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The emergence of COVID-19 stressed country health systems
up to the point of triggering compulsory public health interven-
tions to flatten the epidemic curve. Most of the interventions
during the first year of the pandemic were non-pharmaceutical
and aimed to reduce the contact rate of the people, which re-
duced the transmission rate of all respiratory pathogens, but
had a large social and financial burden. SARS-CoV-2 specific
interventions included screening, that is testing of asymptomatic
people, which was largely facilitated by the availability of self-
testing lateral flow antigen detection devices. The importance
of self-testing interventions in controlling COVID-19 epidemic
is not well-documented. We study as a paradigm-model the
self-testing COVID-19 mass screening program that was imple-
mented in Greece, involving large, susceptible populations tak-
ing tests routinely and pre-emptively so as to enable early detec-
tion of infections. Using a novel compartmental model we quan-
tify the effectiveness of the program in curbing the COVID-19
pandemic. Conservative estimates indicate that the program
reduced the reproductive number by 4%, hospital admissions
by 25% and deaths by 20%, which translated into approxi-
mately 20,000 averted hospitalizations and 2,000 averted deaths
between April-December 2021. Self-testing mass screening pro-
grams are efficient interventions with minimal social and finan-
cial burden, thus they are invaluable tools to be considered in
pandemic preparedness.

Non Pharmaceutical Interventions | Epidemic Modelling | COVID-19 Testing

The global emergence of the COVID-19 pandemic caught the
entire world off guard with devastating effects. During the
years 2020-21, widespread community transmission of the
SARS-CoV-2 pathogen frequently resulted in unprecedented
demand for healthcare resources that stretched entire national
health systems beyond their capacity across the world. In

response to this public health emergency, governments and
local authorities adopted different intervention strategies in
their attempts to curb COVID-19 spread, ranging from pub-
lic advisories to face mask mandates, travel restrictions, and
strict lockdowns.
In this work, we study the novel COVID-19 mass screening
program that was implemented in Greece. Mass screening
programs involve large, susceptible populations taking tests
routinely and preemptively so as to enable early detection
of infections. Our goal is to quantify the effectiveness of
the Greek mass screening program in curbing the COVID-19
pandemic, particularly its impact on averting hospitalizations
and saving lives. We also seek to obtain insights on best prac-
tices and lessons learned from the operational decisions that
were made. The analysis could help inform policymakers
who contemplate mitigating strategies, particularly whether
to roll out screening programs, in times of future pandemics.
The choice of what strategy to follow and which interven-
tions to mount in order to combat the COVID-19 pandemic
presented policymakers with perplexing dilemmas. The asso-
ciated calculus often revolved around balancing the expected
negative and positive consequences for each course of action.
The former related to a wide range of potentially harmful im-
plications, such as direct financial costs, disrupted education,
adverse effects on mental health, among many others. The
latter primarily related to the intervention’s effectiveness in
ultimately relieving pressure on the health system and saving
lives.
Predicting the consequences of an intervention during
COVID-19 was, of course, in and of itself a very challeng-
ing problem. For some interventions that had been adopted
in previous respiratory pandemics similar to COVID-19, ex-
tant documentation in the literature, albeit limited, provided
guidance and invaluable experience. Analyses of novel in-
terventions with no historical precedence prior to COVID-19
could therefore prove vital in informing how we respond to
future crises.
Mass screening programs as mitigating interventions for in-
fectious diseases, and particularly for acute viral infections,
were implemented for the first time during the COVID-19
pandemic. In particular, technological and scientific ad-
vancements in diagnostics, coupled with robust manufactur-
ing and supply chain capabilities, enabled few countries, in-
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cluding Greece, to procure and distribute self-testing kits to
the public at a massive scale.
The Greek mass screening or self-testing program was initi-
ated in April 2021 and was rolled out in different phases. The
program was targeted at several population groups in Greece:
students, teaching staff, civil servants, and private sector em-
ployees. For the most part, each individual within the tar-
geted groups was required by law to take two self tests per
week, regardless of symptoms of disease, and report the re-
sults at a centralized online platform. The entire population
was also encouraged to take tests, and indeed free kits were
occasionally distributed to everyone, particularly preceding
or following holidays that typically involved large gatherings
of people. The selection of self-testing kits was based on the
rate of sensitivity (above above 85% for samples testing pos-
itive with a qPCR up to the 33rd reaction cycle and with a
specificity of over 99%) with a specificity of over 99% which
was supported through peer reviewed process or evaluation
available at FIND’s1 test directory. Importantly, these tests
were also safe, inexpensive, acceptable by the target popula-
tion and simple to take at home or anywhere, providing rapid
results. More implementation details of the program are pro-
vided as Supporting Information.
When it comes to ascertaining the negative and positive con-
sequences of mass screening programs, the former are typi-
cally much easier to quantify a priori. Indeed, the cons are
primarily limited to direct financial costs, such as procure-
ment and distribution costs, that can be reasonably estimated
prior to implementation. The expected pros, however, are
more challenging to assess, as they stem from early detection
and isolation of infected individuals, including asymptomatic
ones, which in turn could help limit disease transmission.
Therefore, our analysis of the Greek program focuses solely
on quantifying its benefits.
Our study attempts to quantify the impact that the program
had on curbing the COVID-19 pandemic in Greece between
April 4, 2021, the date that program was launched, and De-
cember 15, 2021, the date we have data until. During that
period, a total of 60 million self-testing kits were distributed.
At its peak during the study period, an estimated percentage
as large as 20% of the population took two self tests over a
week as part of the program.

