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Abstract

We consider the well-known K-server problem from the perspective of mixed integer, robust and
adaptive optimization. We propose a new tractable mixed integer linear formulation of the K-server
problem that incorporates both information from the past and uncertainty about the future. By
combining ideas from classical online algorithms developed in the computer science literature and
robust and adaptive optimization developed in the operations research literature we propose a new
method that (a) is computationally tractable, (b) almost always outperforms all other methods in
numerical experiments, and (c) is stable with respect to potential errors in the assumptions about
the future.
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1. Introduction

The K-server problem, introduced by Manasse et al. (1990), is one of the most fundamental
problems considered from the perspective of online algorithms and competitive analysis (Borodin &
El-Yaniv, 2005). Given a metric space S, K mobile servers are initially located at some predefined
points in that space. Over time, service requests appear successively at different locations in the
space. Upon knowing the location of the request, one has to immediately dispatch one of K servers
to this location. The cost associated with the assignment is the distance between the location of
the server and the location of the request. The objective is to minimize the total cost of serving
requests, that is the sum of distances traveled by all servers over a given time horizon.

The typical setting for the K-server problem requires that assignments be made in online fashion,
that is, by considering only the current and the past requests. The offline version of the K-server
is to find an optimal strategy of serving a finite sequence of known requests.

In the online context, one does not have information about precise locations of future requests,
this is why online algorithms may incur significantly worse costs than an optimal offline method.
One of the common ways to assess the quality of an online algorithm is via its competitive ratio,
that is the worst-case ratio between the performance of the online algorithm and the optimal offline
clairvoyant over all instances of the problem (Sleator & Tarjan, 1985; Borodin & El-Yaniv, 2005).
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The K-server problem together with its variants have many practical applications. First of all,
the K-server problem is a generalization of important caching/paging problems that arise in disci-
plines such as computer science (Sleator & Tarjan, 1985), statistics (Raghavan, 1992), mathematics
(Du & Hwang, 1993) and many others. The so-called Cable News Network (CNN) problem where
servers move along the lines (Koutsoupias & Taylor, 2000), as well as its simpler versions, such as
the bridge and the cow path problem, are also examples that possess the structure of the K-server
problem. Additionally, this problem has applications in graph theory, certain scheduling problems
(Burley, 1996) and in the theory of metrical task systems (Borodin et al., 1992).

Many online algorithms for solving the K-server problem have been suggested in the literature
(Rudec et al., 2013; Floratos & Boppana, 1997). They differ in their competitive ratios, tractability
and amount of historical data they use in order to make the online assignment decisions. In gen-
eral, the more information is used, the better the performance of the online method is. The Work
Function Algorithm (WFA) (Borodin & El-Yaniv, 2005) is one of the most important online algo-
rithms for the K-server problem from both theoretical perspective of competitiveness and practical
performance (Rudec et al., 2013). It considers the full amount of historical data to make its online
decisions, as opposed to other simpler online methods.

In practice, it is often the case that information about past observations can lead to some rea-
sonable, data-driven assumptions about the future. In this paper, the online version of the K-server
problem is considered from the perspective of mixed integer optimization (MIO), robust optimiza-
tion (RO) and adaptive optimization. We combine several optimization techniques and present a
new holisitic adaptive optimization method that simultaneously incorporates both information from
the past and assumptions about the future, giving a significant edge in the algorithm performance.

More specifically, the major contributions of this paper can be summarized as follows:

1. We propose a new MIO formulation of the offline version of the K-server problem. This
formulation is computationally tractable and can model many practical generalizations of the
classical problem.

2. We introduce robust and affine adaptive counterparts of the online K-server problem by
modeling the uncertainty of the positions of future requests as an uncertainty set in the
context of the new MIO approach. To the best of our knowledge, this is the first application
of robust optimization to online algorithms.

3. We design a new algorithm called the Holistic Adaptive Robust Optimization (HARO) method
by combining ideas of the WFA and affine adaptive robust optimization (AARO) techniques.
To the best of our knowledge, this is the first algorithm that combines ideas from the computer
science and operations research tradition in the context of online algorithms.

4. We empirically demonstrate that the HARO method is tractable and almost always outper-
forms all other methods considered including WFA and AARO. HARO is the best method for
various settings: finite and continuous metric space S, uniform and non-uniform distribution
of the requests and different number of servers and locations. Moreover, HARO is stable with
respect to potential errors in the uncertainty set describing the future time stages.

