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Abstract. The goal of the Machine Learning and Traveling Repairman
Problem (ML&TRP) is to determine a route for a “repair crew,” which
repairs nodes on a graph. The repair crew aims to minimize the cost of
failures at the nodes, but the failure probabilities are not known and must
be estimated. If there is uncertainty in the failure probability estimates,
we take this uncertainty into account in an unusual way; from the set
of acceptable models, we choose the model that has the lowest cost of
applying it to the subsequent routing task. In a sense, this procedure
agrees with a managerial goal, which is to show that the data can support
choosing a low-cost solution.
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1 Introduction

We consider the problem of determining a route for a “repair crew” on a graph,
where each node on the graph has some probability of failure. These probabilities
are not known and must be estimated from past failure data. Intuitively the
nodes that are more prone to failure should be repaired first. But if those nodes
are far away from each other, the extra time spent by the repair crew traveling
between nodes might actually increase the chance of failures occurring at nodes
that have not yet been repaired. In that sense, it is better to construct the
route to minimize the possible cost of failures, taking into account the travel
time between nodes and also the (estimated) failure probabilities at each of
the nodes. We call this problem the machine learning and traveling repairman
problem (ML&TRP). There are many possible applications of the ML&TRP,
including the scheduling of safety inspections or repair work for the electrical
grid, oil rigs, underground mining, machines in a factory, or airlines.

One key idea we present here concerns the way that uncertainty is handled in
probabilistic modeling, and the way the uncertainty relates to how the models
are used in applications. Namely, when there is uncertainty in modeling, our
idea is to choose a model that has advantages for our specific application, when
we act on the predictions made by the model. For estimation problems, it is
possible for many predictive models to be equally plausible, given finite data.
In standard statistical and machine learning practice, we choose one of these
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models, but the choice of model is oblivious to the way that the model will be
used in the application. Our idea is that we choose a model that predicts well,
but that also has the advantage that it has a low “operating cost,” which is
the cost to act on the predictions made by the model. In this work, among all
equally good predictive models for failure probabilities, we choose the one that
leads to the lowest failure cost.

We present two formulations for the ML&TRP. The first formulation is se-
quential : the failure probabilities are estimated in a way that is oblivious to
the failure cost; then, the route is determined by minimizing failure cost (which
depends on the chosen probabilistic model). The second formulation handles un-
certainty as discussed above, by computing the failure probabilities and the route
simultaneously. This means that the estimated failure probabilities and the route
are chosen together in a way that the failure cost will be low if possible; when
there is uncertainty, the simultaneous formulation chooses the model with the
lowest failure cost. The simultaneous formulation is optimistic; it provides the
best possible, but still reasonable, scenario described by the data. The company
might wish to know whether it is at all possible that a low-failure-cost route
can be designed that is realistically supported by the data; the simultaneous
formulation finds such a solution.

We design the failure cost in two ways, where either can be used for the
sequential and the simultaneous formulations. The first failure cost is propor-
tional to the sum (over nodes) of the expected number of failures at each node.
The second failure cost considers, for each node, the probability that the first
failure is before the repair crew’s visit to the node. The first cost applies when
the failure probability of a node does not change until it is visited by the crew,
regardless of whether a failure already occurred at that node, and the second
cost applies when the node is completely repaired after the first failure, or when
it is visited by the repair crew, whichever comes first. In either case, the failure
cost reduces to a weighted traveling repairman problem (TRP) objective [1].

The ML&TRP relates to literature on both machine learning and optimiza-
tion (time-dependent traveling salesman problems). In machine learning, the use
of unlabeled data has been explored extensively in the semi-supervised learning
literature [2]. The ML&TRP does not fall under the umbrella of semi-supervised
learning, since the incorporation of unlabeled data is used solely for determining
the failure cost, and is not used to provide additional distributional informa-
tion. Our work is slightly closer to work on graph-based regularization [3–5],
but their goal is to obtain probability estimates that are smoothed on a graph
with suitably designed edge weights. On the other hand, our goal is to obtain, in
addition to probability estimates, a low-cost route for traversing a very different
graph with edge weights that are physical distances. Our work contributes to
the literature on the TRP and related problems by adding the new dimension
of probabilistic estimation at the nodes. We adapt techniques from [6–8] within
our work for solving the TRP part of the ML&TRP.