1. Results
To analyze the impact of the Greek self-testing program, we
developed a novel compartmental model that tracks the evo-
lution of the COVID-19 pandemic in Greece. The model is
reminiscent of an SIR model, but with important modifica-
tions that enable us to model salient dynamics, such as the
testing and vaccination operations in Greece. At a high level,
the compartments model susceptible individuals, who might
become infected and contagious after being exposed to the
virus. Infected individuals can be asymptomatic or symp-
tomatic before either recovering with immunity or dying. In-
fected individuals might also be identified through testing, in

1https://www.finddx.org
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Fig. 1. The structure of the model within a particular age group a ∈ G. For some
vaccination group v ∈ {0,1}, the states within this age group are indexed by sub-
script {av}. Compartments colored with a blue background are compartments that
are subject to testing. Compartments with green and red corners contain asymp-
tomatic and symptomatic individuals, respectively.

which case they are isolated to avert disease transmission. To
capture the effects of the self-testing operations, which were
allocated in different proportions to age groups 0 to 18 years,
19 to 64 years, and 65+ years, we consider three sets of com-
partments that correspond to the said age groups. Depending
on which age group they model, we index compartments by
a, which takes values in G = {‘0-18’,‘19-64’,‘65+’}. Sim-
ilarly, we also consider two sets of compartments based on
vaccination status, indexed by v ∈ {0,1} to indicate vaccina-
tion. Figure 1 details, for a single age group a∈ G, the model
compartments and the possible transitions among them.
The model was fitted to highly detailed historical data that we
obtained from the Greek National Public Health Organiza-
tion. Further details on the model, the data, and the methods
used are provided in Section 3.

A. Overall Impact of the Program. A high-level descrip-
tion of how we evaluate the overall impact of the self-testing
program is as follows. We use the fitted model, but modify
the number of distributed self tests and set it to zero. Af-
ter this modification, and keeping other parameters constant
and equal to their fitted values, we simulate the model to ob-
tain trajectories that the pandemic in Greece would have fol-
lowed, had the self-testing program not been implemented. A
rigorous presentation of the approach can be found in Section
E.
We first evaluate the impact of the self-testing program on
reducing the effective reproduction number (Rt) of the pan-
demic. To conduct this analysis, we utilize the methodology
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of calculating Rt proposed in (1); see Section E for details.
Table 1 presents the 80% confidence interval for the aver-
age reduction ofRt and the maximum weekly reduction over
the period of study. The analysis suggests the program re-
duced the virus’ transmissibility by 4.7% on average, while
the largest weekly reduction was 24%, approximately.
Table 1. Estimates for the percentage reduction in Rt, and absolute reduction in
deaths and hospitalizations due to the self-testing program in Greece (values in
parentheses provide 80% confidence intervals).

Metric Estimate

Percentage reduction in Rt
Mean 4.72 (3.93 – 5.37)
Maximum 24 (17.3 – 25.6)

Reduction in deaths
Using direct method 4888 (3698 – 6808)
Using indirect method 3434 (2350 – 4387)

Reduction in hospitalizations
Using direct method 40655 (33625 – 50699)
Using indirect method 28379 (21763 – 34425)

Next, we evaluate the impact of the program on deaths and
hospitalizations. To further enhance precision, we employ
two methods to conduct this analysis. The first is a ‘direct’
application of the methodology we described above, in which
we perturb the fitted model by setting the number of self-tests
to 0 to provide an estimate. The second is an ‘indirect’ ap-
plication of the methodology we described above, in which
we use only local perturbations of the fitted model (±1%
changes in the number of self-tests) and arguments from con-
vex analysis to provide an estimate. Details are again de-
ferred for Section E.
Table 1 presents the 80% confidence intervals on the num-
ber of deaths and hospitalizations that were averted by the
self-testing program, as obtained by the direct and indirect
methods of estimation. For reference, the total number of
deaths observed in the historical data over the self-testing pe-
riod was 10336, and the total number of hospitalizations was
76299.
Our most conservative estimates on the effect of the im-
plemented self-testing program suggest mortality reduction
of at least 20%, which corresponds to 2,000 deaths, ap-
proximately. Furthermore, the program yielded a reduc-
tion in hospital admissions of at least 25%, which corre-
sponds to 20,000 hospitalizations, approximately. These ad-
ditional hospitalizations would have stressed the Greek na-
tional healthcare system even further. It is important to note
that our model does not consider the potential effect of this
additional healthcare stress on deteriorating hospitalization
outcomes and additional deaths, thus our mortality estimate
is conservative with respect to the dynamic status and respon-
siveness of the healthcare system.
Previous studies have shown that non-pharmaceutical inter-
ventions, apart from lockdowns, during the first wave re-
duced transmissibility by around 2-3%, approximately (2).
These included banning of public events and school closure.
In comparison, the self-testing program in Greece appears
to have been at least equally effective in reducing trans-
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Fig. 2. 80% confidence intervals for the percent change in deaths (left panel) and
hospitalizations (right panel) as a function of the percent change in the self-tests
administered, relative to what is observed in the data.

missibility. It was also fairly effective in reducing averting
deaths while reducing stress to the national healthcare sys-
tem. Given that self-testing yields a cost that can be met with
less than C1 per test, and that the aforementioned interven-
tions, such as school closures, are associated with a much
higher societal and financial burden, the self-testing screen-
ing program had a high-effectiveness/low-cost profile.

B. Impact of Operational Decisions. We next focus on
some key operational decisions that are involved when de-
signing a mass screening program:

(i) Scale: how many tests should be ordered?

(ii) Target: which subpopulations should be targeted?

(iii) Accuracy: how important is the clinical accuracy of the
self-tests used?

Below, we discuss the effect of each of these dimensions sep-
arately.
Scale: Impact of the number of tests. During the timeframe
of our study on average 2.1% of the population was tested
daily, with over 60 million kits distributed in total. In Fig-
ure 2, we provide estimates on the percent change in deaths
and hospitalizations had the program been scaled up or down
by some factor, compared to the actual implementation in
Greece. If the tests administered had been 20% fewer, for
example, total deaths would have increased by 5%, and total
hospitalizations would have increased by 8%, approximately,
during the period of our study. The technical details of how
these estimates were produced can be found in Section D.
Notably, the scale of the program, as measured by the num-
ber of tests, appears to yield diminishing reductions of deaths
and hospitalizations. Therefore, on the one hand, more deaths
and hospitalizations would have been averted, had the pro-
gram been scaled up and more tests been administered. On
the other hand, had the program been scaled down and fewer
tests been administered, disproportionally more deaths and
more hospitalizations would have occured, as the slopes of
the curves appear to be steeper to the left of the implemen-
tation point, i.e., 0% change on the x-axis, than to the right.

