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Abstract—With the increased use of satellite-based navigation
devices in civilian vehicles, map matching (MM) studies have
increased considerably in the past decade. Frequency of the data,
and denseness of the underlying road network still dictate the
accuracy limits of current MM algorithms. One practical way
that can improve the accuracy of most MM approaches is to use
more precise weights for the candidate road segments. Because
of the geometric nature of the MM problem, proximity-weights
have been considered in almost every MM study. However,
being formulated through the shortest distance measure, these
weights are prone to inaccuracies. We propose a new, more
precise, proximity-weight formulation based on a cumulative
proximity function which only assumes that the positioning data
displays Gaussian distribution errors. Proposed formulations are
developed independent of any MM approach, and for this reason
they can be used easily under any future MM algorithm.

I. INTRODUCTION

The Map Matching (MM) problem for a vehicle can be
defined as the identification of the road segments on which the
vehicle is traveling, and also determining the vehicle’s location
on those links by integrating positioning data of the vehicle
with the spatial road network data [1]. It is a problem that
needs addressing as a result of the noisy nature of vehicle
positioning device measurements coming from a satellite-
based navigation device or another sensor, and the inaccuracies
in the road map. Currently, it is of primary interest for the
intelligent transportation systems (ITS), where determination
of the physical location of a vehicle on the underlying road
network is essential [2].

Various methods have been proposed to solve the MM
problem over the past two decades; and since the beginning
of 2000s, following the increased usage of GPS devices on
civilian vehicles, interest in MM studies have also increased
considerably. Early MM studies were mostly based on the
intuitional but highly unreliable “point-to-point”, and the
slightly more reliable “point-to-curve” and “curve-to-curve”
matching methods, all of which are now placed under the
“geometric approaches” category. In time, these early methods
have been mostly replaced by more accurate methods, which
constitute “topological”, “probabilistic” and “advanced” MM
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approaches (see survey [1]). Further categorization is also
possible depending on how MM methods harness available
data, e.g. offline vs. online methods; or on the data used in
MM methods, e.g. methods using solely positioning data vs.
methods using other data in addition to positioning data.

Independent of the approach category they belong to, almost
all recent MM methods start their analysis by identifying
possible road segments that could be the original segment
on which the vehicle was traveling [3], [4], [5], [6], [7], [8],
[9], [10], [11], [12], [13], [14]. This initial analysis, which
can be termed as the “candidate identification stage”, have
become common in recent MM methods following insufficient
performances of early methods that had identified the nearest
road segments to observed vehicle positions as the original
segments. Overall, along with succeeding analyses, this stage
improves the accuracy of an MM algorithm by introducing
candidate segments for each vehicle position.

Once the candidates are identified, MM methods proceed to
identify their relative weights. Generally, a composite weight
score is defined as a function of individual weights repre-
senting different aspects of the candidates, such as weights
based on geometry, or weights based on topology. Because of
the geometric nature of the MM problem, geometric weights
are still used widely; even though the geometric methods,
that had introduced them, have been mostly replaced. The
most common geometric weight is proximity-weight, which
quantifies the spatial closeness between a vehicle position
and its candidate segment. This weight is essential in MM
algorithms, following the fact that a segment close to a given
location point is more likely to be the true segment of the
vehicle compared to another segment further away [11], [15].
However, being directly inherited from early geometric meth-
ods, in general proximity-weights have been defined through
simple proximity measures, the shortest distance between the
positioning data and the road segments has been the most
widely used measure so far [3], [4], [6], [7], [10], [11], [12],
[13], [14]. For clarity, utilization of this measure is illustrated
in Fig. 1, where the proximities between point p and segments
S1, and S2 are defined by shortest distances ∆1, and ∆2.
This measure is indeed one valid choice for quantifying the
proximity relationship between the point, and the segments.
Meanwhile, notice that for doing that, it solely relies on the
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Fig. 1. Shortest distances, ∆1, and ∆2, from point p to segments S1, and
S2, defining the proximity of S1, and S2 to p, respectively.

proximity of the segments’ closest points to p. With this
reliance on a single point, it can not be expected to quantify
the proximity of these segments to p completely. Thus, any
proximity-weight defined by the shortest distance measure
can be prone to inaccuracy, and can undoubtedly lower the
accuracy of any MM method using it. Possible issues related
to this measure will be discussed in greater detail in the next
section.

