
Loss Bounds for Uncertain Transition Probabilities
in Markov Decision Processes

Andrew Mastin and Patrick Jaillet

Abstract— We analyze losses resulting from uncertain tran-
sition probabilities in Markov decision processes with bounded
nonnegative rewards. We assume that policies are precomputed
using exact dynamic programming with the estimated transition
probabilities, but the system evolves according to different, true
transition probabilities. Given a bound on the total variation
error of estimated transition probability distributions, we derive
upper bounds on the loss of expected total reward. The
approach analyzes the growth of errors incurred by stepping
backwards in time while precomputing value functions, which
requires bounding a multilinear program. Loss bounds are
given for the finite horizon undiscounted, finite horizon dis-
counted, and infinite horizon discounted cases, and a tight
example is shown.

I. INTRODUCTION

With the widespread use of Markov decision processes
(MDPs), it is not difficult to find situations where only
estimates of transition probabilities must be used to deter-
mine polices. These scenarios arise often in inventory and
resource allocation problems where historical demands must
be used to predict future demands. In other cases, estimated
distributions must be derived from a limited number of
samples of an exact distribution, or simply estimated by an
expert.

Many algorithms have been developed to optimize over
transition probability uncertainty in a robust fashion. These
approaches often use a max-min criteria under various uncer-
tainty descriptions, and optimality is proved in many cases
[1], [2], [3], [4], [5], [6]. This has led to many useful
frameworks, such as the Markov decision process with im-
precise probabilities (MDPIP), where transition probabilities
are described by a set of linear inequalities, and the bounded-
parameter Markov decision process (BMDP), where intervals
are given for transition probabilities and rewards [7], [8].
However, the case where distribution estimates are used
directly in conventional dynamic programming, rather than
a robust algorithm, has received less attention. This paper
addresses such scenarios.

In other related work, there has been some analysis of
parameter sensitivity in dynamic programming. Hopp [9]
analyzes the sensitivity of optimal polices under perturba-
tions of problem parameters. Müller [10] studies variations
in value functions resulting from transition probabilities that
satisfy various stochastic order relations. There has also

Both authors are with the Laboratory for Information and Decision
Systems, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
{mastin,jaillet}@mit.edu

Supported by NSF grant 1029603. The first author is supported in part
by a NSF graduate research fellowship.

been recent work applying sensitivity analysis for uncertain
rewards in dynamic programming [11], [12].

Loss bounds for uncertain value functions in MDPs have
been relatively well explored. Singh and Yee [13] prove an
upper bound on losses incurred from a bounded error in value
functions for the infinite-horizon discounted case. Similar
bounds have been found for finite-horizon undiscounted
problems [14], [15], [16]. Loss bounds in approximate policy
iteration and approximate value iteration scenarios are given
in [17], [18], [19].

This paper provides loss bounds for situations where a
policy for a MDP is determined using estimated transition
probabilities, but the system evolves according to different,
true transition probabilities. Specifically, the policy is pre-
computed using exact dynamic programming with estimated
transition probabilities and stored in the form of a lookup
table [20]. During the online phase of the algorithm, the
MDP evolves according to its true underlying transition
probabilities and decisions are made using the precomputed
lookup table. We refer to this decision process as the ap-
proximate policy. The optimal policy, on the other hand,
uses knowledge of a lookup table that is calculated with true
transition probabilities. The loss is defined as the difference
between the expected total reward obtained by the optimal
policy and the one obtained by the approximate policy.

We derive loss bounds for the finite horizon undiscounted,
finite horizon discounted, and infinite horizon discounted
scenarios, and show a tight example for the finite horizon
undiscounted case. We do not assume stationarity, so the
transition probabilities, rewards, and states may be different
for all stages. The bounds are derived from bounding errors
introduced during the backwards induction process, which
requires bounding a multilinear programming problem [21].

The organization of the paper is as follows. In Section II
we provide background on Markov decision processes and
dynamic programming. Section III shows the full derivation
of the loss bounds, and Section IV gives a tight example for
the undiscounted finite horizon case.

II. MARKOV DECISION PROCESSES AND DYNAMIC
PROGRAMMING

We define a T -stage Markov decision process as follows.
At each stage t, the system is in a state St ∈ St, where St
is the set of all states for stage t. In a given state St, we
must select an action xt ∈ Xt(St), where Xt(St) is the set
of admissible actions for state St. We assume that there is a
finite number of states and actions for all time periods. The
selected action results in a reward Rt(St, xt). Rewards are

time discounted with factor 0 ≤ α ≤ 1, so that a reward Rt at
time t is worth αtRt. Transitions to the states at the following
stage, St+1, occur randomly according to the distribution
P(St+1|St, xt). The system starts in a unique state S0 and
receives a terminal reward that is a function of the terminal
state, VT (ST). A policy Xπ

t : St → Xt(St) is a mapping
of states to actions. Let Π be the set of all polices, indexed
by π. The goal is to find a policy maximizing total expected
reward

max
π∈Π

E

[
T−1∑
t=0

αtRt(St, X
π
t (St)) + αTVT (ST)

]
, (1)

which we refer to as the optimal policy. The optimal policy
can be found using dynamic programming. Let Vt(St) in-
dicate the expected value of a state assuming that optimal
decisions are made in the future. The update (backwards
induction) equation is

Vt(St) = max
xt∈Xt(St)

[Rt(St, xt)

+α
∑
St+1

P(St+1|St, xt)Vt+1(St+1)],

t = 0, . . . , T − 1, (2)

where the notation
∑
St+1

(·) indicates
∑
St+1∈St+1

(·).
We use the shorthand notation E{Vt+1(St+1)|St, xt} for∑
St+1

P(St+1|St, xt)Vt+1(St+1). Finally, we omit xt ∈
Xt(St) and simply use xt. This gives

Vt(St) = max
xt

[Rt(St, xt) + αE{Vt+1(St+1)|St, xt}]. (3)

Given the value function Vt+1(·) at time t + 1, the value
function Vt(·) for stage t can be determined with the above
equation.

