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Operations Research Center, Massachusetts Institute of Technology

March 2018∗

Abstract

With the emergence of ride-sharing companies that offer trans-
portation on demand at a large scale and the increasing availability of
corresponding demand datasets, new challenges arise to develop rout-
ing optimization algorithms that can solve massive problems in real
time. In this paper, we develop an optimization framework, coupled
with a novel and generalizable backbone algorithm, that allows us
to dispatch in real time thousands of taxis serving more than 25,000
customers per hour. We provide evidence from historical simulations
using New York City routing network and yellow cabs data to show
that our algorithms improve upon the performance of existing heuris-
tics in such real-world settings.

1 Introduction

Urban transportation is going through a rapid and significant evolution. In
the recent past, the emergence of the Internet and of the smart-phone tech-
nologies has made us increasingly connected, able to plan and optimize our
daily commute while large amounts of data are gathered and used to improve
the efficiency of transportation systems. Today, real-time ridesharing com-
panies like Uber or Lyft are using these technologies to revolutionize the taxi
industry, laying the ground for a more connected and centrally controlled
transportation structure, and building innovative systems like car-pooling.
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Tomorrow, self-driving and electrical vehicles will likely be the next trans-
portation revolution. A major positive impact on the economy and the en-
vironment can be achieved when improving vehicle routing efficiency, using
this newly available data and connectivity to its full extent.

A field that can make such important contributions is vehicle routing, i.e.,
the optimization of each vehicle actions to maximize the system efficiency
and throughput. In the special case of taxi routing, we decide which taxi or
ride-sharing vehicle to assign to each ride request. This setting is typically
online, as there is little prior demand information available and the vehicle
actions have to be decided in a dynamic way. There is more and more central
control of these vehicle actions, allowing the design of strategies that surpass
myopic agent behaviors. Furthermore, real-world applications are generally
at a decidedly large scale: everyday, there are more than 500,000 Yellow Cab,
Uber or Lyft rides in New York City — see [23].

In this paper, we present a tractable rolling-horizon optimization strategy
for online taxi routing that can be adapted to a variety of applications. Our
formulation is guided by the increased degree of control and prior informa-
tion available in today’s ride-sharing dispatching systems. We introduce a
novel approach to make vehicle routing optimization formulations tractable
at the largest practical scales, involving tens of thousands of customers per
hour. This approach is general and can be extended to a variety of vehicle
routing problems. We implement these online strategies on real taxi demand
data in New York City, dispatching thousands of vehicles in real time and
outperforming state-of-the-art algorithms and heuristics, thus showing the
edge of optimization.

1.1 Related Work

Dynamic vehicle routing is the general problem of dispatching vehicles to
serve a demand that is revealed in real time.

In the pick-up and delivery problem, vehicles have to transport goods
between different locations. When vehicles are moving people, the routing
problem is referred to as dial-a-ride in [5]. Taxi routing is a special case
of dial-a-ride problem with time-windows, where vehicles can transport only
one customer at a time, with pick-up time windows but no destination time
windows. Customers are also associated with a pick-up time window, which
is a typical model of customer flexibility in diverse applications of vehicle
routing as in [11, 1, 9]. This constraint can be relaxed, and vehicle routing
with soft time windows, for example in [15], penalizes a late pick-up instead
of disallowing it. We use “hard” time windows in this work, though our
approach can be extended to the soft time window case.
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[27] argues that taxi routing has received relatively small attention in
the field of vehicle routing, as the practical problem sizes are typically large,
and last-minute requests leave “limited space for optimization”. Nonetheless,
with the emergence of ride-sharing smart-phone applications, it has become
easier to request for a last-minute ride even when the available vehicles are
far away, and to book a ride in advance. Such possibilities can be modeled
in vehicle routing formulation using pick-up time windows and prior request
times, and have been studied for different applications in [16, 34]. We will
demonstrate that the additional prior information they provide can be lever-
aged when optimizing the routing decisions, even at the largest scale.

With the recent interest in real time ride-sharing, several large scale online
decision systems for taxi scheduling have been proposed and implemented,
though these applications focus more on managing large-scale decision sys-
tems than optimizing vehicle actions. [21] balances supply and demand in a
discretized space and time, but does not consider microscopic routing deci-
sions. [25, 26, 19, 29] implement large scale systems of taxi-pooling, in which
vehicles can transport several customers at the same time. These approaches
focus on how to best match different requests, but less on routing vehicles
from request to request. [35] studies taxi routing with autonomous vehicles,
taking into account congestion in a network-flow formulation.

Several strategies have been proposed for dynamic vehicle routing. Sim-
ple online routing algorithms can be studied in a worst-case approach using
competitive ratios as in [17]. However, when some prior information is avail-
able, practical approaches are re-optimization and rolling-horizon algorithms
— see [5, 31]: a “static” (or “offline”) solution is constantly updated as new
demand information becomes available, and this solution is used to decide
the vehicles actions in real-time. This strategy has been applied with success,
and [34] show that the quality of the online decision depends on the quality of
the offline solutions that are used at each iteration. Together with the rolling-
horizon, [2] uses a scenario-based approach with consensus, [3] successfully
adds a waiting and relocation strategy, and [22] uses a double-horizon to
take into account long-term goals. The offline decision problems can then be
translated into well-defined optimization formulations, and sometimes solved
to optimality. These formulations are typically solved using column genera-
tion as in [1], which is also used in the online setting in [9]. Custom branching
algorithms, as found in [13, 11], are used for specific routing problems. [4]
formulates the decision problems using constraint programming. For prob-
lems similar to taxi routing, with identical vehicles and paired pick-up and
delivery, variants on network flow formulations have been proposed, for ex-
ample [34] uses such a formulation to optimize truckload pickup and delivery.
Unfortunately, these exact algorithms rarely scale past a few dozens or hun-
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dreds of customers and vehicles, depending on the application. We will use
such formulations in this paper, though applying them on problems with tens
of thousands of customers and thousands of vehicles.

A classical way to solve these static vehicle routing problems at a larger
scale is the use of heuristics, discussed in the survey [8]. Existing solu-
tions can be locally improved by exploring their neighborhood: for example,
2-OPT is a famous general-purpose heuristic that was first introduced for
the traveling salesman problem (TSP) in [10]. In practice, combinations of
insertions-based greedy construction heuristics, local-improvement and ex-
ploration heuristics are used, as in [32, 8, 22]. For sizable problems such as
taxi routing, we found that using a first-accept local-improvement heuristic
similar to the 2-OPT* algorithm presented in [28] was a good trade-off when
limited computational time is available, and we use it as a benchmark for
our work. Unfortunately, these heuristics are usually special-purposed and
have to be adapted to each particular new problem. State-of-the-art algo-
rithm of vehicle routing include popular meta-heuristics such as Tabu Search
applied in [12], Evolutionary Algorithms, Ant Colony Algorithms, Simulated
Annealing and hybrid algorithms that combine the advantages of different
methods, as in [4]. In this paper, we were not able to successfully apply any
of these algorithms, because of the size of our problem and the very small
time available for computations.

To the best of our knowledge, there is no large-scale benchmark for dy-
namic vehicle routing, as emphasized in [27]. To test our algorithms, we
chose the New York City Taxi and Limousine Commission dataset, available
at [23] and frequently used in the literature. This massive dataset contains
all ride-sharing and taxi trips in NYC, starting from 2009, for a total of
more than 1 billion rides. A comprehensive description of this data-set is
available in [33]. It has been used for vehicle routing decisions in [26, 35,
29]. We used the OpenStreetMap map data [14] to reconstruct the real city
network, together with the work in [6] to infer link travel-times from the taxi
data. Furthermore, we used Julia, a programming language with a focus on
numerical computing introduced in [7], in combination with the optimiza-
tion modeling library described in [18], to create a large scale simulation and
visualization for real-world routing, and support our experiments.

1.2 Our Contributions

This paper explores taxi routing, in the contemporary context of increased
connectivity and prevalent data: we formulate, solve, scale and apply op-
timization formulations to real-world settings. Overall, we show that some
seemingly intractable optimization formulations in vehicle routing can be
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Figure 1: Our taxi simulation software, displaying online taxi routing in
Manhattan with 5000 taxis and 26,000 customers. The red circles represent
taxis, and the green squares represent customers being transported or wait-
ing. The software shows the taxi movements in real or accelerated time, and
implements all the online and offline algorithms we discuss in this paper. It
has been designed to run on a standard laptop.
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scaled to the largest problem sizes. This is desirable, as these formulations
generalize much better than special-purpose heuristics to the various opera-
tional constraints of real-world applications.

Motivated by the centralization and modernization of taxi routing in the
ride-sharing industry, we formulate the online taxi problem as a pick-up
and delivery problem, using re-optimization and an efficient network flow
mixed-integer optimization formulation similar to [34], to leverage any prior
information of ride requests to make better decisions. In an extensive empir-
ical study with synthetic data, we show that in situations of high demand,
optimal solutions to the offline taxi routing problem are usually significantly
superior to the output of common local-improvement and greedy routing
algorithms. This confirms the edge of optimization formulations on simple
heuristics for the taxi routing problem, and outlines what practical situations
make these formulations easy or difficult to solve in practice.

To scale our formulations to real-world applications with thousands of
taxis and tens of thousands of customers, we use the specific structure of
taxi-routing applications with high demand to dramatically reduce the prob-
lem size. We additionally introduce a novel “backbone” algorithm, that first
computes a restricted set of candidate actions that are likely to be optimal,
allowing us to efficiently solve a much sparser problem. On a very time-
constrained re-optimization schedule, with only 15 seconds to solve a vehicle
routing problem involving thousands of taxis, we show that our new algo-
rithm performs significantly better than other popular large-scale routing
heuristics.

