after a given release date. In the current literature, the assumption is that a

request becomes known at the time of its release date. In this paper we introduce the notion of

a request’s disclosure date, the time when a city’s location and release date are revealed to the

server. In a variety of disclosure date scenarios and metric spaces, we give new online algorithms

and quantify the value of this advanced information in the form of improved competitive ratios.

We also provide a general result on polynomial-time online algorithms for the online TSP.

1 Introduction

The Traveling Salesman Problem (TSP) is one of the most intensely studied problems in optimiza-

tion. In one of its simplest forms we are given a metric space and a set of points in the space,

representing cities. Given an origin city, the task is to find a tour of minimum total length, begin-

ning and ending at the origin, that traverses each city at least once. Assuming a constant speed, we

can interpret this objective as minimizing the time required to complete a tour. The Traveling Re-

pairman Problem (TRP) is defined similarly, only that we are interested in minimizing the weighted

sum of city completion times, where a city’s completion time is the first time that a city is visited;

this objective is also referred to as the latency. These two objectives embody important but very
∗Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA

02139, jaillet@mit.edu.
†Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA 02139, mikew@mit.edu.

1



different managerial measures. The TSP objective is closely related to the notion of makespan, the

maximum completion date of all cities; this measure is traditionally used if one were to optimize with

the server’s interest in mind. Alternatively, the latency is closely related to the (weighted) average

completion date of all cities, which clearly has the customers’ interest in mind. In both problems we

may also incorporate release dates, where a city must be visited on or after its release date; in this

case the problems are known as the “TSP with release dates” and the “TRP with release dates,”

respectively.

The assumption that problem instances are completely known a priori is unrealistic in many

applications. Taxi services, buses and courier services, for example, require an online model in which

cities (points) to be visited are revealed over time, while the server is en route serving previously

released requests. The focus of this paper is on studying algorithms for the online TSP and TRP.

They are evaluated using the competitive ratio, which is defined as the worst case ratio of the online

algorithm’s cost to the cost of an optimal offline algorithm.

1.1 Literature Review

The literature for the TSP is vast. The interested reader is referred to the books by Lawler, Lenstra,

Rinnooy Kan, Shmoys [17] and Korte and Vygen [15] for comprehensive coverage of results con-

cerning the TSP. Probabilistic versions of the TSP, where a different approach is used to represent

limited knowledge of the problem instance, have also attracted interest (e.g., see Jaillet [12] and

Bertsimas [4]). Offline routing problems with release dates can be found in Psaraftis, Solomon,

Magnanti, Kim [20] and Tsitsiklis [22]. We also mention two offline results that will play a part in

our analysis: the 3/2-approximation algorithm for the TSP in metric space by Christofides [8] and

the polynomial-time approximation scheme for the TSP in Euclidean space by Arora [1].

A systematic study of online algorithms was given by Sleator and Tarjan [21], who suggested

comparing an online algorithm with an optimal offline algorithm. Karlin, Manasse, Rudolph, Sleator

[14] introduced the notion of a competitive ratio. An online algorithm is said to be r-competitive

(r ≥ 1) if, given any instance of the problem, the cost of the solution given by the online algorithm

is no more than r multiplied by that of an optimal offline algorithm:

Costonline(I) ≤ rCostoptimal(I), ∀ problem instances I.

The infimum over all r such that an online algorithm is r-competitive is called the competitive

ratio of the online algorithm. An online algorithm is said to be best-possible if there does not exist

another online algorithm with a strictly smaller competitive ratio. Online algorithms have been used

to analyze paging in computer memory systems, distributed data management, navigation problems

in robotics, multiprocessor scheduling, etc.; see the books of Borodin and El-Yaniv [7] and Fiat and

Woeginger [10] for more details and references.

Research concerning online versions of the TSP and TRP have been introduced relatively recently.

Kalyanasundaram and Pruhs [13] have examined a unique version of an online traveling salesman

2



problem where new cities are revealed locally during the traversal of a tour (i.e., an arrival at a city

reveals any adjacent cities that must also be visited). More related to our paper is the stream of

works which started with the paper by Ausiello, Feuerstein, Leonardi, Stougie, Talamo [3]. In this

paper, the authors studied the online TSP version we consider here; they analyzed the problem on

the real line and on general metric spaces, developing online algorithms for both cases and achieving a

best-possible online algorithm for general metric spaces, with a competitive ratio of 2. These authors

also provide a polynomial-time online algorithm, for general metric spaces, which is 3-competitive.

Subsequently, Ausiello, Demange, Laura, Paschos [2] gave a polynomial-time algorithm, for general

metric spaces, which is 2.78-competitive. Lipmann [18] developed a best-possible online algorithm

for the real line, with a competitive ratio of approximately 1.64. Blom, Krumke, de Paepe, Stougie

[5] gave a best-possible online algorithm for the non-negative real line, with a competitive ratio of
3
2 . This last paper also considers different adversarial algorithms in the definition of the competitive

ratio.

Considering the online TRP, Feuerstein and Stougie [9] gave a lower bound of (1 +
√

2) for

the competitive ratio and a 9-competitive algorithm, both for the online TRP on the real line.

Krumke, de Paepe, Poensgen, Stougie [16] improved upon this result to give a (1+
√

2)2-competitive

deterministic algorithm for the online TRP in general metric spaces as well as a Θ-competitive

randomized algorithm, where Θ ≈ 3.64; in this paper, we correct this result to Θ ≈ 3.86. All of the

aforementioned works only consider the case where a revealed city is ready for immediate service;

i.e., all the disclosure dates equal their respective release dates.