During the evolution of the MDP, the optimal policy makes
decisions x∗(St) by solving

x∗t (St) = argmax
xt

[R(St, xt) + αE {Vt+1(St+1)|St, xt}] .
(4)

In describing the policy that occurs with estimated transition
probabilities for the state St, which we will refer to as the
approximate policy, it is helpful to distinguish between two
sources of error that result in finding the decision with max-
imum value. The first error results from using the estimated
transition probability function, denoted by P̂(St+1|St, xt),
for the current state. The second error is due to the value
function for the following stage, which has been solved using
estimated transition probabilities from the end of the horizon.
We refer to this function as the approximate value function
V̂t+1(St+1). The approximate policy thus makes decisions

x̂t(St) = argmax
xt

[
R(St, xt) + αÊ

{
V̂t+1(St+1)|St, xt

}]
,

(5)
where Ê{V̂t+1(St+1)|St, xt} is used to denote∑
St+1

P̂(St+1|St, xt)V̂t+1(St+1).
The value of a state under the approximate policy, which

we refer to simply as the policy value1, is denoted by V π̂t (St)

1This is more appropriately described as the approximate policy value;
this term is used to avoid confusion with the approximate value function.

and is given by

V π̂t (St) = Rt(St, x̂t(St)) + αE{V π̂t+1(St+1)|St, x̂t(St)}.
(6)

To simplify notation, we use xt in place of xt(St) for various
policies; the state of interest should be clear from context:

V π̂t (St) = Rt(St, x̂t) + αE{V π̂t+1(St+1)|St, x̂t}. (7)

Similarly, the value of a state under the optimal policy is
given by

V ∗t (St) = Rt(St, x
∗
t) + αE{V ∗t+1(St+1)|St, x∗t }. (8)

It is important to note that the approximate value function
V̂t(St) is not in general equal to the policy value V π̂t (St). On
the other hand, V ∗t (St) defined in (8) is identical to Vt(St)
defined in (3).

The loss under the approximate policy for a state is defined
by

Lt(St) = V ∗t (St)− V π̂t (St). (9)

The total loss of the policy L is given by the loss of the
unique starting state

L = L0(S0) = V ∗0 (S0)− V π̂0 (S0). (10)

III. UNCERTAINTY IN TRANSITION PROBABILITIES

We now focus on bounding the loss incurred by the
approximate policy, where the approximate value function
results from backwards induction with uncertain transition
probabilities. The strategy is to find a recursion describing
the growth of losses while stepping backwards in time. We
define the estimation error Ft for a given state as

Ft(St) = Vt(St)− V̂t(St), (11)

where we have replaced V ∗t (St) with Vt(St) for notational
convenience, as these terms are equal. The policy error Gt
for a given state is given by

Gt(St) = V̂t(St)− V π̂t (St). (12)

Note that
Lt(St) = Ft(St) +Gt(St). (13)

For all states at time t, let ft and gt be the bounds on
estimation error and policy error, respectively.

ft = max
St

|Ft(St)|, gt = max
St

|Gt(St)|. (14)

This gives
L ≤ f0 + g0. (15)

Assuming fT = 0 and gT = 0, and that bounds on ft and gt
can be derived in terms of ft+1 and gt+1, the loss incurred by
the algorithm may be bounded via induction. Our remaining
analysis focuses on determining these bounds.

We define the difference between the true and estimated
distributions as

D(St+1|St, xt) = P̂(St+1|St, xt)− P(St+1|St, xt). (16)

We can view D(·|St, xt) as vector of length |St+1| with
entries that sum to zero. We assume that there is bounded

uncertainty in the transition probabilities for all states and
time periods, characterized by L1-norm error bound of 2k,
where k ≤ 1. Thus, for all time periods, states, and actions,
we have∑

St+1

∣∣∣P̂(St+1|St, xt)− P(St+1|St, xt)
∣∣∣ ≤ 2k. (17)

This is equivalent to stating that the total variation distance
is no greater than k. In the backwards induction process with
estimated transition probabilities, values of the approximate
value function are given by

V̂t(St) = max
xt

[Rt(St, xt)

+α
∑
St+1

P̂(St+1|St, xt)V̂t+1(St+1)]. (18)

Equivalently, we have

V̂t(St)

= max
xt

[Rt(St, xt) + α
∑
St+1

P(St+1|St, xt)V̂t+1(St+1)

+ α
∑
St+1

D(St+1|St, xt)V̂t+1(St+1)]. (19)

In order to derive loss bounds, the rewards must be bounded
at each stage. While our analysis extends to other scenarios,
we assume here that for all time periods t, states St, and
decisions xt,

0 ≤ Rt(St, xt) ≤ R̄. (20)

The maximum possible value of a state at time t, denoted
by V max

t , is given by

V max
t = R̄

T∑
u=t

αu−t. (21)

Similarly, the value of a state cannot be less than zero. The
policy value for any state must obey the same properties, so
we have that for all time periods t and states St,

0 ≤ V π̂t (St) ≤ V max
t . (22)

The same holds for the approximate value function, as shown
in the following lemma.