We created an open-source simulation software (available in the TaxiSim-
ulation Julia package [20]) using state-of-the-art technologies, allowing us to
simulate and visualize taxi-routing in real-world setting, and presented in
Figure 1. We use New York City taxi ride data and the complete Manhattan
routing network to apply our algorithms in practical settings, leading us to
confirm the results we got from synthetic data. The insights we get from
such applications are relevant to the current and future taxi and ride-sharing
industry, and our models have the potential to be extended to a variety of
other applications. For reproducibility, the input, output and all the code of
our experiments are shared with the published version of this paper.

Section 2 introduces and defines the online taxi routing problem, and we
study in Section 3 its offline counterpart, formulating it using mixed integer
optimization and comparing it to established heuristics on synthetic data. In
Section 4, we demonstrate how to scale this formulation to the applications of
interest. We finally apply the offline algorithms to large online taxi problems
in Section 5, using re-optimization, and with real demand data in NYC.
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2 The Online Taxi Routing Problem

In this section, we introduce the online taxi routing problem and the no-
tations we will use throughout this paper. This model captures any prior
information we may have on customer requests, due to prior booking or cus-
tomer pick-up flexibility.

2.1 Model and Data

We consider the online taxi routing problem, a special case of the online
dial-a-ride problem with time windows. In this application, vehicles are only
allowed to serve one customer at a time.

Let C be the set of all customers. A customer c ∈ C is associated with a
pick-up time window (tmin

c , tmax
c ), corresponding to its minimal and maximal

possible pick-up times. In the online setting, we also introduce a confirma-
tion time tconfc , at which customer c is provided with a guarantee to be picked
up (or is rejected), and a request time trequestc , at which the customer’s infor-
mation becomes available. Note that trequestc ≤ tconfc , as the confirmation of
future pick-up can only happen after the pick-up request.

We represent each customer as a node in a directed graph G. An arc (c′, c)
in G represents the possibility for a vehicle to pick-up customer c immediately
after servicing customer c′. Each arc (c′, c) is associated with a travel time
Tc′,c such that we must have tc′+Tc′,c ≤ tc, where tc′ and tc are the respective
pick-up times of customers c′ and c. Tc′,c typically represents the time for a
taxi to serve customer c′ and to drive to the pick-up location of c. Each arc
is also associated with a profit Rc′,c, that represents the quantity we want to
maximize. In this work, we use it to represent the profit of the taxi company,
and set Rc′,c to the fare paid by customer c minus the cost of driving from
the drop-off point of c′ to the pick-up point of c and to its destination.

We restrict ourselves to the case where G is acyclic. In other words, the
pickup time windows can only allow one customer to be picked-up before or
after another one, but never both. There is an arc c→ c′ in G if and only if:

tmin
c + Tc,c′ ≤ tmax

c′ (1)

There exists a cycle of length 2 if and only if Equation (1) is verified from c
to c′ and also from c′ to c. By combining the two equations we obtain:

(tmax
c − tmin

c ) + (tmax
c′ − tmin

c′ ) ≥ Tc,c′ + Tc′,c (2)

Negating Equation (2) gives us a sufficient condition for the absence of any
2-cycle:

(tmax
c − tmin

c ) + (tmax
c′ − tmin

c′ ) < Tc,c′ + Tc′,c ∀c, c′ ∈ C (3)
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In other words, the condition states that the sum of the lengths of the pick-up
time windows within the cycle should be less that the total cycle travel-time,
and the exact same reasoning shows that this condition works with any cycle
length. A stronger sufficient condition to avoid any cycle is therefore that
each pick-up time window is smaller than the following ride time:

(tmax
c − tmin

c ) < Tc,c′ ∀c, c′ ∈ C (4)

This condition is a little too extreme, but it nonetheless holds for our taxi
routing application: the time windows we use in this paper are of the order
of 5 minutes, and the vast majority of taxi trips considered in this paper take
more than 5 minutes (and most of them a lot longer). The few trips that
are smaller than 5 minutes are still satisfying Equation (3). Taxi routing is
not the only application where this assumption holds: any dynamic vehicle
routing application with time windows that are no bigger than the typical
trip length will have no or few cycles. For in-between applications that just
have a few cycles, a simple pre-processing step can remove the cycles, or
else adding sub-tour elimination constraints will be very fast and tractable.
Nonetheless, for applications with larger (or infinite) time windows and thus
a large number of cycles in G, the algorithms of this paper would have to be
adapted.

Let K be the set of all taxis, that are supposed to be identical and whose
initial positions are represented as additional nodes in G. Each taxi k is
parametrized by a initial time of service tinitk at which it becomes available.
For each customer c that can be the first pick-up of taxi k from its original
position, we add the arc (k, c) to G. This arc is associated with a travel-time
Tk,c, typically the time for taxi k to go to c’s pick-up location, and a profit
Rk,c, typically the fare paid by c minus the driving costs.

2.2 Decisions

A solution to the taxi routing problem is a subset of arcs of G that designate
the sequences of customers assigned to each taxi. Each customer must only
be picked-up by at most one taxi, while respecting its pick-up time window
constraint: if arc (c′, c) is in the solution (a taxi serves the two customers
sequentially), then we must have tc′ + Tc′,c ≤ tc.

The goal is to maximize the total profit of the solution, as described
by the parameters Rc′,c and Rk,c. Additionally, the problem is solved in an
online setting, where the information of the existence of customer c is only
revealed at time trequestc : the node appears in the graph, together with its
arcs to and from other known nodes. In this setting, the decision to add the
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arc (c′, c) to the solution has to be made early enough, when the taxi that
is serving customer c′ can still pick-up customer c on time. Moreover, the
decision whether to pick-up or reject customer c must be made before tconfc .

2.3 Interpretation

This formulation is general enough to model many optimization objectives.
For example we can minimize total empty driving time instead of profit by
modifying the R parameters accordingly. Setting Rc′,c = 1 ∀c ∈ C will
maximize the throughput: the total number of customers that we can serve.
Also, setting trequestc = 0 ∀c ∈ C corresponds to the full-information offline
problem, and trequestc = tmin

c ∀c ∈ C corresponds to the fully online problem
without any prior information.

Note that travel-times T are deterministic once revealed. Also, the des-
tination of customer c is revealed at time trequestc , as it allows us to plan the
next moves as we know the travel-times to the next customers. As seen in
the introduction, we focus on well-connected taxi systems, that already ask
customers for their destination when requesting a ride.

A typical setting to compute the travel-times T is to consider a routing
network, where each customer will be associated with a pair of origin and
destination nodes. Assuming stationary travel-times for each edge of the
network and some additional routing rules such as “taxis use the fastest
path”, we can compute the times T , possibly including additional constant
service time to pick-up and drop-off each new customer. As we will discuss
in Section 5, these travel-time forecasts can be adjusted in a dynamic way
along with the re-optimization process.

3 Offline Routing: the Edge of Optimality

In this section, we introduce the offline taxi routing problem, that naturally
appears when using a re-optimization strategy for the online taxi routing. We
present a mixed integer optimization (MIO) formulation of the offline prob-
lem, along with a set of heuristics. These different algorithms are compared
on synthetic data, and we develop an empirical intuition about the effect of
a variety of practical settings on the problem difficulty and the algorithms
performances. We show that in situations of high demand, provably optimal
solutions to the routing problem outperform their heuristic counterpart by a
large margin.
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3.1 A Re-Optimization Approach to Online Taxi Rout-
ing

When all the demand information is known beforehand, the problem is called
offline (or static). In the offline problem, there is no uncertainty about
future customers. This is equivalent to setting all the request times to the
beginning of the instance, i.e., trequestc = 0 for each customer c. In this case,
the taxi routing problem introduced in Section 2 becomes the Offline Taxi
Routing Problem. It is a well-defined optimization problem, and the feasible
solutions maximizing profit are offline optimal. While most real-world taxi
routing problems are not offline, the profit of an offline optimal solution is
an upper bound to the profit of any strategy applied to the corresponding
online problem.

If an efficient solution method for the offline problem is available, it can
be used to solve the online problem through re-optimization. This online
strategy repeatedly solves the offline problem with the known customers,
and implements the first taxi actions as time goes by. Formally, given a
re-optimization rate ∆tupdate (in our case we will always use ∆tupdate = 30
seconds), iteration k of the strategy solves the offline problem with all un-
served customers known at time t = k∆tupdate, i.e., the set of customers{
c ∈ C, trequestc ≤ k∆tupdate

}
. We then implement all the taxis actions that

take place between t = k∆tupdate and t = (k + 1)∆tupdate in the previously
computed offline solution. A detailed description of our implementation of
the re-optimization strategy is presented is Section 5.1.

The re-optimization online strategy has been shown to work well in prac-
tice, see [5] and [34]. However, its efficiency relies on the quality of the
available offline solution methods, and their ability to give good solutions in
a time that needs to be less than ∆tupdate. In the examples of this paper we
set a limit of 15 seconds for the computation of an offline solution within a
re-optimization iteration.

In the rest of this section, we introduce and compare different offline
algorithms, focusing on their tractability and the quality of the solutions
they produce.

3.2 Offline Solution Methods

We formulate the offline taxi-routing problem using MIO, so that we can
use a MIO solver to compute provably optimal solutions. We also introduce
a set of heuristics that provide good feasible solutions and can serve as a
benchmark.

10



MIO formulation. We translate the taxi problem decisions, objective and
constraints from Section 2 into a linear mixed-integer optimization formula-
tion.

Each arc of graph G is associated with a binary decision variable (x or
y), representing whether this arc is used in the solution. For each customer
c, we also add the binary variables pc to represent them being picked-up or
rejected, together with the continuous decision variable tc to represent their
pick-up time.

yk,c =

{
1, if customer c is picked-up by taxi k as a first customer,

0, otherwise.

xc′,c =

{
1, if customer c is picked-up immediately after customer c′ by a taxi,

0, otherwise.

pc =

{
1, if customer c is picked-up by a taxi,

0, if c is rejected.

tc = pick-up time of customer c.