1.2 Our Contributions

In this paper we introduce the notion of “disclosure dates,” i.e., dates at which requests become

known to the online player, ahead of the release dates (the dates at which requests can first be

served). In many applications these two sets of dates do not coincide. Consider the taxi and courier

examples mentioned previously; in each of these scenarios, there is the possibility of calling ahead

(disclosure date) and requesting a pickup time (release date). In many cases, a fixed amount of time

between a request for service and readiness exists; for example, many taxi companies usually say

“it’ll be 15 minutes.”

In addition to providing more realism, the introduction of this advanced information is a natural

mechanism to increase the “power” of online players against all-knowing adversaries in a competitive

analysis framework. Note, also, that these disclosure dates provide a natural bridge between online

routing problems and their offline versions – when all the disclosure dates are zero, we have the

offline problems; when all the disclosure dates are equal to their respective release dates, we have

the online routing problems considered so far in the literature, which we denote the traditional online

problems. In other words, we can vary the “online-ness” of the problems with these disclosure dates.

By introducing disclosure dates, we have defined a new optimization problem: the online TSP

with disclosure dates. We measure the quality of algorithms for this problem using the competitive
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ratio; the denominator of this ratio is again the optimal value of the TSP with release dates since

disclosure dates are irrelevant in the offline situation. For a variety of disclosure date scenarios, we

give new online algorithms and derive improved competitive ratios (with respect to the ratios for

the traditional online problems), which are functions of the advanced information. In this way, we

quantify the value of the advanced information given by the disclosure dates. We almost exclusively

consider the case where there is a “fixed amount” of advanced notice for each city. In this case, we

introduce α and β, two convenient problem parameters that relate the advanced information to the

“dimensions” (time and space) of the traditional online problems (exact definitions of α and β will

be given in Sections 3 and 5, respectively); we quantify the value of the advanced information in

terms of these two parameters. We first detail our results for the online TSP. For the non-negative

real line, we give an algorithm that is max{1, 3
2 − α}-competitive and we also prove that this result

is best-possible for our disclosure date structure. These results improve upon the 3
2 -competitiveness

of a best-possible online algorithm in the traditional case. For the general situation, where cities

belong to an arbitrary metric space, we give an algorithm that is (2 − α
1+α )-competitive. This

result improves upon the 2-competitiveness of a best-possible online algorithm for the traditional

metric case. Next, we consider the online TRP. We analyze a deterministic algorithm and show it is

((1+
√

2)2− αβ
α+β )-competitive, where (1+

√
2)2 is the best provable worst-case ratio to-date for the

traditional online problem (though this latter result is probably not best-possible). We also give a

very similar result for a randomized modification of the previous algorithm; we show this variant is

(Θ− αβ
α+β )-competitive, where Θ is the traditional competitiveness result.

Finally, we consider polynomial-time algorithms for the online TSP. We show that, if we have

a ρ-approximation algorithm for the TSP, we then have a 2ρ-competitive algorithm for the online

TSP. If the metric space is Euclidean, for any ε > 0, we have a (2 + ε)-competitive polynomial-time

algorithm.

Outline: The remainder of the paper is as follows: after giving basic definitions in Section 2,

we first study in Section 3 the online TSP on the non-negative real line R+. Then, in Sections 4

and 5 we study the online TSP and TRP in general metric spaces, respectively. Finally, we study

polynomial-time online algorithms for the online TSP in Section 6 and give concluding thoughts in

Section 7.

2 Preliminaries

Let us first state the assumptions and definitions about the problems we consider in the paper.

1. City locations belong to some metric space M.

2. A city is revealed to the salesman (repairman) at its disclosure date.

3. A city is ready for service at its release date. The service requirement at a city is zero.
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4. The disclosure date for a given city is less than or equal to the city’s release date.

5. The salesman (repairman) travels at unit speed or is idle.

6. The problem begins at time 0, and the salesman (repairman) is initially at a designated origin

of the metric space.

7. The online TSP objective is to minimize the time required to visit all cities and return to the

origin.

8. The online TRP objective is to minimize the weighted sum of completion times, where each

city’s completion time is weighted by a given non-negative number, revealed at the city’s

disclosure date.

The data common to both the online TSP and online TRP is a set of points (li, ri, qi), i = 1, . . . , n,

where n is the number of cities. The quantity li ∈M is the ith city’s location. The quantity ri ∈ R+

is the ith city’s release date; i.e., ri is the first time after which that city i will accept service.

The quantity qi ∈ R+ is the ith city’s disclosure date; i.e., at time qi, the salesman learns about

city i’s request and its corresponding values li and ri. We also let N = {1, . . . , n}. We have that

ri ≥ qi ≥ 0, ∀i ∈ N . Finally, we let wi, i ∈ N denote the non-negative weights on the completion

times of cities for the online TRP, which become known at times qi.

From the online perspective, the total number of requests, represented by the parameter n, is not

known, and city i only becomes known at time qi. CA(n) will denote the cost of online algorithm

A on an instance of n cities and COPT(n) is the optimal offline cost on n cities (at times, the n

term will be suppressed). Finally, let rmax = maxi∈N {ri} and define LTSP as the optimal TSP tour

length through all cities in an instance.

3 The Online TSP on R+

In this section, we study the online TSP when the city locations are all on the non-negative real

line; i.e., M = R+. We begin with an offline analysis.

We consider the offline TSP with release dates on the non-negative real line. For this problem,

Psaraftis et al. [20] proposed an optimal strategy:

Optimal Offline Algorithm

(1) Go directly to city lmax = maxi∈N {li}.

(2) Wait at city lmax for maxi∈N {max{0, ri − 2lmax + li}} units of time.

(3) Proceed directly back to the origin.
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The waiting time is calculated to ensure the salesman’s return to the origin finds each city ready

for service. A closed-form expression for COPT(n) is as follows:

COPT(n) = 2lmax + max
i∈N

{max{0, ri − 2lmax + li}}

= max
i∈N

{max {2li, ri + li}} .

