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Abstract

We consider variants of the online stochastic bipartite matching problem motivated by In-
ternet advertising display applications, as introduced in Feldman et al. [6]. In this setting,
advertisers express specific interests into requests for impressions of different types. Advertisers
are fixed and known in advance while requests for impressions come online. The task is to assign
each request to an interested advertiser (or to discard it) immediately upon its arrival.

In the adversarial online model, the ranking algorithm of Karp et al. [11] provides a best pos-
sible randomized algorithm with competitive ratio 1−1/e ≈ 0.632. In the stochastic i.i.d. model,
when requests are drawn repeatedly and independently from a known probability distribution
over the different impression types, Feldman et al. [6] prove that one can do better than 1−1/e.
Under the restriction that the expected number of request of each impression type is an integer,
they provide a 0.670-competitive algorithm, later improved by Bahmani and Kapralov [3] to
0.699, and by Manshadi et al. [13] to 0.705. Without this integrality restriction, Manshadi et
al. [13] are able to provide a 0.702-competitive algorithm.

In this paper we consider a general class of online algorithms for the i.i.d. model which
improve on all these bounds and which use computationally efficient offline procedures (based on
the solution of simple linear programs of maximum flow types). Under the integrality restriction
on the expected number of impression types, we get a 1−2e−2(≈ 0.729)-competitive algorithm.
Without this restriction, we get a 0.706-competitive algorithm.

Our techniques can also be applied to other related problems such as the online stochastic
vertex-weighted bipartite matching problem as defined in Aggarwal et al. [1]. For this problem,
we obtain a 0.725-competitive algorithm under the stochastic i.i.d. model with integral arrival
rate.

Finally we show the validity of all our results under a Poisson arrival model, removing the
need to assume that the total number of arrivals is fixed and known in advance, as is required
for the analysis of the stochastic i.i.d. models described above.

1 Introduction

Bipartite matching problems have been studied extensively in the operations research and computer
science literature. We consider in this paper variants of the online stochastic bipartite matching
problem motivated by Internet advertising display applications, as introduced in Feldman et al. [6].

We are given a bipartite graph G = {A∪ I, E}, where A is a set of advertisers and I is a set of
impression types. An edge (a, i) ∈ E if and only if advertiser a ∈ A is interested in impressions of
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type i ∈ I. The set of advertisers and their preferences are fixed and known in advance. Requests
for impression come online one at a time at periods t = 1, 2, · · · , n (n being fixed and known in
advance), and the impression type of each request is chosen randomly and independently from a
given probability distribution over the set I.

Upon the arrival of a request, an online algorithm must irrevocably assign it to one of the
interested advertisers or drop it. Overall, every request cannot be assigned to more than one
advertiser, and every advertiser can be assigned at most one request. The goal is to maximize the
expected number of assigned requests over the random sequence of impressions.

Given that there is a total of n requests, the probability that a request is for an impression of
type i can be written as ri/n, where ri is the expected number of requests of type i among the
random sequence. Without loss of generality, we assume that ri ≤ 1 for all type i; note that if a
type i were to be such that ri > 1, we could duplicate node in i ∈ I into a set of identical nodes,
each with the same adjacent edge structure as the original node, and each with expected number
of arrival no more than one.

In this paper, we consider two variants of this online stochastic i.i.d. model: a special case for
which ri = 1 for all i, which we refer to as the case with integral arrival rates; and the unrestricted
case with general arrival rates.

We also consider a Poisson arrival model, removing the need to assume that the total number of
arrivals is fixed and known in advance, as is required for the analysis of the stochastic i.i.d. models.

1.1 Our results and techniques

In Feldman et al. [6], the authors provide a 0.670-competitive algorithm for the online stochastic
bipartite matching problem with integral arrival rates, the first result to show that stochastic
information on request arrivals could provably improve upon the 1− 1/e competitive ratio of Karp
et. al. [11]. Removing this integrality restriction, Manshadi et al. [13] show it is still possible to do
better than 1− 1/e and propose a 0.702-competitive algorithm, using offline statistics drawn from
Monte Carlo sampling. The authors further prove that the algorithm has a better competitive ratio
of 0.705 when the arrival rates are integral. More recently, Mahdian and Yan [12] and Karande et
al. [10] study a much less restrictive version of the problem where not only the arrival rates are
arbitrary, they are not known to the algorithm a priori.

In this paper we consider a general class of online algorithms for the i.i.d. model which improve
on [6][13] and which use computationally efficient offline procedures (based on the solution of simple
linear programs of maximum flow types). Under the integrality restriction on the expected number
of impressions of each types, we get a (1− 2e−2)-competitive algorithm. Without this restriction,
we get a 0.706-competitive algorithm. Although the model we consider is more restrictive than the
one in [12][10], we obtain better competitive ratio.

Our techniques can be applied to other related problems such as the online stochastic b-matching
problem (quite trivially) and to the online stochastic vertex-weighted bipartite matching problem as
defined in Aggarwal et al. [1]. For that problem, we obtain a 0.725-competitive algorithm under the
stochastic i.i.d. model with integral arrival rates. Our vertex-weighted model is a special case of the
edge-weighted model considered by Haeupler et al. [8], who propose a 0.667-competitive algorithm
for the edge-weighted case. Finally we show the validity of all our results under a Poisson arrival
model, removing the need to assume that the total number of arrivals is fixed and known in advance,
as is required for the analysis of the stochastic i.i.d. models.

In order to introduce the main general ideas behind our techniques, let us first define some basic
concepts about optimal offline solutions. From the available information about the problem (the
initial graph G = {A∪I, E}, the probability distribution over the set of impression types I, and the
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number n of i.i.d. draws from that distribution), one can solve an optimal maximum cardinality
matching for each possible realization of the n i.i.d. draws. Let OPT be the random variable
corresponding to the values obtained by these offline matchings. The expected value E[OPT] can
be written as

∑
e∈E f

∗
e , where f∗e is the probability that edge e is part of an optimal solution in

a given realization. Note that, as in [13], f∗ = (f∗e )e∈E can also be defined as a so-called optimal
offline fractional matching.

Instead of computing f∗ (or estimating it as in [13]) and using the information for guiding online
strategies, our strategy is to formulate special maximum flow problems whose optimal solutions
provide the input for the design of good online algorithms. Moreover these maximum flow problems
are defined in such a way that f∗ corresponds to feasible flows, allowing us to derive upper bounds
on
∑

e∈E f
∗
e , and get valid bounds for the competitive ratios of the related online algorithms.

We now provide more details. Consider an instance of a single-source single-destination node-
capacitated maximum flow problem on G, with a source s connected to all elements of A, a desti-
nation t connected to all elements of I, a unit capacity on all a ∈ A, and a capacity ri (expected
number of arrivals) on each i ∈ I. Define fe = fa,i to be the flow on e = (a, i) for all e ∈ E. This
problem can equivalently be formulated as a linear program (LP):

max
∑
e
fe∑

i∼a
fa,i ≤ 1 ∀a ∈ A∑

a∼i
fa,i ≤ ri ∀i ∈ I

fe ≥ 0 ∀e ∈ E

(1)

where i ∼ a and a ∼ i are shortcuts for i : (a, i) ∈ E and a : (a, i) ∈ E, respectively.
One of the key steps behind our approach is to find appropriate additional constraints on the

flows (to add to (1)) so that the resulting optimal solutions of the constrained LP lead to improved
guidance for online strategies, while keeping the optimal offline fractional matching f∗ feasible with
respect to the constrained LP.

Let us now formally introduce the concept of a “list of interested advertisers for an impression
of type i”. Consider the set Ai = {a ∈ A : (a, i) ∈ E} and let Ωi be the set of all possible non-empty
ordered subsets of elements of Ai. An element of Ωi will be called a list of interested advertisers
for impression of type i. We are ready to describe our class of online algorithms:

Random Lists Algorithms (RLA)

1. Add appropriate constraints to (1) to get a new constrained LP. Let f be an optimal
solution to this LP.

2. Using f , construct a probability distribution Di over the set Ωi for each impression type i.

3. When a request for an impression of type i arrives, select a list from Ωi using the probability
distribution Di:

• if all the advertisers in the list are already matched, then drop the request;

• otherwise, assign the request to the first unmatched advertiser in the list.

Steps 1 and 2 are problem-specific. Different solutions f and different construction of distribu-
tions Di will lead to online algorithms that may have different properties and competitive ratios.
However, these algorithms all share one common and important property: with high probability,
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they are robust with respect to different realizations of the n i.i.d. sequence of impression types.
This property will be useful for the rigorous analysis of competitive ratios. Random lists used in
this paper are extensions of ideas given in [13], but unlike [13], where the length of lists is at most
2, we consider lists of length 3 in this paper.

Paper outline: In the remainder of this section we provide an overview of related work. In
Section 2 we justify the choice of looking at ratios of expected values for evaluating our class of
online algorithms under the i.i.d. stochastic model. The first two main sections follow: In Section 3
we analyze the online stochastic bipartite matching problem under integral arrival rates, and in
Section 4 we extend the results to the online stochastic vertex-weighted bipartite matching problem.
The next major result is contained in Section 5 where we consider the online stochastic bipartite
matching problem under general arrival rate. Finally we show in Section 6 the validity of our results
under a Poisson arrival model, removing the need to assume that the total number of arrivals is
fixed and known in advance, as is required for the analysis of the stochastic i.i.d. models. We
conclude with some final remarks and open problems.

1.2 Related work

As indicated above, bipartite matching problems and related advertisement allocation problems
have been studied extensively in the operations research and computer science literature.