Unfortunately, inaccurate proximity-weight formulations
due to the shortest distance measure have been overlooked
in the literature. The primary reason of this neglect could be
attributed to the characteristics of the problems that found in-
terest in MM community, and the promising results associated
with these. Most studies have analyzed the MM problem under
the presence of frequently sampled position data, which makes
the uncertainties regarding the travel of a vehicle from one data
point to another low (see [6], [16] for location uncertainty
arising from low-sampling of moving objects). When uncer-
tainties are low, the influence of inaccurate proximity-weights
could be easily lessened when combined with other weights.
Consequently, MM algorithms using proximity-weights based
on the shortest distance measure would have still resulted
in highly accurate mappings, while the proximity-weights
were not accurate. Meanwhile, when data frequency is low,
matching results would deteriorate, as some of the other
weights also become less reliable with increasing uncertainty.
Therefore, in the last few years there has been a growing
interest in addressing this type of MM problems with various
approaches using complex algorithms (e.g. hidden Markov
models of [11], [12], [13], [14]). When analyzing low-sampled
position data, precise proximity-weights could be one easy to
be used, yet substantially beneficial addition for improving the
performances of MM algorithms.

Note that, precise proximity-weights would not just benefit
the special problem above, and it could be used to tackle MM
problems in general to achieve highly accurate matchings.
For instance, the denseness of the underlying road network
(or the closeness of road segments) is another factor that
affects the accuracy of MM methods. Most methods perform
well when the underlying road network is sparse, or when
the matching is done for vehicles moving along major roads.
However, accuracy could deteriorate when matching is done
for vehicles moving on a dense road network, e.g. city centers
where shorter and closely spaced roads are present. The
major reason for this deterioration is the increased number

of candidate road segments, which makes it more difficult to
identify the true road segment among others. Under these cir-
cumstances, precise proximity-weights could distinguish more
likely candidates from unlikely ones with better accuracy, thus
improving the MM performance. Deterioration of accuracy
is also an important consideration when MM is done in an
online way, since initial estimation errors might grow quickly
in succeeding iterations. Precise proximity-weights can benefit
the overall performance of online methods by reducing estima-
tion error at each iteration. Finally, precise proximity-weights
would benefit MM problems the most when positioning data is
the sole data available. When MM algorithms cannot harness
other data, the positioning data should be used with precise
formulations to yield the best possible estimates.

In this paper, we propose a new, more precise, proximity-
weight for the candidate segments, which is developed in-
dependent of any underlying MM approach. It is based on
a cumulative proximity function, as opposed to the shortest
distance based weights, which are dependent on a single point.
The only assumption we make when developing this weight is
that the positioning data displays Gaussian distribution errors.
The final weight formula is in a compact form, and can
yield segment weights without demanding calculations. We
believe, this precise proximity-weight could be a practical, yet
substantially promising improvement that could be utilized in
various MM algorithms.

The rest of the paper is organized as follows. First, in II-A,
we will discuss the shortest distance based proximity-weights,
and will point out the sources of inaccuracies in them. Later in
II-B, considering these inaccuracies, we will develop a more
precise proximity-weight formulation. In III, we will compare
the results of proposed formulation with the shortest distance
based weight formulation.

II. IMPROVING PROXIMITY-WEIGHTS FOR MAP
MATCHING ALGORITHMS

A. Current Candidate Measures in MM Studies

Almost all recent MM works start their analysis with
the candidate identification stage, identifying possible road
segments that could be the original segment on which the
vehicle was traveling. The most common way of doing this is
considering a geometric proximity criteria to given position
points, and identifying the segments satisfying this criteria
as the candidate segments. Generally, this criteria is defined
through an error region, either ellipsoidal, or circular, and its
geometric parameters are chosen depending on the accuracy of
the positioning device. Segments falling under this error region
are then identified as candidate road segments for that point.
We introduce Fig. 2 as a motivational example to illustrate
this stage, and also to aid our development of ideas. In this
figure, point p1 represents the GPS point of a vehicle, and solid
lines S1, S2, ..., S5 are road segments in the vicinity of p1. The
green error circle is drawn around p1 to identify the candidate
links associated with it. Segments S1, S3, S4 fall under this
region partially, while segment S2 falls completely; and they
all belong to the set of candidate segments for p1, which we
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Fig. 2. Circular error region defined around GPS point, p1. Segments
S1, S2, S3, S4 are the candidate road segments for p1. ∆2, and ∆4 are the
shortest distances from p1 to segments S2, and S4, respectively. ∆2 ≈ ∆4.

denote by C(p1). Other nearby segments S5 and S6, being out
of the circle, do not belong this set. In this example, we also
assumed that p1 was observed almost equidistant away from
segments S2 and S4, i.e. ∆2 ≈ ∆4.

