
Online Searching∗

Patrick Jaillet ‡ and Matthew Stafford¶

Abstract

We consider the problem of searching m branches which, with the
exception of a common source s, are disjoint (hereafter called concur-
rent branches). A searcher, starting at s, must find a given “exit” t
whose location, unknown to the searcher, is on one of the m branches.
The problem is to find a strategy that minimizes the worst case ratio
between the total distance traveled and the length of the shortest path
from s to t. Additional information may be available to the searcher
before he begins his search.

In addition to finding optimal or near optimal deterministic on-
line algorithms for these problems this paper addresses the “value” of
getting additional information before starting the search.

Keywords: online search, incomplete information, value of information

∗Appeared in Operations Research, 49, 501--515, 2001. Research funded in part
by ONR, grants N00014-94-1-0257 and N00014-96-1-0190, and NSF, grant DMI-9713682.
Second author also wishes to thank SBC Technology Resources for its generous support.

‡MSIS Department and Civil Engineering Department, The University of Texas at
Austin, Austin, TX 78712, USA, and Mathematics Department, ENPC, 75343 Paris cedex
07, France

¶SBC Technology Resources, Inc, 9505 Arboretum Blvd, Austin, TX 78759 USA, and
Operations Research, The University of Texas at Austin, Austin, TX 78712, USA

1

1 Introduction

1.1 Motivation and overview

There are many situations in which present actions influence our “well being”
in the future. The difficulty in these situations is that we have to make our
decision based only on the past and the current task we have to perform. It
is not even clear how to measure the quality of a proposed decision strategy.
The approach usually taken is to devise some probabilistic model of the
future and act on this basis. This is the starting point of the theory of
Markov Decision Processes (see for example [11]).

The approach around which this paper is based is to compare the perfor-
mance of a strategy that operates with no knowledge of the future (online)
with the performance of the optimal clairvoyant strategy that has complete
knowledge of the future (offline). This requires no probabilistic knowledge of
the future and is therefore a “worst case” measure of quality. This new ap-
proach, first suggested in [18] and later called “competitive analysis” in [15],
takes the following pessimistic approach in analyzing the performance of an
online algorithm: an online algorithm is good only if its performance on
any sequence of requests is within some (desired) factor of the performance
of the offline algorithm. In particular, a good algorithm would certainly
perform well in the presence of an unknown distribution.

In [6], the authors gave an abstract formulation (called task systems)
and a formal definition for the study of the competitive analysis of online
algorithms and problems. In [16] another abstract formulation, called k-
server problems was introduced. More recently, in [7], the authors present
the interesting notion of regret in the “online decision problem” setting.

Over the past ten years, online algorithms have received considerable
research interest in computer science, and to a lesser extent in operations
research. There are many interesting application areas which have been
evaluated within this online framework. To include a few, let us mention
paging, ressource allocation, scheduling, robotics, portfolio selection, and
trading. In a recent book [5] one can find a nice introduction to the the-
ory and applications of online computation and competitive analysis. For
surveys aimed at the operations research and mathematical programming
communities one can also consult [1, 2].

In this paper we consider generic searching problems in some given space.
This situation does not necessarily involve sequential decisions over time but
can nevertheless be included in the previous framework of online problems.
Indeed, in many situations, the searcher has incomplete information about

2

the space, and additional information can be acquired in a dynamic manner,
as the search for a good path evolves.

Searching unknown graphs and planar regions is central to many areas
of computer science and operations research. One classical application is in
the area of navigation problems in robotics, where such problems come up
repeatedly whenever a robot, exploring an unknown environment, faces an
obstacle and tries to find the best way to avoid it.

Also many online graph searching problems come up persistently in the
development of heuristics for intelligent searching and have come up repeat-
edly in the operations research literature (see [4, 8, 9, 10, 12]). In summary,
these problems are simple and stylized versions of general problems for which
an object or a boundary has to be located by successive moves in a largely
unknown search space. Search problems generalize numerous other well-
known online problems (e.g., metrical system and the k-server problem),
and, for this reason, are key problems in the analysis of online strategies.
Finally, “How much is it worth to have additional information before solv-
ing a problem?” is one of the major theoretical and practical motivations
behind our line of research.

This paper will be concerned with the special case of searching m concur-
rent branches which, with the exception of a common source s, are disjoint.
More precisely we will concentrate on the following problem: Given m con-
current branches (each a copy of R+), a searcher, initially placed at the
origin, has to find an “exit” which is at an unknown real distance d ≥ 1 > 0
from the origin on one of the m concurrent branches. We will refer to this
problem as the “m-concurrent branch” problem.

The article is organized around three main parts, the first two dealing
with the case m = 2, and the third considering (the more challenging)
generalizations to m > 2.

In the first section we assume that the searcher knows a priori that the
exit is within a distance D from the source (hereafter called the bounded
version as opposed to the general unbounded case). We develop and prove
the optimality of a family of strategies that depends on D. A basic idea of
the approach is to solve the following dual question: Given a competitive
ratio r, what is the largest “extent” (i.e. the farthest we go in all directions)
that can be searched without violating the ratio? We show that a strategy
based on successive local optimization depending on r leads to the maximum
extent, say e(r). For any D, we then solve the primal searching problem by
finding the smallest r such that e(r) ≥ D. When D goes to infinity, this
approach provides an optimal online strategy for the unbounded case with
a competitive ratio of 9.

3

In the second part, we assume that the searcher receives “probabilistic
information” of the following type: “The exit has a probability pk of be-
ing on branch k”. Based on dual arguments, we again propose and prove
the optimality of deterministic online strategies for the 2-concurrent branch
problem.

In the last part, we consider the extension of previous results to the
m-concurrent branch problems, m > 2. These extensions are however not
trivial and will require a more rigorous treatment of some arguments used
in the 2-branch case. The reader can thus first see the main arguments
in broad outline, maintaining greater intuition before finally taking on the
most technical underpinnings.

1.2 Previous work and related problems

Baeza-Yates, Culberson, and Rawlins [3] discuss strategies for a problem
very similar to our unbounded m-concurrent branch problem, in which the
exit is at an integer distance from the origin. When m = 2, they give a
proof that the strategy of alternatively moving on each branch, each time
doubling the previous distance is optimal (among “monotone-increasing”
strategies) with a competitive ratio of 9. When m > 2, they propose the
following strategy: move in the integrally increasing powers of m/(m − 1)
in a cyclic manner, visiting branches in the same order over and over again.
They argue that, among all “monotone-increasing” cyclic strategies, this
one is optimal. In Kao, Reif and Tate [14], the authors present an optimal
randomized algorithm for what can be defined to be our 2-concurrent branch
problem.

A different but related problem has also appeared in the literature under
the name of the “Layered Graph Traversal” problem. A layered graph is a
connected weighted graph whose nodes are partitioned into sets (i.e., layers)
L0 = {s}, L1, L2, . . . and all edges connect nodes in consecutive layers. The
edges between layer Li and layer Li+1 are all revealed when the searcher
visits some nodes in Li (this is the main difference with our problems). This
problem is introduced in Papadimitriou and Yannakakis [17] and is solved
optimally for the case of 2 disjoint paths, by using the results of [3].

The fundamental contributions of our paper are:

1. A rigorous proof that the strategies introduced in [3] are optimal
amongst all possible strategies. Baeza-Yates et al. only consider the re-
stricted class of “monotone-increasing” cyclic strategies. Proving that
there is no loss of optimality in restricting to this class is not difficult
in the 2-branch case but becomes highly non-trivial for m > 2.

4

2. A framework, using duality and mathematical programming concepts,
allowing the following rigorous extensions of the “prototype” result
given by Baeza-Yates et al. for m = 2:

(a) For m > 2, the optimal competitive ratio for the infinite-extent
m-branch problem is Rm := 2m[m/(m− 1)]m−1 + 1.

(b) (Value of additional deterministic information about the target
location.) For m = 2, we quantify the rate at which e(r), the
maximum searchable extent subject to competitive ratio r, ap-
proaches infinity as r approaches 9 from below. For m > 2, we
give a lower bound for the same rate as r ↑ Rm (the value of Rm
is as given in the previous paragraph.)

(c) (Value of probabilistic information about the target location.)
For m = 2, suppose we are given p, the probability that the
target location is somewhere on branch 1. We analyze the optimal
competitive ratio as a function of p.

To be fair, it is possible to extend the m = 2 result of Baeza-Yates et al.
directly (i.e. without appealing to our mathematical programming/duality
framework) to the case where the distance from source to target is real (recall
that [3] assumes this distance is an integer.) This can be accomplished in
three steps:

1. Extend their result to the case where said distance has (integer) lower
bound d > 1.

2. Note the essential equivalence of the original problem with allowable
source-to-target distances on the lattice {j/2k}j≥1. (The integer k ≥ 1
is fixed but arbitrary.)