Target: Impact of targeting subpopulations. In April
2021, when another wave of the pandemic was putting high
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pressure to the Greek National Health System, the authori-
ties decided to launch the provision of two self-testing kits
per week, for all students as well as the schools’ teaching
and other staff. Later, in May 2021, private sector employ-
ees and civil servants who were not vaccinated or have not
had COVID-19 were required by law to carry out two weekly
tests. On average, 56.2% of the self tests was allocated to
the 0−18 age group, 43.3% was allocated to the 19−64 age
group and 0.5% was allocated to the 65+ age group.
In our analysis, we modified the fitted model to consider all
alternative distributions of self tests amongst age groups — in
other words, every possible three-way allocation of the total
self tests across the age groups in our model. The best distri-
bution was different for deaths and hospitalizations, though
in both cases the percentage reduction over the observed dis-
tribution was small. For deaths, 30% of self-tests allocated
to the 0 — 18 age group and 70% to the 19 — 64 age group
resulted in a 2.23% reduction (80% CI: -3.85 – 6.84 %). For
hospitalizations, 40% of self-tests allocated to the 0 – 18 age
group and 60% to the 19 – 64 age group resulted in a 1.16%
reduction (80% CI: -2.34 – 4.04 %). Percentage reductions
of deaths and hospitalizations for all possible distributions of
self-tests are provided as Supporting Information.
This analysis shows that increasing the fraction of self-tests
provided to the 19− 64 age group could have averted more
deaths and more hospitalizations. A potential explanation for
this result is the fact that children in Greece have showed
lower transmissibility compared to the middle-age group,
which seems to have led the epidemic (3). The age-structure
in the COVID-19 epidemic has been shown to be important
in other country settings (4) suggesting that interventions at
the middle-age group have more efficiency in reducing trans-
mission compared to interventions at children.
Accuracy: Impact of the clinical accuracy of testing kits.
Self-tests are naturally less accurate than PCR or antigen tests
and the administration of the test by an individual instead of
a medical professional could further diminish the self-tests
credibility. In Figure 3, we present estimates on the per-
cent changes in averted deaths and hospitalizations, relative
to what is observed in the data, for different values of the sen-
sitivity of self-tests. Our results indicate that higher quality
tests would have contributed to averting more deaths and hos-
pitalizations, albeit at significantly higher procurement costs
and less availability (since higher quality self-tests were not
available at the time of deployment).

2. Discussion
Our paper employs a compartmental model to investigate the
effect of self-test based screening on the progression of an
epidemic and the overall number of deaths and hospitaliza-
tions. Given that our analysis is based on observational data
and not a (natural or designed) experiment, a number of as-
sumptions are made that we document below. First, we as-
sume that the dynamics of the disease follow the structure
presented in Section 3. Such models are widely used in the
mathematical epidemiology literature. Furthermore, when
performing the sensitivity analysis we do not take into ac-
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Fig. 3. 80% confidence intervals for percent changes in deaths (left panel) and
hospitalizations (right panel), relative to what is observed in the data, as the sen-
sitivity of self-tests is varied. Dashed line indicates the sensitivity reported by the
manufacturers of the testing kits used in the Greek testing program.

count other behavioural or policy changes caused by the per-
turbation that we evaluate, besides the potential test substitu-
tion effect we discussed in Section D. In other words, when-
ever a perturbation is evaluated we assume that everything
else remains unaffected with the exception of the epidemic
dynamics and potential test substitution. Moreover, false pos-
itive self-tests in susceptible individuals do not lead to them
being isolated or hospitalized since in principle, they were
followed up with a PCR or antigen test and resolved appro-
priately. Another assumption is that individuals die only after
being hospitalized, implying that there are no deaths at home.
Data fully supports this latter assumption, as there were al-
most no COVID-19-related deaths outside of a hospital in
Greece. Finally, although individuals age, for simplicity we
do not model any transitions between compartments of dif-
ferent age groups.
Despite the shortcomings of our approach, our model is rich
enough to produce insights for policy makers and public
health practitioners regarding the deployment and optimiza-
tion of large scale screening programs. Concretely, we show
that among the various NPIs large scale self-test screening is
effective while less costly and associated with minimal soci-
etal and other implications. Furthermore, in order for such
programs to be very effective scale is critical: testing a large
percentage of the population daily (which implies testing in-
dividuals frequently) is a key component to success. Assum-
ing that high population coverage is not feasible due to lim-
ited resources or prohibitive cost, targeting the most active
subset of the population (age group 19− 64) is more effec-
tive: our results indicate that this group is the main driver of
the transmission. Finally, accuracy of the self tests is relevant
and higher sensitivity contributes to non-trivial reduction of
deaths and hospital admissions.
The pandemic of SARS-CoV-2 stressed the national health
systems beyond their limits leading to severe disruptions of
healthcare provision not only for COVID-19 patients, but
also all other diseases. In the absence of therapeutic inter-
ventions, the goal of public health responses was initially to
eliminate SARS-CoV-2. When elimination was realised as
a non-realistic target and until vaccines were approved and
deployed, the major goal was to decelerate transmission (5)
of SARS-CoV-2 in levels where stress on the health systems
would be manageable through Non Pharmaceutical Interven-
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tions (6).
Throughout the world a plethora of NPIs were implemented
with different levels and combinations of social-distancing,
face-cover wearing and screening (i.e., asymptomatic testing)
programmes. Most NPIs with the exception of mass screen-
ing are associated with tremendous explicit (7) and implicit
(8) costs while leading to a moderate impact on deaths and
hospitalizations (2, 9). Slovakia (10) was the first country
to test their entire population. This intervention led to a de-
crease in the reproduction number (and therefore the number
of reported cases) shortly after the testing program (11) but
this effect quickly disappeared because high-intensity testing
was not sustainable (12).
Greece implemented a large-scale testing program that, in
contrast to the Slovakia case, used self-tests which are not
performed by medical professionals and return a result im-
mediately albeit less accurate, which is considered secondary
compared to fast turnaround and testing frequency (13). Self-
testing emerged during COVID-19 pandemic firstly as a per-
sonal monitoring tool, but also as an important public health
intervention to control transmission. Self-testing allows a
person to perform the test in their own privacy and self-isolate
within a very short-time period without waiting for results or
having to move from their isolation. It also allows for testing
to occur shortly before the the crucial event, thus minimizing
the window between negative test and social contacts during
which a person might be incubating the virus. The strength of
large-scale self-testing intervention programs is that, as long
as the distribution of the devices is secured, they can be eas-
ily scaled-up to include the whole population repeatedly and
in a short-time with minimal cost. One criticism received
during the deployment of self-testing devices described the
possibility that positive results might not be reported back or
even that self-test devices might not be used at all. However,
this issue is shared with all screening interventions since all
testing approaches need to take into account people’s con-
sent and participation. Our analysis here, even with the most
conservative estimates for prevention of hospitalisations and
deaths, strongly supports that mass self-testing can provide
a sustainable and efficient targeted public health intervention
during pandemics.
The potential for future pandemics seems to be increasing as
the global population grows and ages, but also as transporta-
tion is minimizing travel distances. Best practices during the
COVID-19 pandemic should be documented and become part
of strategic plans for pandemic preparedness. We have shown
that mass screening through self-testing is one of these best
practices that could provide an invaluable tool to decelerate
the spread of a pandemic pathogen with minimal social and
financial cost.