One particularly motivating application for the ML&TRP is smart grid main-
tenance. Since 2004, many power utility companies are implementing new in-
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spection and repair programs for preemptive maintenance, where in the past,
repair work was mainly made reactively [9]. Con Edison, which is New York
City’s power company, services tens of thousands of manholes (access points to
underground grid) through new inspection and repair programs. The schedul-
ing of manhole inspection and repair in Manhattan, Brooklyn and the Bronx
is assisted by a statistical model [10]. This model does not take into account
the route of the repair crew. This leaves open the possibility that, for this and
for many other domains, estimating failure probabilities with knowledge of the
repair crew’s route could lead to an improvement in operations.

In Section 2, we provide the two formulations and the two ways of modeling
failure cost. In Section 3, we describe mixed-integer nonlinear programs (MINLP)
and algorithms for solving the ML&TRP. Section 4 gives an example and some
experiments on data from the NYC power grid. Section 5 states a generalization
result, and Section 6 concludes the paper.

2 ML&TRP Formulations

Consider two sets of instances, {xi}mi=1, {x̃i}Mi=1, with xi ∈ X , x̃i ∈ X that

are feature vectors with X ⊂ Rd. Let the xji indicate the j-th coordinate of
the feature vector xi. For the first set of instances, we are also given labels
{yi}mi=1, yi ∈ {−1, 1}. These instances and their labels are the set of training
examples. For the maintenance application, each of the {xi}mi=1 encode manhole
information (e.g., number and types of cables, number and types of previous
events, etc.) and the labels {yi}mi=1 encode whether the manhole failed (yi = 1)
or not (yi = −1). More details about the features and labels can be found in
Section 4. The other instances {x̃i}Mi=1 (with M unrelated to m), are unlabeled
data that are each associated with a node on a graph G. The nodes of the graph
G indexed by i = 1, ...,M represent manholes on which we want to design a
route. We are also given physical distances di,j ∈ R+ between all pairs of nodes
i and j. A route on G is represented by a permutation π of the node indices
1, . . . ,M . Let Π be the set of all permutations of {1, ...,M}. A set of failure
probabilities will be estimated at the nodes and these estimates will be based on
a function of the form fλ(x) = λ · x. The class of functions F is chosen to be:

F := {fλ : λ ∈ Rd, ||λ||2 ≤M1}, (1)

where M1 is a fixed positive real number.
The sequential formulation has a machine learning step and a traveling re-

pairman step, whereas the simultaneous formulation has both ML and TRP
together in the first step, and the second step uses the route from the first step.

Sequential Formulation
Step 1. (ML) Compute the values f∗λ(x̃i):

f∗λ ∈ argminfλ∈FTrainingError(fλ, {xi, yi}mi=1).
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Step 2. (TRP) Compute a route using estimated scores on {x̃i}Mi=1:

π∗ ∈ argminπ∈ΠFailureCost(π, f∗λ , {x̃i}Mi=1, {di,j}Mi,j=1).

We will define the TrainingError and FailureCost shortly.

Simultaneous Formulation
Step 1. Compute the values f∗λ(x̃i):

f∗λ ∈ argminfλ∈F

[
TrainingError(fλ, {xi, yi}mi=1)

+C1 min
π∈Π

FailureCost
(
π, fλ, {x̃i}Mi=1, {di,j}Mi,j=1

) ]
.

Step 2. Compute a route corresponding to the scores:

π∗ ∈ argminπ∈ΠFailureCost(π, f∗λ , {x̃i}Mi=1, {di,j}Mi,j=1).