3.1 Online Algorithms

In this subsection, we consider two online algorithms. The first considers the case qi = ri, ∀i ∈ N
and was first proposed and analyzed by Blom et al. [5], under the name of Move-Right-If-Necessary.

Subsequently, we present a generalization of this algorithm for the case qi ≤ ri, ∀i ∈ N .

3.1.1 The Move-Right-If-Necessary Algorithm

We assume that qi = ri, ∀i ∈ N and we consider the following online strategy hereafter called the

Move-Right-If-Necessary (MRIN) algorithm.

Algorithm MRIN

(1) If there is an unserved city to the right of the salesman, he moves towards it at unit speed.

(2) If there are no unserved cities to the right of the salesman, he moves back towards the origin

at unit speed.

(3) Upon reaching the origin, the salesman becomes idle.

The cost of the MRIN algorithm on an instance of n cities is denoted by CMRIN(n). We have

the following theorem from [5].

Theorem 1 ([5]) CMRIN(n) ≤ 3
2COPT(n), ∀n.

We also have a hardness result which can be obtained from the analysis in [5].

Theorem 2 ([5]) Let ρ be the competitive ratio for any deterministic online algorithm for the online

TSP on R+. Then ρ ≥ 3
2 .

Thus, MRIN is a best-possible online algorithm (restricted to the case where qi = ri, ∀i ∈ N ).

3.1.2 The Move-Left-If-Beneficial Algorithm

We now consider the case where qi ≤ ri, ∀i ∈ N . Notice that by ignoring the existence of requests

until their release dates, MRIN can be applied again and will yield the same competitive ratio of

3/2. However, a natural adaptation of MRIN does benefit from the disclosure dates. Thus, we define

the Move-Left-If-Beneficial (MLIB) algorithm.

Algorithm MLIB
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(1) If there is an unserved city to the right of the salesman, he moves towards it at unit speed.

(2) If there are no unserved cities to the right of the salesman, he moves back towards the origin

if and only if the return trajectory reaches all unserved cities on or after their release date;

otherwise the salesman remains idle at his current location.

(3) Upon reaching the origin, the salesman becomes idle.

The cost of the MLIB algorithm on an instance of n cities is denoted by CMLIB(n). We would

like to emphasize that the MLIB algorithm applied to an instance where qi = ri, ∀i ∈ N is in-

distinguishable from the MRIN algorithm applied to the same instance. In addition, the MLIB

algorithm applied to an instance where qi = 0, ∀i ∈ N is also indistinguishable from the optimal

offline algorithm. In this sense, MLIB fully incorporates the advanced information of the disclosure

dates. In the next subsections, we first analyze the MLIB algorithm for a special case and then we

give a general analysis.

3.2 Equal Amounts of Advanced Notice

In this subsection, we first give some technical results for the general case. Then we introduce a

special structure for the disclosure dates and we show that MLIB is best-possible while MRIN is

not.

Lemma 1 CMLIB(n) ≤ maxi∈N {max {qi + 2li, ri + li}} .

Proof Suppose CMLIB(n) = z > maxi∈N {max {qi + 2li, ri + li}}. Consider the final segment of the

MLIB salesman’s trajectory; i.e., the segment of the trajectory where the salesman returns directly

to the origin without changing direction or waiting. We can fully describe this segment of the

trajectory as xt = z − t, t ∈ [t0, z] for some t0, the time the salesman begins his final return. Note

that it is possible that t0 = z. We have two cases to consider at time t0:

Case (1): At t−0 , the salesman was moving away from the origin toward a city k and reached it at

t0 such that t0 ≥ rk. City k is the rightmost unserved city at time t0 and the salesman then starts

the xt trajectory, returning to the origin, reaching each unserved city along the way on or after its

release date. Since the salesman was moving away from the origin, the worst possible location for

him to be when city k was disclosed was the origin. So the salesman should arrive at city k at time

no later than qk + lk. Thus xt0 = lk, for some t0 ≤ qk + lk, implying that z = lk + t0 ≤ qk + 2lk,

which contradicts our assumption.

Case (2): The salesman has just finished waiting at some point, possibly the origin, so that the

xt trajectory reaches all cities on or after their release date. Thus, ∃m such that xt = lm, for t = rm,

where rm ∈ [t0, z]. Consequently, z = lm + rm, which again contradicts our assumption. �

We now prove a proposition that simplifies the subsequent analysis. This proposition depends

on the concept of an “ignored city,” which is defined as follows: An ignored city is viewed to have

never existed; i.e., it will not be taken into account when calculating the online and offline costs.
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Proposition 1 For any instance of the online TSP on R+ that has both a request away from the

origin and a request at the origin, ignoring the latter will not decrease the ratio CMLIB(n)/COPT(n).

Proof Let C̃MLIB denote the cost if the request at the origin was ignored. If the release date of the

request at the origin is later than C̃MLIB, the proposition is trivially true. Otherwise, the behavior

of MLIB is not affected by the request, but the optimal solution value may decrease by deleting it.

�

When all cities are located at the origin, we have that CMLIB(n) = COPT(n). The above propo-

sition allows us to make the following assumption without a loss of generality (for our intention of

proving upper bounds on competitive ratios).

Assumption 1 li > 0 for all i ∈ N .

We now consider the situation where the online salesman receives a fixed amount of advanced

notice for each city in a problem instance. In particular, there exists a constant a ∈ [0, rmax] such

that

qi = (ri − a)+, ∀i ∈ N ,

where (x)+ = max{x, 0}. Noting that LTSP = 2lmax, we have the following theorem.

Theorem 3 CMLIB(n) ≤ max
{

1,
3
2
− α

}
COPT(n), where α =

a

LTSP
.