Lemma 1: If terminal state values VT (ST) are known
with certainty and approximate state values V̂t(St) for other
time periods are determined via backwards induction with
estimated transition probabilities, then for all time periods
and states St,

0 ≤ V̂t(St) ≤ V max
t . (23)

Proof: At each stage, every state value approximation
is formed by taking a convex combination of state values
for the following stage. The property holds for all stages by
induction.

We begin by assuming that we are given ft+1 and we wish
to find an upper bound on ft. From now on we fix the state

St and make this implicit in the notation.

V̂t − Vt
= max

xt

[Rt(xt) + α
∑
St+1

P(St+1|xt)V̂t+1(St+1)

+α
∑
St+1

D(St+1|xt)V̂t+1(St+1)]− Vt

= max
xt

[Rt(xt) + α
∑
St+1

P(St+1|xt)Vt+1(St+1)

−α
∑
St+1

P(St+1|xt)Ft+1(St+1)

+α
∑
St+1

D(St+1|xt)Vt+1(St+1)

−α
∑
St+1

D(St+1|xt)Ft+1(St+1)]− Vt

≤ αmax[−
∑
St+1

P(St+1|xt)Ft+1(St+1)

+
∑
St+1

D(St+1|xt)Vt+1(St+1)

−
∑
St+1

D(St+1|xt)Ft+1(St+1)], (24)

where the last maximum is taken over all possible proba-
bility distributions, difference vectors, and value functions.
Since the probability distributions and difference vectors are
functions of xt, we do not need to explicitly take the max-
imum over xt. To further simplify notation, we abbreviate
Ft+1(St+1), Vt+1(St+1), P(St+1|xt), and D(St+1|xt) with
F (s), V (s), P (s), and D(s), respectively. Also denote the
set St+1 by S, ft+1 by f , and V max

t+1 by V̄ . Reformulating
and temporarily ignoring the α term gives the following
multilinear program.

maximize
∑
s∈S

[−P (s)F (s) +D(s)V (s)−D(s)F (s)]

subject to
∑
s∈S
|D(s)| ≤ 2k∑

s∈S
P (s) = 1∑

s∈S
D(s) = 0

0 ≤ V (s) ≤ V̄ ∀s
0 ≤ V (s)− F (s) ≤ V̄ ∀s
|F (s)| ≤ f ∀s
0 ≤ P (s) ≤ 1 ∀s
0 ≤ P (s) +D(s) ≤ 1 ∀s,

(25)
where the maximization is taken over all vectors
F (s), V (s), P (s), D(s) that satisfy the constraints. Let the
objective value be denoted by Z1, and let Z∗1 be the optimal
objective value. The constraint 0 ≤ V (s)−F (s) ≤ V̄ comes
from the fact that V (s)−F (s) refers to the approximate state
value and Lemma 1. In an effort to find an upper bound for
this problem, we first show that we can impose additional

assumptions on the probability distribution P (s) without
affecting the final bound. We then find optimal choices of
variables when other variables are fixed to obtain the bound.

Define the states with the maximum and minimum V (s)−
F (s) values as

s+ = argmax
s

[V (s)− F (s)], (26)

s− = argmin
s

[V (s)− F (s)]. (27)

Consider an instance where P (s), V (s), and F (s) are given,
P (s−) ≥ k, P (s+) ≤ 1−k, and we must choose D(s). The
result has a simple structure.

Lemma 2: For instances of (25) where P (s), V (s), and
F (s) are fixed, P (s−) ≥ k, P (s+) ≤ 1 − k, the optimal
choice of D(s) is given by

D(s) =

 k s = s+

−k s = s−

0 otherwise.
(28)

Proof: The non-constant part of the objective function
is
∑
s∈S D(s)[V (s) − F (s)]. Let S+ = {s : D(s) > 0}

and S− = {s : D(s) < 0} and define ∆+ =
∑
s∈S+ D(s)

and ∆− =
∑
s∈S− D(s). For any given ∆+ and ∆−, it is

optimal to choose S+ = {s+} and S− = {s−} as these
provide the largest and smallest multipliers for ∆+ and ∆−,
respectively. Now letting ∆+, ∆− vary, we must have ∆+ =
−∆−, and the resulting objective function is increasing in
∆+, assuming V (s+)− F (s+) 6= V (s−)− F (s−). Making
∆+ as large as possible gives ∆+ = k and ∆− = −k.