3. Combine the two previous items via a scaling argument yielding the
same competitive ratio of 9 whenever the source-to-target distance is
on the lattice {j/2k}j≥2k . Then one can fashion a limiting argument
as k approaches infinity.

None of the steps in the above outline is particularly difficult. However,
when combined with the argument of Baeza-Yates et al., the resulting proof
is laborious. Further, we do not see how to duplicate the main results of
this paper using this sort of argument.

5

1.3 Notation and terminology

Before presenting our results, one needs to understand how to evaluate the
quality of strategies for online problems. Let S be a deterministic strategy
for the m-concurrent branch problem. For any position of the exit (specified
by the pair (b, d), indicating that the exit is at a distance d ≥ 1 from the
origin on branch b), let costS(b, d) be the cost incurred (under strategy S) to
find it. Throughout this paper, our cost function is total distance traveled.
Other choices include elapsed time, which becomes interesting for parallel
searching (see [13]).

The competitive ratio of the deterministic strategy S is defined to be

sup
(b,d)
{costS(b, d)/d}

A strategy (and its competitive ratio) is said to be optimal if it has the
smallest provable competitive ratio.

2 The 2-Concurrent Branch Problem With Deter-
ministic Information

We assume here that we have two branches, numbered 1 and 2, meeting
at the origin; each is a copy of R+ = [0,∞). Any deterministic search
strategy of these two branches can then be defined as an infinite sequence
of real numbers {xi}i≥1, where xi is the distance between the origin and
the returning point during the ith “attempt” (an attempt being defined as
leaving the origin on one branch, exploring this branch up to a returning
point - possibly infinite, and, in case of a finite returning point, return-
ing to the origin). It is clear that any sensible strategy will alternate on
the two branches, so that if the 1st attempt is on Branch 1, then any ith

attempt with an odd i will also be on Branch 1. Let the “extent” of a
strategy be defined as the set of points on the two branches within a dis-
tance min{maxi odd xi;maxi even xi} from the origin (note that the extent of
a strategy would be the set of all points on the two branches if the sequence
{xi}i goes to infinity for both odd and even indices). At times it will be con-
venient to blur the distinction between the extent of a strategy as defined
here and the quantity min{maxi odd xi;maxi even xi} itself; the distinction
should be clear from context.

6

2.1 Unbounded case

Here let us assume that the position of the exit is not a priori bounded.
The specific strategy analyzed in [3] (see 1.2 above) can be described by the
sequence xi = 2i. The extent of such a strategy is the entire set of points on
the two branches. It is also easy to calculate its competitive ratio. If the exit
is say at a distance d on Branch 1, then this strategy will discover it on the
attempt 2k+ 1, where 22k−1 < d and 22k+1 ≥ d. The total distance covered
will then be 2

∑2k
j=1 2j + d = 4(22k − 1) + d. The ratio of this total distance

to the distance d would be in the worst limiting case 4(22k − 1)/(22k−1) + 1
[the worst case corresponds to the unexplored point on Branch 1 closest to
the origin, i.e. when d ↓ 22k−1]. We then have

sup
k

4(22k − 1)/22k−1 + 1 = 4 ∗ 2 + 1 = 9.

Calculations are very similar if the exit is on Branch 2. The overall competi-
tive ratio of the strategy (2i)i≥1 is thus 9. We will show below that this is an
optimal competitive ratio, in the sense that no other strategy will provide a
lower competitive ratio.

2.2 Bounded case

If it is known a priori that the exit is exactly at a distance D ≥ 1 from
the origin, the optimal competitive ratio is easily seen to be 3. Indeed the
optimal strategy is to go on Branch 1 up to the distance D and then go back
to the origin and go on Branch 2 up to D. In the worst case the exit would
be on Branch 2 and the competitive ratio would be (2D +D)/D.

Let us now consider the case where the exit is known a priori to be within
a distance D ≥ 1 from the origin. Consider the following dual problem:
Given a ratio r > 3, find a strategy that maximizes the extent searched
without violating this ratio (i.e a strategy S such that costS(b, d) ≤ rd for
all points (b, d) in the extent of S).

For this problem, suppose that after n − 1 attempts, the searcher is at
a distance xn−1 from the origin on one (say, Branch 1) of the two branches,
and then turns back. As the searcher decides on the distance xn on Branch
2, the critical point (i.e. with maximum ratio) limiting the value of xn will
be at a distance xn−1 + ε on Branch 1, for any ε arbitrarily small [i.e., will
be the unexplored point of Branch 1 closest to the origin]. We then must
have (2x1 + · · ·+ 2xn + xn−1)/xn−1 ≤ r, or

x1 + · · ·+ xn ≤
r − 1

2
xn−1. (In)

7

We will refer to this inequality with n as a variable index, i.e. Ik means the
same inequality with n replaced by k, and so on. Suppose that for all n ≥ 1,
the searcher chooses to go to the maximum possible value of xn, as defined
above. This policy of maximizing xn at each attempt leads to a strategy
with maximum extent. In order to see that, consider the successive solution
of the following linear programming problems (Pk), for increasing k, starting
with k = 1. For convenience, we introduce the quantity ρ := (r − 1)/2.

Maximize xk
subject to x1 ≤ ρ = (r − 1)/2

x1 + x2 ≤ ρx1

. . .
x1 + · · ·+ xk ≤ ρxk−1

1 ≤ x1 ≤ · · · ≤ xk

(Pk)

Let x∗k be the optimal value of (Pk). We will show that the solution to
our previous dual problem [i.e., the problem of maximizing the extent given
a ratio r > 3] corresponds to x∗q , where q is the largest integer (possibly
infinite) such that x∗1 ≤ x∗2 ≤ · · · ≤ x∗q .

In terms of the Problem (Pk), the strategy of maximizing xn at each
attempt corresponds to making all upper bound constraints tight. Here is
how we argue that successive maximization is optimal. For given values of
{x1, . . .xk−1}, xk is maximized when (Ik) is “binding”. In that case we have

xk = ρxk−1 − (x1 + · · ·+ xk−1)
= (ρ− 1)xk−1 − (x1 + · · ·+ xk−2) (1)

providing a functional relationship between xk and {x1, . . .xk−1}. This is
true for any choice of {x1, . . .xk−1}. Now since r > 3, ρ − 1 = (r − 3)/2
is positive. So xk is in fact increasing when viewed as a function of xk−1

alone. Therefore the Problem (Pk) with x1 + · · · + xk = ρxk−1 reduces to
maximizing xk−1 with respect to the other constraints, and this problem is
(Pk−1), and a classical induction argument follows.

Now that we have settled on a policy of successive maximization, (1)
describes the general term in a recursion that begins with x1 = ρ. From
the first form of (1) one obtains a simplified linear recursive relationship for
k ≥ 3:

xk = ρ(xk−1 − xk−2). (2)

If we reach a value of k for which ρ(xk−1 − xk−2) fails to exceed xk−1, then
using (2) to assign xk and subsequently xk+1 will result in a non-positive

8

value for xk+1 [indicating, in light of our successive maximization optimality
argument, that no further progress can be made beyond the kth attempt
while adhering to the target ratio.] This is true all the more if xk−1 fails to
exceed xk−2 [a case that only has to be considered separately for k = 3 and
ρ sufficiently small.]

Therefore we should stop searching as soon as the linear relationship (2)
leads to xk−1 ≤ xk−2 – in that case one should define xj to be 0 for all j ≥ k.
The following theorem ties up all these cases in a neat package.

Theorem 1. Let ρ = (r − 1)/2. Given a competitive ratio r ≥ 3, the
maximum possible extent corresponds to the following optimal strategy: x1 =
ρ, x2 = max{x1;x1(r − 3)/2}, and for n ≥ 3,

xn =
{

max{xn−1; ρ(xn−1 − xn−2)} if xn−1 > xn−2

0 otherwise
(3)

Crucial to the analysis of the recursive relationship (3) is the associated
characteristic equation ξ2 = ρ(ξ − 1). The discriminant ∆ = ρ2 − 4ρ of this
equation needs to be nonnegative for the corresponding strategy to have an
extent covering the entire set of points of the two branches. In that case the
solutions of the characteristic equation are given by

ξ =
ρ±

√
ρ2 − 4ρ
2

. (4)

Note that ∆ ≥ 0 implies that ρ ≥ 4 and thus that ξ1
def= (ρ+

√
ρ2 − 4ρ)/2 ≥

2 > 1. Hence ∆ ≥ 0 is a necessary and sufficient condition for the corre-
sponding strategy to have an extent covering the entire set of points of the
two branches.

When r = 9 or ρ = 4 (which is the smallest feasible value for r in order
to cover the entire two branches), the unique root is ξ1 = ρ/2 = 2, and we
get xn = (a+ bn)ξn1 = (a+ bn)2n for the generic solution. From x1 = ρ = 4
and x2 = ρ(ρ − 1) = 12, we conclude that a = 1 and b = 1, and that
xn = (1 + n)2n which is, up to a factor (1 + n), a result similar to the
one obtained by [3]. Note that the two strategies {2n}n and {(1 + n)2n}n
are equivalent (same competitive ratio), but that the latter will cover more
space at each successive attempt. We can summarize our results with the
following corollary, which can put the unbounded case to rest.