A transformation of f∗λ(x) yields an estimate of the probability of failure
P (y = 1|x) (we discuss this later, see (2)). In Step 1, f∗λ is chosen to yield prob-
ability estimates that agree with the training data, but at the same time, yield
lower failure costs. The user-defined constant C1 is a tradeoff parameter, moving
from “oblivious” estimation models to cost-aware estimation models. When C1

is small, the algorithm essentially becomes sequential, ignoring the FailureCost.
When it is large, the algorithm is highly biased towards low FailureCost solu-
tions. One might want to choose C1 large when there is a lot of uncertainty in
the estimates and a strong belief that a very low cost solution exists. Or, one
could choose a large C1 to determine what policy would be chosen when the cost
is underestimated. A small C1 is appropriate when the number of training exam-
ples is large enough so that there is little flexibility (uncertainty) in the choice of
model f∗λ . Or one would choose low C1 when we wish to choose, among equally
good solutions, the one with the lowest cost. We now define the TrainingError
and two options for the FailureCost.

TrainingError. In learning, the unregularized error is a sum (or average) of
losses over the training examples:

∑m
i=1 l(fλ(xi), yi), where the loss function

l(·, ·) can be any monotonic smooth function bounded below by zero. We choose
the logistic loss: l(fλ(x), y) := ln

(
1 + e−yfλ(x)

)
so that the probability of failure

P (y = 1|x), is estimated as in logistic regression by

P (y = 1|x) or p(x) :=
1

1 + e−fλ(x)
. (2)

The negative log likelihood is:

m∑
i=1

− ln
[
p(xi)

(1+yi)/2(1− p(xi))(1−yi)/2
]

=

m∑
i=1

ln
(

1 + e−yifλ(xi)
)
.
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We then add an `2 penalty over the parameters λ (with coefficient C2) to get

TrainingError(fλ, {xi, yi}mi=1) :=

m∑
i=1

ln
(

1 + e−yifλ(xi)
)

+ C2||λ||22. (3)

The coefficient C2 is inversely related to the constant M1 in (1) and both repre-
sent the same constraint on the function class. C2 is useful for algorithm imple-
mentations whereas M1 is useful for analysis.

Two Options for FailureCost. In the first option (denoted as Cost 1), for
each node there is a cost for (possibly repeated) failures prior to a visit by the
repair crew. In the second option (denoted as Cost 2), for each node, there is a
cost for the first failure prior to visiting it. There is a natural interpretation of
the failures as being generated by a continuous random process at each of the
nodes. When discretized in time, this is approximated by a Bernoulli process
with parameter p(x̃i). Both Cost 1 and Cost 2 are appropriate for power grid
applications. Cost 2 is also appropriate for delivery truck routing applications,
where perishable items can fail (once an item has spoiled, it cannot spoil again).
For many applications, neither of these two costs apply, in which case, it is
possible to design a more appropriate or specialized cost and use that in place
of the two we present here, using the same general idea of combining this cost
with the training error to produce an algorithm.

Without loss of generality, we assume that after the repair crew visits all
the nodes, it returns to the starting node (node 1) which is fixed beforehand.
Scenarios where one is not interested in beginning from or returning to the start-
ing node would be modeled slightly differently (the computational complexity
remains the same).

Let a route be represented by π : {1, ...,M} 7→ {1, ...,M}, (π(i) is the ith

node visited). Let the distances be such that a unit of distance is traversed in a
unit of time. Given a route, the latency of a node π(i) is the time (or equivalently
distance) from the start at which node π(i) is visited

Lπ(π(i)) :=

{∑M
k=1 dπ(k)π(k+1)1[k<i] i = 2, ...,M∑M
k=1 dπ(k)π(k+1) i = 1,

(4)

where we let dπ(M)π(M+1) = dπ(M)π(1).

Cost 1 (Cost is Proportional to Expected Number of Failures Before the Visit).
Up to the time that node π(i) is visited, there is a probability p(x̃π(i)) that
a failure will occur in each unit time interval. This failure is determined by a
Bernoulli random variable with parameter p(x̃π(i)). Thus, in a time interval of
length Lπ(π(i)) units, the number of node failures follows a binomial distribution.
For each node, we associate a cost proportional to the expected number of failures
before the repair crew’s visit:

Cost of node π(i) ∝ E(number failures in Lπ(π(i)) time units)

= mean of Bin(Lπ(π(i)), p(x̃π(i))) = p(x̃π(i))Lπ(π(i)). (5)
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If the failure probability for node π(i) is small, we can afford to visit it later on
in the route (the latency Lπ(π(i)) is larger). If p(x̃π(i)) is large, we visit node
π(i) earlier to keep our cost low. The failure cost for a route π is

FailureCost(π, fλ, {x̃i}Mi=1, {di,j}Mi,j=1) =

M∑
i=1

p(x̃π(i))Lπ(π(i)).