The assumption on P (s+) and P (s−) values is without loss
of generality, as shown by the following lemma. Define an in-
stance of (25) as a set of states with given P (s), F (s), V (s)
values for all states and the optimization is over D(s). Let
P be the set of all problem instances, and let P̄ be the
set of problem instances that satisfy P (s+) ≤ (1 − k) and
P (s−) ≥ k

Lemma 3: For every problem instance I ∈ P \ P̄ with
optimal value Z∗, there exists a problem instance Ī ∈ P̄
with optimal value Z̄∗ such that Z∗ ≤ Z̄∗.
The proof is given in the Appendix. The lemma shows that
without loss of generality, we can consider the problem (29)
instead of problem (25).

maximize k[V (s+)− F (s+)]− k[V (s−)− F (s−)]

−
∑
s∈S

P (s)F (s)

subject to
∑
s∈S

P (s) = 1, P (s+) ≤ 1− k, P (s−) ≥ k

0 ≤ V (s) ≤ V̄ ∀s
0 ≤ V (s)− F (s) ≤ V̄ ∀s
|F (s)| ≤ f ∀s
0 ≤ P (s) ≤ 1 ∀s
V (s)− F (s) ≤ V (s+)− F (s+) ∀s
V (s)− F (s) ≥ V (s−)− F (s−) ∀s.

(29)

Let the objective value of (29) be denoted by Z2, and its
optimal value by Z∗2 . We have Z∗1 = Z∗2 .

We now assume that V (s) and P (s) are given, and we
would like to calculate the optimal F (s) values. We can
rewrite the objective function as

Z2 = kV+ − kV− − (P+ + k)F+ − (P− − k)F−

−
∑

s∈S\s−,s+
P (s)F (s), (30)

where P+ = P (s+), P− = P (s−), F+ = F (s+), F− =
F (s−), and V+ = V (s+), V− = V (s−). This makes it clear
that all F (s) values should be made as small as possible.
The resulting objective function is bounded as follows.

Lemma 4: The optimal value of (29) satisfies

Z∗2 ≤ kV̄ + (1− k)f. (31)

Proof: Using the bounds on F (s) gives

Z∗2 ≤ kV+−kV−−(P++k)F+−(P−−k)F−+f(1−P+−P−).
(32)

We evaluate cases based on values for V+, V−.
Case 1: V+ ≥ V̄ − f, V− ≥ V̄ − f
The smallest that F+ and F− can be is V+− V̄ and V−− V̄ ,
respectively. This gives

Z∗2 ≤ kV+ − kV− − (P+ + k)(V+ − V̄)

−(P− − k)(V− − V̄) + f(1− P+ − P−)

≤ f, (33)

where we have used that both V̄ − V+ − f and V̄ − V+ − f
are nonpositive by definition of the case. The other cases
follow similar reasoning.
Case 2: V+ ≥ V̄ − f, V− ≤ V̄ − f

Z∗2 ≤ kV̄ + (1− k)f, (34)

where we have set V− = 0, F+ = V+ − V̄ , F− = −f and
used that V̄ − V+ − f ≤ 0.
Case 3: V+ ≤ V̄ − f, V− ≤ V̄ − f

Z∗2 ≤ kV̄ + (1− k)f. (35)

We have set both F+ and F− equal to −f , V+ equal to its
maximum possible value of V̄ − f , and V− = 0.
Case 4: V+ ≤ V̄ − f, V− ≥ V̄ − f
It is optimal to set F+ = −f and F− = V− − V+ + F+,
where the latter is the smallest value of F− permitted from
the constraint V+ − F+ ≥ V− − F−. This gives

Z∗2 ≤ f, (36)

where we have used that V+−V− is nonpositive by definition
of the case. The maximum bounds are achieved by the second
and third cases.

An example of a tight solution (i.e. satisfying Lemma 4
with equality) using only three states is shown below.

V F P D
s0 0 −f k −k
s1 0 −f 1 − k 0
s2 V̄ 0 0 k

The solution provides an intuitive understanding of the
bound. Consider an adversary who wishes to construct an
approximate value as large as possible for a state with zero
value. The adversary has a total probability weight of 2k that
may be added/subtracted from various state probabilities in
the following stage. To make the approximate state value
large, the adversary adds weight k to the state s2 with
maximum value, yielding an objective increase of kV̄ , and
subtracts k weight from the minimum value state s0, which
has zero value. Since adding k weight to V̄ leaves at most
(1− k) remaining weight for the estimated distribution, this
weight is associated with state s1, as it carries maximum
(negative) estimation error. This solution is used as a building
block for the tight example shown in the next section.

Returning to our original analysis, we have that V̂t(St)−
Vt(St) ≤ αkV max

t+1 + α(1 − k)ft+1. Finding a lower bound
for V̂t − Vt follows a similar approach.

Vt − V̂t
= Vt −max

xt

[Rt(xt) + α
∑
St+1

P(St+1|xt)V̂t+1(St+1)

+α
∑
St+1

D(St+1|xt)V̂t+1(St+1)]

= Vt −max
xt

[Rt(xt) + α
∑
St+1

P(St+1|xt)Vt+1(St+1)

−α
∑
St+1

P(St+1|xt)Ft+1(St+1)

+α
∑
St+1

D(St+1|xt)Vt+1(St+1)

−α
∑
St+1

D(St+1|xt)Ft+1(St+1)]

≤ −αmin[−
∑
St+1

P(St+1|xt)Ft+1(St+1)

+
∑
St+1

D(St+1|xt)Vt+1(St+1)

−
∑
St+1

D(St+1|xt)Ft+1(St+1)], (37)

where the last minimum is taken over all probability
distributions, difference vectors and value functions.
Simplifying notation and ignoring α gives a multilinear
program with structure similar to that of (25). Using
the appropriate substitutions, it is possible to show that
Vt(St)− V̂t(St) ≤ αkV max

t+1 + α(1− k)ft+1. The following
lemma then follows.