Corollary 1. The maximum possible extent includes the entire branches if
and only if r ≥ 9. For r = 9 the previous optimal strategy corresponds to
xn = (n+ 1)2n, n ≥ 1.

9

When r < 9 the calculations are more tedious, but remain trivial. Now
Equation (4) describes a complex pair of modulus ρ1/2; therefore we can
compactly write the characteristic roots in the form ρ1/2e±iψ. For conve-
nience, we let β =

(
(4 − ρ)/ρ

)1/2 =
(
(9 − r)/(r − 1)

)1/2; then it is easy to
see that the argument ψ above is given by arctanβ. It is also easy to check
(we omit the details) that the unique solution to the linear recursion (2)
satisfying the initial conditions x1 = ρ and x2 = ρ(ρ− 1) is

1
2
(
1− 1

β
i
)
ρk/2eikψ +

1
2
(
1 +

1
β
i
)
ρk/2e−ikψ, k ≥ 1.

From Theorem 1 one needs to find q, the largest k for which x1 ≤ x2 ≤ · · · ≤
xk. Looking ahead to Expression (5), in which we have simplified the above
formula and converted to polar coordinates, it is clear that q = bπ/ψc − 2.
In the statement of the next corollary, we rename this quantity n∗(r) to
emphasize the dependence of the “stopping index” q on the ratio r.

Corollary 2. For 3 ≤ r < 9, let ρ = (r − 1)/2, β = ((9 − r)/(r − 1))1/2,
ψ = arctanβ, and n∗(r) = bπ/ψc − 2. The optimal strategy is

xn = ρn/2
(

cosnψ +
sinnψ
β

)
for 1 ≤ n ≤ n∗(r), (5)

xn∗(r)+1 = xn∗(r), and xn = 0 otherwise. The bound defining the maximum
extent is defined by e(r) = xn∗(r).

Finally one can conclude with the following overall consequence:

Theorem 2. Given we know that the exit is within a distance D ≥ 1 from
the origin, the optimal competitive ratio will be r∗ = inf{r : e(r) ≥ D}. The
corresponding optimal search strategy is defined in the previous corollary
with r = r∗.

In the following table, we compare the extent of the “best power 2”
strategy (i.e., of the form xi = ρ2i−1, where ρ = (r − 1)/2) with the extent
of the previous optimal strategy, for some values of the competitive ratio
r < 9.

10

Extent
Ratio Power 2 Optimal
3.00 1 1
5.00 2 2
7.00 6 9
8.00 14 69.67
8.50 30 1,050.81
8.90 126.4 5.9×107

8.99 1022.72 1.3×1026

Note that when r → 9, one can calculate the rate of convergence of the
extents to infinity.

For the the “best power 2” strategy, the extent, when 3 ≤ r < 9, is given
by ρ2k−1, where k is the smallest of the integer i ≥ 1 such that

2(1 + 2 + · · ·+ 2i) + 2i−1

2i−1
= 9− 4

2i
> r.

This implies that k = max
{

1, blog 4
9−rc+ 1

}
. One can easily deduce that

for 5 ≤ r < 9, the extent is bounded as follows
r − 1
9− r

≤ epower(r) < 2
r − 1
9− r

,

which, in turn, implies that epower(r) = Θ(1
9−r) when r → 9.

For the optimal strategy, based on Corollary 2, eopt(r) = xn∗(r), where

n∗(r) = bπ/ψc − 2, and ψ = arctan
[
(9−r
r−1)1/2

]
. Also we have

1 ≤ cosn∗(r)ψ +
sinn∗(r)ψ

β
≤ 2,

so that we have ρn
∗(r)/2 ≤ eopt(r) ≤ 2ρn

∗(r)/2. We can then conclude that
eopt(r) = Θ(2c/(9−r)

1/2
).

In the following table we have listed the optimal competitive ratio r∗(D)
for some values of D.

Distance D Optimal r∗(D)
1 3.00
5 6.38
10 7.06
100 8.10
1000 8.49
10000 8.68
∞ 9.00

11

3 The 2-Concurrent Branch Problem With Prob-
abilistic Information

Let us return to the case of the unbounded 2-concurrent branch problem
and assume now that the searcher is told that the probability of the exit
being on Branch 1 is p ≥ 1/2. How to use this information? First of all,
if p > 1/2 then the problem is not symmetric and it is quite natural to
see that an optimal strategy will have to start on Branch 1 (as opposed
to the previous sections for which the total symmetry implied indifference
about which branch to search first). In order to solve this problem, we are
going to extend the dual idea proposed in the previous section. Namely,
let r1 and r2 be two given ratios not to violate on Branch 1 and Branch
2, respectively. We are interested in such pair of ratios for which there
exists at least a feasible search strategy whose extent is the set of all points
of the two branches. In other words, for such a strategy, given that the
exit is on Branch 1, the conditional competitive ratio would be r1, and the
conditional competitive ratio given the exit is on Branch 2 would be r2. The
overall expected competitive ratio will then be pr1 + (1− p)r2.

If p = 1/2, then we have r1 = r2 = r, and the best we can do (smallest
r we can choose in order to get an infinite extent) is r = 9 (see previous
section). If p > 1/2, r1 and r2 can’t be both smaller than 9 (for a strategy
to have an infinite extent). It is also clear that we will want to visit more
of Branch 1 than Branch 2, and thus that we should allow a larger ratio on
Branch 2.

Given r1 and r2, a feasible strategy {xi}i will need to verify:

2x1 + 1 ≤ r2
2x1 + 2x2 + x1 ≤ r1x1

. . .
2x1 + · · ·+ 2x2k+1 + x2k ≤ r2x2k

2x1 + · · ·+ 2x2k+2 + x2k+1 ≤ r1x2k+1

. . .

Using the same arguments as in Section 2 the local strategy of maxi-
mizing the distance covered at each attempt can be shown to be globally
optimal (i.e. leading to the largest extent). This is equivalent to turning the
above inequalities into equalities.

Let ρ1 = (r1 − 1)/2 and ρ2 = (r2 − 1)/2. We then get:

12

x1 = ρ2

x2 = ρ1x1 − ρ2

. . .
x2k+1 = ρ2x2k − ρ1x2k−1

x2k+2 = ρ1x2k+1 − ρ2x2k

. . .

By defining x0 = 1 and x−1 = 0, we then have for all i ≥ 1,

x2i−1 = ρ2x2i−2 − ρ1x2i−3

x2i = ρ1x2i−1 − ρ2x2i−2.

For a given search strategy {xi}i, let {yi}i be the subsequence for Branch
1 and {zi}i for Branch 2 (yi = x2i−1 and zi = x2i). The previous equations
can be rewritten as follows:

For all i ≥ 1,

yi = ρ2zi−1 − ρ1yi−1

zi = ρ1yi − ρ2zi−1.

It implies that both y and z follow the same recursive relationships:

yi = [ρ1ρ2 − (ρ1 + ρ2)]yi−1 − ρ1ρ2yi−2

zi = [ρ1ρ2 − (ρ1 + ρ2)]zi−1 − ρ1ρ2zi−2.

The corresponding characteristic equation is ξ2 = [ρ1ρ2 − (ρ1 + ρ2)]ξ −
ρ1ρ2. In order for the strategy {xi}i to have an infinite extent the dis-
criminant of this characteristic equation needs to be nonnegative. Let
f(ρ1, ρ2) = (ρ1ρ2−ρ1−ρ2)2−4ρ1ρ2 be this discriminant. When f(ρ1, ρ2) ≥ 0
the largest solution (the unique solution if the discriminant is zero) of the
characteristic equation is given by

g(ρ1, ρ2) =
(ρ1ρ2 − ρ1 − ρ2) +

√
(ρ1ρ2 − ρ1 − ρ2)2 − 4ρ1ρ2

2
.

In order to have an infinite extent we need to have g(ρ1, ρ2) > 1.
The optimal competitive ratio under such probabilistic information is

thus given by the optimal value of the following mathematical programming
problem:

Minimize pρ1 + (1− p)ρ2

subject to f(ρ1, ρ2) ≥ 0
g(ρ1, ρ2) > 1
1 ≤ ρ1 ≤ 4
ρ2 ≥ 4

13

Ignoring first the constraint g(ρ1, ρ2) > 1, it is not hard to see that
the optimization will always happen on the boundary f(ρ1, ρ2) = 0. Now
f(ρ1, ρ2) = 0, 1 ≤ ρ1 ≤ 4, ρ2 ≥ 4 together imply that g(ρ1, ρ2) > 1. The
mathematical programming problem can thus be simplified to:

Minimize pρ1 + (1− p)ρ2

subject to f(ρ1, ρ2) = 0
1 ≤ ρ1 ≤ 4
ρ2 ≥ 4

The corresponding optimal deterministic strategy consists of starting
on Branch 1, and subsequently maximizing the distance at each attempt
subject to not exceeding the competitive ratios r∗1 on Branch 1 and r∗2 on
Branch 2, where r∗1 and r∗2 are the solutions of the previous mathematical
programming.