Proof From Lemma 1, we have that

CMLIB(n) ≤ max
i∈N

{max {qi + 2li, ri + li}} . (1)

Define S = {i ∈ N | qi > 0}; note that for i ∈ S, qi = ri − a. If S = ∅, CMLIB(n) = COPT(n)

trivially. Otherwise , we write the RHS of Equation (1) as

max{max
i∈S

{max {qi + 2li, ri + li}} , max
i∈N\S

{max {2li, ri + li}}},

which is less than or equal to max{maxi∈S {max {qi + 2li, ri + li}} , COPT(n)}. Let us assume

maxi∈S {max {qi + 2li, ri + li}} > COPT(n); otherwise CMLIB(n) = COPT(n) and we are done. We

can now re-write Equation (1) as CMLIB(n) ≤ maxi∈S {max {qi + 2li, ri + li}}. The latter term can

be re-written as maxi∈S {ri + li + max {(li − a), 0}} ≤ maxi∈S {ri + li + max {(lmax − a), 0}}. Now,

if a > lmax, we have that CMLIB(n) ≤ maxi∈S {ri + li}, which implies that CMLIB(n) = COPT(n),

and the first part of the lemma is proved. Now, considering the case where a ≤ lmax, we have that

CMLIB(n) ≤ max
i∈S

{ri + li + max {(lmax − a), 0}} = max
i∈S

{ri + li}+(lmax−a) ≤ COPT(n)+(lmax−a).

We re-write (lmax − a) as υlmax, where υ = lmax−a
lmax

≤ 1. Note that υlmax ≤ υ
2 COPT(n). Thus,

CMLIB(n) ≤ COPT(n)+ (lmax−a) = COPT(n)+υlmax ≤
(
1 + υ

2

)
COPT(n) =

(
3
2 −

a
2lmax

)
COPT(n),

and this completes the proof of the second part of the lemma. �
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Recalling that 3
2 is the best-possible competitive ratio in the traditional setting, we say that the

value of the disclosure dates is α. We now show that MLIB is in fact a best-possible algorithm in

this situation.

Theorem 4 Let A be an arbitrary deterministic online algorithm with cost CA(n) on an instance

of n cities. Then ∀n ≥ 2, there exists an instance of size n where the online cost is at least

( 3
2 − α) ∈ [1, 3

2 ] times the optimal offline cost, where α = a/LTSP .

Proof Let n ≥ 2. Generate an instance of (n− 1) cities arbitrarily and let CA(n− 1) be the online

cost of this algorithm on these (n − 1) cities; i.e., algorithm A serves all (n − 1) cities and returns

to the origin at time t = CA(n− 1). At this time, city n becomes known to algorithm A:

(ln, rn, qn) = (a + CA(n− 1), a + CA(n− 1), CA(n− 1)).

Note that lmax = ln = a + CA(n− 1) since CA(n− 1) ≥ COPT(n− 1) ≥ 2li, ∀i < n. Considering

algorithm A, its salesman is at the origin at time qn. Thus,

CA(n) ≥ qn + 2ln = 3CA(n− 1) + 2a.

Considering the optimal offline algorithm, we have that COPT(n) = max{COPT(n−1), 2(CA(n−
1)+a)} = 2(CA(n−1)+a), since CA(n−1) ≥ COPT(n−1). Note that COPT(n) > 0 by Assumption

1. Thus,

CA(n)
COPT(n)

≥ 1 +
CA(n− 1)

2(CA(n− 1) + a)

= 1 +
CA(n− 1)

2lmax

= 1 +
lmax − a

2lmax

=
3
2
− a

2lmax
.

Note that by construction, a ≤ lmax and, consequently, 3
2 −

a
2lmax

∈ [1, 3
2 ]. �

Notice that disclosure dates do not affect MRIN; a single city instance where r1 = l1 still induces

an online cost which is 3
2 times the optimal offline cost. We thus have the following corollary:

Corollary 1 Algorithm MLIB is a best-possible online algorithm under the restriction qi = (ri −
a)+, ∀i ∈ N . In addition, algorithm MRIN is not best-possible.

3.3 In-Depth Online Analysis of MLIB Under General Disclosure Dates

In this subsection, we give a general result (of a technical nature) for the MLIB algorithm and we

also present an interesting example where advanced information is actually detrimental. We first

introduce some definitions:
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Definition 1

1. δ = min
j∈Sδ(n)

{qj

lj
}, where Sδ(n) = {j | qj + 2lj = maxi∈N {max {qi + 2li, ri + li}}}.

2. κ = min
j∈Sκ(n)

{ lj
qj
}, where Sκ(n) = Sδ(n)

⋂
{j | qj > 0}.

3. γ = min
j∈Sγ(n)

{qj

rj
}, where Sγ(n) = Sδ(n)

⋂
{j | rj > 0}.

Theorem 5

1. If either or both of the sets Sκ(n) and Sγ(n) are empty, then CMLIB(n) = COPT(n).

2. Otherwise, CMLIB(n) ≤ (1 + min{γ

2
,
δ

2
,

κ

1 + κ
})COPT(n).

3. In addition, when well defined, (1 + min{γ

2
,
δ

2
,

κ

1 + κ
}) ≤ 3

2
.

Proof We first analyze the second part of the theorem, where Sκ(n) and Sγ(n) are both non-empty.

We let m be the index that attains the minimum in the definition of δ; i.e., qm = δlm. By Lemma

1 and Equation (1), we have that

CMLIB(n) ≤ qm + 2lm

= (δ + 2)lm

≤ (1 +
δ

2
)COPT(n).

Let p be the index that attains the minimum in the definition of κ; i.e., lp = κqp. By Lemma 1

and Equation (1), we have that

CMLIB(n) ≤ qp + 2lp

= qp + lp + lp

(
1 + κ

1 + κ

)
= qp + lp +

κqp + κlp
1 + κ

= (1 +
κ

1 + κ
)(qp + lp)

≤ (1 +
κ

1 + κ
)COPT(n).