We maximize the total profit, which is the sum of the profits associated
with each arc of G in the solution.

maximize
∑

k∈K, c∈C

Rk,cyk,c +
∑
c′,c∈C

Rc′,cxc′,c (5)

To enforce that each taxi is associated with a unique sequence of cus-
tomers to pick-up, we implement a set of network-flow constraints on the
variables x, y and p.

pc =
∑
k∈K

yk,c +
∑
c′∈C

xc′,c ∀c ∈ C (6)∑
c∈C

xc′,c ≤ pc′ ∀c′ ∈ C (7)∑
c∈C

yk,c ≤ 1 ∀k ∈ K (8)

xc′,c ∈ {0, 1} ∀c′, c ∈ C (9)

yk,c ∈ {0, 1} ∀k ∈ K, c ∈ C (10)

pc ∈ {0, 1} ∀c ∈ C (11)

Eq. (6) defines pc: a customer c is picked up if and only if a (unique) taxi
k serves her as a first customer (variable yk,c) or after another customer c′
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(variable xc′,c). Eq. (7) guarantees that each customer c′ is either picked-up
and followed by at most one other customer c (

∑
c∈C xc′,c ≤ pc′ = 1) or not

picked up and thus not followed by any customers (
∑

c∈C xc′,c ≤ pc′ = 0).
Eq. (8) states that each taxi k has at most one first customer. Together these
constraints can be interpreted as “flow constraints” on the network G, and
guarantee that each feasible solution is a set of edges in G that corresponds
to a set of non-intersecting paths starting from taxis nodes. Our assumption
that there is no cycle in the graph plays an important role here: it allows
us to avoid cycle-breaking constraints that usually appear in vehicle routing
with large time windows.

We add the pick-up time window constraints:

tmin
c ≤ tc ≤ tmax

c ∀c ∈ C (12)

tc − tc′ ≥
(
tmin
c − tmax

c′

)
+
(
Tc′,c −

(
tmin
c − tmax

c′

))
xc′,c ∀c, c′ ∈ C (13)

tc ≥ tmin
c +

(
tinitk + Tk,c − tmin

c

)
yk,c ∀c ∈ C, k ∈ K.

(14)

Eq. (12) bounds the pick-up times to the customer time windows. Eqs. (13)
and (14) are two strengthened Big M sets of constraints that make sure that
the sequence of customers assigned to each taxi is compatible with their re-
spective pick-up times. For example, if customer c′ is served by a taxi imme-
diately before customer c (i.e., xc′,c = 1), Eq. (13) becomes (tc − tc′) ≥ Tc′,c,
which is exactly the meaning of the travel-time Tc′,c as defined in Section 2.
Conversely, if xc′,c = 0, Eq. (13) becomes (tc − tc′) ≥ tmin

c − tmax
c′ , which is

always true given the time window constraint (12).
The MIO formulation (5)-(14) has O(|K|.|C|+ |C|2) constraints and deci-

sion variables. Nonetheless, not all variables xc′,c and yk,c need to be defined.
For example, we do not need the decision variable xc′,c if tmin

c′ + Tc′,c ≥ tmax
c ,

because the pick-up time constraint (13) will force xc′,c = 0. It is therefore
sufficient to only consider the decision variables corresponding to the actions
that are compatible with the pick-up time windows, which correspond by
definition to the arcs of graph G. Let N = |K|+ |C| be the number of vertices
in graph G and E be the number of arcs. We obtain O(E + N) constraints
and decisions variables, which is why this formulation is particularly efficient,
owing to the fact that decision variables xc′,c are not indexed by the taxi k
that serves customers c and c′. We can then use a MIO solver to get an opti-
mal integer solution to the offline taxi-routing problem. We call this optimal
algorithm MIOoptimal.

Max Flow Heuristic. In the previous MIO formulation, the constraints
(6)-(11), together with the objective (5) represent a max-flow problem with
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integer bounds on the flow variables. Thus, extreme points of the formula-
tion are integral, and we can use the simplex algorithm to get an optimal
integral solution. Unfortunately, time window constraints (12)-(14) break
this integrality property.

However, in the special case where the pick-up times are fixed, we obtain
the following integrality result:

Theorem 1. If each customer has a fixed pick-up time, i.e., the time windows
are limited to one unique pick-up time tmin

c = tmax
c = t∗c , ∀c ∈ C then the

mixed-integer formulation (5)-(14) is integral.

Proof. First, replacing tmin
c = tmax

c = t∗c into Constraint (12), we obtain tc =
t∗c . By substituting the decision variable tc with its value t∗c in Constraint (13),
we obtain

(t∗c − t∗c′) ≥ (t∗c − t∗c′) + (Tc′,c − (t∗c − t∗c′))xc′,c,

which is equivalent to

(Tc′,c − (t∗c − t∗c′))xc′,c ≤ 0. (15)

If Tc′,c − (t∗c − t∗c′) > 0, then we must have xc′,c = 0 and the formulation
is equivalent to a formulation in which variable xc′,c is removed.

If Tc′,c− (t∗c − t∗c′) ≤ 0, then Equation (15) is always true no matter what
the value of xc′,c is. As a consequence, Constraint (13) is inactive on the
decision variables x, y and p.

The same reasoning applies to Constraint (14). Therefore, the feasibility
region of the decision variables x, y and p is the same as the one defined by
the network-flow constraints (6)-(11). This formulation is integral.

When pick-up times are fixed, the integrality result means that we can
solve the offline problem efficiently, for example using the simplex algorithm.
We use Theorem 1 to design a heuristic for the offline taxi-routing problems
with time windows. If we assign to each customer c a fixed pick-up time
t∗c such that tmin

c ≤ t∗c ≤ tmax
c , then the optimal solution for the max-flow

problem with fixed pick-up times t∗c is feasible for the general formulation
with time windows. Note that these solutions are often sub-optimal, as they
do not use the time windows flexibility to pick-up customers more efficiently.
Empirically, setting t∗c = tmax

c will yield good solutions, as taxis have more
time to go from their first position to the first customers. On the other hand,
when time windows are small, the solutions are often near-optimal or even
optimal on some problems. We call this heuristic maxflow.
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Baseline Heuristic: Greedy Insertion. A simple approach to the of-
fline taxi routing problem is to assign the customers to taxis in a greedy way.
We iterate through the customers by order of tmin

c (earliest customers first),
and we assign them to the closest available taxi or reject them if no taxi is
available. This heuristic is related to insertion-based solutions construction
algorithm as presented in [8]. We name this algorithm greedy, and its for-
mal implementation is detailed in Appendix A.1. Because of its simplicity,
tractability and wide-spread use, greedy will be our baseline for the offline
taxi routing problem.

Local-Improvement with 2-OPT. Traditional solution methods for large
scale vehicle routing include heuristics that locally improve a feasible solution
in an iterative way. The 2-OPT algorithm is a popular local-improvement
heuristic, first introduced for the TSP in [10]. We implement an optimized
version of the 2-OPT* algorithm presented in [28], in order to compare our
MIO formulation to state-of-the-art fast heuristics. We initialize it with the
greedy solution, and stop it when it reaches a locally optimal solution. We
name this algorithm 2-OPT, and its details are presented in Appendix A.2.

We chose not to use more complex meta-heuristics with exploration,
such as Tabu-Search presented in [12]. While we acknowledge these meta-
heuristics avoid local optima and are common in vehicle routing, we could
not find a way to implement a version of Tabu Search that worked with the
limited time budget of a few seconds of online decision making and the large
problem size with tens of thousands of customers.

3.3 Application on Synthetic Data

We generate random synthetic instances of offline taxi routing to evaluate
the algorithms presented in Section 3.2. We compare the running time and
the quality of solutions in different scenarios, in order to gain insights that
we will use to solve large-scale real-world problems.

Routing in synthetic city. To compare the solutions of MIOoptimal to
the solutions provided by the other algorithms, we have designed a way to
generate synthetic routing problems. We need these synthetic problems, as
real-world problems are rarely small enough to be solved to optimality by
state-of-the-art commercial solvers. We have built synthetic instances that
can be solved to optimality while being large and complex enough to provide
interesting insights.

The synthetic routing network represents a simplified city and its suburbs.
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Figure 2: Routing network used to generate the synthetic instances of taxi
routing. Each road is two-way, and the green connecting arcs have faster
travel-times. The travel-times are chosen such that the mean trip-time be-
tween two vertices in the routing graph is around 10 minutes. The network
has been designed to represent commuting effect between residential area and
city-center. Customers trips are randomly generated as Poisson processes on
each intersection of the routing network.
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The graph has 192 nodes and 640 bi-directional arcs. The downtown area
is represented by a 8 times 8 square, and the 8 suburbs are represented
by 4 times 4 squares. Travel-times are slower inside the city and suburbs,
and faster in connecting links and around the city. The routing network is
represented in Figure 2. This network and all the algorithms are implemented
using our open-source simulation and visualization framework in Julia.

On this network, we create a random one-hour instance of taxi-routing.
We choose the actions of a fleet of 20 taxis with uniformly distributed initial
locations. Customers are randomly generated as a Poisson process with a
fixed rate, with the origin and destination of each trip uniformly drawn across
the network nodes. The fares are set to be proportional to the distance of
the trips, which are defined as the paths that minimize the total travel-time.
We compute the time parameters of the taxi routing problems Tc′,c using
the total time of these shortest paths, to serve customer c′ and then go to
customer c origin. The profit parameters Rc′,c are set equal to the profit,
i.e., the difference between the fare paid by c and a cost proportional to the
driving time.