In the following table we have listed the optimal competitive ratios for
some value of p.

Probability p r∗1 r∗2 Optimal ratio
0.99 3.96 64.34 4.56
0.90 5.39 19.97 6.84
0.80 6.31 14.39 7.93
0.70 7.15 11.82 8.55
0.60 8.02 10.20 8.89
0.50 9.00 9.00 9.00

4 Extension to m > 2 Branches

We return to the case where the searcher has no a priori information and
extend our results to encompass 3 or more branches. By “no information”
we mean that the searcher has no probability distribution saying that one
branch is more likely than another; nor is an upper bound on the distance
of the exit from the source given.

In the 2-branch case, it is easy to see that the searcher should alternate
between the branches. The obvious generalization of this to the case m > 2
is the concept of a cyclic search (here, the branches are repeatedly visited in
the same order - no branch is visited twice between consecutive visits to any
other branch.) Moreover, the symmetry of the problem and the minimax
criterion for evaluating a strategy make the idea of a cyclic search appealing.

As it turns out, one has to work surprisingly hard to show that the class
of cyclic searches contains an optimal strategy. We choose to do this by first

14

showing that one can assume, without loss of generality, that the sequence
of search extents is non-decreasing.

Suppose for a moment that this property of non-decreasing searches has
been established and that the searcher has returned to the source, ready to
begin the next excursion. We then argue that the searcher should take this
excursion on the branch whose explored extent, up to the current juncture,
is smallest. This “least-searched-so-far” discipline is the link between the
non-decreasing extent sequence and the cyclic property we seek.

Once we know that there is a cyclic strategy which is optimal, we adapt
the solution technique of earlier sections. One can identify a recurrence
similar to that of Section 2.2 easily enough. The characteristic polynomial
of this recurrence yields a putative minimum value of the competitive ratio
for which the infinite-extent problem is solvable. Proving that, below this
candidate ratio, the infinite-extent problem is infeasible turns out to be
subtle and involved here. This is in marked contrast to the two-branch case,
where this infeasibility comes quite naturally via the induction argument
presented in Section 2.2.

4.1 Fundamentals and Notation

We take this opportunity to introduce a change of notation, or more accu-
rately a change of subscripting. Statements like “odd-numbered searches
explore branch 1” are most easily generalized using modular arithmetic:
“search i explores branch i (mod m)”. This in turn means that our num-
bering schemes should start at 0: the search extent sequence begins with
x0, and the branches are labeled 0, 1, . . . ,m− 1.

Definition 1. A (deterministic) strategy is, formally speaking, a map from
the non-negative reals R+ into the search space X. For a strategy S : R+ →
X, S(d) is interpreted as “the position of the searcher in the space X after
d total units of distance have been traversed.”

The discovery map discS = disc : X → R+ is a sort of inverse to S. For
x ∈ X, disc(x) := the smallest distance d for which S(d) = x. If strategy S
never visits x,disc(x) is taken to be infinite.

The discovery map is synonymous with the cost function of earlier sec-
tions. We use this different terminology to emphasize the view of a strategy
as a function and the discovery map as its “one-sided inverse.”

Definition 2. The competitive ratio map r = rS : X → R+ ∪ {∞} is given
by r(x) = disc(x)

‖x‖ . The denominator ‖x‖ represents the distance from the
source to x. This map compares the distance traveled under strategy S

15

(to reach an exit placed at x) to the distance that would be traveled if the
searcher knew which branch to explore.

The competitive ratio rS of a strategy S is sup{x∈X | ‖x‖≥1}
disc(x)
‖x‖ ; this is

a “worst-case” measure of the performance of S.

Remark 1. If the distance of the exit from the source is not bounded away
from 0, no strategy can have finite competitive ratio. The imposition of a
bound thus allows us to use this ratio as a metric for meaningful comparisons
between strategies. The fact that we take this lower bound to be 1 (rather
than ε, say) is largely a matter of convenience. Converting to a different
bound amounts to rescaling our measure of distance (and if one strategy has
better competitive ratio than another before a uniform rescaling, then the
same is true after the rescaling.)

The space of all search strategies is huge. We want to confine our atten-
tion to a tractable subspace (without discarding all optimal-ratio strategies
in so doing.) This reduction to a “reasonable” strategy space takes place in
several stages, the first of which is embodied in the following observation.

Observation. The searcher should never retreat towards the source unless it
is in the process of returning to the source to search another branch. Indeed,
a “partial return” increases the discovery map of every heretofore undiscov-
ered point, without decreasing the discovery map of any point. Further, the
searcher must (always) eventually return to the source in any strategy whose
competitive ratio is finite.

Suppose we graph the distance of the searcher from the origin as a func-
tion of total distance traveled. This observation says that the resulting
graph should be a sequence of isosceles triangles, each of which has base
along the d-axis. The ascending sides of these triangles will each have slope
+1, representing travel away from the origin. The descending sides of these
triangles will each have slope -1. Consecutive triangles should abut, i.e. the
graph has no horizontal segments at all.

Definition 3. Let {xk}∞k=0 be the sequence of altitudes of the isosceles
triangles just described. This will be called the sequence of search extents;
the indexing will be derived in the order in which the searches depart the
origin. We will have occasion to use the abbreviation {xk} for the (entire)
search extent sequence; when referring to a subsequence, we will always
specify the range of indices explicitly.

Standing Assumptions. In what follows, we consider only searches where
all extents are finite. This inflicts no loss of generality in the sense that it

16

discards no strategies whose competitive ratios are finite. We also restrict
ourselves to strategies where all extents are greater than or equal to 1.
(Deletion of any extent smaller than 1 from the sequence does not increase
the discovery map of any point and thus cannot increase the associated
competitive ratio.)

Definition 4. A strategy S is ergodic if it explores the entire search space.
In view of our standing assumptions, suppose we look at the subsequence
of the extent sequence {xk} corresponding to all of the searches of a given
branch. Ergodicity says that this subsequence is unbounded, regardless of
which branch we have selected. This in turn implies that each branch is
visited infinitely often.

Definition 5. Dominating Strategy. Given two strategies S and T , T is
said to dominate S if rT ≤ rS .

Claim. Every strategy is dominated by an ergodic strategy.

No non-ergodic strategy can have finite competitive ratio, since its dis-
covery map must be infinite somewhere. We have exhibited a finite-ratio
strategy for the 2-branch case, and will do so later for the general m-branch
case. So the claim is verified.

4.2 Restricting to the Non-Decreasing Space of Strategies

The competitive ratio map is an unwieldy object. We will eliminate some
pathologies by observing that we can further restrict the space of strategies
we have to consider. Once this is done, we will be able to identify a sequence
of local suprema for the competitive ratio map. This sequence will be an
important tool in what follows.

4.2.1 The Branch and Next Sequences; Progressive Strategies

We can describe a search strategy by specifying two sequences. The first
of these is the sequence of search extents introduced earlier. If for all k
we also indicate b(k), the branch explored by the kth search, a strategy is
completely determined. We find it more convenient to denote the branch
sequence using functional notation (rather than subscripts). For each k ≥ 0,
let n(k) be the index of the next search to visit branch b(k). To accustom
the reader to the notation, we observe that b(n(k)) = b(k) for all k. If we
permute the numbering of the branches, n(·) does not change, nor does the
competitive ratio of the corresponding strategy. Up to such a permutation,
the sequences {xk} and n(·) completely determine a strategy.

17

Definition 6. A search strategy S is progressive provided that it is

1. branch-increasing, i.e. xj < xn(j) for all j.

2. non-repetitive, i.e. n(j) > j + 1 for all j.

3. ergodic. This implies in particular that n(j) <∞ for all j.

Claim. Every strategy is dominated by a progressive strategy.

The claim is easy to verify. If xn(k) < xk we can remove xn(k) from
the extent sequence (while leaving the branch assignments of all remaining
searches unchanged); this does not increase the discovery map at any point.

Similarly, if b(k) = b(k + 1) then the smaller of xk, xk+1 can be deleted
from the extent sequence (again without degrading our performance mea-
sure.) These two types of “pruning” should be performed in the order in-
troduced: suppose we start with an ergodic strategy and convert it to a
branch-increasing search, pruning as indicated in the previous paragraph.
The repetition-eliminating pruning of the current paragraph will not destroy
the branch-increasing property thus established. This proves the claim.

Definition 7. (Sequence of Competitive Ratios) For a progressive strategy
with extent sequence {xk}, the kth competitive ratio, is given by

rk := 1 +
2(x0 + x1 + . . .+ xn(k)−1)

xk

Having defined rk for k ≥ 0, we also give a value for r−1. Let α(b) denote
the (index of) the first search to explore branch b. Then

r−1 := max
b

(1 + 2(x0 + x1 + . . .+ xα(b)−1)).