Under an adversarial online model where no information is known about requests, Karp et
al. [11] look at the bipartite matching problem and give a best possible randomized algorithm
(ranking) with competitive ratio 1−1/e. Kalyanasundaram and Pruhs [9] give a 1−1/e-competitive
algorithm for b-matching problems. Mehta et al. [15, 16] and Buchbinder et al. [4] propose two
different 1 − 1/e competitive algorithms for the AdWords problem. More recently, Aggarwal et
al. [1] give a 1− 1/e-competitive algorithm for the vertex-weighted bipartite matching problem.

However, adversarial models may be too conservative for some applications where worst-case
scenarios are unlikely to happen. Less conservative models have been proposed. In the random
permutation model, when the set of requests is unknown, but the order of the sequence is random,
Goel and Mehta [7] show that a greedy algorithm is 1 − 1/e competitive. Devanur and Hayes [5]
propose a near optimal algorithm for AdWords under some mild assumptions. Agrawal et al. [2]
further propose a near optimal algorithm for general online linear programming problems using
similar techniques. Mahdian and Yan [12] and Karande et al. [10] simultaneously show RANKING
algorithm is 0.696-competitive for matching problem. Mirrokni et al. [17] propose an algorithm
works well under both adversarial and random arrival model for Adwords.

The random permutation model may still be too conservative in practice, when statistics about
requests may be available. In the stochastic i.i.d. model, when requests are drawn repeatedly and
independently from a known probability distribution over the different impression types, Feldman
et al. [6] prove that one can do better than 1−1/e. Under the restriction that the expected number
of request of each impression type is an integer, they provide a 0.670-competitive algorithm. They
also show that no algorithm can achieve a competitive ratio of 0.989. Bahmani and Kapralov [3]
modify the algorithm and give a competitive ratio of 0.699 under the same assumption. They also
improved the upper bound to 0.902. More recently, Manshadi et al. [13] removed the assumption
that the expected number of arrivals is integral, and present a 0.702-competitive algorithm (the
same algorithm achieves a competitive ratio of 0.705 under the integral assumption). They also
improve the upper bound to 0.86 with the integral assumption and 0.823 without the integral
assumption. Finally Haeupler et al. [8] recently proposed a 0.667-competitive algorithm for the
edge-weighted problem under the stochastic i.i.d. model.
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2 Preliminary on competitive ratios

As a measure of performance, online algorithms are typically compared to optimum offline solutions
using ratios. In this paper, an algorithm is called α-competitive if E[ALG]

E[OPT] ≥ α for any given
probability distributions. The goal is to find algorithms with large competitive ratios. One could
use a stronger notion of competitive ratio that ALG

OPT ≥ α would hold for most realizations as used
in [6]. In this section we show that for the algorithms in our proposed class, the two concepts are
in fact closely related and lead to competitive ratios that are valid under either of these measures.

Let L1, L2, · · · , Ln be the sequence of random lists for the n successive requests. Every list
only contains interested advertisers, and the assignment of requests only depends on the order of
advertisers in the list and their current status. Thus, from a given realization of this sequence of
random lists, we can construct the corresponding matching and find its cardinality. We can show
that the cardinality is stable with respect to the realization in the following sense:

Claim 1. If two realizations (l1, · · · , lt, · · · , ln) and (l1, · · · , l′t, · · · , ln) only differ by one list, then
the cardinality of their resulting matchings differs at most by one.

Proof. Let Wj and W ′j be the set of matched advertisers right after the jth arrival corresponding
to the two realizations above, respectively. We will show by induction that ∀j, |Wj\W ′j | ≤ 1 and
|W ′j\Wj | ≤ 1. For all j ≤ t−1, since the two realizations are identical for the first j lists, Wj = W ′j .
Since in every period, at most one advertiser becomes matched, the claim is also true for j = t.
Let us consider j ≥ t + 1. If Wj\Wj−1 ⊂ W ′j−1, then by induction, |Wj\W ′j | ≤ |Wj−1\W ′j−1| ≤ 1.
Otherwise, let {k} = Wj\Wj−1. Then, in the list lj , all advertisers in front of k are in Wj−1. Noting
that k is unmatched for ALG′ before the jth period, we have W ′j\W ′j−1 ⊂ Wj−1 ∪ {k}. Therefore,
|Wj\W ′j | = |Wj−1\W ′j−1| ≤ 1. Similarly, we can show |W ′j\Wj | ≤ 1. Hence, |ALG − ALG′| ≤
||Wn| − |W ′n|| ≤ max{|Wn\W ′n|, |W ′n\Wn|} ≤ 1.

Note that Lj only depends on the impression type of the jth request, and does not depend on
types and assignments of earlier impressions. Thus, L1, · · · , Ln are independently and identically
distributed. We can then apply McDiarmid’s Inequality which we recall here for convenience:

McDiarmid’s Inequality [14]: Let X1, X2, . . . , Xn be independent random variables all tak-
ing values in the set X . Let f : X n 7→ R be a function of X1, X2, . . . , Xn that satisfies ∀i,
∀x1, . . . , xn, x′i ∈ X , |f(x1, . . . , xi, . . . , , xn)− f(x1, . . . , x

′
i, . . . , xn)| ≤ ci. Then ∀ε > 0,

P(f(X1, . . . , Xn)− E[f(X1, . . . , Xn)] > ε) ≤ exp(− 2ε2∑n
i=1 c

2
i

)

and

P(f(X1, . . . , Xn)− E[f(X1, . . . , Xn)] < −ε) ≤ exp(− 2ε2∑n
i=1 c

2
i

).

Combining McDiarmid’s Inequality with Claim 1 we obtain:

Lemma 1. P(ALG− E[ALG] < −nε) ≤ exp(−2nε2).

Similarly, note that the offline solution only depends on the realization of the impression types. So
we can show a similar result:

Lemma 2. P(OPT− E[OPT] > nε) ≤ exp(−2nε2).
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From the two lemmas above, we can conclude that

P(
ALG

OPT
≥ E[ALG]

E[OPT]
− 2ε

c+ ε
) ≥ 1− 2 exp(−2nε2),

where c = E[OPT]/n. If E[OPT] = Θ(n), the inequality above indicates that the two notions of
competitive ratios are closely related and essentially equivalent as far as our results are concerned.

Throughout the paper we will assume that n is large enough so that a factor of 1 + O(1/n) is
negligible when analyzing the performance of online algorithms.

3 Stochastic matching with integral arrival rates

In this section and the next, we assume that ri = 1 for all i.

3.1 Online algorithm

As we mentioned in 1.1, two steps in RLA are problem-specific: finding offline solutions and
constructing random lists. In this subsection, we propose methods for these two steps.

3.1.1 Offline solution

Let us consider the following maximum flow problem on the graph G:

max
∑
a,i
fa,i

s.t.
∑
i∼a

fa,i ≤ 1 ∀a ∈ A∑
a∼i

fa,i ≤ 1 ∀i ∈ I

fe ∈ [0, 2/3] ∀e ∈ E

(2)

Note that compared to (1) as introduced in 1.1, the additional constraints on the flows are very
simple. Since the set of vertices of the feasible polytope of (2) is a subset of {0, 1/3, 2/3}E , there
exists an optimal solution to (2) in {0, 1/3, 2/3}E .

To ease the construction of random lists and the analysis, based on the optimal solution f , we
first construct a resulting graph Gf = {A∪ I, Ef}, where Ef = {e ∈ E : fe > 0}. For simplicity, we
try to make Ef as sparse as we can by doing the following two types of transformations. As argued
below, there exists an optimal solution f such that its resulting graph Gf does not contain cycles of
length 4, unless the four nodes in such a cycle do not have any other neighbors; and such a solution
can be found in polynomial time. Cycles in Figure 1 are the only three possible cycles of length 4.
The four nodes in the left cycle cannot have any other neighbor outside the cycle; the middle and
right cycle can be transformed into a non-cycle with the same objective value. Furthermore, if there
exists impression i that has two neighbors a1 and a2 with fi,a1 = fi,a2 = 1/3 and fa1 + fa2 < 2,
without loss of generality, we assume fa2 < 1. Another solution f ′ with f ′i,a1 = 0, f ′i,a2 = 2/3, and
everything else unchanged has the same objective value, and less edges in its resulting graph. We
transform f to f ′. Note that each time, transformations mentioned above remove one or two edges
and does not introduce any new edge. Thus, given any initial optimal solution, after at most |E|
transformations, the optimal solution cannot be transformed further in the above two ways.

The extra constraint fe ≤ 2/3 is added for two reasons: LP (2) provides a upper bound on
the offline solution; the resulting graph is sparse. In fact, as showed in Section 3.2, any constraint
fe ≤ c with c ≥ 1 − e−1 provides an upper bound on the offline solution; however, only c = 2/3
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∑
j,k

faj ,ik = 2

a1 i1

a2 i2

∑
j,k

faj ,ik = 5/3

a1 i1

a2 i2

∑
j,k

faj ,ik = 4/3

a1 i1

a2 i2

a1 i1

a2 i2

a1 i1

a2 i2

Figure 1: Cycles of length 4. Thin edges carry 1/3 flow; and thick edges carry 2/3 flow.

makes the resulting graph sparse. The sparsity not only helps the construction of random lists as
described in Section 3.1.2, but also eases the analysis of the algorithm.

3.1.2 Generation of the random lists

In order to simplify the description of the specific probability distribution used to generate the
random lists, and the analysis of the corresponding online algorithm, let us first add dummy
advertisers aid and dummy edges (aid, i) with faid,i

= ri −
∑

a∈A fa,i for all i ∈ I with
∑

a∼i fa,i < 1.
Dummy advertisers are flagged as matched from the start, so no impression are ever assigned to
them. Since every edge in the graph has value 1/3 or 2/3, every node has two or three neighbors.