The travel-times Tc′,c are selected so that the highway links (green in
Figure 2) are twice as fast as the other links, and so that a taxi can serve up
to 3-4 customers per hour. The profit Rc′,c are computed such that there is
a cost of $5 per hour of driving and $1 per hour of waiting, and a customer
fare of $80 per hour of driving.

Results We study the influence of the time windows and the level of de-
mand on the behavior of our algorithms. We select three levels of demand,
setting the rates of the customer Poisson processes so that the expectation of
the total number of customers is respectively 40, 70 and 140 customers. 40
customers (low demand) corresponds to optimal solutions in which taxis are
idle half the time and are able to serve all customers. 70 customers (medium
demand) corresponds to a matched supply and demand: almost all customers
are accepted and taxis are driving most of the time. 140 customers (high de-
mand) represents a surge scenario, where taxis can only accept 50% of the
customers on average. We give all customers a fixed time window around
their preferred pick-up time, from 1 to 6 minutes. We average our results
across 20 random simulations for each set of parameters. Table 1 compares
the profit of the solutions of each algorithm to the greedy baseline, and Fig-
ure 3 shows the computational time needed by the commercial solver Gurobi
to compute the optimal solution (MIOoptimal).
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Time Window Demand
Algorithms Increase in Profit

MIOoptimal 2-OPT maxflow

1 min.
low 1.94% 1.13% 1.27%

medium 8.24% 3.70% 5.75%
high 15.92% 8.19% 12.82%

3 min.
low 1.73% 1.22% 1.10%

medium 9.00% 5.36% 2.75%
high 14.11% 7.24% 4.98%

6 min.
low 1.42% 0.96% -0.86%

medium 9.38% 5.84% -2.60%
high 19.93% 11.64% 3.17%

Table 1: Comparing the offline solvers to the greedy baseline. Each row
corresponds to a different setting of synthetic customer data: we vary the
customers time windows (flexibility in the pick-up time), and the level of
demand (number of customers). We show the improvement in profit of our
algorithms compared to the greedy heuristic, averaged across 20 randomly
generated simulations. Low demand corresponds to 40 customers, and taxis
are typically idle half of the time. Medium demand is 70 customers, which
represents a balanced supply and demand. High demand is 140 customers
and at least half of the customers are typically rejected. We represent in bold
the most favorable situation for each algorithm.
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Figure 3: Time for MIOoptimal to find the optimal solutions. The times
are averaged across 20 simulations. The three curves represent the different
levels of demand, and the x-axis is the length of the customers time windows
in minutes. Generally, a larger time windows and more customers lead to an
exponentially higher computational time. Note the logarithmic scale of the
y-axis.
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3.4 The Edge of Optimality

The results of the simulations on synthetic data, presented in Table 1 and
Figure 3, allow us to split the level of demand and the length of the time
windows into three main categories of vehicle routing problems. These set-
tings represent fundamentally different optimization problems, and we study
how the solution methods compare in each one of them.

First, when demand is low, the greedy heuristic performs almost opti-
mally, always within 2% of the optimum in our simulations. This situation is
intuitive: most taxis being free, assigning the nearest free taxi to a customer
performs well in practice. In this situation, optimization is not extremely
useful and we recommend using greedy, which is the fastest and the most
interpretable.

When demand is medium to high, taxis are mostly busy and greedy is
typically far from optimality. There is an edge in using optimization: taking
into account future customers and using time window flexibility allows for
better solutions. We identify two main settings in this situation.

When the time windows are small, maxflow is very close to optimality.
Indeed, we have seen in Section 3.2 that this solution method is actually opti-
mal when pick-up times are fixed. As commercial linear optimization solvers
are typically very fast and scale well, we recommend using this heuristic in
practice. It performs significantly better than greedy and 2-OPT while being
close to the optimal solution provided by MIOoptimal.

The most interesting case is when demand is medium to high and time
windows are not small. This situation is the most useful in practice, as a
3-6 minutes time window is a fair estimation of customer patience. Indeed,
at the time we write this article, the media reports a median Uber customer
waiting time of 2-10 minutes, depending on the city, though we could not
find any official statistics. High demand scenarios are also typical in taxi
routing, with peak-hours everyday. In this case, optimal solutions outperform
the locally-optimal solutions provided by 2-OPT and have a strong edge on
greedy solutions. maxflow can perform poorly when the time windows are
large. We recommend using MIOoptimal when possible, but the problem
can be significantly harder to solve to optimality, as shown in Figure 3. The
mixed-integer optimization solver takes an exponential time, in the level of
demand and in the time window length, to converge to provable optimality
and also to provide near-optimal feasible solutions. When MIOoptimal is too
slow to be used in practice, the locally optimal solution provided by 2-OPT is
a reasonable alternative, and is widely used for large scale vehicle routing, as
stated in [8]. Scaling the optimal formulation to real-world applications and
outperforming the local-optimization methods is the objective of the next
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section.

4 Scaling Optimization to Real-World Appli-

cations

Using optimal solvers for the offline taxi routing problem leads to a significant
improvement in the solution quality, particularly when customer demand
matches or exceeds the vehicle supply. MIOoptimal nevertheless becomes
quickly intractable when the number of customers and taxis increases: to
obtain a proof of optimality in less than one hour with a typical laptop, the
limit is around 150 customers for a 5 minutes time window.

In this section, we show how to leverage the structure of real-world ve-
hicle routing applications to make mixed-integer optimization formulations
tractable. We construct a large scale and real-world taxi routing problem
in New York City using Yellow-Cab demand data. This problem involves
thousands of taxis and customers, and each iteration of the re-optimization
process corresponds to a mixed-integer optimization formulation with more
than 10 million binary decision variables, and needs to be solved in seconds.
We propose an algorithm that is tractable at this scale of taxi routing, out-
performs the state-of-the-art and combines the advantages of local-search
and global optimization to get near-optimal results within the allowed com-
putational time.

4.1 Sparsifying the Flow Graph

One way to increase the tractability of MIOoptimal is to decrease the number
of binary decision variables in the mixed integer optimization formulation
presented in Section 3.2. Equivalently, removing some well-chosen arcs from
the flow graph G will reduce the solution space and make optimization easier.
Nonetheless, we risk removing some arcs that are in the optimal solution and
hence decrease the quality of the result. If we find arcs that are less likely
to be optimal than others, removing them can increase tractability without
decreasing the optimal solution quality too much, and, given the limited
computational time, lead to better practical solutions.

Our results on synthetic data in Section 3.4 show that high demand sce-
narios are the hardest offline taxi routing problems and are the most favorable
and interesting for optimization-based algorithms. As a result, we focus on
scenarios in which demand matches or exceeds supply. In the optimal so-
lution for such a problem, a taxi is unlikely to wait or drive empty for too
long before getting a customer. Indeed, if we have a large number of taxis
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spread throughout the city and a high demand, taxis will probably pick-up
customers that are nearby in space and time. When closer customers are
available, we do not expect a taxi to drive empty and wait a long time to
pick-up a far-away customer: we can safely remove the corresponding arcs
from G.

Formally, we define a cost function between nodes in graph G. For nodes
representing customers c′ and c, we define the cost C(c′, c) to be the shortest
possible “lost time” that a taxi will have to spend waiting or driving empty
when serving customer c′ and c sequentially:

C(c′, c) = max
(
Tc′,c, t

min
c − tmax

c′

)
− Tc′ ,

where Tc′ is the time to transport customer c′ from its origin to its destination.
For nodes representing a taxi k and a customer c, we define C(k, c) to be the
minimal time (including wait) it takes for the taxi to reach and pick-up c as
a first customer:

C(k, c) = max
(
Tk,c, t

min
c − tinitk

)
.

We want to keep the arcs in G that have the lowest cost, as they represent
actions of picking up “nearby” customers, and thus more likely to be optimal.
These costs are just used as an indicator of the quality of each edge, and will
be used to remove the edges that are really unlikely to be in an optimal
solution.

For a given sparsity parameter K, we prune G to create a sparser graph
KG by only keeping the K-lowest cost incoming and outgoing arcs for every
node in G. We name this flow graph pruning technique K-neighborhood,
and its steps are detailed in Algorithm 1.

Algorithm 1: K-neighborhood

Input: The flow-graph G and a sparsity parameter K.
Output: A sparser flow-graph KG by pruning G.
begin

Initialize graph KG with the same nodes as G and without any
arcs;

for all node n in G do
select the K incoming arcs to node n in G with lowest cost
C(·, n) and add them to KG;

select the K outgoing arcs out of node n in G with lowest cost
C(n, ·) and add them to KG;

end

end
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The new formulation associated with the graph KG (for fixed K) has
O(|C|+ |K|) decision variables and constraints instead of O(|C|2 + |C||K|) for
G, which allows us to solve problems at a much larger scale. In practice,for
the real-world problems we have tried, we noticed that K = 20 usually
provides near optimal solutions, and K = 50 optimal solutions. We have also
empirically found that the choice of K should only depend on the balance
between supply and demand. When demand is lower than supply, we have
seen in Section 3.4 that taxis tend to be idle and the closest taxi is likely
to pick-up a customer in an optimal solution. Low values of K are then
enough to get near-optimal solutions, as the closest taxis will have generally
the lowest values of C(·, ·). As demand grows and matches or exceeds supply,
we have empirically found that the best solutions correspond to higher values
of K, up to K = 50. Furthermore, the size of the city and the total number
of taxis and customers typically do not influence the choice of K: the choices
for one given taxi are typically local, in the taxi’s neighborhood, and are not
influenced by the total size of the city.

When time windows are small, results from Section 3.4 indicate that
maxflow provides near-optimal solutions. Additionally, using K-neighborhood

with K = 50, problems with thousands of taxis and customers are solved in
seconds using maxflow. When time windows are larger, typically 3-6 min-
utes, we have shown that the offline taxi routing problem becomes much
harder, and that we need to use MIOoptimal to get good solutions. Unfor-
tunately, when using MIOoptimal and K-neighborhood for our large scale
applications, the problem is typically intractable for K ≥ 4 and low values
of K reduce the quality of the solutions. These observations motivate the
ideas in the next section.