Lemma 5: ft ≤ αkV max
t+1 + α(1− k)ft+1.

We now move to bounding the policy error, Gt(St).

Omitting the St notation, we have

V̂t − V π̂t
= Rt(x̂t) + α

∑
St+1

P(St+1|x̂t)V̂t+1(St+1)

+α
∑
St+1

D(St+1|x̂t)V̂t+1(St+1)

−Rt(x̂t)− α
∑
St+1

P(St+1|x̂t)V π̂t+1(St+1)

= α
∑
St+1

P(St+1|x̂t)V π̂t+1(St+1)

+α
∑
St+1

P(St+1|x̂t)Gt+1(St+1)

+α
∑
St+1

D(St+1|x̂t)V π̂t+1(St+1)

+α
∑
St+1

D(St+1|x̂t)Gt+1(St+1)

−α
∑
St+1

P(St+1|x̂t)V π̂t+1(St+1)

= α
∑
St+1

P(St+1|x̂t)Gt+1(St+1)

+α
∑
St+1

D(St+1|x̂t)V π̂t+1(St+1)

+α
∑
St+1

D(St+1|x̂t)Gt+1(St+1). (38)

Solving for the minimum and maximum values of this term
again leads to multilinear programs similar to (25), giving
the following.

Lemma 6: gt ≤ αkV max
t+1 + α(1− k)gt+1.

Lemma 7: f0, g0 ≤

R̄

[
αk − αT+1 + αT+2(1− k) + αT+1(1− k)T+1(1− α)

(1− α)(1− α(1− k))

]
.

(39)
Proof: From Lemma 5

ft ≤ αkV max
t+1 + α(1− k)ft+1, (40)

and fT = 0. Using the inductive hypothesis

ft ≤ k
T∑

u=t+1

αu−t(1− k)u−t−1V max
u (41)

with (21) gives the result. The same expression also holds
for g0.

We may now state our final results.

Theorem 1: For a T -stage discounted problem (α < 1)
with transition probability total variation error no greater than
k, the loss of the approximate policy satisfies L ≤

2R̄

[
αk − αT+1 + αT+2(1 − k) + αT+1(1 − k)T+1(1 − α)

(1 − α)(1 − α(1 − k))

]
.

(42)
Proof: Using (39) with (15) gives the result.

Theorem 2: For an infinite horizon discounted problem
(α < 1) with transition probability total variation error no
greater than k, the loss of the approximate policy satisfies

L ≤ 2R̄αk

(1− α)(1− α(1− k))
. (43)

Proof: Since there is a bounded cost per stage, the limit
of (42) as T →∞ is well defined [22].

Theorem 3: For a T -stage undiscounted problem (α = 1)
with transition probability total variation error no greater than
k, the loss of the approximate policy satisfies

L ≤ 2R̄

k

[
−1 + k(T + 1) + (1− k)T+1

]
, (44)

for k 6= 0.
Proof: This follows using (41) with α = 1 and V max

t =
(T − t+ 1)R̄.

Loss sensitivity results are given simply by finding
limk→0

∂L
∂k . Since the loss functions are concave in k for all

cases, these results give valid first order bounds. Of course,
the resulting bounds are nearly tight only for very small
values of k.

Corollary 1: For a finite or infinite horizon discounted
problem (α < 1), the loss of the approximate policy satisfies

lim
k→0

∂L
∂k
≤ 2R̄α

(1− α)2
, L ≤ 2R̄αk

(1− α)2
. (45)

Corollary 2: For a finite horizon undiscounted problem
(α = 1), the loss of the approximate policy satisfies

lim
k→0

∂L
∂k
≤ R̄T (T + 1), L ≤ kR̄T (T + 1). (46)

IV. TIGHT EXAMPLE

We show a tight example for the undiscounted case
assuming that T ≤ (1−k)

k . Tight examples for the discounted
cases can be derived using similar structure. Post-decision
states are helpful in describing the example [20]. A post-
decision state Sxt = (St, xt) is defined by a state and an
admissible decision for the state. We refer to values and
approximate values of post-decision states as V xt (·) and
V̂ xt (·), respectively.

The example is described with a directed tree structure,
where nodes correspond to pre-decision states (denoted by
W), post-decision states (denoted by X), and terminal states
(denoted by Y), and arcs correspond to transitions between
sequential states (that occur by decision or randomly). The
example for T = 3 is shown in Fig. 1. The only decision
takes place at t = 0, where there is a unique pre-decision
state W0 two post-decision states XA

0 , X
B
0 corresponding

to path A and path B. Path A, which has a large expected
reward, is defined as the set of all node descendants of XA

0 .
Path B, which has a negligible expected reward, is the set
of all node descendants of XB

0 .
For t = 1, . . . , T − 1, there are only two pre-decision and

two post-decision states: WA
t , W

B
t , X

A
t , X

B
t , where WA

t

denotes the pre-decision state at time t on path A, for exam-
ple. For t = 1, . . . , T , there are four terminal states, two for

each path, which are denoted by Y A+
t , Y A−t , Y B+

t , Y B−t .
Finally, for t = T , there are two additional terminal states
Y A◦T , Y B◦T . The outgoing arcs for nodes are given as follows,
where δ+(S) denotes the set of nodes connected to node S
with an outgoing arc.