After identifying candidate segments, MM methods deter-
mine proximity-weights of these segments, which are assessed
by the closeness of segments to the GPS point. As could be
expected, every MM study has proposed its own proximity-
weight, through some function of distance. In deterministic
MM studies, e.g. [4], [10], monotonically decreasing functions
of distance are the most common. Similarly, in probabilistic
methods, e.g. [11], likelihood functions of distance defined
through the Gaussian distribution is common. Meanwhile, all
these works, deterministic and probabilistic, define proximity-
weight functions with the shortest distance from the GPS point
to the segment as the argument. For a general mathematical
discussion, let d(p, s) define the distance between points p
and s, dm(p, S) the shortest distance between point p and
road segment S, and Wm(p, S) the weight of S with respect
to p defined through the shortest distance measure. Also, let
f : R+ → R+, be the function that defines the proximity-
weight of segments in MM methods. Then, in general form,
weights of candidate segments with the shortest distance
measure can be formulated as,

Wm(p, S)
.
= f(dm(p, S)), dm(p, S)

.
= min

s∈S
(d(p, s)). (1)

In (1), independent of the function f chosen in an MM
method, shortest distance measure is the sole factor that defines
the proximity-weights. Meanwhile, as we discussed in the
previous section, the shortest distance measure may not fully
characterize the proximity relationship between a point and a
segment. For this reason, (1) will be liable for yielding incor-
rect weights. Notice this situation in Fig. 2, where independent
of chosen f , weighting the candidate segments based on the
shortest distance measure would yield segments S2 and S4

be given almost the same weights following the fact that p1

was observed almost equidistant away from both segments.
Meanwhile, notice that segment S4 has a considerably longer
portion remaining inside the error region compared to S2.
Under this situation, assigning the same weights to S2 and
S4 would be arguable. One would rather expect S4 to get a
higher weight, as it has a longer portion remaining inside the
error region while being almost the same distance away from
p1 as S2.

After noticing that similar weights could be given for a
very short segment and a long one, one should question the
validity of defining proximity-weights by the shortest distance
measure. This approach rules out one essential information,
the length of segments remaining inside the error region.
In a simple way, one might think about introducing length
information to weight calculations by considering lengths
as factors to the proximity-weights. However, this approach
would also yield questionable results, as it would favor longer
segments to shorter ones, and thus could distort the proximity
analysis. Notice this again in Fig. 2, where with this proposed
approach S2 and S4 would get their correct weights, but S1

and S3 could be given higher weights than S2, even though
most points on these two segments are father away to p1 than
the points on S2. Considering the fact that, nearby segments
are more likely to be the real location of a GPS point rather
than the farther away segments, using segment lengths as
factors to improve the accuracy of the shortest distance based
weights would not be sufficient. For accurately determining
the proximity-weight of a candidate segment, its proximity to
the GPS point should be analyzed through the whole segment,
rather than through a single point as done in the shortest
distance based analysis.

B. Improving Candidate Weights Through New Measures:

One way of considering the whole segment proximity is to
introduce a point-wise proximity-weight on the segment, and
then to sum the weights of points along the portion of this
segment that stays inside the error region. This way, one could
avoid the inaccuracies associated with the shortest distance
measure, and also would not omit length considerations from
the analysis. A subsequent normalization of segment weights
could also be done to add consistency to the final results.
In some of the recent MM works, similar proposals to shift
from the shortest distance measure has been noted [17], but
to the best of our knowledge a total compact formula for
proximity-weights has not been proposed in the literature
yet. From a probabilistic perspective, this proposed approach
would be equivalent to the consideration of the cumulative
distribution function (CDF) over an entire segment rather than
the consideration of the probability density function (PDF) at a
segment’s closest point to the GPS point (as done in [11], [12],
[13], [14]), for characterizing the entire segment. Consistent
with our previously defined notations, for a GPS point p, and
its candidate segment S ∈ C(p), consider the distance from a
point s on S to p, d(p, s), and the proximity-weight of this
particular point defined by some function f , as f(d(p, s)). The
overall weight of candidate segment S with respect to p could