4.2 The Backbone Algorithm

In order to make MIOoptimal tractable for large instances of the taxi routing
problem, we need to remove a lot of arcs from G. We cannot set a value
of K that is too low, as K-neighborhood would remove too many arcs that
participate in optimal solutions and correspondingly decrease the quality of
the solution. Nonetheless, even within a limited neighborhood around a
taxi’s position, there are customers that are better than others, given the
positions of other taxis. If we identify these potentially good arcs of G, we
could reduce the number of arcs even more and make MIOoptimal tractable.

In Theorem 1 we have shown that for fixed pick-up times the maxflow

algorithm solves the problem optimally. Furthermore, the maxflow algorithm
scales for very large problems. If we randomly select a pick-up time within
each time window and solve the fixed-pickup time problem with maxflow
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in the graph KG, we get a solution that is feasible for the problem with
time windows, as seen in Section 3.2. If we resolve several times the fixed
pick-up time problem with the tractable maxflow and random pick-up time
within the time windows, and collect all the optimal arcs across the different
solutions, we obtain a set of arcs that are likely to be optimal. This set of arcs
represents a very sparse sub-graph of G, a “backbone” for our optimization
problem, on which we can use MIOoptimal to compute an optimal solution
within the backbone network, which is near-optimal for the original graph
G. This is the backbone algorithm, described formally in Algorithm 2.

Algorithm 2: backbone

Input: The flow-graph G; a sparsity parameter K such that maxflow
is tractable on KG; a limit Emax on the number of arcs such that
MIOoptimal stays tractable.
Output: A backbone flow-graph BG that is a sparser version of KG
with a maximum of Emax arcs.
begin

Step 1: Initialize the backbone graph BG by removing all the arcs
in G;

while BG has less than Emax arcs do
Step 2: for each customer c ∈ C do

generate a uniformly random pick-up time tc ∈ [tmin
c , tmax

c ];
end
Step 3: use maxflow on KG with the fixed pick-up times tc;
Step 4: add all the optimal arcs of the computed solution to
BG;

end

end

We typically choose K = 20 for the large scale instances of this paper:
this choice of K creates a sparse graph while rarely sacrificing optimality.
This algorithm gives good results in practice, especially if the time windows
are small (less that 2 minutes in our applications). Steps 2-3 of Algorithm 2
can be executed in parallel, which allows us to assign most of the available
computational time to solve the mixed-integer optimization problem on the
backbone BG. For wider time windows, the maxflow solutions with random
pickup times create too many arcs and therefore MIOoptimal is not tractable
at the largest scale. This motivates the need to improve the backbone algo-
rithm, which we do next.
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4.3 The Local Backbone Algorithm

When using the re-optimization strategy presented in Section 3.1, we solve
the offline taxi routing problem with all the available future demand infor-
mation at every time-step of length ∆t, typically 30 seconds. The offline
problem at time t is very similar to the next problem at time t + ∆t as we
only add and remove a few requests. Therefore, a good solution to the offline
problem at time t can be used to construct a good solution to the problem
at time t + ∆t. More specifically, we adapt the previous solution by remov-
ing the customers that have just been served at time t and adding the new
requests of time t + ∆t as “rejected” to make the solution feasible for the
new problem (we do not know yet if we can accept them). We can then use
this solution as a warm-start for the new problem.

In Steps 2-3 of the backbone algorithm in Section 4.2, the fixed pick-
up time is selected uniformly randomly within the customers time windows.
The idea of the local backbone algorithm is to update the customers time
windows so that the solution s at time t is feasible with these pick-up times.

For each customer c served in s, we define [tmin
c,s , tmax

c,s ] to be the interval
of possible pick-up times tc such that s is still feasible. In other words,
all taxis can still serve the same sequence of customers as prescribed by
solution s, while respecting the pick-up time tc for customer c. We have
[tmin
c,s , tmax

c,s ] ⊂ [tmin
c , tmax

c ]. We compute tmin
c,s and tmax

c,s next. Suppose that in
solution s, a taxi has to pick-up customers c− , c and c+, in this order. Then

tmin
c,s = max

(
tmin
c , tmin

c−,s + Tc−,c

)
, (16)

tmax
c,s = min

(
tmax
c , tmax

c+,s − Tc,c+
)
. (17)

Equation (16) states that the minimal pick-up time tmin
c,s for customer c either

corresponds to tmin
c , the beginning of its time window, or to the earliest

possible time to pick-up customer c− plus the travel-time between c− and
c : tmin

c−,s + Tc−,c. Equivalently Equation (17) defines tmax
c,s to either be equal

to tmax
c or to the latest possible time to pick-up c+ minus the travel-time

between c and c+, whichever is the earliest.
Additionally, if cfirst and clast are the first and last customers to be picked-

up by taxi k, there are no propagating constraints on their earliest and latest
pick-up times, respectively, which leads to:

tmin
cfirst,s = max

(
tmin
c , tinitk + Tk,c

)
, (18)

tmax
clast,s = tmax

c . (19)

Using (16) and (18), tmin
c,s can be computed for each customer c by forward

induction on each taxi’s sequence of customers. Similarly, tmax
c,s can be com-

puted by backward induction using Equations (17) and (19). These forward
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and backward computations are similar to the Lazy and Eager Scheduling
Algorithms introduced in [4] to build solutions for the dial-a-ride problem,
and are linear in the number of pick-ups in the route.

The local-backbone algorithm. We use these new time windows as
a guide for our exploration process: instead of selecting random pick-up
times within [tmin

c , tmax
c ] in the backbone algorithm, we select them within

[tmin
c,s , tmax

c,s ]. All the arcs generated by maxflow will therefore be in a “neigh-
borhood” of solution s, allowing us to improve on the solution while building
on the quality of s to limit the search space. This process can be boot-
strapped to improve on itself iteratively: we name local-backbone this
variant of backbone, as described in Algorithm 3.

Algorithm 3: local-backbone

Input: The flow-graph G; a sparsity parameter K such that maxflow
is tractable on KG; a limit Emax on the number of arcs such that
MIOoptimal stays tractable; a starting solution s, that can be empty if
none is known.
Output: A solution s′ for the offline taxi routing problem that
improves upon solution s. begin

while time is available do
compute the values [tmin

c,s , tmax
c,s ] for each customer c using the

solution s;
create an empty “backbone” graph BG by removing the arcs of
G;

add all the arcs of s to BG;
while BG has less than Emax arcs do

for each customer c ∈ C do
generate a uniformly random pick-up time in [tmin

c,s , tmax
c,s ];

end
use maxflow on KG with the fixed pick-up times tc;
add all the optimal arcs of the computed solution to BG;

end
use MIOoptimal to solve the offline taxi routing problem on
BG, with s as a warm-start;

update s to be this new solution s′ ;

end

end

local-backbone is an algorithm that combines the advantages of a local-
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improvement and global optimization. It aims to avoid local-minima by us-
ing an MIO solver, and usually provides near-optimal solutions. Its main
strength is when the problem is hard to solve or when we have tight con-
straints on computational time: the difficulty of the problem can be limited
by using a very sparse graph BG, and compensate for the corresponding de-
crease in the solution quality by doing more iterations of local-backbone

to keep improving the solution as with any local-improvement method. We
empirically found that the starting solution does not significantly influence
the quality of the convergence: we could not find unsatisfactory local minima
in our applications. Furthermore, we adapted the algorithm to get out of any
local optimum, as described in the Remark below.

Remark 1. If we modify slightly local-backbone to also add some uni-
formly random pick-up time (not local) in addition to the local ones, we
obtain an algorithm that converges to the optimum. Indeed, at each iteration
of Algorithm 3, the non-local pick-up times have a positive probability of being
compatible with the optimal solution. If they are, maxflow will add the arcs
of the optimal solution to BG, and the optimal solver will find the optimal
solution.

For large scale online routing problems, we found that local-backbone

leads to stronger solutions than backbone, as it is able to make the most out
of a warm-start when using re-optimization. Furthermore, we have found in
our experiments that local-backbone outperforms all the other methods we
tried by a large margin. We next present computational results and compare
local-backbone to other offline solvers.

4.4 Taxi Routing in NYC

When studying large-scale vehicle routing problems, synthetic data is not
enough to represent complex real-world demand and networks. Therefore,
we reconstructed the exact Manhattan routing network in New York City,
and used real demand data from NYC Yellow Cabs to build accurate real-
world online taxi-routing problems.

Using OpenStreetMap data, presented in [14], we extracted the complete
routing network of the island of Manhattan, as represented in Figure 4. This
large network, with 4324 intersections and 9518 directed arcs, was chosen
because taxis and on-demand ride-sharing vehicles are an extremely popular
mean of transportation in this city, with more than 500,000 trips everyday.
Interestingly, a large fraction of the rides stay within Manhattan from origin
to destination: taxi demand data in [23] shows that around 80% of the rides
that have a pick-up location in Manhattan stay within Manhattan.
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Figure 4: A taxi-routing simulation on the Manhattan routing network in
NYC. On the left, we show a general view of the routing network, with 4324
intersections and 9518 directed arcs, built using OpenStreetMap data. On
the right, we zoom on a detail of the online taxi routing simulation. Each
red circle is a taxi, and the green squares represent customers, either waiting
or being transported by a taxi. There were more than 26,000 customers and
4,000 taxis for 1.5 hours of simulation.
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The New York City Taxi and Limousine Commission has released a large
taxi-trip dataset that is freely available online, see [23]. We have access to
more than a billion trips, all the Yellow and Green Cabs trips for the years
2009-2016. The available information includes their pick-up and drop-off
points and times, the fare and tip paid, the number of passengers and more.
The volume of the demand is large, with generally more than 400,000 trips
a day for Yellow Cabs alone, more than 12 million per month. We focus
in this paper on the yellow-cab rides of Friday 04/15/2016 12-1:30pm from
Manhattan to Manhattan, which represent exactly 26,109 customers after
removing data errors. This date was chosen purely arbitrarily, though we
selected a time of high demand. We adapt the trips to our routing network
by projecting the origin and destination of the customers on the nearest
intersection. The fare paid by each customer c is used to create the profit
parameters Rc′,c, and we set the beginning of the pick-up time window tmin

c

to be the real pick-up time of the customers. The values of tmax
c , trequestc , and

tconfc are chosen for each simulation to represent the situations we want to
model.