The construction of the random lists goes as follows. Given an impression type i, if it has
two neighbors a1 and a2 in the resulting graph, the list is 〈a1, a2〉 with probability fa1,i; the list
is 〈a2, a1〉 with probability fa2,i. Otherwise, if i has three neighbors a1, a2, and a3 (in this case,
fa1,i = fa2,i = fa3,i = 1/3), the list is a uniformly random permutation of 〈a1, a2, a3〉.

3.2 Upper bound on the offline algorithm

In order to show that LP (2) provides an upper bound on the offline solution, we prove that the
offline solution is feasible to the LP. The feasibility of the first two constraints is obvious. The
feasibility of the last constraint is a consequence of the following simple lemma:

Lemma 3 (Manshadi et al.[13]). ∀e ∈ E, f∗e ≤ 1− e−1 < 2/3.

From Lemma 3, the expected optimal offline solution is thus a feasible to LP (2). Therefore,
the optimal solution fT · 1 is an upper bound on the offline optimal f∗T · 1. From now on, we
will compare the online algorithm with the optimal solution of LP (2) instead of with the offline
solution, because the former one is much easier to find than the latter one.

3.3 Certificate events

One difficulty encountered in previous papers is that an advertiser being matched is highly de-
pendent on other advertisers. The strong dependence is difficult to deal with, and difficult to be
decoupled. In this paper, we use a local approach to avoid this issue. To be more specific, we
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compute a lower bound on pa, the probability that advertiser a is matched, using only knowledge
of a’s neighborhood.

To ease the analysis, we consider lists associated with all arriving impressions rather than the
types of impressions, because online matching results are a deterministic function of the former
one. As mentioned in Section 2, all lists are i.i.d. distributed. It is not difficult to see that the
distribution can be easily inferred from the resulting graph Gf . For example, a local structure as
showed in Figure 2 implies that with probability 1/n, a list starts with 〈a1, ...〉; and with probability
1/6n, a list is 〈a1, a, a2〉.

a1

ia11

a21

Figure 2: Possible configurations of i’s neighborhood in the graph. All edges carry 1/3 flow. The
number next to advertiser a indicates fa =

∑
i∼a fa,i.

Assume a is the advertiser we are considering, and i is a neighbor of a. Let us consider the
following two types of events: Ba = {among the n lists, there exists a list starting with 〈a, ...〉} and
Gia = {among the n lists, there exist successive lists starting with advertisers different from a but
which are neighbors of i, and ensuring that a is matched}. For example, in a local structure as
showed in Figure 2, if three lists appear in order: 〈a1, ...〉, 〈a2, ...〉, and 〈a1, a2, a〉, then advertiser a
is matched; and hence Gia happens. Ba and Gia (for any i) will be called “certificate events”, in the
sense that if any of these events happen, they provide a certificate that advertiser a is matched.

We now show that these certificate events have some good properties and their probabilities are
easy to find. In this section and the next, we will use these certificate events to lower bound the
probability that an advertiser is matched; and further lower bound the competitive ratios of our
algorithms.

3.3.1 Asymptotic independence

For notation simplicity, we define supporting set S(Gia) as the set of lists that start with advertisers
that are neighbors of i but not a; S(Ba) as the set of lists that start with a. The supporting set of
the intersection of two certificate events is defined as the union of the supporting sets of the two
certificate events.

Lemma 4. Let E1 and E2 be certificate events or intersections of two certificate events. If their
supporting sets S(E1) ∩ S(E2) = ∅, then E1 and E2 are asymptotically independent, i.e. |P(E1 ∩
E2)− P(E1)P(E2)| < O(1/n).

Proof. Let M1 be the number of lists among all n lists in S(E1); M2 be the number of lists among
all n lists in S(E2). The proof consists of three key parts: with high probability M1 and M2 are
small; when M1 and M2 are small, they are asymptotically independent; given M1 and M2, E1 and
E2 are independent.

According to the construction of our algorithm, we can show that a given list belongs to S(E1)
(or S(E2)) with probability less than 6/n. From the Chernoff bound, with high probability M1 and

M2 are close to their mean: P(M1 ≥ 6µ) ≤ exp(− 6µ2

2+µ) ≤ O(1/n) and P(M2 ≥ 6µ) ≤ exp(− 6µ2

2+µ) ≤
O(1/n), where µ = n1/3.
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Assuming E[M1] = n1 and E[M2] = n2, for all m1 < 6µ and m2 < 6µ, we have

P(M1 = m1,M2 = m2)

P(M1 = m1)P(M2 = m2)
=

(n−m1)!(n−m2)!

n!(n−m1 −m2)!

(1− (n1 + n2)/n)n−m1−m2

(1− n1/n)n−m1(1− n2/n)n−m2
= 1 +O(1/n),

where the last inequality is due to m1m2 = o(n).
Since all advertisers other than neighbors of i are assumed to have infinite capacities, all the

lists that are not in S(E1) do not affect E1. Thus, given M1 = m1, E1 is independent of n −m1

lists that are not in S(E1). Because of the assumption S(E1)∩S(E2) = ∅, E1 is independent of E2

given M1 and M2.
From the three facts above, we have

P(E1 ∩ E2) =
∑

m1,m2

P(M1 = m1,M2 = m2)P(E1, E2|M1 = m1,M2 = m2)

=
∑

m1,m2<6µ
P(M1 = m1,M2 = m2)P(E1, E2|M1 = m1,M2 = m2) +O(1/n)

=
∑

m1,m2<6µ
P(M1 = m1,M2 = m2)P(E1|M1 = m1)P(E2|M2 = m2) +O(1/n)

=
∑

m1,m2<6µ
P(M1 = m1)P(M2 = m2)P(E1|M1 = m1)P(E2|M2 = m2) +O(1/n)

=
∑

m1,m2

P(M1 = m1)P(M2 = m2)P(E1|M1 = m1)P(E2|M2 = m2) +O(1/n)

= P(E1)P(E2) +O(1/n)

By applying Lemma 4 twice, we can show that any four (or less than four) certificate events are
asymptotic independent, as long as their supporting sets do not intersect:

Corollary 1. Consider a set of at most four certificate events {Cj}j∈J (|J | ≤ 4). If ∩j∈JS(Cj) =
∅, then P(∩j∈JCj) =

∏
j∈J P(Cj) + o(1/n).

3.3.2 Computing probabilities

In this section and the next, supporting sets of certificate events are of small sizes because of
the construction of the distribution. In such cases, the probabilities of certificate events can be
calculated via double summation, which is doable even by hand, though time-consuming.

On the other hand, it also can be done via a dynamic programming approach. Given n, the
probability of an advertiser being matched at the end given the current state can be computed
backward. As we can easily check, the probability converges to the limit with an error term of
O(1/n). In fact, when n = 104, the computed probability is within 10−5 accuracy.

In this paper, we simply provide the probabilities of certificate events and omit the process of
finding them due to the following reasons. First, the computation of probabilities is not the key to
our approach, though the actual numbers matter. Second, it is just simple algebra and too long to
present in the paper.

3.4 Lower bound on the online algorithm

For notational simplicity, define fa ,
∑

i∼a fa,i, and let pa be the probability that an advertiser a is
matched by the online algorithm. Since every edge in the graph G with a non-zero flow will carry a
flow of 1/3 or 2/3, there are very few different local configurations in the graph Gf = {A ∪ I, Ef},
where Ef = {e ∈ E|fe > 0}. For example, for an edge e = (a, i) such that fa = 1 and fa,i = 2/3,
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the only four possibilities for i’s neighborhood are α1, α2, α3, and α4 in Figure 3; for an edge
e = (a, i) such that fa = 1 and fa,i = 2/3, the only five possibilities for i’s neighborhood are β1,
β2, β3, β4, and β5 in Figure 3.

a11/3
i

a1

(α1)

a12/3
i

a1

(α2)

a11
i

a1

(α3)

a1
i

aidN/A

(α4)
a1

ia11

a21

(β1)

a1
i

a11

(β2)

a1

ia11

aidN/A

(β3)

a1
i

a12/3

(β4)

a1
i

aidN/A

(β5)

Figure 3: Possible configurations of i’s neighborhood in the graph. Thin edges carry 1/3 flow, and
thick edges carry 2/3 flow. The number next to advertiser a indicates fa =

∑
i∼a fa,i.

For each configuration, because a has at most three neighbors, we can easily compute a lower
bound on the probability of its being matched. For example, assume a has two neighbors i1
and i2, and they are not part of a cycle of length 4. a is matched if one of the three certificate
events happens: Ba, G

i1
a or Gi2a . Since those three events are asymptotically independent, pa ≥

P(Ba ∪ Gi1a ∪ Gi2a ) = 1 − (1 − p)(1 − p1)(1 − p2), where p = P(Ba), p1 = P(Gi1a ), and p2 = P(Gi2a )
are easy to find. Using such an idea, we can show case by case that:

Lemma 5. ∀a ∈ A, let Na be the set of advertisers who are at an edge-distance no more than 4
from a in Gf . Then, there exists µa,a′ ∈ [0, 1] for all a′ ∈ Na, such that∑

a′∈Na

µa,a′pa′ ≥ (1− 2e−2)
∑
a′∈Na

µa,a′fa′ .

Proof. The detailed proof that goes through all cases can be found in the appendix.

Lemma 6. ∃{λa ≥ 0}a∈A such that
∑

a λaµa,a′ = 1,∀a′.

Proof. The proof can be found in the appendix.

Combining the two lemmas above, a conical combination of inequalities leads to our main result:

Theorem 1. E[ALG] =
∑
a∈A

pa ≥ (1− 2e−2)
∑
a∈A

fa ≥ (1− 2e−2)E[OPT ].