Substituting the definition of Lπ(π(i)) from (4):

FailureCost(π, fλ, {x̃i}Mi=1, {di,j}Mi,j=1) =

M∑
i=2

p(x̃π(i))

M∑
k=1

dπ(k)π(k+1)1[k<i] + p(x̃π(1))

M∑
k=1

dπ(k)π(k+1), (6)

where p(x̃π(i)) is given in (2). In a more general setting (explored in a longer
version of this work [11]), we could relax the assumption of setting p(x̃π(i)) = 0
after the visit as we have implicitly done here. Note that since the cost is a sum
of M terms, it is invariant to ordering or indexing (caused by π) and we can
rewrite it as

FailureCost(π, fλ, {x̃i}Mi=1, {di,j}Mi,j=1) =

M∑
i=1

p(x̃i)Lπ(i).

Cost 2 (Cost is Proportional to Probability that First Failure is Before the Visit).
This cost reflects the penalty for not visiting a node before the first failure oc-
curs there. The model is governed by the geometric distribution: the probabil-
ity that the first failure for node π(i) occurs at time Lπ(π(i)) is p(x̃π(i))(1 −
p(x̃π(i)))

Lπ(π(i))−1, and the cost of visiting node π(i) is proportional to:

P
(

first failure occurs before Lπ(π(i))
)

= 1− (1− p(x̃π(i)))Lπ(π(i))

= 1−
(

1− 1

1 + e−fλ(x̃π(i))

)Lπ(π(i))
= 1−

(
1 + efλ(x̃π(i))

)−Lπ(π(i))
. (7)

Similarly to Cost 1, Lπ(π(i)) influences the cost at each node. If we visit a node
early in the route, then the cost incurred is small because the node is less likely
to fail before we reach it. Similarly, if we schedule a visit later on in the tour,
the cost is higher because the node has a higher chance of failing prior to the
repair crew’s visit. The total failure cost is

M∑
i=1

(
1−

(
1 + efλ(x̃π(i))

)−Lπ(π(i)))
. (8)

This cost is not directly related to a weighted TRP cost in its present form, but
building on this, we will derive a cost that is the same as a weighted TRP. Before
doing so in Section 3, we formulate the integer program for the simultaneous
formulation for Cost 1.
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3 Optimization

Mixed-Integer Optimization for Cost 1. For both the sequential and si-
multaneous formulations, we need to solve the TRP subproblem:

π∗ ∈ argminπ∈ΠFailureCost(π, f∗λ , {x̃i}Mi=1, {di,j}Mi,j=1),

= argminπ∈Π

M∑
i=2

p(x̃π(i))

M∑
k=1

dπ(k)π(k+1)1[k<i] + p(x̃π(1))

M∑
k=1

dπ(k)π(k+1).(9)

The standard TRP objective is a special case of weighted TRP (9) when ∀i =
1, ...,M, p(x̃i) = p. The TRP is different from the traveling salesman problem
(TSP); the goal of the TSP is to minimize the total traversal time (in this case,
this is the same as the distance traveled) needed to visit all nodes once, whereas
the goal of the TRP is to minimize the sum of the waiting times to visit each
node. Both the problems are known to be NP-complete in the general case [12].

We extend the integer linear program (ILP) of [6] to include “unequal flow

values” in (9). For interpretation, consider the sum
∑M
i=1 p̄(x̃i) as the total “flow”

through a route where p̄(x̃i) will be chosen later according to either Cost 1

or Cost 2. At the beginning of the tour, the repair crew has flow
∑M
i=1 p̄(x̃i).