Finally, we let k be the index that attains the minimum in the definition of γ; i.e., qk = γrk. By

Lemma 1, we have that

CMLIB(n) ≤ qk + 2lk

= γrk + 2lk.

We consider three possibilities:

(1) If lk > rk, we have that 2lk + γrk < (2 + γ)lk ≤ (1 + γ
2 )COPT(n).
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(2) If lk < (1− γ)rk, 2lk + γrk < lk + rk ≤ COPT(n).

(3) If (1 − γ)rk ≤ lk ≤ rk, we can let lk = (1 − γ̂)rk for some γ̂ ∈ [0, γ]. After some simple

algebra, we see that

2lk + γrk = (rk + lk) +
(γ − γ̂)
(1− γ̂)

lk ≤ COPT(n) + γlk ≤ (1 +
γ

2
)COPT(n),

where the first inequality holds because the function fγ(γ̂) = (γ−γ̂)
(1−γ̂) attains a maximum of γ

(when γ̂ = 0) on the domain [0, γ], since γ ≤ 1. Thus, CMLIB(n) ≤ (1+ γ
2 )COPT(n). As the previous

analyses were mutually exclusive, we may conclude that, if Sκ(n) and Sγ(n) are both not empty,

CMLIB(n) ≤ (1 + min{γ
2 , δ

2 , κ
1+κ})COPT(n).

We now analyze the first part of the theorem. We have that either or both Sκ(n) and Sγ(n) are

empty. We first consider the case where the superset Sδ(n) = ∅. In this situation, there exists a city

j s.t. rj + lj = maxi∈N {max {qi + 2li, ri + li}}. By Lemma 1 and Equation (1) we have that

CMLIB(n) ≤ rj + lj

≤ COPT(n).

Recalling that CMLIB(n) ≥ COPT(n), we conclude that CMLIB(n) = COPT(n). Now, assume

Sδ(n) contains at least one element. If Sκ(n) is empty, then δ = 0. The analysis that results in

Equation (2) proves that CMLIB(n) ≤ COPT(n). Thus, CMLIB(n) = COPT(n). Now, if Sγ(n) is

empty, rj = 0, ∀j ∈ Sδ(n). This again implies that δ = 0 and, consequently, CMLIB(n) = COPT(n).

We conclude by analyzing the third part of the theorem. Since min{δ, κ} ≤ 1 (also γ ≤ 1),

(1 + min{γ
2 , δ

2 , κ
1+κ}) ≤

3
2 . �

Since the best-possible online algorithm, with no disclosure dates, has a competitive ratio of 3
2 ,

we say that the value of the disclosure dates is{
1
2 −min{γ

2 , δ
2 , κ

1+κ}), if κ and γ are well defined
1
2 , o.w.

To conclude our analysis of the online TSP on the non-negative real line, we provide an example

where the advanced information of the disclosure dates is actually detrimental.

Example: Consider the two city instance where q1 = 0, r1 = l1 = 1, q2 = r2 = 2 and l2 = 1.

This instance induces the following costs: CMRIN(2) = 3 and CMLIB(2) = 4.

However, we have conducted computational experiments that confirm the intuitively clear supe-

riority of MLIB over MRIN on average.

4 The Online TSP on General Metric Spaces

We now consider the general case where cities belong to a generic metric space M. Let d(·, ·) be

the metric for the space and o the origin. We consider the value of advanced information, for the

11



structure qi = (ri − a)+, ∀i ∈ N , providing lower and upper bounds on the competitive ratio. The

proof of our first result consists of simple modifications of the proof of Theorem 3.1 in [19].

Theorem 6 Any ρ-competitive algorithm for the online TSP on a metric space M, with qi =

(ri − a)+, i ∈ N , has ρ ≥ 2/(1 + α), where α = a/LTSP .

Proof Define a metric space M as a graph with vertex set V = {1, 2, . . . , n} ∪ {o} with distance

function d that satisfies the following: d(o, i) = 1 and d(i, j) = 2 for all i 6= j ∈ V \ {o}.
At time 0, there is a request at each of the n cities in V \{o}. If an online server visits the request

at city i at time t ≤ 2n − 1 − ε, for some small ε, then at time t + ε, a new request is disclosed at

city i.

In this way, at time 2n−1 the online server still has to serve requests at all n cities; furthermore,

at time 2n − 1, all cities have only been disclosed, not necessarily released. Therefore, the online

cost is at least the corresponding value in the situation where all cities have been released by time

2n−1. This latter value is at least 4n−2. Therefore, denoting CA as the online cost of an arbitrary

online algorithm A, we have that CA ≥ 4n− 2.

The optimal offline server will also have some difficulty with the differences between the disclosure

dates and release dates. We first note that, had the cities been released at the above mentioned

times, rather than disclosed, the optimal offline cost would have been 2n. We now exploit the

structure of the disclosure date/release date relationship: by waiting a units of time at any disclosed

city, the city’s release date will arrive. Therefore, it is clear that COPT ≤ 2n + a. Finally, by noting

that LTSP = 2n, we have that

CA

COPT
≥ 4n− 2

2n + a
=

2
1 + α

− 2
2n + a

.

Taking n arbitrarily large proves the theorem. �

Now, we give the first of two generalizations of the 2-competitive online algorithm PAH, originally

proposed by Ausiello et al. [3]. We call our algorithm Plan-At-Home-disclosure-dates (PAH-dd).

Algorithm PAH-dd

(1) Whenever the salesman is at the origin, it starts to follow a tour that serves all cities whose

disclosure dates have passed but have not yet been served; this tour is constructed using an

algorithm A that exactly solves an offline TSP with release dates.