3.5 Tight example

It is worth mentioning that the ratio of 1−2e−2 is tight for this algorithm. The ratio can be achieved
with the following example: Consider the case of the complete bipartite graph Kn,n, where n is an
even number. One optimal solution to LP (2) consists of a disjoint union of n/2 cycles of length
4; within each cycle, two edges carry 1/3 flow, and two carry 2/3 flow. Since the underlying graph
is Kn,n, the optimal offline solution is n. On the other hand, for any cycle in the offline optimal
solution, the expected number of matches is 2(1 − e−2). Therefore, the competitive ratio in this
instance is 1− 2e−2 ≈ 0.729.
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4 Extension to vertex-weighted stochastic matching

In this section, we consider the online stochastic vertex-weighted matching problem as defined in
Aggarwal et al. [1]. The problem is exactly the same as the online stochastic matching problem
introduced in Section 1 except for the objective function. In the weighted problem, every advertiser
a has a nonnegative weight wa, indicating his/her importance or value. The objective is to maximize
the sum of weights of matched advertisers rather than the number of matched advertisers as in the
unweighted problem.

The techniques used in Section 3.4 are based on local properties of graphs and thus also work
for the vertex-weighted case.

4.1 Original algorithm

Let us consider the maximum flow problem on the graph G:

max
∑
a,i
wafa,i

s.t.
∑
i
fa,i ≤ 1 ∀a ∈ A∑

a
fa,i ≤ 1 ∀i ∈ I

fe ∈ [0, 2/3] ∀e ∈ E

(3)

Again, since the set of vertices of the feasible polytope of (3) is a subset of {0, 1/3, 2/3}E , there
exists an optimal solution to (3) in {0, 1/3, 2/3}E , and let f be such an optimal solution that
satisfies requirements in Section 3.2. To ease the analysis, we try to make Ef as sparse as we can
by doing the following two types of transformations as we did in Section 3.2. As argued before,
there exists an optimal solution f such that its resulting graph Gf does not contain cycles of length
4, unless the four nodes in such a cycle do not have any other neighbors. Furthermore, if there
exists impression i that has two neighbors a1 and a2 with fi,a1 = fi,a2 = 1/3, fa1 < 1, and fa2 < 1,
without loss of generality, we assume wa1 < wa2 . Another solution f ′ with f ′i,a1 = 0, f ′i,a2 = 2/3,
and everything else unchanged has a larger or equal objective value, and less edges in its resulting
graph. We transform f to f ′. Note that each time, transformations mentioned above remove one
or two edges and does not introduce any new edge. Thus, given any initial optimal solution, after
at most |E| transformations, the optimal solution cannot be transformed further in the above two
ways.

Based on f , the probability distributions over lists can be constructed as in 3.1.2, and the same
idea as in 3.4 leads to the proof that pa ≥ 0.682fa for all a ∈ A. Summing up these inequalities,
we have

∑
a∈Awapa ≥ 0.682

∑
a∈Awafa, which implies that the algorithm is 0.682-competitive.

It is worth noting that, although Lemma 5 and Lemma 6 still hold, they are of little value to
weighted problems because of different weights associated with different advertisers. For the same
reason, results and techniques proposed in previous papers dealing with unweighted stochastic
matching problems are unlikely to be adapted for weighted problems.

4.2 Modification

However, modifying f and the construction of random lists can lead to a better algorithm. If i
has neighbors with f = 1 and f < 1, as showed in Figure 4, f will be modified as follows: in (1),
f̃a1,i = 0.1 and f̃a2,i = 0.9; in (2), f̃a1,i = 0.15 and f̃a2,i = 0.85; in (3), f̃a1,i = 0.6 and f̃a2,i = 0.4;
in (4), f̃a1,i = 0.1, f̃a2,i = 0.45 and f̃a3,i = 0.45; in (5), f̃a1,i = 0.15, f̃a2,i = 0.425 and f̃a3,i = 0.425.
For all the other edges e, f̃e = fe.
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a11/3

i
a21

(1)

a12/3

i
a21

(2)

a12/3

i
a21

(3)

a11/3

ia21

a31

(4)

a12/3

ia21

a31

(5)

Figure 4: Modification of f . Thin edges carry 1/3 flow, and thick edges carry 2/3 flow. The number
next to advertiser a indicates fa.

Now use f̃ instead of f for the construction of the probability distributions over lists in a way
similar to the one described in Section 3.1.2 as follows. Given an impression type i, if it has two
neighbors a1 and a2 in the resulting graph, the list is 〈a1, a2〉 with probability f̃a1,i; the list is
〈a2, a1〉 with probability f̃a1,i. If i has three neighbors a1, a2, and a3; the list is 〈aj , ak, al〉 with
probability f̃aj ,if̃ak,i/(1− f̃aj ,i).

Let p̃a be the probability that advertiser a is matched in the modified algorithm. Using the
same idea as in Section 3.4, we can then show that:

Lemma 7. p̃a ≥ 0.725fa, ∀a ∈ A.

Proof. The detailed proof which goes through all cases can be found in the appendix.

Summing these inequalities up, we have:

Theorem 2. E[ALG] =
∑
a∈A

wap̃a ≥ 0.725
∑
a∈A

wafa ≥ 0.725E[OPT ].

5 Stochastic matching with general arrival rates

In this section, we assume that ri ≤ 1 for all i. The algorithm and basic ideas here are very similar
to [13]: in the offline stage, we approximate the expected offline optimal solution; then, in the online
stage, we use the approximation solution to generate lists of length two. However, our algorithm
is different in two aspects. First, we use a max flow problem instead of Monte Carlo methods to
approximate the offline solution; second, the way lists are generated is different. The first difference
leads to much less computation in the offline stage, while the second difference results in a slightly
better competitive ratio.

5.1 Offline solution

One possible approach to find useful offline information in the general case is to use sampling
methods to estimate the optimal offline solution, as described in Manshadi et al. [13]. However,
some properties that hold for the optimal offline solution may not hold for the estimated one.
Furthermore, a large number of samples may be needed in order to estimate the offline optimal
solution within a desirable accuracy, which takes a long time. Therefore, we consider the following

12



LP instead:
max

∑
a,i
fa,i

s.t.
∑
i∼a

fa,i ≤ 1 ∀a ∈ A∑
a∼i

fa,i ≤ ri ∀i ∈ I∑
i∼a

(2fa,i − ri)+ ≤ 1− ln 2 + 1
n ∀a ∈ A

fe ≥ 0 ∀e ∈ E

(4)

Note that that LP(4) is equivalent to a single-source s single-destination t maximum flow prob-
lem on a directed network Ĝ = {V̂ , Ê} with |A| + 2|I| + 2 vertices and 2|E| + |A| + 2|I| arcs.
The vertex set V̂ = {s, t} ∪ A ∪ I ∪ I ′, where I ′ is a duplicate of I, and the arc set Ê =
{(s, a), (a, i), (i′, i), (a, i′), (i, t)|a ∈ A, i ∈ I, i is a duplicate copy of i}. The capacity of (s, a) is
1; the capacity of (a, i) is ri/2; the capacity of (i′, i) is 1 − ln 2 + 1/n; the capacity of (i, t) is ri;
(a, i′) have infinite capacities.

5.2 Upper bound on the optimal offline solution

Let f∗ be an optimal offline solution. All but the third constraints in (4) are trivially valid for f∗.
The third constraint has been proven in [13]:

Lemma 8. [[13], Lemma 5]
∑
i∼a

(2f∗a,i − ri)+ ≤ 1− ln 2 + 1
n , ∀a ∈ A.

5.3 Randomized algorithm

For simplicity, let us again first add a dummy advertiser ad with fad , 1, and dummy edges (ad, i)
for all i with fad,i , ri −

∑
a∈A fa,i. The dummy advertiser is full at the very beginning. Every

time an impression of type i arrives, a random list consisting of two advertisers will be generated as
follows. Assume a1, ..., ak are the advertisers interested in i. Choose a random number x uniformly
over [0, ri]. If x ∈ [

∑j−1
l=1 fal,i,

∑j
l=1 fal,i], then aj is the first advertiser in the list to be considered;

if x± ri/2 ∈ [
∑k−1

l=1 fal,i,
∑k

l=1 fal,i] then ak is the second in the list to be considered. Worth noting
is the possibility that aj and ak correspond to the same advertiser; in that case, the list degenerates
to a singleton.

Let mi
aj ,ak

be the expected number of requests for impressions of type i and corresponding lists
given by 〈aj , ak〉. Since all lists are i.i.d., the probability that an impression is of type i and its
corresponding list is 〈aj , ak〉 ismi

aj ,ak
/n. From the construction of the lists, we havemi

aj ,ak
= mi

ak,aj
.

As we mentioned in Section 2, from a given realization of the sequence of random lists, we can find
the cardinality of the corresponding online matching. Since the random list associated with the jth

request only depends on the impression type of that request, and not on types and assignments
of earlier requests, these random lists are all i.i.d.. Thus, we can focus on the lists themselves,
rather than on the impression types that they are associated with. Then, maj ,ak ,

∑
i∈I m

i
aj ,ak

is
the expected number of lists that are 〈aj , ak〉, irrespective of the impression types which they are
associated with. Furthermore, because mi

aj ,ak
= mi

ak,aj
, we have maj ,ak = mak,aj . Since all lists

are i.i.d., the probability that a list is 〈aj , ak〉 is maj ,ak/n.

5.4 Lower bound on the online algorithm

The analysis here is almost the same as in [13] except for some minor changes due to the different
ways we generate random lists, e.g. maj ,ak = mak,aj . To help better understand the arguments,
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we present the full proof in this section. The following main result is proved by way of successive
claims.

Theorem 3.
∑
a∈A

pa ≥ 0.706
∑
a∈A

fa.