The sense of this definition is revealed by noting that, for small ε, the
n(k)th search is the one that discovers an exit located on branch b(k) at dis-
tance xk+ε from the source. (It is the branch-increasing property that allows
us to make this claim.) Let tε denote this exit location. The numerator in
the expression given is the total distance traveled up to the commencement
of the n(k)th search. Adding xk+ε to this numerator and dividing by xk+ε
therefore calculates r(tε), the ratio map evaluated at tε. Clearly this map
increases as ε ↘ 0; thus the limit, which we are calling rk, is a local least
upper bound for the competitive ratio map. Thus rk is, intuitively, the com-
petitive ratio for an exit location “just past” the turning-back point of the
kth search. Using the compact notation x+

k for distances “just past” the kth

18

turning-back point, we can summarize that rk is really a limit by saying
that rk is associated with exit location x+

k on branch b(k).
The presence of r−1 in the extent ratio sequence accounts for exit loca-

tions at extent 1+ on any given branch.
Note that the inverse mapping n−1(j) is not defined whenever search j is

the first excursion to branch b(j). In this case, we perpetrate a slight abuse
of notation: let xn−1(j) := 1, and think of rn−1(j) as the competitive ratio
for an exit location at distance 1+ from the origin on branch b(j). We will
need this notational convenience in the proof of Theorem 3.

The exposition following Definition 7 makes it clear that we can assess
the performance of a progressive strategy by looking at its competitive ratio
sequence (in preference to working directly with the ratio map.) We now
formalize this for future reference.

Observation. For a progressive strategy S,

rS = supk≥−1{rk}.

Theorem 3. We can assume without loss of generality that the sequence
{xk} of search extents is non-decreasing: any strategy S for which this is
not the case is dominated by some progressive strategy S ′ for which the extent
sequence is non-decreasing.

The proof is somewhat long, with numerous details that have to be
handled carefully. However, the main idea is quite simple: where a large
search extent precedes a small one, perform an interchange. We must then
amend the sequence n(·) of “next pointers” in order to keep competitive
ratios under control. The matter is somewhat delicate, but can be resolved
by taking care to retain the branch-increasing property. We provide these
details in the following lemma.

Lemma 1. Suppose S is a progressive strategy for which xj > xj+1. Then
there exists a dominating strategy S ′ with extent sequence

x0, x1, . . . xj−2, xj−1, xj+1, xj , xj+2, xj+3, . . .

Proof. We use primes throughout to distinguish features of the new strategy
S ′ from those of S. We set x′j = xj+1 and x′j+1 = xj ; for all k 6= j or j + 1,
let x′k and xk be identical.

Two cases must be considered.
Case I: xj+1 > xn−1(j). Construct S ′ by setting n′(j) = n(j + 1) and

n′(j + 1) = n(j); for all other indices, the n(·) pointers are unchanged.

19

We have

rj = 1 +
2(x1 + . . .+ xn(j)−1)

xj
and (6)

r′j+1 = 1 +
2(x1 + . . .+ xn′(j+1)−1)

x′j+1

. (7)

These two quantities are the same by construction. The underlying ob-
servation is that both numerators must contain xj and xj+1, since for a
progressive strategy n(j) > j + 1. Similarly, rj+1 = r′j . To verify this fact,
one only need remove the primes from (7) and insert primes in corresponding
places in (6).

The ratios for searches n−1(j) and n−1(j + 1) must also be checked:

rn−1(j+1) = 1 +
2(x1 + . . .+ xj)

xn−1(j+1)

> 1 +
2(x1 + . . .+ xj−1 + xj+1)

xn−1(j+1)
= r′n−1(j+1) (8)

and
rn−1(j) = 1 +

2(x1 + . . .+ xj−1)
xn−1(j)

= r′n−1(j). (9)

No other competitive ratios change in the passage from S to S ′.
Case II: xj+1 ≤ xn−1(j). Form S ′ by interchanging n(j) and n(j + 1)

(as before) and setting n′(n−1(j)) = j + 1 and n′(n−1(j + 1)) = j (this is
new.) We still have r′j = rj+1 and r′j+1 = rj .

Now
r′n−1(j+1) = 1 +

2(x1 + . . .+ xj−1)
xn−1(j+1)

; (10)

this quantity is less than rn−1(j+1). The last ratio we have to check is

r′n−1(j) = 1 +
2(x1 + . . .+ xj−1 + xj+1)

xn−1(j)
. (11)

Observe that xn−1(j+1) < xn−1(j) (using the branch-increasing property of
S.) It follows that r′n−1(j) < rn−1(j+1). As in case I, all other ratios are
unchanged.

In either case, S ′ dominates S and we are done.

20

4.2.2 Proof of Theorem 3.

The question that arises is the following: can one set forth an iterative
scheme that converges to a well-defined limit in the space of strategies?
Each iteration will of course be a single execution of the “simple interchange”
primitive that we have just described. Since, a priori, an infinite number
of interchanges may be required to render a search with a non-decreasing
sequence of extents, some caution is required.

Observation. For a progressive strategy, xk → ∞ as k → ∞. (As usual,
{xk} = {xk}∞k=0 denotes the sequence of search extents.)

Otherwise, there exists a value M > 0 for which {xk}∩ [1,M] is infinite;
suppose this is so. For each branch b and each M > 0, the branch-b sub-
sequence of {xk} has finitely many elements that are less than or equal to
M , as it is an increasing and unbounded sequence. Since there are finitely
many branches, we have derived a contradiction.

We need this most recent observation in order to define a limit strategy.
Otherwise, we are vulnerable to the following pitfall: suppose we have a
finite-ratio strategy and a value M for which F := {xk} ∩ [1,M] is infinite.
(Partly, the point we are making is that such strategies exist, although
they cannot be branch-increasing.) After any finite number of the “simple
interchanges” set out by Lemma 1, the finite-ratio property will persist. But
in any non-decreasing-extent, “limiting” strategy, the extents in F would
(all) have to precede those in {xk}\F . With F infinite, the finite-ratio
property would clearly be destroyed. This is why we must have a progressive
strategy before we start performing interchanges to bring the smaller search
extents “to the front” of the sequence.

Algorithm. Let {xk} be the extent sequence for a progressive strategy which
fails to be non-decreasing. Initialize K to 0 and perform simple interchanges
in the following fashion:

1. Select the smallest index m such that xmin := xm = min∞k=K{xk}

2. Swap xmin and xm−1 etc. until xmin begins the new sequence {x′k}∞k=K .

At each interchange, modify the n(·) pointers as set out in the proof
of Lemma 1, and check to see whether the no-repetition property has
persisted. If not, there are two consecutive searches of one (or perhaps
both) of the branches that were involved in the interchange. Where
this occurs, delete the smaller of these two extents before proceeding.
If xmin itself is deleted by this procedure, go to step 1 to reset xmin.

21

3. Set xk ← x′k for all k ≥ K.

4. Stop if {xk} is non-decreasing; otherwise, increment K and go to
step 1.

Suppose S = S init is a progressive strategy which fails to be non-decrea-
sing; let S be fed as input to our algorithm. To show that this algorithm
converges to a well-defined, progressive limiting strategy (hereafter denoted
S∞), we need to verify three things:

• for each k, the kth search extent, x∞k , of the limiting strategy is well-
defined

• the “next” sequence n∞(·) is well-defined, and n∞(k) <∞ for all k

• each branch is visited at least once (for then the preceding item will
imply that each branch is visited infinitely often.)

These three points suffice: it follows from the first two bulleted items that
the kth competitive ratio, r∞k , for the limiting strategy is well-defined (for
all k). Moreover, the exposition will show that, for all k, r∞k appears in the
ratio sequence for some intermediate strategy. This intermediate strategy is
obtained from the initial strategy via finitely many simple interchanges and
therefore dominates S.

We use the index of the “big loop” (beginning in step 1 and falling
through all the way to step 4) to keep track of intermediate strategies: let
SK be the strategy that is obtained upon completion of the index-K iteration
of this loop. For all K, this strategy is progressive (the proof of Lemma 1
shows how to maintain the branch-increasing property; the no-repetition
property is restored in step 2 of the algorithm wherever necessary; ergodicity
is clearly maintained.) Note that each iteration of the big loop terminates,
as it requires finitely many simple interchanges to complete. (Suppose for
the sake of argument that we are in iteration K = 0 of the big loop. Then
the set of extents which are smaller than x0 is finite. Even if we delete xmin

inside the subloop at step 2, this set loses a member. So we will eventually
fall through to step 4. But there is nothing magic about K = 0.)

Let {xjk} be the search extent sequence for Sj ; fix k0. By construction,
xjk0 stops changing (as a function of the loop index j) for j ≥ k0. Said
differently, the tail of the sequence {xjk}j is constant for each k (notice we
are indexing on the “loop counter” now); let x∞k be this constant value.