Simulated taxis are added to the network, and we change the number
of taxis while keeping the demand constant to control the balance between
supply and demand. We typically need a lot less taxis than the real number
of Yellow Cabs to serve the same demand, because of our optimized solutions,
more centralized control and future planning. Furthermore, we used the very
same yellow-cab taxi data to estimate the travel-time on all arcs of the routing
network, running the algorithm described in [6] on the same demand data we
used to create the rides. Therefore, these travel-times match the congestion
and traffic patterns of the same precise day and time: Friday 04/15/2016
12-1:30pm. Under the assumption that taxis use the fastest route, which is
verified in practice for ride-sharing companies as drivers paths are suggested
and monitored in real-time by the driver’s phone application, we can compute
the travel-time Tc′,c for each arc of the graph G. We also subtract a cost of
$5 per hour of driving so that Rc′,c represents the profit.

We created a micro-simulation software able to simulate, optimize and
visualize online vehicle routing on real-world networks. This software has
provided us a much finer control and better speed than existing software like
MATsim. It also enables us to easily interact with any free or commercial
solver like CBC or Gurobi, through the Julia for Mathematical Program-
ming (JuMP) interface. Figure 4 shows an example of such a simulation in
Manhattan.
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Algorithm
Increase in profit, compared to greedy

K = 2 K = 4 K = 8 K = 20
MIOoptimal -5.05% 5.41% 3.75% 2.28%

local-backbone -5.74% 4.74% 8.27% 9.13%
2-OPT 4.03%

Table 2: Comparing offline algorithms on a big routing problem. These re-
sults are averaged on five distinct simulations for an offline taxi routing prob-
lem in Manhattan with 2700 taxis and more than 6000 customers. The com-
putational time is limited to 5 minutes for each algorithm. To make the prob-
lem tractable for the optimization-based methods, we apply K-neighborhood

to shrink the flow graph G. We show the results for different values of K,
highlighting the most favorable case for each method. Our version of 2-OPT
does not use G and is therefore not sensitive to K.

4.5 Offline Results for Large Scale Taxi Routing

We have introduced new algorithms to scale the offline MIO formulation
of taxi routing to real-world demand scenarios. The flow-graph shrinking
heuristic K-neighborhood implements a trade-off between the tractability of
the solution methods and the quality of the solutions. And the local-backbone
algorithm is our most scalable optimization-based algorithm. In the high-
demand scenario with time windows, we want to compare our algorithms
to the baseline greedy and 2-OPT. These algorithms are meant to be used
in a re-optimization setting when solving the online problem. We study in
this section an offline taxi routing problem in NYC that represents a typical
iteration of re-optimization for the online problem.

We create an offline scenario, using the online taxi-routing problem pre-
sented in Section 4.4. We assign each customer a 5 minutes time window
and a random request time that is on average 15 minutes prior to their first
desired pick-up time, generated randomly uniformly between 0 and 30 min-
utes. This 15 minutes prior time was chosen to represent a situation with
some reasonable prior information available, and we will study in Section 5.3
the influence of this prior request time on the quality of the solutions. We
add 2700 taxis on the routing network, at random locations following the
distribution of customer pick-up location in Manhattan at this time of the
day. This number is chosen to represent situations with slightly exceeding
demand, for which optimization algorithms are useful. In this context, the
greedy heuristic is able to serve 80% of the demand on time.

We consider the offline taxi routing problem corresponding to one step of
the re-optimization process: at 12:30pm, with all the customers c such that
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trequestc ≤ 12:30pm. This gives roughly 6000-6500 customers, depending on
the random values chosen for trequestc . We generate five such random problems
by re-generating the request times and the taxi initial positions and average
the profits generated by our different algorithms, with a computational limit
of 5 minutes for each. The actual time available to solve this problem in
practice is 15 seconds, but we give the algorithms more time to compensate
for the fact that we do not provide a warm-start and to be able to compare
the optimization power of each algorithm. In the next section, we will show
how to limit the computational time. The numerical results are presented in
Table 2.

The optimization based algorithms MIOoptimal and local-backbone

perform better than the nearest-taxi baseline greedy and the state-of-the-art
local improvement algorithm 2-OPT: our algorithms scale to real-world taxi
routing. MIOoptimal managed to find the provable optimal solution within
5 minutes only for K = 2. Note that this solution is worse than greedy,
as K = 2 is too small and greedy does not operate on the pruned flow
graph, and thus gives a better solution. It did not give an optimal solution
in the other cases, but generally yielded a good feasible solution. For K = 2
and K = 4, MIOoptimal performs slightly better than local-backbone, be-
cause of the loss due to the backbone structure. But for larger values of K,
local-backbone continues to improve and provides higher quality solutions,
whereas MIOoptimal becomes intractable and fails to find better solutions in
the allowed time.

local-backbone manages to do better than all the algorithms we tried
on offline taxi routing. More than the extra 5% of profit this algorithm
generates, we have demonstrated that mixed integer formulations can be
used in practice for large scale vehicle routing by leveraging the “locality” of
the decisions. On the other hand, we have only solved one particular iteration
of the re-optimization strategy for one particular offline routing problem. We
show in the next section how our algorithm performs in the full online setting,
and what situations are more favorable for optimization.

5 Online Taxi Routing in NYC

In Section 3.1, we have introduced a re-optimization strategy to solve online
taxi routing. This iterative algorithm requires to be able to solve large scale
offline taxi routing problems within a limit of 15 seconds, which is the limit
we have chosen for our applications. We have demonstrated in the previous
section that local-backbone can be used to get near-optimal solutions to
these large offline problems in a tractable way, though not yet respecting
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this strong time limit. We now show how to respect the 15 seconds limit
in practice, and compare our optimization-based algorithms to other online
strategies. These algorithms are tested on the New York City taxi routing
problem defined in Section 4.4 to gain insights on how the increasing con-
nectivity, central control and knowledge of the future demand can be used
to better optimize online routing decisions.

5.1 Re-optimization and Warm-Starts

Re-optimization involves re-solving the offline taxi routing problem with
all the known future customers periodically, at every time-step of length
∆tupdate = 30 seconds. This frequent re-optimization can be leveraged to
reduce the computational time needed at each iteration. We present here
our approach to re-optimization in a large-scale real-time setting.

Accelerating Re-Optimization. In the re-optimization strategy, the so-
lution of the offline problem at one iteration can be used to provide the solver
with an initial solution feasible for the next iteration. We have discussed in
Section 4.3 that local-backbone and 2-OPT can improve on any provided
initial solutions; our relatively high re-optimization frequency provides good
warm-start at each step, which leads to better results when a limited time is
available.

Moreover, the previous solution is not the only thing we can build on from
the past iterations. Our local-backbone algorithm uses the flow graph KG
to represent the problem to solve. Unfortunately, it takes time to construct
the graph G at each iteration, to prune it with K-neighborhood as presented
in Section 4.1, and to convert the resulting problem into a sparse matrix
to give to a commercial solver. It actually takes us 10 to 40 seconds to go
through these preliminary steps for a problem of the scale of taxi routing in
Manhattan. Thankfully, the graph KG is not too different from one iteration
to the next. As new customers appear, we perform an online update on
KG, adding new arcs and removing the obsolete ones. This online update
is particularly useful because we never have to construct and store the full
graph G. To make such an update possible, we keep track of the cost C(c′, c)
(as introduced in Section 4.1) of each arc of the graph KG, and we use a
heap data structure that allows us to efficiently keep and update the K-
best arcs when new requests come or old requests become obsolete. Thus,
we update the pruned flow graph KG in-place at each iteration, without
reconstructing and pruning the full graph G. This in-place update of the
graph and of the corresponding sparse matrix that we send to the solver, is
what we call a formulation warm-start. In practice, formulation warm-start

31



allows us to create KG in one to two seconds when the formulation of the
previous iteration is available, instead of half a minute at each iteration.

Parallelization is also useful in practice, particularly to accelerate local-backbone
and when using a solver to perform a branch-and-bound on the MIO formu-
lation. Indeed, the exploration phase of the backbone algorithm can be
computed in parallel, as discussed in Section 4.2.

The Online Re-Optimization Strategy The online re-optimization strat-
egy periodically re-optimizes its assignments of future customers to taxis,
sends the taxi routing decisions to the vehicles, receives the vehicles status,
and processes the customer requests. We list all the steps of one iteration of
our implementation of re-optimization:

1. Gather the new taxi actions since the last update, and all the new
customer requests.

2. Compute the new pruned flow graph KG: we update the one from the
previous iteration to the new situation. More specifically, we add the
new requests and we remove the completed picked-ups and the rejected
customers. This is done while maintaining the K-sparsity property of
KG. This step corresponds to the “formulation warm-start” discussed
above.

3. Update the offline solution of the previous iteration to make it feasible
for the new formulation. Specifically, mark the new customers as being
rejected and remove the decisions that have already been implemented.

4. Solve the optimization problem with local-backbone, using the for-
mulation and the warm-start constructed in Steps 2 and 3. A solution
must be provided in less than ∆tupdate = 30 seconds, but we use 15 sec-
onds to keep a security margin and leave time to broadcast the actions
to the fleet.