Let Aa = A\{a}, A∗ = A∪{ad}, and A∗a = A∗\{a}. ∀a ∈ A∗, a1 ∈ A∗a, define events Ba = {∃j, such
that Lj = 〈a, .〉}, Ea1,a2 = {∃j < k such that Lj = 〈a1, .〉, Lk = 〈a1, a2〉}, and Ead,a = {∃j, such
that Lj = 〈ad, a〉}. If any of Ba, Ea1,a, and Ead,a happens, then advertiser a is matched. Thus, the
probability pa that advertiser a is matched is at least:

pa ≥ P(Ba) + P(B̄a)P(
⋃

a1∈A∗a
Ea1,a|B̄a)

≥ 1− e−fa + e−1
( ∑
a1∈A∗a

P(Ea1,a)− 1
2

∑
a1 6=a2∈A∗a

P(Ea1,a, Ea2,a)
)

≥ 1− e−fa + e−1
( ∑
a1∈A∗a

P(Ea1,a)− 1
2

∑
a1 6=a2∈A∗a

P(Ea1,a)P(Ea2,a)
)
,

where the last two inequalities are due to asymptotic independence. The proof of asymptotic
independence is similar to the proof of Lemma 4, and is omitted in the paper.

Let us now provide a way to compute P(Ea1,a).

Claim 2. We have P(Ea1,a) = g(fa1 ,ma1,a) for all a1 ∈ A and a ∈ A∗a1, and P(Ead,a) ≥
g(fad ,mad,a) for all a ∈ A, where:

g(y, x) = h(y, 0)− h(y, x), and h(y, x) =

{ y

y − x
(e−x − e−y), if x 6= y

ye−y, if x = y

Proof. Define F ja1 = {the jth list is 〈a1, .〉} and Gja1,a = {there exists k ≥ j such that the kth list is
〈aj , a〉}. Then,

P(Ea1,a) =
∑
j
P(F ja1)P(Gj+1

a1,a)

=
∑
j

(
1− fa1

n

)j−1 fa1
n

(
1−

(
1− ma1,a

n

)n−j)
≈

∑
j

fa1
n
e−

j
n
fa1
(
1− e−

n−j
n
ma1,a

)
.

If ma1,a 6= fa1 ,

P(Ea1,a|B̄a) =
∑
j

fa1
n

(
e−

j
n
fa1 − e−ma1,ae−

j
n
(fa1−ma1,a)

)
= 1− e−fa1 − fa1

fa1 − fa1,a
e−fa1,a

(
1− e−(fa1−fa1,a)

)
= g(fa1 , fa1,a).

If ma1,a = fa1 ,

P(Ea1,a|B̄a) =
∑
j

fa1
n

(
e−

j
n
fa1 − e−fa1

)
= 1− e−fa1 − fa1e−fa1 = g(fa1 , fa1).

We have transformed a probabilistic problem into an algebraic problem. In the remaining part of
the section, we only use algebraic manipulations and the following properties of functions g and h
to find a lower bound of the competitive ratio.
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Claim 3. For y ∈ [0, 1], h(y, x) is convex and decreasing in x ∈ [0, y]; g(y, x) is concave and
increasing in x ∈ [0, y]; g(y, x) is increasing in y ∈ [x,∞).

Proof. The claim can be easily verified by taking first and second order partial derivatives.

Because of the convexity of h in the second argument, we have

P(Ea1,a) = h(fa1 , 0)− h(fa1 ,ma1,a) ≤ −ma1,a ·
∂h

∂y
(fa1 , 0) ≤ e−1ma1,a, (5)

implying that
∑

a1∈Aa
P(Ea1,a|B̄a) ≤ e−1. Combined with P(Ea1,a|B̄a) ≥ g(fa1 ,ma1,a) for all a1 ∈

A∗a, we have

pa ≥ 1− e−fa + e−1
( ∑
a1∈A∗a

g(fa1 ,ma1,a)−
1

2

( ∑
a1∈A∗a

g(fa1 ,ma1,a)
)2

+
1

2

∑
a1∈A∗a

g(fa1 ,ma1,a)
2
)
.

Since g is increasing in the first argument, we have g(fad ,mad,a) = g(fad ,ma,ad) ≥ g(fa,ma,ad) for
all a ∈ A. Thus, ∑

a∈A

∑
a1∈A∗a

g(fa1 ,ma1,a) ≥
∑
a∈A

∑
a1∈A∗a

g(fa,ma,a1)

and ∑
a∈A

∑
a1∈A∗a

g(fa1 ,ma1,a)
2 ≥

∑
a∈A

∑
a1∈A∗a

g(fa,ma,a1)2 .

Therefore, by switching the order of summation, we have∑
a∈A

pa∑
a∈A

fa
≥

∑
a∈A

(
1− e−fa + 1

e

∑
a1∈A∗

a

g(fa1
,ma1,a)− 1

2e

( ∑
a1∈A∗

a

g(fa1
,ma1,a)

)2
+ 1

2e

∑
a1∈A∗

a

g(fa1
,ma1,a)2

)
∑
a∈A

fa

≥

∑
a∈A

(
1− e−fa + 1

e

∑
a1∈A∗

a

g(fa,ma,a1)− 1
2e

( ∑
a1∈A∗

a

g(fa1 ,ma1,a)
)2

+ 1
2e

∑
a1∈A∗

a

g(fa,ma,a1)2
)

∑
a∈A

fa

≥ min
a∈A

1− e−fa + 1
e

∑
a1∈A∗

a

g(fa,ma,a1
)− 1

2e

( ∑
a1∈A∗

a

g(fa1
,ma1,a)

)2
+ 1

2e

∑
a1∈A∗

a

g(fa,ma,a1
)2

fa

Let βa = max
a1∈A∗a

ma,a1 , ma,a∗1
, sa =

∑
a1∈A∗a

ma,a1 . Then, we have
∑

a1∈A∗a
g(fa,ma,a1)2 ≥ g(fa, βa)

2.

Furthermore, because g is concave in the second argument and g(fa, 0) = 0,∑
a1∈A∗a

g(fa,ma,a1) ≥
∑
a1∈A∗a

ma,a1

βa
g(fa, βa) =

sa
βa
g(fa, βa).

On the other hand, from inequality (5),∑
a1∈A∗a

g(fa1 ,ma1,a) =
∑

a1∈A∗a\{a∗1}
g(fa1 ,ma1,a) + g(fa1 , βa) ≤ e−1(sa − βa) + g(1, βa).

Therefore,

1
fa

(
1− e−fa + 1

e

∑
a1∈A∗a

g(fa,ma,a1)− 1
2e

( ∑
a1∈A∗a

g(fa1 ,ma1,a)
)2

+ 1
2e

∑
a1∈A∗a

g(fa,ma,a1)2
)

≥ 1
fa

(
1− e−fa + 1

e
sa
βa
g(fa, βa)− 1

2e

(
e−1(sa − βa) + g(1, βa)

)2
+ 1

2eg(fa, βa)
2
)
, R(fa, βa, sa).
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From the definitions of fa, βa, and sa, we have fa ≥ sa ≥ βa, and fa − sa is the expected number
of lists that are singletons 〈a〉. From the construction of lists, the expected number of singletons
〈a〉 associated with impressions of types i is (2fa,i − ri)+. Thus, fa − sa =

∑
i∼a(2fa,i − ri)+ ≤

(1− ln 2) + 1/n. We can numerically show that, for n ≥ 100:

Claim 4. Subject to 1 ≥ fa ≥ sa ≥ βa ≥ 0 and fa − sa ≤ (1− ln 2) + 1/n, R(fa, βa, sa) ≥ 0.706.

Proof. We divide the feasible region into cubes of side length 0.001. In each small region S, define
fmax
a , sup fa and fmin

a , inf fa. Define smax
a , smin

a , βmax
a , and βmin

a similarly. Then, from Claim 3,
we can show that ∀(fa, sa, βa) ∈ S, R(fa, sa, βa) is bounded from below by

1

fmax
a

(
1− e−fmin

a +
1

e

smin
a

βmax
a

g(fmin
a , βmin

a )− 1

2e

(
e−1(smax

a − βmin
a ) + g(1, βmax

a )
)2

+
1

2e
g(fmin

a , βmin
a )2

)
.

We can numerically verify R(fa, sa, βa) ≥ 0.706 in each region. The lower bound is achieved when
fa ∈ [0.999, 1], sa ∈ [0.692, 0.693], and βa ∈ [0.564, 0.565]. Hence, R(fa, sa, βa) ≥ 0.706 is a valid
inequality for the whole feasible region.

Theorem 3 follows from Claim 4.

6 Poisson arrivals

In the preceding sections, the number of arriving requests is assumed to be fixed and known in
advance. However, in most applications, such an assumption is too strong. Thus, in this section,
we attempt to relax this assumption.

In this section, we consider the following scenario. A set of advertisers express their interests
in impressions of different types. Advertisers are fixed and known ahead of time while requests
for impressions come online. Impression types are i.i.d., and the distribution may be known or
unknown. The arrival of impressions is a Poisson Process with arrival rate λ = n. The task is to
maximize the cardinality of matching by the end of a given fixed period T = 1.

6.1 Algorithms

The expected number of arrivals is λT = n. We show that, greedy algorithms designed for stochastic
matching with given number of arrivals works well for the one with Poisson arrivals (e.g. the ranking
algorithm for problems with unknown distribution, our proposed algorithms in the previous sections
for problems with known distribution). More specifically, we will show that a c-competitive “greedy-
type” algorithm (where c is the ratio of expectation) for fixed arrivals is c−ε competitive for Poisson
arrivals.

Because the number of Poisson arrivals concentrates around its mean, we expect both online
and offline objective to concentrate around their means.

Lemma 9. Let N be the number of arrivals within [0, T ]. Then, P((1−ε)λT < N < (1+ε)λT )→ 1
as λT →∞ for any ε > 0.