3. Materials and Methods
We provide details on the model we developed and the meth-
ods we employed in our analyses. We begin with a qualita-
tive description of the compartments and transitions, and then
elaborate on the model dynamics, i.e., on how we model the
transitions using a mix of parameters and available historical

data. Then, we discuss the methods we followed to fit the
model, conduct sensitivity analyses, and evaluate the impact
of the Greek mass screening program.

A. Model Compartments and Transitions. Recall from
the short description provided so far that we consider
three sets of compartments based on age, G = {‘0-18’,‘19-
64’,‘65+’}, and that we also consider two sets of compart-
ments based on vaccination status, indexed by v ∈ {0,1} to
indicate vaccination.
Figure 1 illustrated, for a single age group a ∈ G, the model
compartments and the possible transitions among them. As
noted, there are two sets of compartments based on vaccina-
tion status. For the unvaccinated population, susceptible in-
dividuals (Sa0) might transition to being vaccinated (Sa1), or
get infected. If infected, they transition to one of three com-
partments: asymptomatic and mild (IAMa0), symptomatic
and mild (ISMa0), or symptomatic and severe (ISSa0).
Populations in all three of these compartments can spread the
disease to other populations that can get infected.
Infected individuals may be identified by taking a test, at
which point those with mild disease move to an isolation
compartment (Oa0), whereas those with severe disease move
to a hospitalization (Ha0) compartment. Infected individuals
with mild disease, however, might never be identified through
testing, in which case they eventually recover into a compart-
ment that continues to be subject to testing (RTa0). Infected
individuals with severe disease are always eventually identi-
fied.
Populations in isolation with mild disease eventually recover,
while hospitalized populations may recover or die; recovered
individuals transition to (Ra0), and dead to (Da0).
For the vaccinated population, transitions between compart-
ments follow the same structure as with the unvaccinated,
with the following exception: because vaccination could con-
fer full immunity for a fraction of the vaccinated population,
in the vaccinated compartments there is an additional transi-
tion that allows vaccinated individuals (Sa1), after exposure,
to directly recover into the compartment that continues to be
subject to testing (RTa1).

B. Model Dynamics and Data. Guided by the available
data that is mostly derived from daily records, we consider
discrete time steps that correspond to days. We index the time
steps with t ∈ {0,1, . . . ,T}, where T is the model horizon.
The dynamics of the model are described in terms of the num-
ber of individuals that transition between any two compart-
ments in a single time step. To introduce some notation, letX
be the set of all compartments and Xav the set of all compart-
ments for a given age group a and vaccination status v. For
compartments X,Y ∈ X , we denote the number of individu-
als that transition from X to Y at time step t with ∆X�Y (t).
For each compartment X with population time at time step t
equal to X(t), we then have the following dynamic update

X(t+ 1) =X(t) +
∑
Y ∈X

∆Y�X(t)−
∑
Y ∈X

∆X�Y (t).

Gilmour et al. | Mass Self-Testing for SARS-CoV-2 in Greece medRχiv | 5

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 16, 2023. ; https://doi.org/10.1101/2023.02.15.23285963doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.15.23285963


Certain transitions that we have historical data for are mod-
eled explicitly using the data. Other transitions are modeled
using parameters, which we then learn in the fitting proce-
dure. To disambiguate, we adopt throughout the paper the
following notation convention: quantities that are explicitly
available using data are denoted with an overbar, whereas
quantities that are to be learned by the fitting procedure are
denoted with no overbar. For example, x̄ denotes a quantity
that is explicitly provided in the data, whereas x is a quantity
that needs to be learned.
We discuss the transitions in four groups: (i) Vaccination,
(ii) Infection, (iii) Testing and Isolation, and (iv) Recovery,
Hospitalization and Death.
(i) Vaccination
We refer to individuals for whom two doses are administered
as vaccinated. We denote by v̄a(t) the recorded number of
individuals in age group a who received their second dose
on day t. The data are by the Greek National Public Health
Organization (NPHO) records (14).
The available data does not specify whether individuals who
got vaccinated at time t belonged in the Susceptible (Sa0) or
the Recovered compartment that is subject to testing (RTa0),
which is why we assume a proportional split between the two,
so that

∆Sa0→Sa1(t) = Sa0
Sa0 +RTa0

v̄a(t),

∆RTa0→RTa1(t) = RTa0
Sa0 +RTa0

v̄a(t).

(ii) Infection
Infected individuals, by coming to close contact with oth-
ers, might expose susceptible or vaccinated individuals to the
virus and infect them. To model these infection dynamics,
we seek first to quantify the total number of newly infected
people, and, second, to quantify how these people transition
into the different infection compartments in our model, de-
pending on disease severity.
Let us focus on the transmissibility between two age groups,
say a,b ∈ G, at time t. Consider an infected individual from
age group b, and, to begin with, assume that all the popula-
tion from age group a that they might come in contact with is
unvaccinated and susceptible. Then, let βab(t) be the number
of people from age group a that the infected individual from
age group b comes in close with and infects them. Note that
these parameters, which we shall refer to as mixing param-
eters, capture, among others, the infectivity of the pathogen,
the contagiousness of the infected individuals, and the con-
tact patterns between different populations.
Eventually, at time step t, each infected individual from age
group b need not infect as many as βab(t) people from group
a, because of two reasons. First, some of them might not
be susceptible. Second, some of them might have developed
immunity by being vaccinated.
Let us first focus on the unvaccinated people from group a.
To calculate how many among them will eventually get in-
fected due to an infected person from group b, we need to
factor in the fraction of susceptible and unvaccinated among

the population that the infected individual might come in con-
tact with. The latter population, which we shall refer to as the
community population, is drawn from all compartments,
except from the Isolated, Hospitalized and Dead compart-
ments. We denote the collection of aforementioned compart-
ments with Ca, i.e.,

Ca = {Sav, IAMav, ISMav, ISSav, RTav, Rbv : v ∈{0,1}}.

and denote the size of the associated community population
with Ca(t), with

Ca(t) =
∑
X∈Ca

X(t).