5. If we have reached the confirmation time tconfc of a customer c, look at
the customer status in the current solution. If the customer is rejected,
communicate this information to the customer, or offer her to wait for
another confirmation time. In the examples of this paper, we will reject
the customer. If the customer is accepted, make sure that she will be
accepted in all future iterations. A simple way to do so is to add the
constraint pc = 1 to the MIO formulation presented in Section 3.2. This
does not break the network-flow structure of the problem and makes
sure that customer c is picked-up in all feasible solutions.
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6. Send the taxis all the routing actions that occur before the next update.
Specifically, we dispatch a taxi to a customer pick-up location so that
it reaches the customer at the earliest pick-up time compatible with
the new solution, which is tmin

c,s as defined in Section 4.3. Taxis are
not aware of the full offline schedule, as it can change in the next re-
optimization iterations.

7. Idle taxis are instructed to wait at their current position. Note that
other behaviors could be chosen instead, for example using forecast
demand to route the idle taxis, or just let them move as they want. We
do not study these choices in this paper.

5.2 Online Solution Methods

To evaluate the performance of our re-optimization strategy with local-backbone,
we created a set of reference large-scale online algorithms that will serve as
a baseline to evaluate our work.

Pure online algorithm. Our simplest algorithm, pure-online, does not
use the customer prior request information, pretending that trequestc = tmin

c ∀c ∈
C. At time tmin

c , this algorithm will send the nearest available taxi to the
customer. The taxi needs to be able to pick-up c before tmax

c , but does not
have to be idle at tmin

c . This myopic algorithm is not too different from real
taxi behavior, that will look for a customer in their neighborhood, or from
ride-sharing for-hire vehicles, that will be matched with nearby requests.
Therefore, pure-online will be used as a baseline to outline the extra effi-
ciency other algorithms gain from more optimization and prior knowledge of
the demand.

Planning with no re-optimization. no-reopt is a greedy algorithm that
uses prior request knowledge to plan ahead and find better solutions, but
does not re-optimize. We maintain a list of future assignments for each taxi.
When a new customer requests a ride for a specific pick-up time window, we
check if we can insert it in the lists of customers assigned to each taxi. If it is
not possible, we reject the customer. If we can, we assign it to a taxi chosen
such that this new assignment maximizes the total profit, using the efficient
insertion algorithm described in Appendix A.1. Therefore, no-reopt takes
into account the future positions of the taxis when making these decisions,
though the decision cannot be changed once a customer is assigned to a taxi.
This is different from the re-optimization process described in Section 5.1,
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that can re-assign a customer to another taxi as new information about the
future is revealed, and only decides the final action when it is time for pick-up.

Optimization-based updates. The backbone online algorithm is the re-
optimization process described in Section 5.1. This algorithm uses local-backbone
to perform the updates and is limited to 15 seconds of computation per iter-
ation.

Heuristic-based updates. The 2-OPT online algorithm is the adaptation
of its offline counterpart to the online setting. We use a re-optimization
process similar to the one presented in Section 5.1, removing the flow-graph
computations and replacing the offline solution method local-backbone by
2-OPT. We use the warm-start solution from the previous iteration, and we
limit the algorithm to 15 seconds of computation. This algorithm uses all
available prior information, allows for re-optimization and performs typically
well in practice.

5.3 Experiments and Results

We apply our online algorithms to the taxi routing problem presented in
Section 4.4. The confirmation time tconfc for each customer c is chosen to
be a maximum of 3 minutes after the request time trequestc . To study the
impact of prior customer knowledge, we vary the customer request time. Let
T request be the desired average time of prior request. We assign each customer
c with a random request time trequestc drawn uniformly within the interval
[tmin
c − 2T request, tmin

c ]. The randomness of the request times is important:
for example, if each customer c were to request a ride at the non-random
time trequestc = tmin

c −T request, the request times would be ordered by pick-up
times, which is not real-world behavior. The customer time window length
is the same for each customer: we assign each customer with a time window
of length Twait, with tmax

c = tmin
c + Twait. To control the supply-demand

balance, we vary the number of taxis while keeping the customers constant.
As discussed in Section 4.4, our algorithms are implemented in the Ju-

lia language, with a special care for computational speed and visualizations.
Their parameters were all optimized to get the best results. We created a
framework allowing us to test the different online strategies in the same en-
vironment, making sure that we only share the requests information in real
time. All simulations are run on identical machines, using 2 CPUs and 8GB
of memory. Each simulation presented in this section was done over a time
period of 1.5 hours, as we simulated vehicle routing in Manhattan for the
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Figure 5: Varying the mean prior request time. Increase in profit of each
online taxi routing algorithm compared to pure-online. We vary the mean
prior request time T request from 0 (pure online situation) to 15 minutes. Each
customer is assigned to a Twait = 5 minutes time window. We control 4000
taxis, which corresponds to a high demand scenario as 80% of the demand
is served in the best case.

real yellow cab demand of Friday 04/15/2016 12:00-1:30pm. Figure 4 is an
example of visualization created by our simulation software, during an online
simulation. These visualizations have proved to be extremely helpful to un-
derstand the algorithms behavior, to compare their results and to develop a
good intuition of the problem, and ultimately to design the backbone online
algorithm.

Figure 5 shows how prior information influences the different online algo-
rithms, in a high demand scenario with 5 minutes time windows. backbone

performs significantly better than 2-OPT, and the similarity of the two curves
confirms the similarity of the two re-optimization approaches. The extra per-
cents of profit, from 1% to 3.5% between these two methods are significant
in practice, as they represent hundreds of additional customers that have
been served thanks to optimization. The sharp increase of profit for the first
few additional minutes of prior request time at the beginning of the curve is
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Figure 6: Varying the supply-demand balance. Increase in profit of each on-
line taxi routing algorithm compared to pure-online. We vary the number
of taxis from 2000 to 10000, and represent on the x-axis the corresponding
fraction of customers served by the different algorithms. The time windows
have a length of Twait = 5 minutes and the mean prior request time is
T request = 15 minutes.

experienced by all online methods using prior information. It is explained by
the additional time available to dispatch taxis to customers that are further
away, and that pure-online cannot pick-up because the 5 minutes time win-
dow is too short. Nonetheless, no-reopt plateaus when more information is
available, and cannot use the increasing prior request time to make better de-
cisions. This is typically the situation in which re-optimization is important:
due to high demand, all the no-reopt taxis are assigned to customers and
we cannot accept new ones. On the other hand, re-optimization allows the
option to reorganize the assignment of customers to taxis in order to be able
to pick-up more customers, more efficiently. The surprising finding is that
not a lot of prior information is needed in order to make better decisions:
asking customers to request for a ride 10 minutes beforehand already allows
for an 18% increase in profits.

Figure 6 shows how the balance between supply and demand influences
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Figure 7: Varying the time windows size. Increase in profit of each online
taxi routing algorithm compared to pure-online (left) and in absolute profit
values (right). We vary the size Twait of the customer time windows: Twait =
1 minute, Twait = 5 minutes and Twait = 10 minutes. There are 4000 taxis,
which corresponds to a high demand scenario, and the mean prior request
time is T request = 15 minutes.

the results of our algorithms. We have showed in Section 3.4 that optimization-
based algorithms and 2-OPT have a strong edge on their greedy counterpart
when demand was high. These results confirm this observation in an on-
line setting: when the served demand is below 95%, we do not have enough
taxis to serve the high demand. Thus 2-OPT and backbone perform signif-
icantly better than the greedy algorithms no-reopt and pure-online, and
backbone clearly outperforms 2-OPT. We have found that problems with
more demand than available taxis (in this case with less taxis) are generally
harder to solve by offline solution methods in the re-optimization process.
Given our limited computational time, this difficulty reduces the quality of
the solutions found in the allowed time. This phenomenon is illustrated
by the loss of performance at around 70% of served demand: this problem
was the hardest to solve and there was not enough time given to the solu-
tion methods to find near-optimal solutions. When demand is low, and the
served demand is close to 100%, taxis are generally mostly idle, and a greedy
algorithm like no-reopt performs almost as well as the optimization-based
algorithm. This confirms the insight we gained in Section 3.4 that problems
with low demand are easy to solve and do not require re-optimization.

Figure 7 shows the impact of the time window length on the quality of
the different solution methods. We also represented the profit values on the
right to give a sense of scale. The sharp decrease in relative profit of the
online algorithms in comparison to pure-online is actually due to an in-
crease in quality of the pure-online solutions, which masks the fact that
all strategies give better results with larger time windows. For Twait = 1
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minute, pure-online does not manage to pick-up customers when there is
no free taxi in the close vicinity, and performs really poorly. Interestingly
Figure 7 illustrates that no-reopt is no better than pure-online for very
large time windows, which makes sense as the two greedy heuristics are al-
most equivalent in this setting. The prior information accessed by no-reopt

is not useful when the time windows are long enough. As a consequence,
the extra 10% of profit obtained by backbone for Twait = 10 minutes is
only due to the edge of re-optimization over greedy algorithms, as revealed
in Section 3.4. Even with large time windows, re-optimization methods are
significantly better than pure-online when some prior request information
is available. Moreover, even if pure-online manages to use the large time
windows to pick-up more customers, these pick-ups are generally later than
the three other algorithms, giving them a strong edge in practice for customer
satisfaction. In general, large time windows are better represented using soft
time windows constraints, penalizing the delay.

We have compared all our results to the pure-online profit, as it is repre-
sentative of typical taxi system greedy strategies. This empirical study shows
that using optimization based strategies on today’s relevant large scale vehi-
cle transportation systems can have a serious impact on their performance,
particularly in the daily situations of peak demand. Furthermore, our ex-
periments suggest that these systems should give incentives to customers to
request their trips few minutes in advance. Customers flexibility in pick-up
time should also be used as much as possible, and time windows could be
personalized for each customer, with an incentive to accept a larger one.