The rest of the paper is organized as follows. In Section 2, we briefly discuss existing online
algorithms for solving the K-server problem. We represent the offline variant of the K-server
problem as a mixed binary optimization problem. We also give a MIO formulation of the WFA
procedure. In Section 3, we extend the offline formulation from Section 2 to the online setting
of the K-server problem and design its RO and AARO counterparts. In Section 4, we introduce
the new HARO method combining the formulations of WFA and AARO algorithms. In Section
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5, we consider generalizations of the HARO approach that can be adapted to different settings.
We consider various types of the underlying metric space S (multidimensional and/or finite) with
different distance functions, as well as a weighted version of the HARO algorithm. In Section 6,
we give examples of possible uncertainty sets and describe a way to measure varying amount of
information about future requests. In Section 7, we present our numerical results and empirically
prove the computational tractability, efficiency and stability of the proposed HARO method.

2. Problem formulation and existing methods

In this section, we first describe in detail the specific variants of the K-server problem that
we consider. We also present a brief overview of the most frequently used online algorithms for
solving this class of problems. Finally, we introduce a new MIO formulation of the offline K-server
problem and a MIO formulation generating the decisions made by the WFA. For the sake of clarity,
the formulations in this section are designed for problems with many simplifying assumptions, most
of which will be relaxed in Section 5.

2.1. Basic one-dimensional version of the K-server problem

We consider a one-dimensional continuous compact metric space S = [0, 1] with standard Eu-
clidean metric d(x, y) = |x− y|. We assume that there are K mobile servers within S that should
respond to the requests that appear sequentially in S. The starting locations of the servers,
x̂0 = {x̂0k ∈ S | k = 1, . . . ,K}, are assumed to be known and form the initial configuration of
the system. In what follows, we put a “hat” symbol on variables with known values to emphasize
the difference between input data and uncertain parameters of the problem.

The sequence of request locations {σt ∈ S | t ≥ 1, t ∈ Z} appears in an online fashion. At any
time-step τ , the locations of only the first τ requests {σ̂1, . . . , σ̂τ} are known to the online decision
maker. At time-step τ the new revealed request at location σ̂τ should be immediately served by a
server k ∈ {1, . . . ,K}, where k is chosen according to a proposed algorithm A, and before the next
request is revealed at time-step τ + 1. In this case, the configuration of the system, described by
the vector of the locations of all K servers, xτ , changes according to the rule

xτ−1 = {xτ−11 , . . . , xτ−1k−1, x
τ−1
k , xτ−1k+1, . . . , x

τ−1
K } 7→ xτ = {xτ−11 , . . . , xτ−1k−1, σ̂τ , x

τ−1
k+1, . . . , x

τ−1
K }.

When the server k is assigned to the new request at location σ̂τ it incurs the cost d(xτ−1k , σ̂τ ) ≥ 0,
where xτ−1k ∈ S denotes the position of server k at the end of time-step τ − 1. The objective of an
online algorithm A is to minimize the overall total distance traveled by all K servers. The basic
version of the K-server problem assumes that a request cannot be canceled or postponed, does
not incur service time while being served, and that the time it takes for a server to move between
locations is negligible. As a result, when a new request σ̂τ appears, all K servers are available to
be assigned.

2.2. Offline and online algorithms

In this subsection, we briefly discuss various well-known algorithms (both offline and online) for
solving the K-server problem (Rudec et al., 2013; Floratos & Boppana, 1997).

First of all, if the sequence of requests σ is finite of known length N , and all components of the
vector σ = (σ1, . . . , σN ) are known ahead of time, then the corresponding offline linear optimization
problem can be modeled as a standard network flow optimization problem (Chrobak et al., 1991;
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Bazaraa et al., 2011) that can be solved efficiently. The objective value of such an offline optimal
solution represents a benchmark for evaluating the performance of online algorithms.

One way of measuring the quality of an online algorithm A is its competitive ratio as introduced
in Sleator & Tarjan (1985). Let us assume that COPT (x̂0,σ) and CA(x̂0,σ) are the total costs
incurred by an offline algorithm OPT and an online algorithm A, respectively, for the K-server
problem with initial locations of the servers x̂0 and a sequence of requests σ. If there are constants
c1 > 0 and c2 such that for any input data of the problem x̂0 and σ the following inequality holds

CA(x̂0,σ) ≤ c1 · COPT (x̂0,σ) + c2, (1)

then the algorithm A is said to be c1-competitive. In that case, the competitive ratio of A is defined
as the infimum of all c1 such that A is c1-competitive. When no such finite constants exist, then
the online algorithm A is sometimes called non-competitive.

Probably the most straightforward deterministic online algorithm for solving the K-server prob-
lem is GREEDY. This method assigns the closest server to the request. Despite the fact that it
is not competitive for any fixed value of c1, the empirical experiments presented in (Rudec et al.,
2013) demonstrate that in many different settings GREEDY performs reasonably well. BALANCE
is another deterministic non-competitive algorithm that tries to keep the total traveled distance by
all servers as equal as possible. It assigns a server whose cumulative distance traveled so far plus
the distance to the new request location is smallest (Chrobak et al., 1991).