Along the tour, flow of the amount p̄(x̃i) is dropped when the repair crew visits
node π(i) at latency Lπ(π(i)). We introduce two sets of variables {zi,j}i,j and
{yi,j}i,j which can together represent a route (instead of the π notation). Let zi,j
represent the flow on edge (i, j) and let a binary variable yi,j represent whether
there exists a flow on edge (i, j). Then the mixed ILP is:

min
z,y

M∑
i=1

M∑
j=1

di,jzi,j s.t. (10)

No flow from node i to itself: zi,i = 0 ∀i = 1, ...,M (11)

No edge from node i to itself: yi,i = 0 ∀i = 1, ...,M (12)

Exactly one edge into each node:

M∑
i=1

yi,j = 1 ∀j = 1, ...,M (13)

Exactly one edge out from each node:

M∑
j=1

yi,j = 1 ∀i = 1, ...,M (14)

Flow coming back at the end of the loop is p̄(x̃1):

M∑
i=1

zi,1 = p̄(x̃1) (15)

Change of flow after crossing node k is:
M∑
i=1

zi,k −
M∑
j=1

zk,j =

{
p̄(x̃1)−

∑M
i=1 p̄(x̃i) k = 1

p̄(x̃k) k = 2, ...,M
(16)

Connects flows z to indicators of edge y: zi,j ≤ ri,jyi,j (17)
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where ri,j =


p̄(x̃1) j = 1∑M
i=1 p̄(x̃i) i = 1∑M
i=2 p̄(x̃i) otherwise.

Constraints (11) and (12) restrict self-loops from forming. Constraints (13) and
(14) impose that every node should have exactly one edge coming in and one
going out. Constraint (15) represents the flow on the last edge coming back to
the starting node. Constraint (16) quantifies the flow change after traversing
a node k. Constraint (17) represents an upper bound on zi,j relating it to the
corresponding binary variable yi,j .

Mixed-Integer Optimization for Cost 2. By applying the log function to
the cost of each node (7) (and subtracting a constant), we can minimize a more
tractable cost objective:

FailureCost = min
π

M∑
i=1

Lπ(π(i)) log
(

1 + efλ(x̃π(i))
)
.

This failure cost term is now a weighted sum of latencies where the weights are
of the form log

(
1 + efλ(x̃π(i))

)
. We can thus reuse the mixed ILP (10)-(17) where

the weights are redefined as p̄(x̃i) := log
(
1 + eλ·x̃i

)
.

We have thus shown how to solve the weighted TRP subproblem, and we
will now present ways to solve the full ML&TRP.

Mixed-Integer Nonlinear Programs (MINLPs) for Simultaneous For-
mulation. The full objective using Cost 1 is:

min
λ

 m∑
i=1

ln
(

1 + e−yifλ(xi)
)

+ C2||λ||22 + C1 min
{zi,j ,yi,j}

M∑
i=1

M∑
j=1

di,jzi,j

 (18)

such that constraints (11) to (17) hold, where p̄(x̃i) =
1

1 + e−λ·x̃i
.

The full objective using the modified version of Cost 2 is:

min
λ

 m∑
i=1

ln
(

1 + e−yifλ(xi)
)

+ C2||λ||22 + C1 min
{zi,j ,yi,j}

M∑
i=1

M∑
j=1

di,jzi,j

 (19)

such that constraints (11) to (17) hold, where p̄(x̃i) = log
(
1 + eλ·x̃i

)
.

If we have an algorithm for solving (18), then the same scheme can be used
to solve (19). There are multiple ways of solving (or approximately solving) a
mixed integer nonlinear optimization problem of the form (18) or (19). We con-
sider three methods. The first method is to directly use a generic mixed integer
non-linear programming (MINLP) solver. The second and third methods (called
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Nelder-Mead and Alternating Minimization, denoted NM and AM respectively)
are iterative schemes over the λ parameter space. At every iteration of these algo-
rithms, we will need to evaluate the objective function. This evaluation involves
solving an instance of the weighted TRP subproblem. For the AM algorithm,
define Obj as follows:

Obj(λ, π) = TrainingError(fλ, {xi, yi}mi=1)

+C1FailureCost
(
π, fλ, {x̃i}Mi=1, {di,j}Mi,j=1

)
. (20)

Starting from an initial vector λ0, Obj is minimized alternately with respect to
λ and then with respect to π, as shown in Algorithm 1.1.