δ+(W0) = {XA
0 , X

B
0 }. (47)

δ+(XQ
t) = {WQ

t+1, Y
Q+
t+1 , Y

Q−
t+1 }, Q = A, B,

t = 0, . . . , T − 2. (48)

δ+(WQ
t) = {XQ

t }, Q = A, B, t = 1, . . . , T − 1. (49)

δ+(XQ
T) = {Y Q+

T , Y Q◦T , Y Q−T }, Q = A, B. (50)

Arc weights exiting pre-decision states correspond to re-
wards, and arc weights exiting post-decision states corre-
spond to probabilities. Reward values are given as follows

R0(S0, ·) =

{
0 choose XA

0

ε choose XB
0 ,

(51)

where 0 < ε � R̄. Since all other pre-decision states have
only one decision (one exiting arc), we can simply specify
the corresponding reward for t = 1, . . . , T − 1,

Rt(W
Q
t) =

{
(T−t+1)kR̄

1−k Q = A

0 Q = B.
(52)

With the assumption that T ≤ (1−k)
k , these rewards to not

violate the reward bound R̄. Terminal values for t = 1, . . . , T
are given by

Vt(St) =

{
(T − t+ 1)R̄ St = Y Q+

t

0 St = Y Q−t ,
Q = A, B,

VT (Y A◦T) =
kR̄

(1− k)
, VT (Y B◦T) = 0. (53)

Note that the terminal values with nonzero values do not
violate the upper bound on rewards because they can be
interpreted as states where the maximum reward is obtained
at each time step for the remainder of the horizon. Transition
and estimated transition probabilities are given by

P(St+1|XA
0) =

 k St+1 = Y A+
t+1

(1− k) St+1 = WA
t+1(Y A◦T)

0 St+1 = Y A−t+1 ,

(54)

P(St+1|XB
0) =

 0 St+1 = Y B+
t+1

(1− k) St+1 = WB
t+1(Y B◦T)

k St+1 = Y B−t+1 ,

(55)

P̂(St+1|XA
0) =

 0 St+1 = Y A+
t+1

(1− k) St+1 = WA
t+1(Y A◦T)

k St+1 = Y A−t+1 ,

(56)

P̂(St+1|XB
0) =

 k St+1 = Y B+
t+1

(1− k) St+1 = WB
t+1(Y B◦T)

0 St+1 = Y B−t+1 ,

(57)

p = 0, p̂ = k

p = p̂ = 1− kR = 0

V = 0

p = k, p̂ = 0

p = 0, p̂ = k

p = p̂ = 1− k

V = 0

p = k, p̂ = 0

V = 0

V = R̄V = 2R̄

p = p̂ = 1− k

V = 0V = 0

V = R̄V = 2R̄

p = k, p̂ = 0

p = 0, p̂ = k

p = p̂ = 1− k
p = k, p̂ = 0

p = 0, p̂ = k

R =
2kR̄

(1− k)
V =

kR̄

(1− k)

R
=

0

R
=
�

R =
3kR̄

(1− k)

R = 0
p = 0, p̂ = k

p = p̂ = 1− k

V = 0

p = k, p̂ = 0

V = 0

p = p̂ = 1− k
p = k, p̂ = 0

p = 0, p̂ = k

V = 3R̄

V = 3R̄

W0

XA
0

XB
0

Y A+
1

Y A−
1

WA
1

Y B+
1

Y B−
1

Y A+
2

Y A−
2

Y B+
2

Y B−
2

Y A−
3

Y A+
3

Y A◦
3

Y B◦
3

Y B+
3

Y B−
3

WA
2

WB
1 WB

2

XA
1 XA

2

XB
1 XB

2

p = 0, p̂ = k

p = p̂ = 1− kR = 0

V = 0

p = k, p̂ = 0

p = 0, p̂ = k

p = p̂ = 1− k

V = 0

p = k, p̂ = 0

V = 0

V = R̄V = 2R̄

p = p̂ = 1− k

V = 0V = 0

V = R̄V = 2R̄

p = k, p̂ = 0

p = 0, p̂ = k

p = p̂ = 1− k
p = k, p̂ = 0

p = 0, p̂ = k

R =
2kR̄

(1− k)
V =

kR̄

(1− k)

R
=

0

R
=
�

R =
3kR̄

(1− k)

R = 0
p = 0, p̂ = k

p = p̂ = 1− k

V = 0

p = k, p̂ = 0

V = 0

p = p̂ = 1− k
p = k, p̂ = 0

p = 0, p̂ = k

V = 3R̄

V = 3R̄

W0

XA
0

XB
0

Y A+
1

Y A−
1

WA
1

Y B+
1

Y B−
1

Y A+
2

Y A−
2

Y B+
2

Y B−
2

Y A−
3

Y A+
3

Y A◦
3

Y B◦
3

Y B+
3

Y B−
3

WA
2

WB
1 WB

2

XA
1 XA

2

XB
1 XB

2

Fig. 1. Tight example for undiscounted case with T = 3. White nodes are pre-decision states, gray nodes are post-decision states, and black nodes are
terminal states.. Terminal states with nonzero values do not violate the bound on reward R̄, because they can be interpreted as paths where reward R̄ is
received at each following stage.