(2) If at time qi, for some i, a new city is presented at point x, the salesman takes one of two

actions depending on the salesman’s current position p:

(2a) If d(x, o) > d(p, o), the salesman goes back to the origin (following the shortest path from

p) where it appears in a Case (1) situation.

(2b) If d(x, o) ≤ d(p, o), the salesman ignores the city until it arrives at the origin, where again

it re-enters Case (1).

12



Theorem 7 Algorithm PAH-dd is (2− α

1 + α
)-competitive, where α = a

LT SP
.

Proof Let p(t) be the position of the salesman at time t. As in Ausiello et al. [3], we provide a case

by case analysis. Let us consider the state of the algorithm at time qn, the final disclosure date.

Case (1): The salesman is at the origin at time qn. Let T be the tour, calculated by algorithm

A at time qn, that visits all unserved cities; for simplicity, we let T also denote the duration of the

tour. Letting CPAH-dd denote the online cost of our new algorithm, we have that

CPAH-dd = qn + T

= rn + T − a

≤ COPT + (T − a)

= COPT + (1− a

T
)T

≤ COPT + (1− a

T
)COPT,

where the last inequality is by T ≤ COPT. Inserting the obvious bound T ≤ a + LTSP proves the

theorem for this case.

Case (2a): We have that d(o, ln) > d(o, p(qn)) and the salesman returns to the origin, arriving

before time qn + d(o, ln) = rn + d(o, ln) − a. Once at the origin, the salesman uses algorithm A to

compute a tour T ′. Clearly, rn + d(o, ln) ≤ COPT. Thus, we have that

CPAH-dd ≤ rn + d(o, ln) + (T ′ − a) ≤ COPT + (1− α

1 + α
)COPT = (2− α

1 + α
)COPT.

Case (2b): We have that d(o, ln) ≤ d(o, p(qn)). Suppose that the salesman is following a route

R that had been computed the last time he was at the origin. Clearly, R ≤ COPT. Let Q be the set

of cities temporarily ignored since the last time the salesman was at the origin. Let j be the index

of the first city in Q that is visited by the optimal offline algorithm. Let PQ be the shortest path

starting from location lj at time rj , visiting all other cities in Q, while respecting the release dates,

and terminating at the origin. Clearly, rj + PQ ≤ COPT.

Since city j was ignored when it was disclosed, we have that d(o, lj) ≤ d(o, p(qj)). Thus, at time

qj the salesman had already traveled at least a distance d(o, lj) on R and will complete R at the

latest at time tR = qj +R− d(o, lj). Next, the salesman will compute TQ, a tour covering Q.

At time tR, consider an alternate strategy that first goes to city j, possibly waits for city j to be

released, and then follows the shortest path through the cities in Q; this latter path is at most PQ.

Clearly, TQ will finish before this alternate strategy finishes. Next, notice that the completion time

of TQ is also the completion time of PAH-dd; therefore, we have that
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CPAH-dd ≤ max {tR + d(o, lj), rj}+ PQ

= max {tR + d(o, lj) + PQ, rj + PQ}

≤ max {tR + d(o, lj) + PQ, COPT}

= max {qj +R+ PQ, COPT}

= max {(rj + PQ) + (R− a), COPT}

≤ max
{

COPT +
(

1− α

1 + α

)
COPT, COPT

)
=

(
2− α

1 + α

)
COPT. �

Since the best-possible algorithm for the online metric TSP has a competitive ratio of 2, Theorems

6 and 7 indicate that the value of the disclosure dates is at least α
1+α and no more than 2α

1+α .

5 The Online TRP on General Metric Spaces

Thus far, we have been analyzing versions of the online TSP, where the objective is arguably in the

salesman’s interest. We now consider another objective, the weighted latency, which is an objective

that is arguably in the cities’ interest; additionally, the weights may be chosen to favor certain cities

over others.

In this section, we consider the online TRP with arbitrary weights. Our objective is to minimize∑
i∈N wiCi, where Ci is the completion time of city i, the first time it is visited after its release

date, and the wi are arbitrary non-negative weights. Again, li ∈ M, for any metric space M and

we consider the situation where qi = (ri − a)+, ∀i ∈ N .

5.1 A Deterministic Online TRP Algorithm for General M

Let λ = (1 +
√

2), b0 = min{rj | rj ≥ a
λ} and bi = λib0. Also, let b̃i = bi − a. The definition of b0

ensures that b̃1 ≥ 0, which is necessary for step 1 of BREAK to be feasible. The latter b̃i parameters

are the breakpoints where the online algorithm BREAK (to be defined shortly) will generate some

re-optimization. Our algorithm is a generalization of the (1 +
√

2)2-competitive INTERVALα by

Krumke et al. [16] (α in [16] is equivalent to λ in this paper), which re-optimizes at times bi. Let

Qi, i ≥ 1 denote the set of cities released up to and including time bi; clearly Qi ⊆ Qi+1, ∀i. Note

that at time b̃i the online repairman knows Qi. Let Ri denote the set of cities served by algorithm

BREAK in the interval [b̃i, b̃i+1] and R∗
i the set of cities served by the optimal offline algorithm in

the interval [bi−1, bi]. Finally, let w(S) =
∑

i∈S wi.

Definition 2 Online algorithm BREAK:1

1Note that BREAK is not a polynomial-time algorithm since step 2 requires the exact solution of the NP-hard

Orienteering Problem [6].
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1. Remain idle at the origin until time b̃1.

2. At time b̃1 calculate a path of length at most b1 to serve a set of cities R1 ⊆ Q1 such that

w(R1) is maximized.

3. At time b̃i, i ≥ 2, return to the origin and then calculate a path of length at most bi to serve

a set of cities Ri ⊆ Qi \
⋃

j<i Rj such that w(Ri) is maximized.