Inputs: {xi, yi}m1 , {x̃i}M1 , {dij}ij , C1, C2, T and initial vector λ0.
for t=1:T do

Compute πt ∈ argminπ∈ΠObj(λt−1, π) (mixed ILP).
Compute λt ∈ argminλ∈RdObj(λ, πt) (Gradient descent).

end for
Output: πT .

Algorithm 1.1. AM: Alternating minimization algorithm

4 Experiments

We have now defined two formulations (sequential and simultaneous), each with
two possible definitions for the failure cost (Cost 1 and Cost 2), and three al-
gorithms for the simultaneous formulation (MINLP solver, NM, and AM). In
what follows, we will highlight the advantage of the simultaneous method over
the less general sequential method through two experiments. The first involves
a very simple synthetic dataset, designed to show differences between the two
methods. The second experiment involves a real dataset, designed as part of a
collaboration with NYC’s power company, Con Edison (see [10] for a more de-
tailed description of these data). In each experiment, we solve the simultaneous
formulation over a range of values of C1 and compare the routes and failure
estimates obtained over this range. Our goal for this section is to illustrate that
incorporating the routing cost into the machine learning model can produce
lower cost solutions in at least some scenarios, without harming prediction accu-
racy. For both experiments, we have a fixed training set and separate test set to
evaluate predictions of the model, and the unlabeled set of nodes with distances.
In both experiments, there is a lot of uncertainty in the estimates for the unla-
beled set. In the toy example, the unlabeled set is in a low density region, so the
probabilities could reasonably change without substantially affecting prediction
ability. In the second experiment, the data are very imbalanced (the positive
class is very rare), so there is a lot of uncertainty in the estimates, and further,
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there is a prior belief that a low-cost route exists. In particular, we have rea-
son to believe that some of the probabilities are overestimated in this particular
experiment using the particular unlabeled set we chose, and that knowing the
repair route can help to determine these probabilities; this is because there are
underground electrical cables traversing each linear stretch of the repair route.

Toy Example. We illustrate how the simultaneous formulation takes advan-
tage of uncertainty; it is because a small change in the probabilities can give
a completely different route and cost. Consider the graph G shown in Figure
1(a) and Figure 1(b). Figure 1(c) shows unlabeled points {x̃i}4i=1 ∈ R2 along
with the training instances (represented by two gray clusters). The sequential
formulation produces a function f∗λ whose 0.5-probability level set is shown as a
black line here. The route corresponding to that solution is given in Figure 1(a),
which is π∗ = 1− 3− 2− 4− 1. If we were to move the 0.5-probability level set
slightly, for instance to the dashed line in Figure 1(c) by using an appropriate
tradeoff parameter C1 in the simultaneous formulation, the probability estimates
on the finite training set change only slightly, but the cost and the corresponding
route change entirely (Figure 1(b)). The new route is π∗ = 1− 3− 4− 2− 1, and
yields a lower value of Cost 1 (a decrease of ∼16.4%). In both cases, the proba-
bility estimators have very similar validation performance, but the solutions on
the graph are different.

Fig. 1. For the above graphs, the numbers in the nodes indicate their probability of
failures and the numbers on the edges indicate distances. (a) Route as determined
by sequential formulation (highlighted). (b) Route determined by the simultaneous
formulation. (c) The feature space.

The NYC Power Grid. We have information related to manholes from the
Bronx, NYC (∼23K manholes). Each manhole is represented by (4 dimensional)
features that encode the number and type of electrical cables entering the man-
hole and the number and type of past events involving the manhole. The training
features encode events prior to 2008, and the training labels are 1 if the manhole
was the source of a serious event (fire, explosion, smoking manhole) during 2008.
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The prediction task is to predict events in 2009. The test set (for evaluating the
performance of the predictive model) consists of features derived from the time
period before 2009, and labels from 2009. Predicting manhole events can be a
difficult task for machine learning, because one cannot necessarily predict an
event using the available data. The operational task is to design a route for a
repair crew that is fixing seven manholes in 2009 on which we want the cost
of failures to be low. Because of the large class imbalance, the misclassification
error is almost always the size of the whole positive class. Because of this, we
evaluate the quality of the predictions from fλ∗ using the area under the ROC
curve (AUC), for both training and test.