Using this notation then, each infected individual from age
group b will infect βab(t)×Sa0(t)/Ca(t).
To calculate how many unvaccinated people from group a
will eventually get infected in total, we need to consider all
infected populations from each age group. Let Ib(t) be the
number of infected individuals at time t from age group b,
given by

Ib(t) =
∑

v∈{0,1}
(IAMav(t) + ISMav(t) + ISSav(t)) .

LettingNIav(t) be the total number of newly infected people
from group a with vaccination status v at time t, we can now
express NIa0(t) as

NIa0(t) =
∑
b∈G

βab(t)
Sa0(t)
Ca(t) Ib(t).

The breakthrough infection dynamics for the vaccinated peo-
ple from group a are similar, with one difference: a fraction
of vaccinated individuals who come in close contact with
someone infected and would have otherwise been suject to
a breakthrough infection, might not get infected at all due
to vaccine-induced immunity. To model this, we introduce
the probability of vaccine immunity p̄v−imm. Therefore, a
vaccinated individual who is exposed to the virus and would
have been otherwise infected had they not been vaccinated,
eventually does not get infected (cf. does get infected) with
probability p̄v−imm (cf. 1− p̄v−imm). We assume this prob-
ability to remain the same across age groups. Note that this
probability relates to the effectiveness of the vaccine.
(15) estimates vaccine effectiveness for the Omicron variant
to be 80%. We adjust this value to p̄v−imm = 85% to take
into account the higher vaccine effectiveness against non-
Omicron variants that were prevalent in Greece throughout
2021 (accounting for vaccine types and variant proportions
in the population (16)).
Using the probability of vaccine immunity, we can now ex-
press NIa1(t) as

NIa1(t) = (1− p̄v−imm)
∑
b∈G

βab(t)
Sa1(t)
Ca(t) Ib(t).

Newly infected people will develop symptoms and disease
with varying severity. To model this, we introduce the fol-
lowing two parameters:
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1. Probability of Asymptomatic Disease. Let pasymp
a

be the probability that an infected individual does not
develop symptoms. We let this probability depend on
age, and set:

p
asymp
0-18 = 0.6, p

asymp
19-64 = 0.35, p

asymp
65+ = 0.35,

based on (17), who report these estimates for unvacci-
nated infected individuals. As there is no data to sug-
gest that the proportion of asymptomatic infection is
modified as a result of vaccination, we use the same
probabilities for breakthrough infections as well.

2. Probability of Severe Disease. Let psevere
av be the

probability that an infected individual who is symp-
tomatic, will also develop severe disease, as opposed
to mild disease. Recall that those with severe disease
eventually require hospitalization.

(18) provide estimates for the probabilities of infected
and unvaccinated individuals who are hospitalized (1%
for 0 to 18, 7% for 19 to 64, and 30% for 65+). These
estimates do not quite correspond to psevere

av in our
model, which is a conditional probability on symp-
tomatic disease. Therefore, we let this as a free pa-
rameter to be learnt in the fitting process.

Putting all this together, we can express the transitions of sus-
ceptible population into the infection compartments as fol-
lows:

∆Sav�IAMav (t) = pasymp
a × NIav(t),

∆Sav�ISSav (t) = (1−pasymp
a )psevere

av × NIav(t),
∆Sav�ISMav (t) = (1−pasymp

a )(1−psevere
av )×NIav(t).

Finally, we note that the fraction of vaccinated susceptible in-
dividuals who come in close contact with someone infected
but have developed vaccine-induced immunity, as we dis-
cussed previously, transition directly to the recovered com-
partment that continues to be subject to testing (RTa1). We
can now express this transition as

∆Sa1�RTa1(t) = p̄v−imm
∑
b∈G

βab(t)
Sa1(t)
Ca(t) Ib(t).

(iii) Testing and Isolation
Our model allows for two types of testing: regular tests and
self tests. Both are conducted with the aim of isolating in-
fected individuals, preventing them from spreading the dis-
ease or providing them with the appropriate care in the case
of severe illness. We present each of the two types separately,
since they affect the model dynamics differently.
Regular tests are in general more accurate than self-tests
with clinical sensitivity and specificity given by σ̄reg = 0.8
and µ̄reg = 1, respectively. The available data from (19)
provide the total number of regular tests administered in the
country. We use Greek census data (20) as well as histor-
ical information to produce the number of regular tests per-
formed daily to age group a and vaccination status v, denoted

by T reg
av (t), where we assume that tests are allocated propor-

tional to the sizes of different age and vaccination groups.
The number of T reg

av (t) tests are split among different com-
partments. We next discuss how we model this split, let-
ting T reg

X (t) be the tests taken by population in compartment
X ∈ X .
First, because newly hospitalized individuals were routinely
tested upon admission, we set

T reg
ISSav

(t) = ∆X�Hav (t).

The remaining T reg
av (t)−T reg

ISSav
(t) are assumed to be split as

follows. Because regular tests were not required by the state,
individuals in different compartments had different propen-
sities to take them. We denote by θa and 1− θa the testing
propensity of asymptomatic and symptomatic individuals re-
spectively and compute the total propensity of age group a
and vaccination group v, denoted Θav , as

Θav = θa(Sav(t)+RTav(t)+IAMav(t))+(1−θa)ISMav(t)

Then, we split the T reg
av (t)− T reg

ISSav
(t) tests in proportion

with the propensity and size of each compartment, i.e., we
have that

T reg
X (t) =



(
θaX(t)

Θav

)(
T reg
av (t)−T reg

ISSav
(t)
)

if X ∈ {Sav,RTav, IAMav}(
(1−θa)X(t)

Θav

)(
T reg
av (t)−T reg

ISSav
(t)
)

if X = ISMav

0 otherwise.