be formulated as,

W(p, S)
.
=

∫
S̄

f(d(p, s)) dl, (2)

where the integral is the line integral along line segment S̄,
the portion of S that remains inside the error region. Once
the weights of all candidate segments of a GPS point, p,
are calculated, normalization could be done to obtain relative
weights,

w(p, S)
.
=

W(p, S)∑
S∈C(p)W(p, S)

. (3)

Note that, (2) is formulated with a generic distance-based
weighting function f , and thus it would be still valid under
various MM approaches, either deterministic or probabilistic.
Considering the uncertain nature of the MM problem, we favor
progressing with a probabilistic approach, in where we will
formulate (2) with a likelihood function of distance. Following
the normalization in (3), proximity-based likelihoods can be
utilized as proximity-weights. For this reason, the upcoming
weights we introduce in this paper, through the likelihood
function, can also be used in deterministic algorithms as well.
Let pr(p | d(p, s)) denote the likelihood of the vehicle being
away from point p by distance d(p, s). Following (2), the
overall likelihood of being on S when observing the vehicle
at p, Pr(p |S), would be,

W(p, S) = Pr(p |S) =

∫
S̄

pr(p | d(p, s)) dl (4)

where again the integral is the line integral along the line seg-
ment S̄. The choice for the likelihood function, pr(p | d(p, s)),
has not been standard either. So far, Gaussian distribution
has been one of the most used distributions in MM works
describing the spread of the GPS data [6], [8], [9], [11], [12],
[13], [14]. Also, since the year 2000, after the removal of
Selective Avability (SA), the GPS data has shown more clear
pattern of a Gaussian distribution [15]. Considering this pattern
of GPS data, we have also chosen to develop proximity-
weights based on a Gaussian distribution, centered around the
GPS point with zero mean. With this assumption, we have,

pr(p | d(p, s)) =
1√

2πσ2
e−(d(p,s))2/2σ2

(5)

where σ is the assumed standard deviation of the GPS mea-
surements. Then, the correct proximity-weight of a candidate
segment could be found by (4) and (5). For better clarity, let’s
see how this approach works practically for segment S4 in our
motivational example in Fig. 3, an update of Fig. 2. To evaluate
the line integral of (2) for segment S4, we first parameterize
the portion of S4 remaining inside the error region, S̄4. We
defined the end points of S̄4 as SA4 = [xA, yA]T , and
SB4 = [xB , yB ]T . Then,

S̄4(t)
.
= SA4 +(SB4 −SA4 )t =

[
xA + (xB − xA) t
yA + (yB − yA) t

]
, t ∈ [0, 1].

(6)
Note that, independent of the underlying road network, the
parametrization of road segments will be standard following

p1
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Fig. 3. SA
4 and SB

4 are the end points of the portion of S4 that falls inside
the error region, which we name as S̄4. This line segment is parametrized
with parameter t, and the distance from a point on S̄4 to p1 is formulated by
∆(t).

the fact that in spatial maps road segments are defined as
straight lines connecting nodes or shape points. For this reason
the above formula holds in general for any candidate segment
whose end points inside the error region are defined by
coordinates [xA, yA]T , and [xB , yB ]T . We use ∆(t) to denote
the parametrized distance from a candidate segment S̄ to GPS
point p1 = [x1, y1]T , and it can be formulated as,

∆(t)
.
= (7)√

[(xA − x1) + (xB − xA) t]
2

+ [(yA − y1) + (yB − yA) t]
2

With the Gaussian-based likelihood function in (5), (4) can be
written in the parametrized form,

W(p, S) = Pr(p |S) =∫ 1

0

1√
2πσ2

e−(∆(t))2/2σ2

√(
dx

dt

)2

+

(
dy

dt

)2

dt. (8)

where, x(t), and y(t) define parametrized segment’s coordi-
nates. Notice from (6) that,

dx/dt = (xB − xA), and dy/dt = (yB − yA), (9)

which yields,

Pr(p |S) =
1√

2πσ2∫ 1

0

e−(∆(t))2/2σ2
√

(xB − xA)
2

+ (yB − yA)
2
dt. (10)