We solve (18) and (19) using an appropriate range of values for the regu-
larization parameter C1, with the goal of seeing whether for the same level of
estimation performance, we can get a reduction in the cost of failures. Note that
the uncertainty in the estimation of failure probabilities is due to the finite num-
ber of examples in the training set. The other regularization parameter C2 is
kept fixed throughout (in practice one might use cross-validation if C2 is allowed
to vary). The evaluation metric AUC is a measure of ranking quality; it is sen-
sitive to the rank-ordering of the nodes in terms of their probability to fail, and
it is not as sensitive to changes in the values of these probabilities. This means
that as the parameter C1 increases, the estimated probability values will tend
to decrease, and thus the failure cost will decrease; it may be possible for this to
happen without impacting the prediction quality as measured by the AUC, but
this depends on the routes and it is not guaranteed. In our experiments, for both
training and test we had a large sample (∼23K examples). The test AUC values
for the simultaneous method were all within 1% of the values obtained by the
sequential method; this is true for both Cost 1 and Cost 2, for each of the AM,
NM, and MINLP solvers, see Figures 3(a) and 3(b). The variation in TrainingEr-
ror across the methods was also small, about 2%, see Figure 3(c). So, changing
C1 did not dramatically impact the prediction quality as measured by the AUC.
On the other hand, the failure costs varied widely over the different methods
and settings of C1, as a result of the decrease in the probability estimates, as
shown in Figure 3(d). As C1 was increased from 0.05 to 0.5, Cost 1 went from
27.5 units to 3.2 units, which is over eight times smaller. This means that with
a 1-2% variation in the predictive model’s AUC, the failure cost can decrease a
lot, potentially yielding a more cost-effective route for inspection and/or repair
work. The reason for an order of magnitude change in the failure cost is because
the probability estimates are reducing by an order of magnitude due to uncer-
tainty; yet our model still maintained the same level of AUC performance on
training and test sets. Figure 2(a) shows the route provided by the sequential
formulation. For the simultaneous formulation, there are changes in the cost and
the route as the coefficient C1 increases. When the failure cost term starts influ-
encing the optimal solution of the objective (18), we get a new route as shown
in Figure 2(b). This demonstration on data from the Bronx illustrates that it is
possible to take advantage of uncertainty in modeling, in order to create a much
more cost-effective solution.
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(a) (b)

Fig. 2. (a) Sequential formulation route: 1-5-3-4-2-6-7-1. (b) Simultaneous formulation
route (C1 = 0.5): 1-6-7-5-3-4-2-1.

5 Generalization Bound

We initially introduced the failure cost regularization term in order to find sce-
narios where the data would support low-cost (more actionable) repair routes.
From another point of view, incorporating regularization increases bias and re-
duces variance, and may thus allow us to obtain better prediction guarantees
as we increase C1. Any type of bias can either help or hurt the quality of the
a statistical model, depending on whether the “prior belief” associated the bias
is correct (this relates to “approximation error”). At the same time, incorpo-
rating bias helps to reduce the variance of the solution, reducing the difference
between the training error we measure and the true error on the full population
(“generalization error”). This difference is what we discuss in this section.

The “hypothesis space” is the set of models that an algorithm can choose
from. When C1 is large, it means we are only allowing models that yield low-cost
solutions. This restriction on the hypothesis space (to the set of low-cost solu-
tions) is a reduction in the size of this space. In statistical learning theory, the
size of the hypothesis space is recognized as one of the most important quantities
in the learning process, and this idea is formalized through probabilistic guar-
antees, i.e., bounds on the generalization error. The bound we provide below
shows how the TRP cost term (using Cost 1) reduces the size of the hypothesis
space by removing a spherical cap, and how this could affect the generalization
ability of the ML&TRP algorithms.