Let OPTm be the expected offline optimal solution given N = m and OPT be the expected offline
optimal solution.

Lemma 10. ∀(1− ε)n < m ≤ n, OPTm ≤ OPTn; ∀n ≤ m < (1 + ε)n, OPTm ≤ (1 + ε)OPTn.
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Proof. ∀(1 − ε)n < m ≤ n, an instance τm of m arrivals can be generated in the following way:
generate an instance τn of n arrivals first, and then remove n −m arrivals uniformly at random.
Since τm is a subset of τn, OPT (τm) ≤ OPT (τn). By taking expectation, we have OPTm ≤ OPTn.
∀n ≤ m < (1 + ε)n, an instance τn of n arrivals can be generated in the following way: generate

an instance τm of m arrivals first, and then remove m−n arrivals uniformly at random. A feasible
solution of τn can be induced by the optimal solution of τm, by removing pairs corresponding to
removed arrivals and not adding any other pairs. The feasible solution of τn has expected value of
n
mOPT (τm). Thus, OPT (τm) ≤ m

nOPT (τn) ≤ (1 + ε)OPT (τn).

As a consequence we have:

Corollary 2. OPT ≤ (1 + ε)OPTn.

6.1.1 The unweighted case

Let ALGm be the expected online solution given N = m and ALG be the expected online solution.

Lemma 11. ∀(1− ε)n < m ≤ n,ALGm ≥ (1− ε)ALGn; ∀n ≤ m < (1 + ε)n,ALGm ≥ ALGn.

Proof. ∀n ≤ m < (1 + ε)n, an instance τn of n arrivals can be generated in the following way:
generate an instance τm of m arrivals first, and then remove the last m−n arrivals. Because of the
greediness of the algorithm, ALGm ≥ ALGn.
∀(1 − ε)n < m ≤ n, let ri be the probability that the ith arrival is matched. Because of the

greediness of the algorithm and the fact that less and less bins are unmatched, ri is non-increasing.
Since ALGm =

∑m
i=1 ri and ALGn =

∑n
i=1 ri, we have ALGm ≥ m

nALGn ≥ (1− ε)ALGn.

As a consequence we have:

Corollary 3. ALG ≥ (1− 2ε)ALGn.

Because of the assumption of c-competitiveness, ALGn ≥ c ·OPTn. Therefore Corollaries 2 and 3
imply that ALG ≥ (1− 2ε)c ·OPT .

6.1.2 The weighted case

Let ALGm be the expected online solution given N = m and ALG be the expected online solution.
Let Ri be the marginal revenue in the ith step. For the algorithm proposed in Section 4.1 and 4.2,
we can show that although E[Ri] is not non-increasing as in the unweighted case, Rj cannot be too
large compared to E[Ri] for i < j. Specifically:

Lemma 12. E[Rj ] ≤ 9E[Ri], ∀i < j.

Proof. Let I be the indicator vector of availability of advertisers right after step i− 1. Given I, if
an advertiser has zero probability to be matched to a query at step i, he has zero probability to be
matched to a query at step j. Given I, if he has non-zero probability to be matched at step i, then
the probability is at least 1/3n; on the other hand, with probability at most 3/n, he is matched at
step j. From the discussion above, we have E[Rj |I] ≤ 9E[Rj |I]. By taking expectation over I, we
have our lemma.

Lemma 13. ∀(1− ε)n < m ≤ n,ALGm ≥ (1− 9ε)ALGn; ∀n ≤ m < (1 + ε)n,ALGm ≥ ALGn.
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Proof. ∀n ≤ m < (1 + ε)n, an instance τn of n arrivals can be generated in the following way:
generate an instance τm of m arrivals first, and then remove the last m−n arrivals. Because of the
greediness of the algorithm, ALGm ≥ ALGn.
∀(1 − ε)n < m ≤ n, ALGm =

∑m
i=1 E[Ri] and ALGn =

∑n
i=1 E[Ri]. From the above lema,

ALGm ≥ m
m+9(n−m)ALGn ≥ (1− 9ε)ALGn.

As a consequence:

Corollary 4. ALG ≥ (1− 9ε)ALGn.

Because of the assumption of c-competitiveness, ALGn ≥ c ·OPTn. Therefore Corollaries 2 and 4
imply that ALG ≥ (1− 10ε)c ·OPT .

6.1.3 Remarks

The only property of the Poisson distributed random variables we have used is that they concentrate
around their means. Hence, if the number of arriving queries are different random variables also
concentrating around their means, the results in this section would still apply.

7 Concluding remarks

In this paper, we have proposed new algorithms for online stochastic matching problems which led
to improved competitive ratios under either integral or general arrival rates. We have also showed
that our techniques can be applied to other related problems. In particular we have showed that
one can do better than 1 − 1/e for the online vertex-weighted bipartite matching problem under
the stochastic i.i.d. model with integral arrival rate. Finally we have showed the validity of all
our results under a Poisson arrival model, removing the need to assume that the total number of
arrivals is fixed and known in advance, as is required for the analysis of the stochastic i.i.d. models.

Some questions remain open. Gaps between 0.706 and 0.823 for problems with general arrival
rates, and between 0.729 and 0.86 for problems with integral arrivals rates are yet to be closed.
Note that for unweighted problems with integral rates, the bottleneck of the analysis is a 2-by-2
complete bipartite graph. The bottleneck remains even if one is using b1 6= 2/3 in the constraints
fe ≤ b1, because the 2-by-2 complete bipartite graphs could be part of feasible solutions. One
possible approach would be to add another set of constraints fa,i1 + fa,i2 ≤ b2 with b2 ≤ 1 − e−2.
Since the offline optimal solution f∗ satisfies f∗a,i1 + f∗a,i2 ≤ 1− e−2, it would be feasible to the new
LP. The techniques used in this paper may then be applied to the new LP in order to derive a
better competitive ratio. The same idea could also be applied to weighted problems with integral
rates.
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A Complete Proofs of Lemma 5, Lemma 6, and Lemma 7

Lemma 5. ∀a ∈ A, let Na be the set of advertisers who are at an edge-distance no more than 4
from a in Gf . Then, there exists µa,a′ ∈ [0, 1] for all a′ ∈ Na, such that∑

a′∈Na

µa,a′pa′ ≥ (1− 2e−2)
∑
a′∈Na

µa,a′fa′ .

Proof. For advertiser a with fa = 1/3, pa ≥ P(Ba) = 1 − e−1/3 ≥ 0.850fa. For advertiser a with
fa = 2/3, pa ≥ P(Ba) = 1 − e−2/3 ≥ (1 − 2e−2)fa. Thus, we only need to prove the lemma for a
with fa = 1.

Before doing so, let us first find probabilities of events Ba and Gia exactly.

a11/3

i
a1

(α1)

a12/3

i
a1

(α2)

a11

i
a1

(α3)

a1

i

aidN/A

(α4)
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ia11

a21

(β1)

a1

i
a11

(β2)

a1

ia11

aidN/A

(β3)

a1

i
a12/3

(β4)

a1

i
aidN/A

(β5)

Figure 5: Possible configurations of i’s neighborhood in the graph. Thin edges carry 1/3 flow, and
thick edges carry 2/3 flow. The number next to advertiser a indicates fa.

α) fa,i = 2/3.
If i has 2 neighbors a and a1, then fa1,i = 1/3:

α1. fa1 = 1/3.

P(Gia) ≥
n∑
j=1

1
3ne
− j

3n

(
1− e−

n−j
3n

)
≈ 1− 4

3e
− 1

3 , p1(≥ 0.044).
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α2. fa1 = 2/3.

P(Gia) ≥
n∑
i=1

2
3ne
− 2j

3n

(
1− e−

n−j
3n

)
= 1− e−

2
3 − e−

1
3 · 2(1− e−

1
3 ) , p2(≥ 0.080).

α3. fa1 = 1.

P(Gia) ≥
n∑
j=1

1
ne
− j

n

(
1− e−

n−j
3n

)
= 1− e−1 − e−

1
3 · 32(1− e−

2
3 ) , p3(≥ 0.109).

If i has only one neighbor:

α4.

P(Gia) ≥ 1− e−
1
3 , p4(≥ 0.283).

β) fa,i = 1/3.
If i1 has 3 neighbors a, a1, and a2:

β1. We have fa1 = fa2 = 1; otherwise, we can find another optimal solution to LP (2) with
less non-zero flow edges. Therefore,

P(Gia) ≥
∑
k>j

2
ne
− 2j

n · 4
3ne
− 4(k−j)

3n · (1− 7
8e
− 2(n−k)

3n )

= 1− e−2 − 21
8 e
− 2

3 (1− e−
4
3 ) + 9

4e
− 4

3 (1− e−
2
3 ) , p5(≥ 0.160).

If i has 2 neighbors a and a1. Note that fa1,i = 1/3 and fa1 < 1 cannot happen together;
otherwise, f cannot be a maximum flow:

β2. fa1,i = 2/3 and fa1 = 1.

P(Gia) ≥
n∑
j=1

1
ne
− j

n

(
1− e−

2(n−j)
3n

)
= 1− e−1 − e−

2
3 · 3(1− e−

1
3 ) , p6(≥ 0.195).

β3. fa1,i = 1/3 and fa1 = 1.

P(Gia) ≥
n∑
j=1

4
3ne
− 4j

3n (1− 7
8e
− 2(n−j)

3n )

= 1− e−
4
3 − 7

4e
− 2

3 (1− e−
2
3 ) , p7(≥ 0.299).

β4. fa1,i = 2/3 and fa1 = 2/3.

P(Gia) ≥
n∑
j=1

2
3ne
− 2j

3n

(
1− e−

2(n−j)
3n

)
= 1− 5

3e
− 2

3 , p8(≥ 0.144).