With expanding the squared terms above, and regrouping them,
one can write (8) in the following compact form,

Pr(p |S) =
1√

2πσ2

∫ 1

0

e−(at2+bt+c)/2σ2 √
a dt (11)



where,

a = (xB − xA)2 + (yB − yA)2,

b = 2 [(xA − x1)(xB − xA) + (yA − y1)(yB − yA)] , (12)

c = (xA − x1)2 + (yA − y1)2.

To evaluate the the Gaussian integral in (11), the polynomial
exponent is first transformed into the following sum of a
squared term and a constant:

(at2 + bt+ c) = a(t+ b/2a)2 − b2/4a+ c.

Then,∫ 1

0

e−(at2+bt+c)/2σ2

dt =

e(b2/4a−c)/2σ2

∫ 1

0

e−a(t+b/2a)2/2σ2

dt. (13)

Now, with another transformation, x =
√
a(t + b/2a)/σ, the

integral in (13) can be simplified to,∫ 1

0

e−a(t+b/2a)2/2σ2

dt =

∫ 2a+b
2σ

√
a

b
2σ

√
a

σ√
a
e−x

2/2 dx. (14)

Combining (11), (13), and (14), one arrives at,

Pr(p1 |S) = e(b2/4a−c)/2σ2

∫ 2a+b
2σ

√
a

b
2σ

√
a

1√
2π

e−x
2/2 dx

which leads us to the final compact form of the proximity-
weight of a candidate segment S with respect to point p:

W(p, S) = e(b2/4a−c)/2σ2

[
Φ

(
2a+ b

2σ
√
a

)
− Φ

(
b

2σ
√
a

)]
(15)

where Φ is the standard cumulative distribution function for
the Gaussian distribution with mean as zero and standard
deviation as one.

(15) provides MM developers a precise, closed form,
proximity-weight formulation, under the sole assumption that
GPS data displays a Gaussian distribution. Once a candidate
segment’s end points inside the error region are found, i.e.
[xA, yA]T , and [xB , yB ]T , then its proximity-weight could
be calculated directly with (12), and (15).

C. Defining Parameters

Two important factors, the geometric parameters of the error
region, and the standard deviation σ has not been discussed in
detail up to this point yet. Notice that, in candidate preparation
stage one implicitly assumes that the segments remaining
inside the error region are the only possible segments corre-
sponding to the given GPS point. Consequently, one should
choose the error region parameters to make sure that the
likelihood of being on a segment out of the error region is
negligible. One way of satisfying this constraint is to choose
the parameters of the error region according to σ, and so
that a high confidence level is attained. Geospatial positioning
statistics given in US Army Corps Engineers handbook [18]

provides a good outline of the relationship between σ, and
the expected confidence levels. A trade off will most likely
be made about the desired confidence interval, and computa-
tional speed, as high confidence intervals comes with larger
error regions that contain more candidates compared to lower
confidence intervals. There have been different approaches for
determining the standard deviation in MM studies. Some stud-
ies calculate standard deviation through an analysis of actual
GPS data, while others choose it through assumptions. In this
study, the guidelines in [18] were followed for determining
the geometric parameters of the error region, and also σ.

III. COMPARISON OF WEIGHT MEASURES

Remember that, we have developed the precise proximity-
weight formulation with the goal that it could be later used by
any MM algorithm. For this reason, in order to have a clear
and algorithm-independent comparison, we will compare the
proposed weight measure of (15) with the classical shortest
distance-based weight of (1), for calculating the proximity-
weights of the candidate segments in our motivational example
Fig. 2. To have comparable results, we will use the Gaussian
function of (5), also as the weighting function f in (1), i.e.,

Wm(p, S) =
1√

2πσ2
e−(dm(p,S))2/2σ2

. (16)

The road network in Fig. 2 was defined with p1 at the origin,
and the following nodes are the end points of road segments.

p1 = [0, 0]T ,

n1 = [−34.481, 0.095]T , n4 = [28.734, 19.060]T ,

n2 = [−5.336,−12.041]T , n5 = [2.873,−9.578]T ,

n3 = [28.854,−24.578]T , n6 = [2.079,−34.866]T .