The total number of positive regular tests from compartment
X , is therefore given by

P reg
X (t) =


σ̄regT reg

X (t) if X ∈ {IAMav, ISMav},
∆X�Hav (t) if X = ISSav,

0 otherwise.

Self tests are in general less accurate than regular tests with
clinical sensitivity and specificity given by σ̄self = 0.6 and
µ̄self = 1, respectively. The available data from (19) provides
the total number of self tests administered to a group (age
group a, vaccination status v) for each week. We assume that
these are uniformly distributed throughout the corresponding
week and we denote by T self

av (t) the number of self tests per-
formed on day t.
Self tests are required by the state and therefore we can as-
sume a uniform distribution amongst individuals within the
eligible compartments. Therefore, the total number of self-
tests administered to a compartment X can be calculated as

T self
X (t) =



X(t)T self
av (t)

Sav(t)+IAMav(t)+ISMav(t)+RTav(t) ,

if X ∈ {Sav, IAMav, ISMav,RTav}

0 otherwise.
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The total number of positive self-tests in each compartment
is then given by

P self
X (t) =

{
σ̄selfT self

X (t) if X ∈ {IAMav, ISMav, ISSav},
0 otherwise.

All individuals who are identified as positive and are not suf-
fering from a severe infection move to the isolated compart-
ment, i.e.,

∆X�Oav (t) =P regX (t)+P selfX (t), for X ∈ {IAMav, ISMav}.

Those with a severe infection and identified as positive are
hospitalized, as we discuss next.
(iv) Recovery, Hospitalization and Death
Infected individuals with mild disease spend an average of
τ rec = 10 days (21) in the infected compartments (IAMav

or ISMav) before infectiousness subsides. Therefore, in the
absence of a positive test, we have for each age group a and
vaccination status v,

∆IAMav�RTav (t) = 1
τ rec IAMav(t),

∆ISMav�RTav (t) = 1
τ rec ISMav(t).

Similarly, we assume without loss that isolated individuals
also spend an average of τ rec days before recovery, i.e.,

∆Oav�Rav (t) = 1
τ recOav(t).

Infected individuals with severe disease, are hospitalized fol-
lowing τhosp days after infection, i.e.,

∆ISSav→Hav (t) = 1
τhosp ISSav(t).

Hospitalised individuals are discharged either due to death
or recovery. The average length of stay in the hospital, de-
noted by τ los

av (t), varies with age, vaccination, and month
and is provided by the Greek NPHO (22). Among the dis-
charged individuals, the fraction pdie

a of those who die could
be in principle estimated by the raw data. Unfortunately, the
raw estimate varies substantially and therefore, we learn it
through the fitting process. Combining the above, we have
the following transitions

∆Hav�Rav (t) = (1−pdie
a ) 1

τ los
av (t)Hav(t),

∆Hav�Dav (t) = pdie
a

1
τ los
av (t)Hav(t).

C. Model Fitting. We fit the model against the following
key outcomes, for which we have historical data: daily
recorded hospitalizations, deaths, total cases, and cases re-
ported through the self-testing program. We then find the
parameter values that minimize the sum of squared log errors
between our model’s predictions for these outcomes and the
data. We elaborate on the key outcomes and data next, and

detail the minimization procedure in the Supporting Informa-
tion.
Hospitalizations and Deaths: The number of daily hospi-
talizations and deaths by age group are available from data
recorded by the NPHO of Greece (23). The corresponding
model predictions are calculated by∑

v∈{0,1}
∆ISSav�Hav (t) and,

∑
v∈{0,1}

∆Hav�Dav (t).

Total Cases: The number of daily total new cases by age
group are available from data recorded by the Greek NPHO
(24). The corresponding model predictions are given by∑

v∈{0,1}

∑
X∈Xav

P selfX (t) +P regX (t).

Cases reported through the self-testing program: The
number of daily new cases by age group from the self-testing
program are available from data recorded by (24). Notably,
these cases were predominantly recorded following a positive
self test. In addition, it is suspected that some of these cases
were erroneously recorded through the program following a
positive regular test, in the absence of a positive self test. To
account for this possibility, let γa(t) be the fraction of regu-
lar positive tests for age group a at time t that were reported
through the self-test program. The model’s prediction of the
number of cases reported through the self-testing program is
equal to ∑

v∈{0,1}

∑
X∈Xav

P selfX (t) +γa(t)P regX (t).

Note that γa(t) is assumed to vary with age and over time, to
account for different types of reporting errors as the system
processes varying amounts of self tests in the population.
The data we fit the model to and expressions for the corre-
sponding model predictions are summarized below:

• Hospitalizations:
∑
v∈{0,1}∆ISSav�Hav (t)

• Deaths:
∑
v∈{0,1}∆Hav�Dav (t)

• Total Cases:
∑
v∈{0,1}

∑
X∈Xav

P selfX (t) +P regX (t)

• Cases through Self-Tests Program:∑
v∈{0,1}

∑
X∈Xav

P selfX (t) +γ(t)P regX (t)

D. Sensitivity Analyses. For each sensitivity analysis, we
fit the model to the data and then simulate it for varying val-
ues of the parameter of interest, keeping other parameters
constant and equal to their fitted values. We perform these
simulations within a bootstrapping process, so as to obtain
not just point estimates, but confidence intervals as well. We
discuss how we performed the simulations below, and detail
the bootstrapping process in the Supporting Information.
To estimate the impact of the number of self tests deployed,
in the simulations we vary the number of self tests taken by
scaling them uniformly across time and different population
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groups. That is, at time t, we consider the number of self tests
taken by population in age group a and vaccination status v
to be (1 + η)×T self

av (t), where η is a scaling parameter. For
η= 0, we recover the baseline scenario that was implemented
in reality; for η < 0 (cf. η > 0), we consider scenarios in
which the scale of the program is decreased (cf. increased).
A self-testing program of a different scale would have likely
induced a testing behavior of the population different than the
one observed in the baseline scenario. If self tests were re-
duced, for example, some individuals who self tested in real-
ity and could no longer test under this reduced-scale scenario,
might seek to take a regular test instead, particularly if they
were symptomatic. Ignoring this potential behavioral change
could overstate the effect of self tests, especially when self
tests are reduced, i.e., for η < 0. To alleviate this concern, we
make the following modification to the simulation. First, we
compute, under the baseline scenario, for individuals within a
given community compartment X ∈ Ca, the fraction of them
who seeked a regular test among those who did not take a self
test, i.e.,

qX(t) = min
(

1,
T reg
X (t)