This algorithm is easily seen to be feasible – actions in iteration i are completed before actions

in iteration (i + 1) are to begin. We begin our analysis of algorithm BREAK with the following

lemma, which generalizes a result in [16]. Our proof of this lemma is quite different from that of

[16] and follows the proof of a similar result in the machine scheduling literature (see [11]).

Lemma 2 For any k ≥ 1,
∑k

i=1 w(Ri) ≥
∑k

i=1 w(R∗
i ).

Proof Consider iteration k ≥ 2 and let R =
⋃k

l=1 R∗
l \

⋃k−1
l=1 Rl. If a repairman were at the origin

at time zero, he could serve all the cities in the set R by time bk.

Now, consider an online repairman at time b̃k. Suppose he knew the set R. Then by returning

to the origin, taking at most bk−1 time units, the repairman could serve the cities in R by time

b̃k + bk−1 + bk = b̃k+1 (equality since α = (1 +
√

2)). Thus, in iteration k, the repairman could serve

cities of total weight w(R).

Unfortunately, the repairman does not know R since the R∗
i are not known until all cities are

released. However, the repairman’s task is to find a subset of S = Qk\
⋃k−1

l=1 Rl. Since Qk ⊇
⋃k

l=1 R∗
l ,

S ⊇ R, and the online repairman is able to choose a subset of S to serve in iteration k of total weight

at least w(R), since choosing R as the subset is a feasible choice. A similar argument holds for k = 1.

Now, for any k,

w(Rk) ≥ w(R)

=
∑

j∈
⋃k

l=1 R∗
l \

⋃k−1
l=1 Rl

wj

=
k∑

l=1

w(R∗
l )−

∑
j∈(⋃k

l=1 R∗
l )

⋂(⋃k−1
l=1 Rl)

wj

≥
k∑

l=1

w(R∗
l )−

∑
j∈

⋃k−1
l=1 Rl

wj

=
k∑

l=1

w(R∗
l )−

k−1∑
l=1

w(Rl),

which gives the result. �

The following corollary is evident from Lemma 2.
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Corollary 2 Suppose the optimal offline algorithm visits the last city in its tour in interval (bp−1, bp]

for some p ≥ 1. Then the online algorithm BREAK will visit its last city by time b̃p+1.

We now give the main theorem of this section.

Theorem 8 Algorithm BREAK is ((1+
√

2)2− αβ
α+β )-competitive, where α = a

LT SP
and β = a

rmax
.

Proof of Theorem 8 We begin by stating Lemma 6 from [16]: Let ai, bi ∈ R+, for i = 1, . . . , p. If∑p
i=1 ai =

∑p
i=1 bi and

∑p′

i=1 ai ≥
∑p′

i=1 bi for all 1 ≤ p′ ≤ p, then
∑p

i=1 τiai ≤
∑p

i=1 τibi for any

non-decreasing sequence 0 ≤ τ1 ≤ . . . ≤ τp. Applying this lemma, we have that

CBREAK ≤
p∑

k=1

b̃k+1w(Rk)

≤
p∑

k=1

b̃k+1w(R∗
k)

=
p∑

k=1

(bk+1 − a)w(R∗
k)

=
p∑

k=1

(λ2bk−1 − a)w(R∗
k)

=
p∑

k=1

∑
l∈R∗

k

(λ2bk−1 − a)wl

≤
p∑

k=1

∑
l∈R∗

k

(λ2C∗
l − a)wl,

where C∗
l the the completion time of city l by the optimal offline algorithm. Now, suppose there

exists γ such that (λ2C∗
l − a) ≤ γC∗

l , ∀l. Then, algorithm BREAK would be γ-competitive. It

is clear to see that γ = λ2 − a
C∗

max
is the smallest such value to satisfy the requirements, where

C∗
max = maxi∈N {C∗

i }. Thus, algorithm BREAK is (λ2 − a
C∗

max
)-competitive. Finally, using the fact

that C∗
max ≤ rmax + LTSP , we achieve the result. �

Since the best deterministic algorithm to date (INTERVALα) for the online metric TRP is

(1 +
√

2)2-competitive, we say that the value of the disclosure dates is αβ
α+β .

5.2 A Randomized Online TRP Algorithm for General M

We may also define a randomized algorithm BREAK-R as algorithm BREAK with the following

substitution: b0 7→ λUb0, where U is a uniform random variable on [0, 1]. We have the following

theorem for this randomized algorithm; its proof is quite similar to that of Theorem 8 and is omitted.

Theorem 9 Algorithm BREAK-R is (Θ − αβ
α+β )-competitive, where α = a

LT SP
, β = a

rmax
and

Θ ≈ 3.86.
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Remark 1 To the best of our knowledge, algorithms INTERVALα and RANDINTERVALα ([16])

are the best online algorithms to-date for the online TRP, regardless of the metric space; i.e., we are

not aware of any algorithms that improve these results for any simpler metric spaces, such as R+ or

R. Therefore, we do not have any new results specific to these particular metric spaces.

5.3 A Correction to a Previously Published Result

When a = 0, algorithm BREAK-R corresponds to a realization of the α-parameterized (this α

unrelated to the α = a
LT SP

utilized in this paper) online algorithm RANDINTERVALα, given in

[16]. The values of α for which RANDINTERVALα is a feasible algorithm were given incorrectly in

[16]: The given range α ∈ [1 +
√

2, 3] should have read α ∈ (1, 1 +
√

2] since the algorithm requires
(α+1)

α(α−1) ≥ 1. This led to an erroneous result that stated that RANDINTERVALα was Θ̃-competitive,

Θ̃ ≈ 3.64. Using the correct range for α, it is straightforward to see that RANDINTERVALα is

Θ-competitive, where Θ ≈ 3.86.