6 Conclusions

6.1 Extensions

Using historical data, it is possible to accurately forecast the demand in large
scale settings and use it to route idle taxis to areas of popular demand. We
did not use this in our application, but such an extension can improve the
system efficiency, especially when there is a large cyclical demand in far-away
locations like airports. Another way to use historical and real-time data is to
provide online estimate of the travel times. In our applications in NYC, we
have estimated the travel-times from data, under the assumption that they
are stationary for the time of the experiment. In practice, travel-times can
be re-estimated at each step of the re-optimization process.

We used the assumption of full control of the vehicles, as we expect that
vehicle control will become increasingly centralized in the future. However,

38



the re-optimization framework can be adapted to be more of a recommenda-
tion system, suggesting customers to drivers, and updating the planning at
each iteration given the vehicles actual moves. More generally, this frame-
work is also suitable to other real-time vehicle routing applications. As our
algorithm use a mixed-integer optimization at the core, we could add extra
operational constraints to represent situations as diverse as cargo ship rout-
ing, on-demand private jets, bus renting, electric vehicles, self-driving taxis,
car-pooling and more.

6.2 Impact

Our contributions surpass the scope of this paper in two ways:
First, the core ideas of our main algorithms K-neighborhood, backbone

and local-backbone are not specific to taxi routing and can be applied to
other large scale decision problems of vehicle routing and operations research.
The core idea of a “backbone” is that some decision variables do not vary too
much across almost all near-optimal solutions, and that identifying them can
significantly accelerate the optimization process. This idea can be applied
in a variety of situations, and is much more general than taxi routing. For
example, [30] presents a backbone algorithm for the TSP, though formulated
as a greedy heuristic. The part of a backbone algorithm that depends on the
application is how to generate “good” and varied feasible solutions in a cheap
way: we use maxflow for our taxi routing application. local-backbone

goes even one step further: if it is too expensive to construct the problem
backbone, one can do it iteratively, at each step constructing a local backbone
around the current best solution to improve on it. This general algorithm
has the advantage of combining global-optimization to avoid local extrema
and local-improvement for tractability.

Additionally, the software we have built and released (see [20]) is able
to simulate and visualize online and offline vehicle routing problems with
synthetic or real-world routing data, using real or generated demand data.
Being able to simulate real-world vehicle routing, our framework and algo-
rithms can solve problems that are relevant to the industry. For example, the
insights we get about the value of future information can be of immediate
practical interest for current urban transportation companies.
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A Insertions and 2-OPT heuristics

We present in this appendix the details of our offline greedy and local im-
provement heuristics. We use these algorithms as a baseline to evaluate the
effectiveness of our optimization-based algorithms.

A.1 Insertions and Greedy Heuristic

Given a solution s to the offline taxi routing problem and a customer c that
is rejected in this solution, an insertion of c into s is the process of finding
a taxi that is able to pick-up c without modifying the rest of the solution.
For example, if a taxi in s is supposed to serve customers c1, c2, . . . , cn in this
order, inserting customer c at position k corresponds to modify s so that the
taxi serves customer c1, . . . , ck−1, c, ck, . . . , cn, under the condition that the
solution is still feasible.

The most important thing when inserting a customer is to be able to check
the feasibility of the insertion, given the pick-up time window constraints.
It is possible to do this in a very efficient way: given a solution s and a
customer c, let [tmin

c,s , tmax
c,s ] be the interval of possible pick-up times tc such

that s is still feasible. These times are defined in Section 4.3 and can be
computed quickly using forward induction. We can use them to quickly
check the feasibility of inserting a customer. If we want to insert customer
c within taxi k’s schedule, we can compute the feasible time windows using
the induction equations (16)-(19). For example, to insert customer c between
ck−1 and ck, we first compute its values tmin

c,s and tmax
c,s using equations (16)

and (17):

tmin
c,s = max(tmin

c , tmax
ck,s
− Tc,ck) (20)

tmax
c,s = min(tmax

c , tmin
ck−1,s

+ Tck−1,c) (21)

and the insertion is only feasible if the pick-up time window is non-empty,
i.e, tmin

c,s ≤ tmax
c,s .

For each possible insertion, we can compute the difference in profit ∆R
in the new solution after insertion. For example, when inserting c between
ck−1 and ck, we have:

∆R = Rck−1,c + Rc,ck −Rck−1,ck (22)
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We can now use these insertions in an iterative way to describe the greedy
heuristic introduced in Section 3.2:

1. Create an “empty” solution s, in which all customers are rejected and
all taxis idle.

2. Order all the customers by minimum pick-up time tmin
c , and apply the

next steps to each one, sequentially.

3. Given a customer c to insert, try to insert it in each taxi using the
feasibility rules described in this section with the values [tmin

c,s , tmax
c,s ] of

the other customers.

4. If no inserting position is feasible, reject the customer.

5. If inserting the customer is feasible, select the taxi and the position
that yield the highest difference in profit ∆R, and insert the customer.

6. Update the values [tmin
c,s , tmax

c,s ] for all the customers that are assigned to
the taxi chosen for the insertion, using equations (16)-(19).

Inserting the customers by order of tmin
c performs typically really well, and

is very close to the nearest-taxi strategy, as each customer will be inserted
at the end of a taxi’s schedule, usually the taxi that is the closest to the
customer.

A.2 Local-Improvement and 2-OPT

Let s be a solution to the offline taxi routing problem, a local improvement
is a solution s′ that is in a “neighborhood” of s, such that the total profit
of s′ is higher than the profit of s. A simple yet powerful definition of such
a neighborhood is the 2-OPT neighborhood. We perform a swap between
two nearby taxis, exchanging their assigned customers. For example if taxi 1
is picking up customers c11, c

1
2, c

1
3 and taxi 2 is picking-up customers c21, c

2
2, c

2
3,

swapping customer c12 and c22 (together with the subsequent customers) could
result in assigning c11, c

2
2, c

2
3 to taxi 1 and c21, c

1
2, c

1
3 to taxi 2. Formally, we

execute the following algorithm:

1. Given a solution s, choose a customer c that is already assigned to taxi
k, let ck1, . . . , c

k
n be the customers assigned to k whose pick-up times

are after customer c. Let also ck−1 be the customer coming immediately
before c in taxi k’s schedule.
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2. Select another taxi k′. Let customer c′ be the first customer of k′ such
that tmin

c′,s +Tc′,c ≤ tmax
c,s . In other words, c′ is the first customer assigned

to k′ such that k′ can serve all its customer preceding c′, followed by
c′, c, ck1, . . . , c

k
n.

3. Let ck
′

1 , . . . , c
k′
n be the customers assigned to k′ whose pick-up times are

after customer c′ in solution s. Remove these customers from k′, and
assign c, ck1, . . . , c

k
n to k′ after c′ instead.

4. Find the first customer ck
′

i of the sequence ck
′

1 , . . . , c
k′
n such that tmin

ck−1,s
+

Tck−1,c
k′
i
≤ tmax

ck
′

i ,s
. In other words, find the longest sub-sequence ck

′
i , . . . , c

k′
n

such that all these customers can be inserted at the end of taxi k’s
schedule, immediately after customer ck−1, while respecting the pick-up
time windows.

5. Assign customers ck
′

i , . . . , c
k′
n to taxi k. And reject the customers ck

′
1 , . . . , c

k′
i−1

that we could not insert.

6. At this point of the swap, taxi k schedule is now . . . , ck−1, c
k′
i , . . . , c

k′
n

and taxi k′ schedule is now . . . , c′, c, ck1, . . . , c
k
n. Customers ck

′
1 , . . . , c

k′
i−1

are rejected.

7. Use the insertion algorithm described in Section A.1 to try to insert all
the customers that were rejected in s into k and k′ schedules, the only
two taxis that we have modified.

8. Also use the insertion algorithm to try to insert the newly rejected
customers ck

′
1 , . . . , c

k′
i−1 in all taxis schedule.

9. We have built our final solution s′. Compute its profit and compare it
with the previous one.

This construction of a new solution may seem elaborate, because of its
need to respect the time windows feasibility. However, it is in practice very
fast as it only modifies a small sub-part of the solution. Steps 1. and 2.
are the two most important, as we choose the two taxis and customers on
which we will perform the swap. To make it tractable on a large scale such
as our application in Manhattan in Section 5.3, we use the costs described in
Section 4.3 to smartly choose good potential swaps. In practice, we were able
to perform 10,000 swaps per minute in the large scale online taxi problem in
NYC introduced in Section 4.4.

We use these swaps to perform a local-improvement descent, only accept-
ing a 2-OPT swap when the profit is improved, as described here:
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1. Begin with a solution s as given by greedy.

2. Perform a 2-OPT swap on s. If the profit is improved, update s to be
this new solution.

3. If there is time left, go back to Step 2.

We call this offline algorithm 2-OPT. Note that all solutions s in this
algorithm share the invariant that no customer rejected in s can be inserted
in s. Indeed, greedy respect this invariant, and steps 7. and 8. make sure
that we try all new insertion possibilities at each swap. On small instances of
taxi routing (less than a few hundred customers), we have noticed that 2-OPT
tends to converge very fast to a locally optimal solution. In large cities with
thousands of customers, we usually do not have enough time to reach a locally
optimal solution. The algorithm is slowed down by the high dimensionality of
the routing problem, though it manages to significantly improve the solutions
quality. This is a sign that more complex local-improvement algorithms, like
3-OPT modifying 3 taxi’s schedules at a time, could not really help with large
scale problems, as we do not even have enough time to sufficiently explore
the 2-OPT neighborhood. The same applies for more complex global-local
algorithms like Tabu-search.
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