X(t)−T self
X (t)

)
. (1)

The fraction qX(t) then corresponds to the propensity of the
population in X to take a regular test when they are unable to
take a self test. We assume that this propensity would remain
the same, regardless of the self-testing program’s scale. Let
q̃X(t) be the propensities that are produced after fitting the
model to the data. Then, in the simulations for our sensitivity
analysis, we modify the number of regular tests taken to be

q̃X(t)
(
X(t)−T self

X;η(t)
)
, (2)

where T self
X;η(t) is the number of self-tests in compartment X ,

after the total number of self-tests are scaled by (1 +η).
To estimate the impact of the self test allocation mix among
different age groups, we consider varying the fractions of
total tests allocated to each group—subject to the fractions
summing of to one, so that to total number of tests is held
constant. For each set of fractions we consider, we scale the
number of tests taken uniformly within each age group ac-
cordingly.
Finally, for the sensitivity analysis on the test’s clinical sen-
sitivity, we simply use the fitted parameters to simulate the
outputs of the model for various test sensitivity values σself .

E. Overall Impact of the Program. To evaluate the over-
all impact of the program on deaths and hospitalizations, we
consider two methodologies, both of which rely on our sen-
sitivity analysis on the number of self tests taken that we de-
scribed above. We refer to them as direct and indirect meth-
ods:

1. Direct method: we conduct the analysis by simply set-
ting η = −1, which corresponds to the scenario of no
self tests conducted, and obtain estimates for deaths
and hospitalizations.

2. Indirect method: we first use the analysis to estimate
local derivatives at the baseline scenario for deaths and
hospitalizations, which we denote with ∂D and ∂H .
In particular, we run the analysis for η = −0.01 and
η = 0.01, i.e., we consider ±1% perturbations of the
program’s scale, and then use finite differences to es-
timates ∂D and ∂H . Given that the total number of
deaths and hospitalization are concave in the number
of self tests conducted, i.e., additional self tests exhibit
diminishing returns, conservative estimates of the total
number of deaths and hospitalization are provided by

(#total number of self tests)×∂D
(#total number of self tests)×∂H

Finally, to evaluate the overall impact of the program on
transmissibility, we calculate the effective reproduction num-
ber Rt for each time step for the fitted model by using the
methodology in (1). Then, we follow the sensitivity analysis
on the number of self tests taken by setting η = −1, which
corresponds to the scenario of no self tests conducted, and
obtain estimates for Rt in a similar fashion.
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4. Appendix

Additional Program Implementation Details
In March 2021, when another wave of the COVID-19 pandemic was putting high pressure to the Greek National Health
System, the authorities decided to launch mandatory weekly testing starting with students in all schools. The self-testing kits
were distributed through pharmacies across the country, on a weekly basis, with the use of social security numbers. Control
was carried out either with the display of a solemn declaration stating that the individual was tested negative, or through an
online form available at self-testing.gov.gr. For cases of positive self-test results, an amendment of legislation imposed the
implementation of a second test—either PCR or antigen-test––by a health-care professional, to confirm the first test’s result and
update the National Registry for Covid-19 Patients. The authorities also proceeded occasionally with the distribution of free
self-testing kits to the entire population, particularly before or after public holidays.
The distribution of self-testing kits and the implementation of mandatory checks began on 07-04-2021 on the re-opening of
High Schools, Vocational High Schools and Junior High Schools as well as Junior High Schools with Senior Classes, with the
provision of 2 self-testing kits per week, for all students as well as the schools’ teaching and other staff.
On 19-04-2021, the government passed a law imposing mandatory self-testing also for private sector employees and civil
servants working at their workplace. Self-testing kits were distributed to employees throughout the summer, while distribution
to teaching staff and students stopped during the summer holidays.
In September 2021, the state decided to impose a once-a-week mandatory self-testing at own cost for private sector employees
and civil servants who were not fully vaccinated or who have not had COVID-19. With the beginning of the new school year,
weekly self-testing was mandatory only for students aged 4-18 who were not vaccinated or have not had COVID-19. It should
be noted that when students were considered as “close contacts” of a COVID-19 case, the Education Division would provide
additional self-tests to ensure daily testing.
Finally, private sector employees and civil servants who were not vaccinated or have not had COVID-19 were obliged to carry
out two weekly tests from 05-11-2021 onwards, at their own cost, considering the role of seasonality in the spread of COVID-19
pandemic.
During the aforementioned period, a total of 97,000,000 self-testing kits were purchased and distributed first to the country’s
100 pharmaceutical warehouses and thereafter to local pharmacies.

Minimization
To fit the model, we find the parameter values that minimize the sum of squared log errors between our model’s predictions for
the outcomes we discussed in the Model Fitting section and the data.
To introduce some notation, consider some age group a and some time period t. Let ∆Ha(t) and ∆Da(t) be the corresponding
number of new hospitalizations and deaths, respectively; let P tot

a (t) be the corresponding total number of cases recorded; and
let P conf

a (t) be the corresponding number of cases reported through the self-testing program. The data and corresponding
predictions are summarized in Table 2.
We use a non-convex optimization algorithm to minimize the sum of squared log errors between our model’s prediction and the
target data. In order to avoid overfitting we add a regularization term in the loss function.