As mentioned, we considered guidelines of [18] to determine
the error circle radius, rc, and the standard deviation, σ. To
make sure that the segments remaining under the error circle
represent all possible candidate segments with a very high
probability, we have chosen to utilize a 99.9% probability
criteria. To achieve this, a circular error radius of 30 meters,
which is more than 3 times the deviation root mean square
error (3DRMS), was chosen. After choosing the circular radius
as 30m, in order to preserve the 3DRMS measure, standard
deviation was chosen as 7m ≈ 30m/4.24, following the
relation suggested in [18].

We first look into weights based on the shortest distance
formula, (16). Even before calculation, one would expect
S1, S2, and S4 to have almost the same weights, and S1

to have a slightly lower weight, as it’s shortest distance is
larger than others. Using (16), the likelihoods can be found
as, Pr(p1|S2) = Pr(p1|S3) = Pr(p1|S4) = 7.9772 ∗ 10−4,
and Pr(p1|S1) = 7.9761 ∗ 10−4. When normalized,

w(p1, S2) = w(p1, S3) = w(p1, S4) ≈ w(p1, S1) ≈ 1/4.

Using (15), we expect to improve these uniform weights. As
a first step, the intersection points between the error circle
and the segments, SA1 , S

A
3 , S

A
4 , S

5
5 , are found by standard



algebraic methods. Then by (12) and, (15) one would arrive
at likelihood values of, Pr(p1|S1) = 0.0643, P r(p1|S2) =
0.025, P r(p1|S3) = 0.1023, and Pr(p1|S4) = 0.1572. When
normalized,

w(p1, S1) = 0.1842, w(p1, S2) = 0.0717,

w(p1, S3) = 0.2934, w(p1, S4) = 0.4507.

These results show that the proposed formulation also con-
siders the segment lengths besides proximity, with the longest
segment S4 getting the highest weight, and the shortest seg-
ment S2 the lowest weight, as opposed to the almost uniform
weights of the other approach. On the other hand, while the
length of segments were taken into consideration, these lengths
did not distort the proximity analysis as opposed to what would
have happened if the shortest distance based weights were
simply combined with the lengths of segments.

We also want to use a practical mathematical argument to
show that (15) yields more consistent weights compared to
(16). For this argument, we analyze the weight results given a
simpler underlying distribution than the Gaussian, such as the
uniform distribution. If a vehicle’s GPS data was to display a
uniform distribution, then one would merely expect the relative
proximity weights of segments to be the same as the relative
lengths of segments remaining inside the error circle. With
this idea, we observed the normalized weight results when
we increased the standard deviation of the Gaussian from its
initial value of 7 to a large number of 1000. Note that, for
large standard deviation values the Gaussian PDF becomes
very flat almost equal to the PDF of a uniform distribution,
at least around the mean. This gives us the opportunity to
test consistency of (15), without changing the underlying
assumption of the Gaussian distribution. For σ = 1000, the
weights are observed to be,

w(p1, S1) = 0.1782, w(p1, S2) = 0.0809,

w(p1, S3) = 0.207, w(p1, S4) = 0.5339,

which are equal to the normalized lengths of the segments
remaining inside the error circle. The original lengths are,

|S̄1| = 18.879m, |S̄2| = 8.571m

|S̄3| = 21.928m, |S̄4| = 56.569m.

The matching results of normalized lengths and the normalized
weights under very large standard deviation values show that
the lengths of candidate segments have indeed become the
sole factor, overruling proximity affects. This result in return
shows that the new proposed weight, (15), is consistent.
On the contrary, under this large value of σ, the shortest
distance based weights would still yield normalized weights
of approximately 1/4 for all candidate segments.

IV. CONCLUSION

Considering the arguable results of the proximity-weight
formulations that were based on the shortest distance measure,
we propose a new, more precise, alternative weight formu-
lation based on the sole assumption that GPS data displays

Gaussian distribution errors. This weight formulation defines
a candidate segment’s weight through the line integral of a
point-wise weight function over the segment. The final form
is free of the integral, and can determine proximity-weights
with simple calculations. It was developed independent of any
MM approach, and for this reason could be used easily with
any future MM algorithm.
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