We now show that n∞(k) exists and is <∞ for all k. This is a point of
some subtlety. Suppose we have completed iteration k of the big loop in our

22

algorithm (so xk and all previous search extents have reached their asymp-
totic placement in the extent sequence. For readability, we have dropped the
superscript from xk = x∞k .) We might attempt a direct proof that n∞(k) is
finite by looking at the set E of extents which

1. are smaller than xn(k), and

2. occur after xn(k) in the post-swap extent sequence.

It is not too hard to argue that E shrinks as the algorithm swaps its members
ahead of xn(k) (this boils down to the fact that if x′n′(k) 6= xn(k), the left-
hand side is the smaller of the two values.) If (dropping the primes) xn(k)

becomes the smallest extent not in its final sequence position, however, the
algorithm will move it earlier in the extent sequence. In this process, the
new pointer n′(k) may get attached to a new, larger extent, repopulating
the set E described earlier in this paragraph. How do we know that this
process ever ends?

As before, let k be fixed. Let U = U(k) be an integer greater than
max{(rSx∞k − 3)/2, k}. Then U > (rSxUk − 3)/2 = (rSx∞k -3)/2. Since each
search extent is at least 1, we have trivially that

1 + 2(xU0 + xU1 + . . .+ xUU)/xUk > rS , (12)

where the right-hand side is the worst-case competitive ratio for the initial
strategy S = S init.

Now SU dominates S. So rUk , the kth competitive ratio for SU , is not
greater than rS . But SU is a progressive strategy, so we have the formula

rUk = 1 + 2(xU0 + xU1 + . . .+ xUnU (k))/x
U
k ≤ rS . (13)

This implies that nU (k) < U . By construction, xU
nU (k)

= x∞
nU (k)

. In words,
once we reach strategy SU , all search extents up through the U th (including
the one in the previous equation) have stopped changing. As observed in the
proof of Lemma 1, subsequent iterations of the “big loop” in the algorithm
will not introduce any changes of branch assignment into this portion of the
extent sequence. So n∞(k) is well-defined (set it to nU (k) = nU+1(k) = . . .).

Recall the notation that α(b) is the index of the first visit to branch b
(for the initial strategy S). Lastly, we need to make sure that each branch
is visited, i.e. that α(b) < ∞ for all b. Here we can get away with a crude
estimate, again using the fact that each search extent is greater than or
equal to 1. For integer U > (rS − 3)/2,

1 + 2(xU0 + xU1 + . . .+ xUU) > rS ≥ rU−1

23

The definition of rU−1 (as maxb(1 + 2(xU0 + xU1 + . . . + xU
αU (b)

))) shows that
αU (b) < U for all branches b and the rest of the argument is as before. This
completes the proof of Theorem 3.

4.3 Solving for Optimal Strategies: The “Critical” Ratio

At the beginning of this section, we embarked on an effort to reduce the
space of strategies that must be considered. It is worthwhile at this point to
summarize and also to look ahead. We catalog a list of desirable properties
in the following proposition. Most of the work has already been done to
confirm that restricting to the corresponding subspace does not “throw out
the baby with the bath water” (i.e. does not discard all of the optimal
strategies.)

Proposition 1. Without loss of generality, we can restrict our attention (in
the unbounded case) to strategies S for which (all of) the following properties
hold:

1. S is progressive (i.e., branch-increasing, non-repetitive and ergodic.)

2. The sequence {xk} of search extents is non-decreasing.

3. (Least-Searched) The branches are assigned in “least-searched-so-far”
fashion. This says the following (for all k):

min
b

[
max

{j|j<k and b(j)=b}
xj

]
is assumed by branch b = b(k).

4. (cyclic) For any branch b, no other branch is explored more than once
between sucessive visits to b. Up to renumbering, this says that the kth

search explores branch k (mod m) for all k.

Proof. The first two properties have already been substantiated. The least-
searched property can be established by an interchange technique similar
to that used for Theorem 3. The specifics are simpler than with the non-
decreasing property just verified. This is because, if one goes to the first
point where the property is violated and performs the obvious interchange
of branch assignments, no difficulties are created. In particular, the extent
sequence remains intact and the branch-increasing property is not destroyed.

The cyclic property is an easy consequence of the least-searched and non-
decreasing properties. If the sequence of search extents is strictly increasing,

24

it is obvious that the branch which was least recently searched must come
next. (Our reckoning is in terms of the branch assignment sequence {b(k)},
as there is no notion of time in our problem formulation.) If the monotonicity
of the extent sequence is not strict, the least-searched branch will not always
be unique. But it is clear that we can break ties so as to preserve the cyclic
property without violating the least-searched dictum.

Recall the no-repetition property: for all k, b(k) 6= b(k+1). One further
comment is required. Interchanges that are performed to establish the least-
searched property may a priori defeat the no-repetition property. Not to
worry, however: the latter gets restored when we go through the tie-breaker
procedure to establish the cyclic property. This completes the proof of the
proposition.

Consider an exit placed at distance 1+ from the source on branch m− 1
(the last branch to receive its initial search. The meaning of the notation 1+

is as described in the exposition following Definition 7: “just past” extent
1.) The searcher travels at least 2(m− 1) + 1+ total distance units to make
the discovery. So no competitive ratio can be less than 2m− 1, even for the
bounded problem. Analogous to the 2-branch problem, this ratio of 2m− 1
is achievable only if we know the exact distance of the exit t from the source
s. Conversely, for any ratio strictly greater than 2m−1, we can at least visit
every branch once, i.e. we can choose ε small enough so that each branch
can be searched to extent 1 + ε without violating this ratio.

For a branch-increasing, cyclic search we can write the following con-
straint:

x0 + · · ·+ xn ≤ ρxn−m+1. (Gn)

Again we will refer to this inequality with n as a variable index, i.e. Gk
means the same inequality with n replaced by k, and so on. Recall the
notation that ρ = (r − 1)/2, where r is some target ratio. (If n < m − 1,
set xn−m+1 to 1.) We reason as follows: suppose the exit is positioned so
as to be discovered by search n+ 1. Given this information, the worst case
is to be placed just past the previously searched extent on branch b(n+ 1).
Using the cyclic property, this corresponds to an exit location at distance
x+
n−m+1 from the source. The total distance traveled to make the discovery

is 2(x0 + · · ·+ xn) + x+
n−m+1.

Observation. Suppose we let n > m. Subtracting the equality form of
(Gn−1) from that of (Gn) produces the formula xn = ρxn−m+1 − ρxn−m.
The characteristic polynomial of this recurrence is fρ(ξ) := ξm − ρ(ξ − 1).

25

We pause to study this recurrence, which arises if we pursue a strategy
of successive maximization as before. The recurrence has a solution (xj)j
for which limj→∞ xj = ∞ iff fρ has a real root greater than 1. For, every
complex number which is not a positive real has infinitely many powers with
positive real part and infinitely many powers with negative real part. We
claim that

ρ1 > ρ0 > 1, fρ0 has a real root > 1⇒ fρ1 has a real root > 1. (14)

The claim is easily substantiated by verifying that

for ρ1 > ρ0 > 1, ξ > 1, we have fρ1(ξ) < fρ0(ξ) (15)

and observing that, for any real ρ, fρ(ξ)→∞ as ξ →∞.
To find the minimum value of ρ for which fρ has a real root > 1, we

solve the equation fρ(ξ) = 0 for ρ, resulting in the formula

ρ = ξm/(ξ − 1). (16)

As a function of ξ, the critical value is at ξ = m/(m− 1) (there is no other
real critical value > 1.) The associated value of ρ is

ρcrit := (m− 1)
(m

m− 1

)m
= m

(m

m− 1

)m−1
.

It is easy to check that m/(m − 1) > 1 is a double root of fρcrit , and to
confirm that fρcrit assumes its absolute minimum here (when thought of as
a function with domain (1,∞).) Appealing again to Equation (15), we have
that fρ(ξ) > fρcrit ≥ 0 whenever ρcrit > ρ > 1 and ξ > 1. So ρcrit really is
the smallest value of the parameter ρ for which our polynomial has a real
root greater than 1.

The roots of fρ vary continuously with ρ; as ρ dips below the critical
value, the double root at m/(m − 1) bifurcates into a complex conjugate
pair which we will call ω, ω̄. The continuity property says that ρ can be
chosen so that the argument of ω is arbitrarily close to zero. To summarize,
as ρ decreases to subcritical values, we witness a transition: the recurrence
xn = ρxn−m+1 − ρxn−m no longer has a solution which approaches infinity
in increasing fashion.