5.4 A Final Note on the Online Dial-A-Ride Problem

Finally, note that Theorems 8 and 9 also hold for the online Dial-A-Ride problem, which is a

generalization of the TRP. Instead of a customer (city) requesting a visit, a customer requests a

ride from a source location to a destination location. The completion time of a customer is the time

that the customer reaches the destination. The subroutine in the BREAK algorithm that calculates

paths maximizing the weight of served customers must simply be modified to incorporate the new

requirements of a customer.

6 Polynomial-time Online Algorithms for the Online TSP

We now give our second generalization of algorithm PAH ([3]), which we shall denote as PAH-p

as all subroutines are polynomial-time. In this section, we only consider the traditional case where

qi = ri, ∀i ∈ N .

Algorithm PAH-p

(1) Whenever the salesman is at the origin, it starts to follow a tour that serves all cities whose

release dates have passed but have not yet been served; this tour is constructed using an

ρ-approximation algorithm A that solves an offline TSP.

(2) If at time ri, for some i, a new city is presented at point x, the salesman takes one of two

actions depending on the salesman’s current position p:

(2a) If d(x, o) > d(p, o), the salesman goes back to the origin (following the shortest path from

p) where it appears in a Case (1) situation.
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(2b) If d(x, o) ≤ d(p, o), the salesman ignores the city until it arrives at the origin, where again

it re-enters Case (1).

Theorem 10 Algorithm PAH-p is 2ρ-competitive.

Proof Let rn be the time of the last request, ln the position of this request and p(t) the location

of the salesman at time t. We show that in each of the Cases (1), (2a) and (2b), PAH-p is 2ρ-

competitive.

Case (1): PAH-p is at the origin at time rn. Then it starts a ρ-approximate tour that serves all

the unserved requests. The time needed by PAH-p is at most rn +ρLTSP ≤ (1+ρ)COPT ≤ 2ρCOPT.

Case (2a): We have that d(o, ln) > d(o, p(rn)). PAH-p returns to the origin, where it will

arrive before time rn + d(o, ln). After this, PAH-p computes and follows a ρ-approximate tour

through all the unserved requests. Therefore, the online cost is at most rn + d(o, p(rn)) + ρLTSP <

rn + d(o, ln) + ρLTSP . Noticing that rn + d(o, ln) ≤ COPT, we have that the online cost is at most

(1 + ρ)COPT ≤ 2ρCOPT.

Case (2b): We have that d(o, ln) ≤ d(o, p(rn)). Suppose PAH-p is following a route R that had

been computed the last time it was at the origin. Note that R ≤ ρLTSP ≤ ρCOPT. Let Q be

the set of requests temporarily ignored since the last time PAH-p was at the origin. Let lq be the

location of the first request in Q served by the offline algorithm and let rq be the time at which lq

was released. Let PQ be the shortest path that starts at lq, visits all the cities in Q and ends at o.

Clearly, COPT ≥ rq + PQ and COPT ≥ d(o, lq) + PQ.

At time rq, the distance that PAH-p still has to travel on the route R before arriving at o is

at most R − d(o, lq), since d(o, p(rq)) ≥ d(o, lq) implies that PAH-p has traveled on the route R a

distance not less than d(o, lq). Therefore, it will arrive at o before time rq +R− d(o, lq). After that

it will follow a ρ-approximate tour TQ that covers the set Q; letting T ∗Q be the optimal tour over the

set Q, we have that TQ ≤ ρT ∗Q. Hence, the completion time will be at most rq +R− d(o, lq) + ρT ∗Q.

Since T ∗Q ≤ d(0, lq) + PQ, we have that the online cost is at most

rq +R− d(o, lq) + ρd(0, lq) + ρPQ = (rq + PQ) +R+ (ρ− 1)(d(0, lq) + PQ)

≤ COPT + ρCOPT + (ρ− 1)COPT

= 2ρCOPT. �

Applying well-known algorithms by Chistofides [8] and Arora [1], we are able to attain two

interesting corollaries.

Corollary 3 If we choose A as Christofides’ heuristic, Algorithm PAH-p is 3-competitive.

This matches the 3-competitive polynomial-time algorithm given in [3]. However, a polynomial-

time algorithm with a competitive ratio of at most 2.78 was recently given in [2].

Corollary 4 If M is Euclidean and we choose A as Arora’s PTAS, for any ε > 0, Algorithm PAH-p

is (2 + ε)-competitive.

18



To the best of our knowledge, this is the first result for the online TSP in the Euclidean metric

space.

Remark 2 We have attempted to combine our analyses, to find a single result that unifies a

polynomial-time algorithm and the value of information. Our approach would have improved upon

the above results if we had a ρ-approximation algorithm for the TSP with release dates, where ρ < 5
2 .

Trivially (wait until the last release date and then form a Christofides approximate tour) we have a
5
2 -approximation algorithm; unfortunately, we know of no algorithm that has a better approximation

ratio.

7 Conclusion

We have considered online versions of two well-studied routing optimization problems, the Traveling

Salesman Problem and the Traveling Repairman Problem. These two problems embody two major

types of objectives: optimizing in the server’s interest and optimizing in the customers’ interest.

We introduced the notion of a disclosure date, which brings with it a number of benefits. First,

we are allowed to relax the pessimistic definition of the competitive ratio. Second, this relaxation

is natural, in the sense that realistic problems can be modeled with disclosure dates. Third, the

disclosure dates allow us to vary the online-ness of a problem.

With these disclosure dates in place, we show their value in the form of improved competitiveness

results for both the online TSP and TRP, in a variety of metric spaces. For the non-negative real

line, we show that our algorithm is strictly optimal.

Finally, we consider polynomial-time online algorithms for the traditional (no disclosure dates)

online TSP on metric spaces and we give the first competitiveness result for Euclidean metric spaces.
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