for t = 0, . . . , T − 1. It can be verified by induction that the
value of path A is given by

V x0 (XA
0) = 2k

T∑
u=1

(1− k)u−1V max
u , (58)

and that V̂ x0 (XA
0) = V̂ x0 (XB

0) =
V x
0 (XA

0)
2 . Inspection of the

graph structure shows that V x0 (XB
0) = 0. The optimal choice

for the problem is to choose path A and obtain the expected
value given in (58). However, since the immediate reward
for choosing path B is larger by ε, the approximate policy
chooses path B and realizes value ε. Letting ε→ 0, the loss
approaches the term given in (44).

V. CONCLUSIONS

We have presented loss bounds for exact dynamic pro-
gramming polices that are determined using estimated tran-
sition probabilities for the case of both finite and infinite
horizon problems. We analyzed the problem from a strictly
worst case scenario, so tight instances of our bounds are
unlikely to arise in practice. A natural next step would be
to bound losses assuming that the transition probabilities
are random variables with known distributions. It may also
be possible to improve bounds for problems with specific
structure.

APPENDIX

Lemma 3: For every problem instance I ∈ P \ P̄ with
optimal value Z∗, there exists a problem instance Ī ∈ P̄
with optimal value Z̄∗ such that Z∗ ≤ Z̄∗.

Proof: The presence of
∑
s∈S −P (s)F (s) in the ob-

jective function makes the proof non-trivial. Returning to
the analysis in Lemma 2, if P (s−) < −∆−, it is optimal
to add states to S− in increasing order of V (s) − F (s)
until

∑
s∈S− P (s) ≥ −∆−. If P (s+) > 1 − k, then

∆+ = 1 − P (s+). With this in mind, we use a problem
transformation algorithm to produce the instance Ī given I,
and show that during each step of the algorithm, the optimal

objective value increases. The procedure for generating the
new problem instance is shown in Algorithm 1.

Algorithm 1 Problem Transformation
Input: I ∈ P
Output: Ī ∈ P̄

1: A ← I
2: s+ ← argmaxs∈A V (s)− F (s)
3: s− ← argmins∈A V (s)− F (s)
4: if P (s+) > 1− k then
5: c← P (s+)− (1− k)
6: P (s+)← P (s+)− c
7: P (s−)← P (s−) + c
8: F (s−)← 0
9: V (s−)← 0

10: end if
11: while

∑
s∈S−(A) P (s) ≤ ∆− do

12: r1 ← argmins∈A V (s)− F (s)
13: r2 ← argmins∈A\{r1} V (s)− F (s)
14: P (r′)← P (r1) + P (r2)
15: D(r′)← D(r1) +D(r2)
16: F (r′)← max{F (r2)− V (r2),−f}
17: V (r′)← 0
18: A ← (A \ {r1, r2}) ∪ {r′}
19: end while
20: Ī ← A

Beginning with line 4, if P (s+) > 1 − k, the algorithm
adjusts the values of states s+ and s−. Under the optimal
solution, if P (s+) is decreased by c then D(s+) increases
by c. Let V ′(·) F ′(·), D′(·) refer to state properties after
lines 4-10 of the algorithm have been executed. We use the
shorthand notation P+ for P (s+), F ′− for F ′(s−), etc. The
change in the optimal objective value ∆Z∗ for line 6 is

∆Z∗ = −(P+ − c)F+ + (D+ + c)V+ − (D+ + c)F+

+P+F+ −D+V+ +D+F+

= cV+, (59)

which is always nonnegative. The change in optimal objec-
tive value for lines 7-9 is

∆Z∗ = −P ′−F ′− +D′−V
′
− −D′−F ′−

+P−F− −D−V− +D−F−
= P−V−, (60)

where we have used P− = −D− under the optimal solution.
Lines 11-19 of the algorithm are used to aggregate states

in an iterative fashion until P (s−) ≥ k. Define S−(A) as the
set of states in instance A that are assigned negative D(s)
values under the optimization of (25), as explained in Lemma
2. At each iteration of the process, the algorithm aggregates
the two smallest V (s)−F (s) states to produce a new state r′

with V (r′)− F (r′) value smaller than the remaining states.
At any point in the process, let r1 and r2 be the states
with the smallest and second smallest V (s) − F (s) values,
respectively. Initially, r1 = s−. For other iterations, r1 = r′

from the previous iteration. During the aggregation process,
we wish only to increase the objective value, so adding the
aggregated state and removing the two original states always
creates a positive change in the objective function:

−P ′F ′ +D′(V ′ − F ′) ≥ −P1F1 − P2F2 +D1(V1 − F1)

+D2(V2 − F2), (61)

where P1 = P (r1), P2 = P (r2), and V ′, F ′, D′ now refer
to state values obtained after one iteration of the aggregation
process. The D′ and P ′ values are given by

D′ = D1 +D2, (62)

P ′ = P1 + P2. (63)