4.4 A Sequence of Mathematical Programs

Let x be the vector (x0, . . . , xn) ∈ Rn+1, and let ei denote the ith standard
basis vector. In vector notation, Inequality (Gn) becomes

xT ·
[
(1, . . . , 1)T − ρen−m+1

]
≤ 0. (17)

26

When the subtraction is performed inside the brackets, note that the 1− ρ
entry appears m − 1 units to the left of the last (i.e. rightmost) 1. We
will soon have occasion to work in Rk for k > n + 1; in this situation we
simply append the appropriate number of 0’s (on the right) to the vector in
brackets in (17).

Following the parallel with the 2-branch problem, we can describe com-
pliance with the target ratio by constraints in a sequence of mathematical
programs.

max min {xk−m+2, xk−m+3, . . . , xk}
subj to Bkx ≤ ρ(e0 + e1 + . . .+ em−2)

x0 ≥ 1
xi ≥ xi−1 for i = 1, 2, . . . , k.

(Pk)

Here is the motivation for the new objective function. Fix a strategy;
let n∗ be the smallest value of k for which xk+1 < xk. For the sake of
discussion, assume that the constraint upperbounding xn∗+1 is tight (and
that n∗ <∞). This suggests that the (n∗+1)st search cannot be pursued to
an extent which is large enough to be useful, while still returning to perform
search n∗ +2 in accordance with the target ratio. From the point of view of
this worst-case ratio, we can do no better than to set xn∗+1 = xn∗ and stop.
If we had allowed the objective function to remain simply xk, there would
be m− 2 other branches unaccounted for.

The vector of decision variables for (Pk) is (x0, . . . , xk) ∈ Rk+1. Based
on (17) and subsequent comments, the (k + 1)x(k + 1) matrix Bk is lower
triangular, with the value 1− ρ appearing throughout the (m− 1)st subdi-
agonal. (In the 2-branch special case, this becomes the main subdiagonal.)
Every other entry on or below the main diagonal is 1. In what follows, we
number the rows and columns of Bk starting at 0 so as to be consistent with
the indexing of the xi’s.

The right-hand side of the system Bkx ≤ ρ(e0+e1+. . .+em−2) expresses
the “initial conditions” that x0 + . . .+ xi ≤ ρ for all i ≤ m− 2. To see that
we have specified the correct number of initial conditions, note that the mth

search represents the first occasion on which we return to a branch (namely,
branch 0) that has previously been explored. Recall that we constrain xm−1

by considering the worst case for discovery by search m. Thus the constraint
for xm−1 marks the first appearance of the “general term”, which has right-
hand side 0.

27

4.5 Identifying a “Canonical” Solution

For the case m = 2, we showed in Section 2.2 that the “successive maximiza-
tion” solution to the Program (Pk) is optimal whenever it is feasible. The
argument given there also shows that, if this solution fails to be feasible, the
Problem (Pk) itself is infeasible. We now encounter a new difficulty in our
generalization to m > 2 branches: settling on a strategy of successive max-
imization no longer uniquely determines initial conditions for the resulting
recurrence.

For general m, we will require that

x0 + · · ·+ xm−2 = ρ, and (18)

x0 + · · ·+ xm−2 + xm−1 = ρx0. (19)

It is clear that x0+· · ·+xm−2 ≤ ρ is the first constraint from our sequence of
mathematical programs that can be tight, since we want all search extents
to be strictly positive. Of course, this pair of equations is underdetermined
for m > 2; we describe a way to identify a choice of x0, x1, . . . , xm−1 with
desirable properties.

At ρ = ρcrit, we set

xk =
(
C + (k + 1)D

)(m

m− 1

)k+1
. (20)

All we are doing is writing down that portion of the general solution
(to the recurrence xk = ρ(xk−1 − xk−m)) corresponding to the double root
at m/(m − 1). Equations (18) and (19) now uniquely determine C and
D. Subtracting Equation (18) from Equation (19) and using the fact that
m/(m−1) is a characteristic root of the recurrence leads easily to C = 1. It
is then clear that D is a strictly positive real (by plugging in values of ρcrit

and of the xis to Equation (18), say). Therefore {xk} is a strictly increasing
sequence of positive numbers.

For ρ < ρcrit, let ω, ω̄ be the complex pair of characteristic values which
are “near” m/(m − 1). For definiteness, let ω be the member of this pair
with positive real part. Set

xk = αωk+1 + ᾱω̄k+1. (21)

As before, we have two unknowns (the real and imaginary parts of α) that
are uniquely determined by Equations (18) and (19). It is easy to show that

28

re(α) = 1/2. Thus xk is of the form 1
2

[
(1+δi)ωk+1+(1−δi)ω̄k+1

]
; Equation

(18) now determines the real number δ.
We claim that the value of x0 thus specified (and in fact that of each

subsequent element of the extent sequence {xk}) is continuous as a function
of ρ. In particular, this is true as ρ↗ ρcrit. A corollary is that the maximum
searchable extent approaches infinity as ρ ↗ ρcrit. This is a non-trivial
conclusion, as we will show that this extent cannot be infinite for subcritical
ρ.

Here is how the continuity claim can be verified. It is trivial to check
that xk = (ω + ω̄)xk−1 − ωω̄xk−2 whenever k ≥ 1, with the proviso that
x−1 is just 1. So x1 is a function of x0 and ω which is linear in x0. In turn,
x2 is a linear function of x1, and so on. Since linearity is preserved under
composition and sums, x0 + · · ·+ xm−2 can be written in the form g(x0, ω),
where g is linear in its first argument. It is a simple matter to verify that
the “coefficient” of x0 in this function is non-zero. Furthermore, none of
the formulas change when we work at the critical value of ρ, replacing ω
by m/(m − 1). In either case, Equation (18) becomes g(x0, ω) = ρ. It is
trivial to solve for x0, yielding a formula that is continuous in ρ and in ω;
the latter, being a root of a polynomial parameterized by ρ, is continuous
as a function of ρ as well. As a result, we have the following conclusion.

Proposition 2. Let the sequence {x∗k} be determined by Equations (18),
(19) and (21) for subcritical ρ (alternatively, Equations (18), (19) and (20)
at the critical value of ρ.)

Then for all k, x∗k is continuous as a function of ρ as ρ ↗ ρcrit. Thus
for fixed K, {x∗k}Kk=0 ∈ Rk+1 is continuous as a function of ρ. We therefore
have that, for any fixed K, {x∗k}Kk=0 is increasing whenever ρ is sufficiently
close to its critical value.

However, this convergence is far from uniform: since arg(ω) is non-zero
for fixed sub-critical ρ, we have that x∗k < 0 for some k.

One more comment is in order regarding the content of this proposition:
referring back to Equations (20) and (21) and using what we know so far,
one can see that δ := im(α) must approach −∞ as ρ approaches its critical
value (for im(ω) approaches 0 simultaneously). This is easier to obtain in
the 2-branch case, where we can exhibit explicit formulas for ω and the
constants D and δ from the aforementioned equations. Here we have to
work a little harder; the foregoing proposition tells us that the analogy with
the 2-branch case is in fact robust.

29

4.6 Infeasibility for Subcritical Ratios

Theorem 4. Let m be the number of branches. For any ρ < ρcrit =

m
(

m
m−1

)m−1
, there exists k for which the Program (Pk) of Section 4.4 is

infeasible. Thus 2ρ+ 1 is not a feasible competitive ratio for the unbounded
problem.

Further, as ρ↗ ρcrit, the searchable extent under competitive ratio 2ρ+1
increases to infinity.

The claim about the searchable extent increasing to ∞ as ρ↗ ρcrit was
demonstrated in the course of the previous section.

The rest of this section will be devoted to the proof of the infeasibility
claim for ρ < ρcrit. We will refer to the following relaxation of the Program
(Pk) as the “primal” problem. Here we rewrite the constraint x0 ≥ 1 in
vector form and replace constraints of the form xi−1 ≤ xi by nonnegativity
constraints.

max min {xk−m+2, xk−m+3, . . . , xk}
subj to Bkx ≤ ρ(e0 + e1 + . . .+ em−2)

−eT0 x ≤ −1
x ≥ 0

(Qk)

The problem (Qk) is readily converted to a linear program (Q′
k) by intro-

ducing a new variable z and the m−1 constraints z ≤ xk−m+i, i = 2, . . . ,m.
Then the objective function shown is replaced by z itself. As a result, it
is easy to see that (Q′

k) is feasible if and only if (Qk) is feasible. So we
concentrate on the feasible region of the latter for simplicity.

Recall that the (k + 1)x(k + 1) matrix Bk is lower triangular, with the
value 1−ρ appearing throughout the (m−1)st subdiagonal. In what follows,
we number the rows and columns of Bk starting at 0 so as to be consistent
with the indexing of the xi’s.

Farkas’ lemma says that the Problem (Qk) is feasible iff the following
system is infeasible:

[
BT
k | − e0

] [
y
v

]
≥ 0

y ≥ 0
v ≥ 0[

ρ(eT0 + . . .+ eTm−2)| − 1
] [

y
v

]
< 0.

(FDk)

30

Here y ∈ Rk+1 and v is a scalar. The last constraint boils down to
ρ(y0 + · · ·+ ym−2) < v.

