
A Proof of Proposition 1

The objective function in (4) can be re-written as
Z

p(U) log(1 � �(T (U))) dU +

Z
q�(U) log �(T (U)) dU .

The above integral is maximal in function T if and only if the integrand is maximal in T (U) for
every U . Note that the maximum of a log(t) + b log(1� t) over t 2 [0, 1] is at t = a/(a + b) for any
(a, b) 2 R2

\(0, 0). Using this result,

�(T
⇤
(U)) =

q�(U)

q�(U) + p(U)

or, equivalently,
T

⇤
(U) = log q�(U) � log p(U) .

B Proof of Proposition 2

If ({ 
⇤
}, {✓

⇤
,�

⇤
}) is a Nash equilibrium, then according to Proposition 1 and under the assumption

that T ⇤ is expressive enough, we know that Player 1 is playing its optimal strategy  ⇤ such that

T ⇤(U) = log q�⇤(U) � log p(U) . (8)

Substituting (8) into (6) reveals that Player 2’s strategy {✓
⇤
,�

⇤
} maximizes its payoff which is a

function of {✓,�}:

F(✓,�) , Eq�(U)[L(✓,X,y, U) + log p(U) � log q�⇤(U)]

= Eq�(U)[L(✓,X,y, U) + log p(U) � log q�(U) + log q�(U) � log q�⇤(U)]

= EL(✓,�) + KL[q�(U)kq�⇤(U)]

(9)

where EL(✓,�) is the ELBO in (3).

Now, suppose that {✓⇤
,�

⇤
} does not maximize the ELBO. Then, there exists some {✓0

,�
0
} such that

EL(✓
0
,�

0
) > EL(✓

⇤
,�

⇤
). By substituting {✓

0
,�

0
} into (9),

F(✓
0
,�

0
) = EL(✓

0
,�

0
) + KL[q�0(U)kq�⇤(U)] > F(✓

⇤
,�

⇤
) ,

which contradicts the fact that {✓⇤
,�

⇤
} maximizes (9). Hence, {✓⇤

,�
⇤
} maximizes the ELBO,

which is equal to the log-marginal likelihood log p✓⇤(y) with ✓
⇤ being the maximum likelihood

assignment and q�⇤(U) being equal to the true posterior belief p(U |y).

B.1 Discussion on the Existence of Nash Equilibrium

Proposition 3. Suppose that the parametric representations of T and g� are expressive enough
to represent any function and the DGP model hyperparameters are fixed to be ✓�. Then, the two-
player pure-strategy game in (7) for the case of fixed ✓� has a Nash equilibrium. Furthermore, if
({ 

⇤
}, {✓�,�

⇤
}) is a Nash equilibrium, then {�

⇤
} is a global maximizer of the ELBO for the case

of fixed ✓� such that q�⇤(U) is equal to the true posterior belief p✓�(U |y).

Proof. Since we assume the parametric representation of g� to be expressive enough to represent any
function, we can find some {��} such that q��(U) is equal to the true posterior belief p✓�(U |y). We
now know that {��} maximizes the ELBO in (3) for the case of fixed DGP model hyperparameters
✓�, which we denote by EL(✓�,��).

Since we assume the parametric representation of T to be expressive enough to represent any
function, we can further obtain some { �} such that T �(U) = log q��(U) � log p(U). According
to Proposition 1, { �} maximizes the payoff to player 1. Hence, player 1 cannot improve its strategy
to achieve a better payoff.
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Given that player 1 plays strategy { �} for the case of fixed ✓�, the payoff to player 2 playing
strategy {✓�,�} is

F(✓�,�) , Eq�(U)[L(✓�,X,y, U) + log p(U) � log q��(U)]

= Eq�(U)[L(✓�,X,y, U) + log p(U) � log q�(U) + log q�(U) � log q��(U)]

= EL(✓�,�) + KL[q�(U)kq��(U)]

= log p✓�(y) � KL[q�(U)kp✓�(U |y)] + KL[q�(U)kq��(U)]

= log p✓�(y) .

So, player 2 receives a constant payoff (i.e., independent of {�, ✓�}) and cannot improve its strategy
to achieve a better payoff. Since every player cannot improve strategy to achieve a better payoff,
({ �}, {✓�,��}) is a Nash Equilibrium.