If i has only one neighbor:

β5.

P(Gia) ≥ 1− e−
2
3 , p9(≥ 0.486).
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We say that “i is in α1 with respect to a” if (a, i) has the neighborhood structure shown in α1 in
Figure 5. The same for α2, α3, α4, β1, . . . , β5. “With respect to a” will be omitted unless otherwise
specified. We are now ready to compute lower bounds on pa when fa = 1. We have two cases:

Case 1: a is contained in a cycle of length 4 in Gf . Let [a1(= a), i1, a2, i2] be the cycle. According
to the choice of the offline solution (see Section 3.1.1),

∑
j,k faj ,ik = 2 as showed in Figure 6. Let

N be the number of impressions of type i1 or i2. Then,

pa1 + pa2 = P(N = 1) + 2P(N ≥ 2) = 2− 4e−2 = (1− 2e−2)(fa1 + fa2) ≈ 0.729(fa1 + fa2).

a1 i1

a2 i2

Figure 6: Cycle of length 4. Thin edges carry 1/3 flow; and thick edges carry 2/3 flow.

Case 2: a is not contained in a cycle of length 4. Then it has either three or two neighbors:

1) a has three neighbors i1, i2, and i3, then

pa ≥ P(Ba ∪Gi1a ∪Gi2a ∪Gi3a )
= 1− (1− P(Ba))(1− P(Gi1a ))(1− P(Gi2a ))(1− P(Gi3a ))
≥ 1− e−1(1− p8)3 ≥ 0.769fa.

Please note that the second equality is due to Corollary 1, which says that four or less
certificate events are asymptotically independent if their supporting sets do not intersect. We
will also use this asymptotic independence property repeatedly in the rest of the proof.

2) a has two neighbors i1 and i2. Without loss of generality, let us assume that fa,i1 = 1/3 and
fa,i2 = 2/3:

2a. i1 is in case β3 or β5.

pa ≥ P(Ba ∪Gi1a ) = 1− (1− P(Ba))(1− P(Gi1a ))
≥ 1− e−1(1− p7) ≥ 0.742fa.

2b. i1 is in case β4. Let a1 be the other neighbor of i1.

pa ≥ P(Ba ∪Gi1a ) = 1− (1− P(Ba))(1− P(Gi1a ))
≥ 1− e−1(1− p8).

Similarly, we can compute

pa1 ≥ P(Ba1 ∪Gi1a1)

≥ 1− e−
2
3 + e−

2
3
∑
j

1
ne
− j

n

(
1− e−

n−j
3n

)
= 1− e−

2
3 + e−

2
3

(
1− e−1 − e−

1
3 · 32(1− e−

2
3 )
)
, p10(≥ 0.542).

Since fa = 1, fa1 = 2/3, we have

pa + pa1 ≥ 1− e−1(1− p8) + p10 ≥ 0.736(fa + fa1).
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2c. i1 is in case β2.

i. i2 is in case α1. Let a1 be the other neighbor of i2. Since

pa ≥ P(Ba ∪Gi1a ∪Gi2a ) = 1− (1− P(Ba))(1− P(Gi1a ))(1− P(Gi2a ))
≥ 1− e−1(1− p1)(1− p6)

and
pa1 ≥ P(Ba1) = 1− e−

1
3 = p4,

and fa = 1, fa1 = 1/3, we have

pa + pa1 ≥ 1− e−1(1− p1)(1− p6) + p4 ≥ 0.750(fa + fa1).

ii. i2 is in case α2. Let a1 be the other neighbor of i2.

pa ≥ P(Ba ∪Gi1a ∪Gi2a ) = 1− (1− P(Ba))(1− P(Gi1a ))(1− P(Gi2a ))
≥ 1− e−1(1− p2)(1− p6).

Similarly, we can compute

pa1 ≥ P(Ba1 ∪Gi1a1)

≥ 1− e−
2
3 + e−

2
3
∑
j

1
ne
− j

n

(
1− e−

n−j
3n

)
= 1− e−

2
3 + e−

2
3

(
1− e−1 − e−

1
3 · 32(1− e−

2
3 )
)

= p10.

Since fa = 1, fa1 = 2/3, we have

pa + 0.5pa1 ≥ 1− e−1(1− p2)(1− p6) + 0.5p10 ≥ 0.749(fa + 0.5fa1).

iii. i2 is in case α3 or α4.

pa ≥ P(Ba ∪Gi1a ∪Gi2a ) = 1− (1− P(Ba))(1− P(Gi1a ))(1− P(Gi2a ))
≥ 1− e−1(1− p3)(1− p6) ≥ 0.736fa.

2d. i1 is in case β1 and i2 is not in case α3.

i. i2 is in case α1. Let a1 be the other neighbor of i2. Since

pa ≥ P(Ba ∪Gi1a ∪Gi2a ) = 1− (1− P(Ba))(1− P(Gi1a ))(1− P(Gi2a ))
≥ 1− e−1(1− p1)(1− p5)

and
pa1 ≥ P(Ba1) = 1− e−

1
3 = p4,

and fa = 1, fa1 = 1/3, we have

pa + pa1 ≥ 1− e−1(1− p1)(1− p5) + p4 ≥ 0.741(fa + fa1).

ii. i2 is in case α2. Let a1 be the other neighbor of i2.

pa ≥ P(Ba ∪Gi1a ∪Gi2a ) = 1− (1− P(Ba))(1− P(Gi1a ))(1− P(Gi2a ))
≥ 1− e−1(1− p2)(1− p5).
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Similarly, we can compute

pa1 ≥ P(Ba1 ∪Gi1a1)

≥ 1− e−
2
3 + e−

2
3
∑
j

1
ne
− j

n

(
1− e−

n−j
3n

)
= 1− e−

2
3 + e−

2
3

(
1− e−1 − e−

1
3 · 32(1− e−

2
3 )
)

= p10.

Since fa = 1, fa1 = 2/3, we have

pa + 0.5pa1 ≥ 1− e−1(1− p2)(1− p5) + 0.5p10 ≥ 0.740(fa + 0.5fa1).

iii. i2 is in case α4,

pa ≥ P(Ba ∪Gi1a ∪Gi2a ) = 1− (1− P(Ba))(1− P(Gi1a ))(1− P(Gi2a ))
≥ 1− e−1(1− p4)(1− p5) ≥ 0.778fa.

2e. i1 is in case β1 and i2 is in case α3, then i2 has two neighbors. Let a1 and a2 be the
other two neighbors of i1, and a3 be the other neighbor of i2.

pa ≥ P(Ba ∪Gi1a ∪Gi2a ) = 1− (1− P(Ba))(1− P(Gi1a ))(1− P(Gi2a ))
≥ 1− e−1(1− p3)(1− p5).

i. a3 has three neighbors. According to the discussion in (1),

pa3 ≥ 1− e−1(1− p8)3.

Since fa = fa1 = 1, we have

pa +
1

3
pa3 ≥ 0.736(fa +

1

3
fa3).

If a3 has two neighbors. Let the other neighbor of a3 is i3.

ii. i3 is in α1 with respect to a3. Let the other neighbor of i3 be a4. According to the
discussion in (2c-i),

pa3 + pa4 ≥ 1− e−1(1− p1)(1− p6) + p4.

Since fa = fa3 = 1, fa4 = 1/3, we have

pa + pa3 + pa4 ≥ 0.739(fa + fa3 + fa4).

iii. i3 is in α2 with respect to a3. Let the other neighbor of i3 be a4. According to the
discussion in (2c-ii),

pa3 + 0.5pa4 ≥ 1− e−1(1− p2)(1− p6) + 0.5p10.

Since fa = fa3 = 1, fa4 = 2/3, we have

pa + pa3 + 0.5pa4 ≥ 0.738(fa + fa3 + 0.5fa4).

iv. i3 is in α3 or α4 with respect to a3. According to the discussion in (2c-iii),

pa3 ≥ 1− e−1(1− p3)(1− p6).

Since fa = fa3 = 1, we have

pa + pa3 ≥ 0.730(fa + fa3).
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Lemma 6. ∃{λa ≥ 0}a∈A such that
∑

a λaµa,a′ = 1,∀a′.

Proof. Let us first obtain an expression of λa for various types of advertisers. Consider an ad-
vertiser a such that fa = 1: if a corresponds to case (1) in the proof of Lemma 5, λa = 1 −
#(nodes in (2e) that are at distance 2 from a)/3; if a corresponds to case (2c) and there exists a
node in (2e) that is at distance 2 from a, then λa = 0; otherwise, λa = 1. For all the other adver-
tisers a such that fa < 1, we have λa = 1 −

∑
a′:fa′=1 µa′,aλa′ . We can now verify that for all a,

λa ≥ 0 and
∑

a′ λa′µa′,a = 1:

• If a is in case (1), let N ′a = {a′ : a′ is a 2-neighbor of a and a′ is in (2e)}. Because |N ′a| ≤ 3,
we have λa ≥ 0. On the other hand, from the proof of Lemma 5, µa′,a = 1/3 if a′ ∈ N ′a, and
0, otherwise. From the construction of λ above, λa′ = 1 for a′ ∈ N ′a and λa = 1 − |N ′a|/3.
Therefore,

∑
a′ λa′µa′,a = 1.

• If a is in (2c) and it has a 2-neighbor a1 who is in (2e), then from the proof of Lemma 5,
µa1,a = 1 and µa′,a = 0 for all a′ 6= a or a1. From the construction of λ above, λa = 0 and
λa1 = 1. Therefore,

∑
a′ λa′µa′,a = 1.

• For all a with fa = 1 and not in the two cases above, µa′,a = 0 for all a′ 6= a. Since λa = 1,
we have

∑
a′ λa′µa′,a = 1.