The main content of this section follows from a rather simple observation.
Let us ignore v for the moment (or set it to zero) and look at the system
BT
k y ≥ 0. Now BT

k is upper triangular, with (1 − ρ)’s along the (m − 1)st

superdiagonal. Therefore the nth constraint is, after a little algebra,

yn + yn+1 + ...+ yk ≥ ρyn+m−1. (22)

Observation. Inserting equality constraints in the system BT
k y ≥ 0 gives

rise to the same recurrence as in the “primal” system Bkx ≤ ρ(e0 + . . . +
em−2). The only difference is that the subscripts run backwards, i.e. we now
have yn = ρ(yn+m−1 − yn+m).

The next several paragraphs are technical and, in particular, the sub-
scripts become confusing. To build intuition, the reader may want to go
through the argument once with m = 3 and then return to general m > 2.
To show that 2ρ + 1 is an infeasible competitive ratio for the unbounded
problem, we want to exhibit a solution of the Farkas dual problem (FDk)
for appropriately chosen k. The particulars are as follows: let η = η(ρ)
be the largest index K for which {x∗k}Kk=0 is nondecreasing. Here x∗k is the
generic term in the “canonical primal solution” of Proposition 2. By defini-
tion of η we have that x∗η+m = ρ(x∗η+1− x∗η) is the first negative term of the
sequence {x∗k}.

For ρ sufficiently close to its critical value, we know that η > m and
that x∗η+m+1, . . . , x

∗
η+2m−2 are all negative (because arg(ω) is close to 0).

The recurrence says in turn that x∗η > x∗η+1 > · · · > x∗η+m−1. Furthermore,
there is no loss of generality in assuming that ρ is close to its critical value,
since the feasible region for Problem (Pk) shrinks as ρ decreases, and we are
trying to prove infeasibility for large k whenever ρ < ρcrit.

We work with (FDη+2m−2), setting yη+2m−2 = x∗0, yη+2m−3 = x∗1, . . .,
ym−1 = x∗η+m−1. Let ym−2 = ym−3 = · · · = y0 = 0. The non-negativity
constraints are satisfied by these choices of the yks; in view of this, con-
straints η+2m−2, η+2m−3, . . . η+m from the system BT y− e0v ≥ 0 are
redundant. For readability, we have dropped the subscript from the matrix
BT .

Constraint η +m− 1 from this system is

yη+m−1 + yη+m + · · ·+ yη+2m−2 ≥ ρyη+2m−2. (23)

By construction, this is satisfied as an equality: it restates the fact, estab-
lished in the previous section, that x∗0 + x∗1 + · · ·+ x∗m−1 = ρx∗0.

31

It now becomes clear that constraints η + m − 1, η + m − 2, . . . ,m − 1
from the system BTx − e0v ≥ 0 are all satisfied as equalities; we are just
“riding the recurrence”. For, yη+m−2 + yη+m−1 + · · ·+ yη+2m−2 = ρyη+2m−3

iff yη+m−2 = ρ(yη+2m−3 − yη+2m−2) via the observation of the previous
paragraph; the second of these equations is of course true. Now continue
with constraint η +m− 3 and so on inductively.

It remains to check constraints m − 2,m − 3, . . . 1 and then to assign a
value to the variable v for which constraint 0 also holds. After filling in 0
for ym−2, constraint m− 2 becomes

ym−1 + ym + . . .+ yη+2m−2 ≥ ρy2m−3. (24)

The LHS of this inequality is ρy2m−2 = ρx∗η as established in the previous
paragraph. The RHS is ρx∗η+1; by definition of η we have ρx∗η > ρx∗η+1 as
desired.

Since ym−3, ym−4, . . . , y1 are all zero, ρx∗η is the LHS for each of the
constraints m − 3,m − 4, . . . 1. The right-hand sides are ρy2m−4 = ρx∗η+2,
ρy2m−5 = ρx∗η+3, . . ., ρym = ρx∗η+m−2 respectively. In light of the earlier
observation that the x∗s are decreasing from subscript η+1 through subscript
η +m− 1, we see that constraints m− 3,m− 4, . . . , 1 are all satisfied.

Lastly, constraint 0 boils down to ρx∗η−v ≥ ρx∗η+m−1. We assign to v the
value ρ(x∗η −x∗η+m−1) > 0. Thus the system of inequalities BT y− e0v ≥ 0 is
verified, as is the non-negativity constraint on v. We also have ρ(y0 + y1 +
· · · + ym−2) − v = 0 − ρ(x∗η − x∗η+m−1) < 0. So the Problem (FDη+2m−2)
is feasible. This finishes the proof that the “primal” problem (Qη+2m−2)
is infeasible. Therefore the original problem (Pη+2m−2) is infeasible and
Theorem 4 is proved.

5 Concluding remarks

Under various deterministic and probabilistic information we have been able
to find strategies with proven optimal competitive ratio. To the best of our
knowledge, our results represent the first rigorous quantitative analysis of
the value of additional information (deterministic or probabilistic) for on-
line search problems. We have mainly considered the m-concurrent branch
problem, but the qualitative implications of our findings will apply to more
general search. In order to give another perspective on the results, it is
interesting to note that, for the 2-concurrent branch problem, the informa-
tion “the exit is within 233 units of the origin” is about equivalent (in the
sense that it leads to optimal strategies with same competitive ratios) to

32

the information “the probability that the exit is on branch 1 is 0.25”. More
generally the correspondence is as follows:

Equivalence between probabilistic
and deterministic information

Probability Distance Corresponding Ratio
0.5 ∞ 9
0.45 4.3×1015 8.973
0.4 2.8×107 8.892
0.35 4.7×105 8.754
0.3 1,755.81 8.554
0.25 232.93 8.284
0.2 56.42 7.929
0.15 18.30 7.465
0.1 7.87 6.844
0.05 3.62 5.937
0.01 1.78 4.562

One can see that in order to substantially improve the unbounded case (with
a ratio of 9), one has to receive very restrictive information.

Acknowledgements:
We would like to thank two anonymous referees and Suvrajeet Sen for com-
ments that greatly helped improving the clarity of the paper.

References

[1] S. Alberts. Competitive online algorithms, overview. Optima, Mathe-
matical Programming Society Newsletter, 54:1–8, 1997.

[2] S. Ascheuer, M. Gröetschel, J. Rambau, and N. Kamin. Combinatorial
online optimization in practice. Optima, Mathematical Programming
Society Newsletter, 57:1–6, 1998.

[3] R. Baeza-Yates, J. Culberson, and G. Rawlins. Searching in the plane.
Information and Computation, 106:234–244, 1993.

[4] R. Bellman. A minimization problem. Bulletin of the American Math-
ematical Society, 62:270, 1956.

[5] A. Borodin and Ran El-Yaniv. Online Computation and Competitive
Analysis. Cambridge University Press, 1998.

33

[6] A. Borodin, N. Linial, and M. Saks. An optimal on-line algorithm for
metrical task systems. Journal of the ACM, 39:745–763, 1992.

[7] D.P. Foster and R. Vohra. Regret in the on-line decision problem. Work-
ing paper, Department of Management Science, Ohio State University,
1997.

[8] B. Gluss. An alternative solution to the ‘lost at sea’ problem. Naval
Research Logistics Quaterly, 8:117–128, 1961.

[9] B. Gluss. The minimax path in a search for a circle in the plane. Naval
Research Logistics Quaterly, 8:357–360, 1961.

[10] R. Hassin and A. Tamir. Minimal length curves that are not embeddable
in an open planar set: The problem of a lost swimmer with a compass.
SIAM Journal of Control and Optimization, 30:695–703, 1992.

[11] D. Heyman and M. Sobel. Stochastic Models in Operations Research,
volume 2. Mc Graw-Hill, 1984.

[12] J. Isbell. An optimal search pattern. Naval Research Logistics Quaterly,
4:357–359, 1957.

[13] P. Jaillet and M. Stafford. Parallel on-line search. Working paper, MSIS
Department, The University of Texas at Austin, December 1997.

[14] M. Kao, J. Reif, and S. Tate. Searching in an unknown environment:
An optimal randomized algorithm for the cow-path problem. In Proc.
of the 4th Ann. ACM-SIAM Symp. on Discrete Algorithms, pages 441–
447, 1993.

[15] A. Karlin, M. Manasse, L. Rudolph, and D. Sleator. Competitive
snoopy caching. Algorithmica, 3:79–119, 1988.

[16] M. Manasse, L. McGeoch, and D. Sleator. Competitive algorithms for
on-line problems. Journal of Algorithms, 11:208–230, 1990.

[17] C. Papadimitriou and M. Yannakakis. Shortest paths without a map.
Theoretical Computer Science, 84:127–150, 1991.

[18] D. Sleator and R. Tarjan. Amortized efficiency of list update and paging
rules. Communications of the ACM, 28:202–208, 1985.

34