The rest of the proof is similar to that of Proposition 2.

Given that the hyperparameters ✓� of a single-layer DGP (i.e., SGP) regression model are fixed,
the true posterior belief p✓�(U |y) is guaranteed to be a Gaussian [51]. In this case, Proposition 3
indicates that q�⇤(U) is equal to this Gaussian.

C Additional Details for Experiments

C.1 Synthetic Experiment: Learning a Multi-Modal Posterior Belief

The prior belief is set as a mixture of 5 Gaussians:

p(f) , pi

5X

i=1

N (µi exp(�8x
2
),KXX)

where pi , 1/5 for i = 1, . . . , 5, µ1 , �8, µ2 , �4, µ3 , 0, µ4 , 4, µ5 , 8, and KXX denotes a
constant covariance matrix with a constant kernel k(x, x

0
) , �

2
A

and �
2
A
, 1/(4 � exp(�8)).

Also, p(y|f) =
Q

n
p(yn|fn) =

Q
n
(1/(

p
2⇡�B)) exp(�(yi � fi)

2
/(2�

2
B

)) with a large noise
variance �

2
B

= 7 exp(8). Then, the ground-truth posterior belief with 5 modes can be recovered
analytically using Bayes rule:

p(f |y) = p
0
i

5X

i=1

N (µi exp(�8x
2
) + �i,K

0
XX)

where p
0
1 = 0.1988, p

0
2 = 0.2004, p

0
3 = 0.2016, p

0
4 = 0.2004, p

0
5 = 0.1988, �1 = 0.000479,

�2 = 0.00024, �3 = 0, �4 = �0.00024, �5 = �0.000479, and K0
XX denotes a constant covariance

matrix with a constant kernel k
0
(x, x

0
) , �

2
C

and �
2
C

= 1/4.

In our implementation, the ground-truth GP kernel hyperparameter values are known to IPVI and
SGHMC. We adopt a single inducing input fixed at z = 0. The multi-modal posterior belief
p(f |y; x = 0) is then approximated using the samples from p(u|y; z = 0). In Fig. 7, we give
additional results for different hyperparameter settings of SGHMC to show that it is likely to obtain a
biased posterior belief.

We vary the number of hidden layers and number of neurons in each hidden layer to obtain generators
with different number of parameters in Fig. 3c.

C.2 Unsupervised Learning: FreyFace Reconstruction

The dimensions of the hidden layers are 2 for X and 100 for F1 for FreyFace Reconstruction. We did
not exploit inducing variables here. So, the training is a full DGP. We use PCA as the mean function
for this unsupervised learning task.

Reconstruction. Given a trained DGP model, the reconstruction task of a partially observed y?
O

is to
recover the missing part y?

U
such that y? = [y?

O
,y?

U
]. This reconstruction task involves two steps.

The first step is to cast it as an DGP inference problem to get the posterior p(x?|y?
O

) with a Gaussian
likelihood p(y?

O
|y?). The second step samples y? from p(y?|y?

O
) =

R
p(y?|x?) p(x?|y?

O
) dx?.
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(a) (b) (c)

Figure 7: SGHMC with different hyperparameter settings of learning rate ⌘, momentum 1�↵, Fisher
information V , and initialization init for starting the sampler: (a) ⌘ = 0.3, ↵ = 0.4, V = 0.1; (b)
⌘ = 0.3, init = 4, ↵ = 0.4; and (c) ⌘ = 0.3, init = 4, V = 0.1.

C.3 Supervised Learning: Regression and Classification

In this subsection, we provide additional details for our experiments in the supervised learning tasks.

Learning Rates. We adopt the default settings of the learning rates of the tested methods from
their publicly available implementations. The learning rates and maximum iteration for IPVI are
tuned through grid search and cross validation with a default setting of ↵ = 0.05, ↵� = 0.001,
↵✓ = 0.025 and cut-off at a maximum of 20000 iterations. The learning rates for classification is
simply set to be 0.02 for all parameters.

Hidden Dimensions. The dimension of inducing variables for all implementations are set to be (i)
the same as input dimension for the UCI benchmark regression and Airline datasets, (ii) 16 for the
YearMSD dataset, and (iii) 98 for the classification tasks.