• For all a with fa < 1, µa′,a = 0 for all a′ 6= a with fa′ < 1. Because of the construction of λ,∑
a′ λa′µa′,a = 1 is trivially true. We will show that λa ≥ 0.

– fa = 1/3. We can show that there is at most one advertiser a′ such that λa′µa′,a > 0.
Therefore, λa ≥ 0.

– fa = 2/3, and a has only 1 neighbor. We can show that there is at most one advertiser
a′ such that λa′µa′,a > 0. Therefore, λa ≥ 0.

– fa = 2/3, and a has 2 neighbors. We can show that there is at most two advertisers a′

such that λa′µa′,a > 0. Furthermore, for all a′, µa′,a ≤ 1/2. Therefore, λa ≥ 0.

Lemma 7. p̃a ≥ 0.725fa, ∀a ∈ A.

Proof. As discussed in Section 3.1.1, the left case in Figure 1 is the only possible cycle in the resulting
graph. Let N be the number of impressions of type i1 or i2. Then, p̃a1 + p̃a2 = P(N = 1) + 2P(N ≥
2) = 2− 4e−2. Because of the symmetry between a1 and a2, p̃a1 = p̃a2 = 1− 2e−2 = 0.729.

From now on, we only need to consider advertisers a who are not part of cycles of length 4.
Therefore, the supporting sets of their certificate events do not intersect, thus are asymptotically
independent.

We first consider the case fa = 1. We can show case by case that:

Claim 5. ∀a with fa = 1, p̃a ≥ 0.7250fa.

Proof. Let us first compute probabilities of certificate events:

α) fa,i = 2/3.
If i has 2 neighbors a and a1, then fa1,i = 1/3.
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Figure 7: Possible configurations of i’s neighborhood in the graph. Thin edges carry 1/3 flow, and
thick edges carry 2/3 flow. The number next to advertiser a indicates fa.

α1. fa1 = 1/3. We use a Markov Chain approach to approximate P(Gia). The state space
consists of three states: “a is full” (state 1), “a is empty and a1 is full” (state 2), and
“a is empty and a1 is empty” (state 3). The transition probabilities are p(3, 2) = 0.1/n,
p(3, 3) = 1 − 0.1/n, p(2, 2) = 1 − 0.1/n, p(2, 1) = 0.1/n, and p(1, 1) = 1. The initial
probability distribution is (0,0,1), i.e. both a and a1 are empty. P(Gia) is the probability
of state 1 after n time step. We use n = 106 here and for all other cases:

P(Gia) ≥ 0.0047(, p̃1)

The same idea can be used to compute the probability for all cases. The only difference
is the size of state space, and the transition probability. Please note that we can also
calculate P(Gia) exactly, as we did in the proof of Lemma 5.

α2. fa1 = 2/3.

P(Gia) ≥ 0.0194(, p̃2)

α3. fa1 = 1.

P(Gia) ≥ 0.1091(, p̃3)

If i has only one neighbor:

α4.

P(Gia) ≥ 0.2835(, p̃4)
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β) fa,i1 = 1/3.
If i has 3 neighbors a, a1 and a2. Then at least one of fa1 or fa2 is 1; otherwise, we can find
another solution that has less non-zero flow edges and a better objective value.

β1. fa1 = fa2 = 1.

P(Gia) ≥ 0.1608(, p̃5)

β6. fa1 = 1 and fa2 = 1/3.

P(Gia) ≥ 0.1396(, p̃6)

β7. fa1 = 1 and fa2 = 2/3.

P(Gia) ≥ 0.1304(, p̃7)

If i has 2 neighbors a and a1. Note that fa1,i = 1/3 and fa1 < 1 cannot happen together;
otherwise, f cannot be a maximum flow.

β2. fa1,i = 2/3 and fa1 = 1.

P(Gia) ≥ 0.1955(, p̃8)

β3. fa1,i = 1/3 and fa1 = 1.

P(Gia) ≥ 0.2992(, p̃9)

β4. fa1,i = 2/3 and fa1 = 2/3.

P(Gia) ≥ 0.1219(, p̃10)

If i1 has only one neighbor:

β5.

P(Gia) ≥ 0.4866(, p̃11)

We are now ready to compute lower bounds on p̃a when fa = 1:

1) a has 3 neighbors i1, i2, and i3.

p̃a ≥ P(Ba ∪Gi1a ∪Gi2a ∪Gi3a )
= 1− (1− P(Ba))(1− P(Gi1a ))(1− P(Gi2a ))(1− P(Gi3a ))
≥ 1− e−1(1− p̃10)3 = 0.7509fa.

2) a has 2 neighbors i1 and i2. Without loss of generality, let us assume that fa,i1 = 1/3 and
fa,i2 = 2/3.

2a. i2 is in case α4, then

p̃a ≥ P(Ba ∪Gi2a ) = 1− (1− P(Ba))(1− P(Gi2a ))
≥ 1− e−1(1− p̃4) = 0.7364fa.

2b. i2 is in case α1, then

p̃a ≥ P(Ba ∪Gi1a ∪Gi2a ) = 1− (1− P(Ba))(1− P(Gi1a ))(1− P(Gi2a ))

≥ 1− e−0.9−1/3(1− p̃1)(1− p̃10) = 0.7449fa.

2c. i2 is in case α2, then

p̃a ≥ P(Ba ∪Gi1a ∪Gi2a ) = 1− (1− P(Ba))(1− P(Gi1a ))(1− P(Gi2a ))

≥ 1− e−0.85−1/3(1− p̃2)(1− p̃10) = 0.7360fa.
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2d. i2 is in case α3,

i. i1 is in case β1, β2, β3, or β5, then

p̃a ≥ P(Ba ∪Gi1a ∪Gi2a ) = 1− (1− P(Ba))(1− P(Gi1a ))(1− P(Gi2a ))
≥ 1− e−1(1− p̃3)(1− p̃5) = 0.7250fa.

ii. i1 is in case β4, then

p̃a ≥ P(Ba ∪Gi1a ∪Gi2a ) = 1− (1− P(Ba))(1− P(Gi1a ))(1− P(Gi2a ))

≥ 1− e−2/3−0.4(1− p̃3)(1− p̃10) = 0.7308fa.

iii. i1 is in case β6, then

p̃a ≥ P(Ba ∪Gi1a ∪Gi2a ) = 1− (1− P(Ba))(1− P(Gi1a ))(1− P(Gi2a ))

≥ 1− e−2/3−0.45(1− p̃3)(1− p̃6) = 0.7491fa.

iv. i1 is in case β7, then

p̃a ≥ P(Ba ∪Gi1a ∪Gi2a ) = 1− (1− P(Ba))(1− P(Gi1a ))(1− P(Gi2a ))

≥ 1− e−2/3−0.425(1− p̃3)(1− p̃7) = 0.7400fa.

Claim 6. ∀a with fa = 1/3, p̃a ≥ 0.7622fa.

a1/3

ia11

a21

(1)

a1/3

i
a12/3

(2)

a1/3

i
a11

(3)

Figure 8: Possible configurations of i’s neighborhood in the graph. Thin edges carry 1/3 flow, and
thick edges carry 2/3 flow. The number next to advertiser a indicates fa.

Proof. There are 3 possible local configurations:

1. The probability of certificate event P(Gia) ≥ 0.1756, thus,

p̃a ≥ P(Ba ∪Gia) = 1− (1− P(Ba))(1− P(Gia))
≥ 1− e−0.1(1− 0.1756) = 0.2541 = 0.7622fa.

2. p̃a ≥ P(Ba) = 1− e−1/3 = 0.2835 = 0.8504fa.

3. The probability of certificate event P(Gia) ≥ 0.2275, thus,

p̃a ≥ P(Ba ∪Gia) = 1− (1− P(Ba))(1− P(Gia))
≥ 1− e−0.1(1− 0.2275) = 0.3010 = 0.9030fa.
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Figure 9: Possible configurations of i’s neighborhood in the graph. Thin edges carry 1/3 flow, and
thick edges carry 2/3 flow. The number next to advertiser a indicates fa.

Claim 7. ∀a with fa = 2/3, p̃a ≥ 0.7299fa.

Proof. Let us first compute the probabilities of certificate events.

α). fa,i = 1/3,

α1.
P(Gia) ≥ 0.1748

α2.
P(Gia) ≥ 0.1443

α2.
P(Gia) ≥ 0.1748

β). fa,i = 2/3,

β1.
P(Gia) ≥ 0

β2.
P(Gia) ≥ 0

β3.
P(Gia) ≥ 0.2016

We are now ready to bound p̃a when fa = 2/3.

1). If a has only one neighbor i,

1a. i is in case β1 or 2, then p̃a ≥ P(Ba) = 1− e−2/3 = 0.4866 = 0.7299fa.

1b. i is in case β3, then,

p̃a ≥ P(Ba ∪Gia) = 1− (1− P(Ba))(1− P(Gia))
≥ 1− e−0.6(1− 0.2016) = 0.5618 = 0.8427fa.
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2). If a has two neighbors i1 and i2,

2a. If neither of i1 or i2 is in case α2,

p̃a ≥ P(Ba ∪Gi1a ∪Gi2a ) = 1− (1− P(Ba))(1− P(Gi1a ))(1− P(Gi2a ))
≥ 1− e−0.3(1− 0.1748)2 = 0.4955 = 0.7433fa.

2b. If at least one of i1 or i2 is in case α2,

p̃a ≥ P(Ba ∪Gi1a ∪Gi2a ) = 1− (1− P(Ba))(1− P(Gi1a ))(1− P(Gi2a ))

≥ 1− e−0.15−1/3(1− 0.1443)2 = 0.5484 = 0.8226fa.

In conclusion, combining the results of Claims 5, 6, and 7, we obtain the proof of Lemma 7.
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