Define the true risk as the expectation of the logistic loss:

R(fλ) := E(x,y)∼X×Y l(fλ(x), y) =

∫
ln
(

1 + e−yfλ(x)
)
∂µX×Y(x, y).

We boundR(fλ) by the empirical riskR(fλ, {xi, yi}m1 ) = 1
m

∑m
i=1 ln

(
1 + e−yif(xi)

)
plus a complexity term that depends on the geometry of where the nodes are
located. Before we do this, we need to replace the Lagrange multiplier C1 in (18)
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Fig. 3. For all the figures, horizontal lines represent baseline sequential formulation
values for training or testing; x-axes represent values of C1; the curves for the three
algorithms (NM, AM and MINLP) are very similar to each other and the focus is on
their trend with respect to C1. (a) AUC values with Cost 1. (b) AUC values with Cost
2. (c) `2-regularized logistic loss. (d) Decreasing failure cost for both Cost 1 and 2.
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with an explicit constraint, so fλ is subject to a specific limit on the failure cost:

min
π

M∑
i=1

1

1 + e−fλ(x̃π(i))
Lπ(π(i)) ≤ Cg.

Cg is a constant (inversely related to C1), and Cg will be a bias-variance tradeoff
in the bound. Let supx∈X ||x||2 ≤ M2, so fλ : X → [−M1M2,M1M2]. Let us
define the set of functions that are subject to a constraint on the failure cost as:

F0 :=

{
fλ : fλ ∈ F ,min

π∈Π

M∑
i=1

Lπ(π(i))
1

1 + e−fλ(x̃π(i))
≤ Cg

}
.

Now we incorporate the geometry. Let di to be the shortest distance from the
starting node to node i and let d1 be the length of the shortest tour that visits
all the nodes and returns to node 1. Define a vector c element-wise by:

cj =
c̃j

Cg − c̃0
where c̃j =

eM1M2

(1 + eM1M2)2

(∑
i

dix̃
j
i

)
, where

c̃0 =

(
M1M2

eM1M2

(1 + eM1M2)2
+

1

1 + eM1M2

)∑
i

di.

This vector c incorporates both Cg and the di’s that are the important ingredi-
ents in providing a generalization guarantee.

Theorem 1. (Generalization Bound) Let X = {x ∈ Rd : ||x||2 ≤ M2},
Y = {−1, 1}. Let F0 be defined as above with respect to {x̃i}Mi=1, x̃i ∈ X (not
necessarily random). Let {xi, yi}mi=1 be a sequence of m examples drawn inde-
pendently according to an unknown distribution µX×Y . Then for any ε > 0,

P
(
∃fλ ∈ F0 : |R(fλ, {xi, yi}m1 )−R(fλ)| > ε

)
≤ 4α(d,Cg, c)

(
32M1M2

ε
+ 1

)d
exp

(
−mε2

512(M1M2)2

)
,

where

α(d,Cg, c) :=
1

2
+
||c||−12 + ε

32M2

M1 + ε
32M2

Γ
[
1 + d

2

]
√
πΓ
[
d+1
2

] 2F1

(
1
2 ,

1−d
2 ; 3

2 ;

(
||c||−1

2 + ε
32M2

M1+
ε

32M2

)2
)

(21)
and where 2F1(a, b; c; d) is the hypergeometric function.

The term α(d,Cg, c) comes directly from formulae for the normalized volume of
a spherical cap. Our goal was to establish that generalization can depend on Cg.
As Cg decreases, the norm ‖c‖2 increases, and thus (21) decreases, and the whole
bound decreases. Decreasing Cg may thus improve generalization. The proof is
lengthy and is provided in a longer version [11].
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6 Conclusion

In this work, we present a machine learning algorithm that takes into account
the way its recommendations will be ultimately used. This algorithm takes ad-
vantage of uncertainty in the model in order to potentially find a much more
practical solution. Including these operating costs is a new way of incorporating
“structure” into machine learning algorithms, and we plan to explore this in
other ways in ongoing work. We discussed the tradeoff between estimation error
and operating cost for the specific application to the ML&TRP. In doing so,
we showed a new way in which data dependent regularization can influence an
algorithm’s prediction ability, formalized through generalization bounds.
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