Mini-Batch Sizes. The mini-batch sizes for all implementations are set to be (i) 10000 for the UCI
benchmark regression tasks, (ii) 20000 for the large-scale regression tasks, and (iii) 256 for the
classification tasks.

Generator/Discriminator Details. We have described the architecture design in Section 4. We will
describe here the neural network represented by g�` . Firstly, the noise ✏ has the same dimension
as the inputs X of the dataset. We implement g�` using a two-layer neural network with hidden
dimension being equal to the dimension of Z` and leaky ReLU activation in the middle. Similarly, we
implement T ` using a two-layer neural network with hidden dimension being equal to the dimension
of Z` and leaky ReLU activation in the middle. The network initialization follows random normal
distribution.

Mean Function of DGP. The ‘skip-layer’ connections are implemented in both SGHMC [18] and
DSVI [48] for DGPs and in our IPVI framework as well. The work of [15] has analyzed that
using a zero mean function in the DGP prior causes some difficulty as each GP mapping is highly
non-injective. To mitigate this issue, the work of [48] has proposed to include a linear mean function
m(X) = WX for all hidden layers. The ’skip-layer’ connection W is set to be an identity matrix
if the input dimension equals to the output dimension. Otherwise, W is computed from the top H

eigenvectors of the data under SVD. We follow the same setting as this ’skip-layer’ mean function.
Note that this ’skip-layer’ mean function contains no trainable parameters.

Likelihood. For the classification tasks, we use the robust-max multiclass likelihood [21]. Tricks
like data augmentation are not applied, which means that the accuracy can still be improved further
with those additional tricks.

Parameter-Tying vs. No Parameter-Tying. Tables 4 and 5 show, respectively, results of the
test MLL for more UCI benchmark regression datasets and the mean test accuracy for the three
classification tasks over 10 runs that are achieved by IPVI with and without parameter tying. It can
be observed that IPVI achieves a considerably better predictive performance with parameter tying.

Performance Gap between SGPs. Regarding the performance gap between SGPs, note that the
optimal variational posterior is a Gaussian for a SGP regression model [51]. However, since the
SGP model hyperparameters are not known beforehand, DSVI SGP has to jointly optimize its
hyperparameters and variational parameters. Such an optimization is not convex. Hence, there is
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Table 4: Test MLL achieved by our IPVI framework with and without parameter tying for UCI
benchmark regression datasets. Higher test MLL is better.

Dataset Boston Power
DGP Layers 1 2 3 4 5 1 2 3 4 5
No Tying -2.21 -2.37 -2.48 -2.51 -2.57 -2.77 -2.79 -2.74 -2.73 -2.75
Tying -2.09 -2.08 -2.13 -2.09 -2.10 -2.76 -2.69 -2.67 -2.70 -2.71
Dataset Wine Red Protein
DGP Layers 1 2 3 4 5 1 2 3 4 5
No Tying -0.97 -0.94 -0.96 -0.97 -0.97 -2.83 -2.72 -2.69 -2.70 -2.67
Tying -0.84 -0.81 -0.86 -0.86 -0.85 -2.73 -2.57 -2.56 -2.59 -2.62

Table 5: Mean test accuracy (%) achieved by our IPVI framework with and without parameter tying
for three classification datasets.

Dataset MNIST fashion-MNIST CIFAR-10

DGP Layers 1 4 1 4 1 4
No Tying 96.77 97.45 86.69 88.01 47.13 52.76
Tying 97.02 97.80 87.29 88.90 48.07 53.27

no guarantee that it will reach the global optimum. Thus, the performance gap can be explained by
IPVI’s ability to jointly find “better” values of hyperparameters and variational parameters.

Evaluation of ELBO. We have also computed the estimate of ELBO by, after training our IPVI DGP
models for the Boston dataset, continuing to train the discriminator using more calls of Algorithm 2.
Table 6 shows the mean ELBOs of DSVI and IPVI over 10 runs for the Boston dataset. IPVI generally
achieves higher ELBOs, which agrees with results of the test MLL in Fig. 4. Since SGHMC DGP is
not based on VI, no ELBO is computed for that method.

Table 6: Mean ELBOs for Boston dataset.
Model DSVI IPVI
SGP -956.57 -934.07

DGP 2 -850.54 -846.65
DGP 3 -836.13 -846.45
DGP 4 -787.10 -776.93
DGP 5 -770.67 -758.42
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