In contrast to deterministic algorithms (like GREEDY and BALANCE), randomized algorithms
contain random steps as part of their design. In this case, the notion of a competitive ratio can
be generalized from the perspective of expected costs produced by the algorithms (Borodin &
El-Yaniv, 2005). The competitiveness of randomized online algorithms depends on the adversary
model under consideration (oblivious, adaptive online or adaptive offline). We will assume here an
oblivious adversary that knows the probability distributions underlying the proposed randomized
algorithm A, but not their realizations. In this case, one may modify the definition (1) as

ECA(x̂0,σ) ≤ c1 · COPT (x̂0,σ) + c2,

where E[·] is the mathematical expectation operator applied to the random choices made by A.
A natural randomized online algorithm, called RAND, chooses a server for each request randomly

with equal probability. However, it ignores historical data and distances from the servers to the
current request location. The HARMONIC algorithm, introduced by Raghavan & Snir (1989),
randomizes between servers with probabilities inversely proportional to distances between their
locations and the position of the request. This method is also memoryless and O(2K log(K))-
competitive against an adaptive online adversary (Bartal & Grove, 2000), and no better result is
known for HARMONIC, even against the weaker oblivious adversary.

One of the most important online algorithms for the K-server problem is WFA (Rudec et al.,
2013; Koutsoupias & Papadimitriou, 1995). At time-step τ this deterministic method selects a
server k∗ as the solution of the following optimization problem:

k∗ = arg min
k=1,...,K

{
COPT

(
x̂0, σ̂1, . . . , σ̂τ , x̂

τ (k)
)

+ d(x̂τ−1k , σ̂τ )
}
, (2)

where the vector x̂τ (k) =
(
x̂τ1(k), . . . , x̂τK(k)

)
is defined as follows:

x̂τj (k) =

{
x̂τ−1j , if j 6= k

σ̂τ , if j = k.
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The first term in (2), COPT
(
x̂0, σ̂1, . . . , σ̂τ , x̂

τ (k)
)
, is called the work function. It represents the

optimal value of the offline problem with the known sequence of requests σ̂1, . . . , σ̂τ and fixed initial
and final configurations x̂0 and x̂τ (k), respectively.

Intuitively, WFA tries to find a good balance between a strategic solution (represented by the
work function term) and a greedy solution (second term of (2)). Learning from past request locations
while determining the next move is useful since we can find the sequence of optimal assignments and
system configuration that OPT algorithm would generate after servicing the sequence (σ̂1, . . . , σ̂τ ).
Simultaneous minimization of the work function term and the greedy term in (2) means that
we would like to be close to the optimal counterfactual configuration and the server assignment
sequence determined by the work function, while not moving very far from the current configuration
x̂τ (k) (Koutsoupias, 2009). Taking into account past locations of requests often gives a significant
performance advantage to the WFA over other online heuristics that ignore the request history
(such as GREEDY) particularly in case of non-uniform distribution of requests and initial locations
of servers in the metric space. The reason of this advantage is that WFA gradually learns where
requests tend to arrive and what the optimal assignments for these requests are (Baumgartner et al.,
2012).

A truncated method w-WFA is an important generalization of WFA (Rudec et al., 2013), when
only the most recent w observations are included into the optimization of the work function

COPT
(
x̂τ−w, σ̂τ−w, . . . , σ̂τ , x̂

τ (k)
)
. (3)

For many online problems, WFA gives the best possible competitive ratio or it is conjectured to
be best possible (Borodin & El-Yaniv, 2005). For example, for the classical K-server problem it
has the best known competitive ratio of 2K − 1 for any metric space, and a competitive ratio of K
for some special cases of the problem (Chrobak et al., 1991; Koutsoupias & Papadimitriou, 1995;
Koutsoupias, 1999). Moreover, in many practical settings, WFA demonstrates superior empirical
perfomance in terms of total cost incurred compared to other online algorithms (Rudec et al., 2013;
Bartal & Grove, 2000). The empirical ratio between the cost incurred by WFA and OPT in practice
is significantly smaller than the theoretical upper bound of 2K − 1.

The truncated method w-WFA (that plays a fundamental role for construction of HARO algo-
rithm as we will discuss below in Section 4) is known to be non-competitive (Baumgartner et al.,
2012). For arbitrarily large value of w and constants c1 and c2 it is possible to generate an exam-
ple of input violating Ineq. (1). However, the non-competitive example designed by Baumgartner
et al. (2012) is quite ad-hoc, while for practical applications w-WFA has similar good empirical
performance as initial WFA even for relatively small values of w.

Taking into account the theoretical and practical value of WFA, we use this algorithm as a
starting point for constructing a more efficient method for solving the K-server problem from a
robust and adaptive optimization point of view.