The V ′ value is always equal to zero, and F ′ is determined
according to

F ′ = max(F2 − V2,−f), (64)

which results from the constraints that V ′ − F ′ must be
positive and V ′ − F ′ ≤ V2 − F2. The algorithm repeats
the process while P (r′) ≤ k, so D1 = −P1 always holds,
as the optimal D(s) places the maximum possible weight
on the lowest V (s)−F (s) coefficient before placing weight
on other states. The change in objective value ∆Z∗ for the
aggregation process is always positive. For each iteration,
there are two cases; −f > F2 − V2 and −f ≤ F2 − V2. For
the first case, we have

∆Z∗ = −P ′F ′ +D′(V ′ − F ′) + P1F1 + P2F2 −D1V1

+D1F1 −D2V2 +D2F2

= P1(F1 + f) + P2(F2 + f)

+D1(f + F1 − V1) +D2(f + F2 − V2). (65)

Since P1 = −D1,

∆Z∗ = P1V1 + P2(F2 + f) +D2(f + F2 − V2). (66)

The terms D2 and f + F2 − V2 are nonpositive (the latter
by definition of the case) and the remaining terms are all
nonnegative. The second case gives

∆Z∗ = P1(V2 − F2 + F1) + P2V2

+D1(V2 − F2 − V1 + F1). (67)

Again using P1 = −D1,

∆Z∗ = P1V1 + P2V2, (68)

which is always nonnegative.

REFERENCES

[1] E. A. Silver, “Markovian decision processes with uncertain transition
probabilities or rewards,” Massachusetts Institute of Technology, Tech.
Rep. AD0417150, August 1963.

[2] J. K. Satia and R. E. Lave Jr., “Markovian decision processes with
uncertain transition probabilities,” Operations Research, vol. 21, no. 3,
pp. 728–740, 1973.

[3] R. S. Filho and F. W. Trevizan, “Multilinear and integer programming
for Markov decision processes with imprecise probabilities,” in 5th
International Symposium on Imprecise Probability: Theories and
Applications, 2007.

[4] M. Kurano, M. Hosaka, Y. Huang, and J. Song, “Controlled Markov
set-chains with discounting.” J. Appl. Probab., vol. 35, no. 2, pp. 293–
302, 1998.

[5] A. Nilim and L. El Ghaoui, “Robust control of Markov decision
processes with uncertain transition matrices,” Oper. Res., vol. 53, no. 5,
pp. 780–798, September-October 2005.

[6] K. V. Delgado, S. Sanner, and L. N. de Barros, “Efficient solutions
to factored MDPs with imprecise transition probabilities,” Artificial
Intelligence, vol. 175, no. 910, pp. 1498 – 1527, 2011.

[7] C. C. White III and H. K. Eldeib, “Markov decision processes with
imprecise transition probabilities,” Operations Research, vol. 42, pp.
739–749, 1994.

[8] R. Givan, S. Leach, and T. Dean, “Bounded-parameter Markov deci-
sion processes,” Artificial Intelligence, vol. 122, pp. 71–109, 2000.

[9] W. J. Hopp, “Sensitivity analysis in discrete dynamic programming,”
J. Optim. Theory Appl., vol. 56, pp. 257–269, February 1988.

[10] A. Müller, “How does the value function of a Markov decision process
depend on the transition probabilities?” Math. Oper. Res., vol. 22, pp.
872–885, November 1997.

[11] C. H. Tan and J. C. Hartman, Sensitivity Analysis and Dynamic
Programming. John Wiley & Sons, Inc., 2010.

[12] ——, “Sensitivity analysis in Markov decision processes with uncer-
tain reward parameters,” Journal of Applied Probability, vol. 48, no. 4,
pp. 954 – 967, 2011.

[13] S. P. Singh and R. C. Yee, “An upper bound on the loss from
approximate optimal-value functions,” Machine Learning, vol. 16,
no. 3, pp. 227–233, 1994.

[14] M. Kearns, Y. Mansour, and A. Y. Ng, “A sparse sampling algorithm
for near-optimal planning in large Markov decision processes,” in
Machine Learning, 1999, pp. 1324–1331.

[15] L. Mercier and P. Van Hentenryck, “Performance analysis of online
anticipatory algorithms for large multistage stochastic integer pro-
grams,” in Proceedings of the 20th international joint conference
on Artifical intelligence, ser. IJCAI’07. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2007, pp. 1979–1984.

[16] P. V. Hentenryck and R. Bent, Online Stochastic Combinatorial
Optimization. The MIT Press, 2009.

[17] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming.
Athena Scientific, 1996.

[18] R. Munos, “Error bounds for approximate policy iteration,” in ICML,
2003, pp. 560–567.

[19] A. M. Farahmand, R. Munos, and C. Szepesvári, “Error propagation
for approximate policy and value iteration,” in NIPS, 2010, pp. 568–
576.

[20] W. B. Powell, Approximate Dynamic Programming. John Wiley and
Sons, Inc., 2007.

[21] R. F. Drenick, “Multilinear programming: Duality theories,” Journal
of Optimization Theory and Applications, vol. 72, pp. 459–486, 1992.

[22] D. P. Bertsekas, Dynamic Programming and Optimal Control, 3rd ed.
Athena Scientific, 2007.