A. Parameters and Initialization. The parameters that we fit are summarized in Table 3. To facilitate the fitting process, we
constrain certain model parameters as we discuss next, and summarized in Table 3.
The probabilities of severe disease psevereav , though learned from the fitting process defined below, are constrained to lie within
the following intervals

0≤ psevere
0-18,v ≤ 0.02, 0≤ psevere

19-64,v ≤ 0.14, 0≤ psevere
65+,v ≤ 0.6,

which have widths twice the size of the estimates in (18). Similarly, we learn pdiea and constrain them to lie in intervals [0,2qa]
where qa represents the total deaths divided by the total hospitalizations in age group a in a given wave, obtained from (23).
The mixing parameters βab(t) and the reporting parameters γa(t) are assumed to be constant in 4 and 6 week intervals respec-
tively. These limits were empirically established, with the goal of enabling tractability and avoiding overfitting.
We use data between January 21, 2021 until December 15, 2021. During the said period, Greece experienced two epidemic
waves, one lasting from January 21, 2021 until June 20, 2021, and the other from June 21, 2021 until December 15, 2021. The
self-testing program was introduced in the middle of the first of these waves and continued through the second wave. We fit the
model for these two waves. For the fist wave, the sizes of all compartments are initialized at 0 with the following exceptions.
The number of initially hospitalized patients are directly estimated from the raw data. The size of the susceptible compartments
and infected compartments are allowed to be nonzero (and are learned through the fitting process) subject to the following
constraints: (i) the prevalence is assumed to be less than 0.3%, where this upper bound is obtained by (25), (ii) the sum of all
compartments sums to the population data per age group provided in (20).
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For the second wave, the sizes of all compartments are initialized at their levels learned from the first wave fitting process, with
the exception of the infected compartments that are learned through the second wave’s fitting process. Similar to the first wave,
we impose the constraint that the sum of all compartments sums to the population data per age group provided in (20). Note
that fitting the sizes of the infected compartments for the second wave is necessary, because the first-wave fit for these quantities
at the end of the first wave might not be credible owing to end-of-horizon effects.

B. Loss Function. We consider a loss function that is the sum of squared log-errors, across time steps, age groups, and waves
for all outcomes presented in Table 2. There are more than 100 parameters to fit and hence the loss function is complex with no
analytical gradients, making the underlying optimization problem a difficult learning task with the potential risk of overfitting.
In order to obtain sparse solutions, we proceed by using regularization on the time-varying parameters (βab(t) and γa(t)) and
a two-stage block-minimization technique to ease the optimization burden.
The regularization is a standard penalty on the absolute differences in successive values of the time-varying parameters. In
particular, we introduce two regularization parameters, λ1 and λ2 and we add the following component to the loss function

λ1
∑
a∈A

∑
b∈A
|βab(t+ 1)−βab(t)|+λ2

∑
a∈A
|γa(t+ 1)−γa(t)| .

The block-minimization approach works in two steps:

Step 1: We numerically minimize the regularized loss function with the cross-group mixing parameters fixed to zero ( βab(t) = 0
for a 6= b), and obtain an initial estimate on the unknown parameters.

Step 2: We numerically minimize the loss function by varying all mixing parameters, βab(t), keeping the rest fixed to their values
from Step 1.

To complete both fitting steps we use the Levenberg-Marquardt algorithm implemented in (26), and add random restarts. The
regularization parameters are fixed in the optimization and chosen by searching through a grid. All computational experiments
are run on the SuperCloud infrastructure (27).

Bootstrapping for Confidence Intervals
To derive confidence intervals for our sensitivity analyses, we follow an approach that is similar to traditional bootstrapping. It
relies on the data being split according to the 74 regional units of Greece, and uses this split to construct “virtual” populations
that were obtained by randomly sampling regional units (with replacement) until the total population of the collection was at
least 2 million. We observed that the time series within individual regional units with small populations suffered from high
variance, and therefore the 2 million resident threshold was selected so that the time series of the virtual populations were
stable. Figure 5 shows the profiles of the 25 bootstrap samples.
In our analysis we set N = 25 for tractability, and choose to report 80% confidence intervals. Confidence intervals for the
quantities of interest are derived by completing the fitting procedure and analysis on each of these datasets.
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Fig. 4. Heatmap of percent changes in deaths (left panel) and in hospitalizations (right panel), relative to what is observed in the data, as we vary the fractions of tests
between different age groups: the 0–18 is allocated the percentage in the x-axis; the 19–64 age group is allocated the percentage in the y-axis; the 65+ group is allocated
the remainder. Dashed lines indicate the fractions observed in the data.

Outcome Model Estimate Data

Hospitalizations
∑
v∈{0,1}∆ISSav�Hav (t) ∆Ha(t)

Deaths
∑
v∈{0,1}∆Hav�Dav (t) ∆Da(t)

Total Cases
∑
v∈{0,1}

∑
X∈Xav

P selfX (t) +P regX (t) P tot
a (t)

Cases through Self-Test Program
∑
v∈{0,1}

∑
X∈Xav

P selfX (t) +γ(t)P regX (t) P conf
a (t)

Table 2. Model estimates and observed data used for model fitting.

Parameter Count (Wave 1) Count (Wave 2) Notes

IAMav(0) 3 6 initial prevalence < 0.3%
ISMav(0) 3 6 initial prevalence < 0.3%
ISSav(0) 3 6 initial prevalence < 0.3%
βab(t) 36 42 constant over 4 week intervals
psevere
av 6 6 intervals from (18)
pdie
a 3 3 intervals from (23)

γa(t) 18 21 constant over 6 week intervals
Total 72 90

Table 3. Number of parameters learned by the model in each of the two waves. We use a sparsity term in the objective to prevent overfitting.

Gilmour et al. | Mass Self-Testing for SARS-CoV-2 in Greece medRχiv | 13

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 16, 2023. ; https://doi.org/10.1101/2023.02.15.23285963doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.15.23285963


0 to 18 19 to 64 65+

D
eaths

H
ospitalizations

C
ases

Apr Jul Oct Apr Jul Oct Apr Jul Oct

0.00

0.01

0.02

0.03

0.04

0.05

0.00

0.05

0.10

0.15

0.00

0.25

0.50

0.75

1.00

1.25

date

va
lu

e

Fig. 5. Deaths, hospitalizations, and cases per person split by age group. Each colored series corresponds to a time series from a single bootstrap sample.
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Fig. 6. Median values of the mean absolute percentage achieved by the fitted model across all bootstrap datasets as the regularization weights vary, for both the first wave (top
panel) and second wave (bottom panel). The selected weights were chosen to be as large as possible, whilst retaining a good fit to the data (low mean absolute percentage
error).
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