2.3. MIO formulation of the offline K-server problem

Let us formulate the offline version of the K-server described in Section 2.1 as a multiperiod
mixed binary linear problem. This model will be easily extended to more realistic settings later by
virtue of the strong modeling power of MIO.

Following the basic notation introduced in Section 2.1, we first define the decision variables
used in our formulation: xtk ∈ [0, 1] represents the position of server k ∈ {1, . . . ,K} at the end of
time-step t ∈ {1, . . . , N}; ytk ∈ {0, 1} is an assignment indicator equal to 1 if server k is assigned
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to request σ̂t. Then, the offline K-server problem can be formulated as the following multiperiod
optimization problem:

min
x,y

K∑
k=1

N∑
t=1

|xtk − xt−1k | (4a)

s.t. xtk = xt−1k + ytk(σ̂t − xt−1k ), t = 1, . . . , N, k = 1, . . . ,K (4b)

x0k = x̂0k, k = 1, . . . ,K (4c)

K∑
k=1

ytk = 1, t = 1, . . . , N (4d)

0 ≤ xtk ≤ 1, ytk ∈ {0, 1}, t = 1, . . . , N, k = 1, . . . ,K. (4e)

The objective function (4a) minimizes the cumulative distance traveled by all servers. Eq. (4b)
states that the location of server k at time-step t is either the same as it was at the previous
time-step t−1, if ytk = 0 (i.e., if server k is not dispatched to request σ̂t), or is equal to σ̂t, if ytk = 1.

Formulation (4) is nonlinear due to products of the form ytkx
t−1
k and absolute values in the

objective (4a). These products can be linearized by introduction of substituting variables ztk, while
absolute values can be modeled by new variables vtk. As a result, the offline K-server problem can
be formulated as a mixed binary linear optimization problem:

min
x,y,z,v

K∑
k=1

N∑
t=1

vtk

s.t. For k = 1, . . . ,K; t = 1, . . . , N :

vtk ≥ xtk − xt−1k

vtk ≥ −(xtk − xt−1k )

xtk = xt−1k + ytkσ̂t − ztk
ztk ≤ ytk (5)

ztk ≤ xt−1k

ztk ≥ ytk + xt−1k − 1

0 ≤ xtk, ztk ≤ 1, ytk ∈ {0, 1}
x0k = x̂0k, k = 1, . . . ,K

K∑
k=1

ytk = 1, t = 1, . . . , N.

2.4. MIO formulation related to the WFA

WFA method defined by (2) makes successive assignment decisions for the K-server problem.
At each time-step τ (for 1 ≤ τ ≤ N), one may obtain this assignment decision as part of an optimal
solution of a MIO formulation that we present in this section.

According to the definition of WFA for a fixed time-step τ , in order to make a locally optimal
assignment decision yτk∗ , we need to know the initial locations of the servers {x̂0k | k = 1, . . . ,K},
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the sequence of requests {σ̂t | t = 1, . . . , τ} and the locations of the servers at the end of time-step
τ − 1, that is,

x̂τ−1 =
(
x̂τ−11 , . . . , x̂τ−1K

)
.

This vector x̂τ−1 determines a system configuration in which a counterfactual sequence of re-
optimized past server assignments should end up. Similarly to (5), instead of solving K optimization
problems of the type (2), we find an optimal assignment k∗ by solving the following consolidated
optimization problem:

min
x,y,z,v

K∑
k=1

τ∑
t=1

vtk +

K∑
k=1

yτk · d(x̂τ−1k , σ̂τ )

s.t. For k = 1, . . . ,K :

vtk ≥ xtk − xt−1k , t = 1, . . . , τ

vtk ≥ −(xtk − xt−1k ), t = 1, . . . , τ

xtk = xt−1k + ytkσ̂t − ztk, t = 1, . . . , τ − 1

xτk = x̂τ−1k + yτk(σ̂τ − x̂τ−1k ) (6)

ztk ≤ ytk, t = 1, . . . , τ − 1

ztk ≤ xt−1k , t = 1, . . . , τ − 1

ztk ≥ ytk + xt−1k − 1, t = 1, . . . , τ − 1

x0k = x̂0k

0 ≤ xtk, ztk ≤ 1, ytk ∈ {0, 1}, t = 1, . . . , τ

K∑
k=1

ytk = 1, t = 1, . . . , τ.

The only difference with the offline formulation (5) is that the locations of the servers at the
last time-step τ are constrained by the given configuration x̂τ−1 and the objective function is
augmented with the second “greedy” summand as in definition (2). The equivalence of server
assignments produced by solving optimization formulations (2) and (6) is stated in the following
proposition.

Proposition 1. For any fixed input parameters x̂0, σ̂1, . . . , σ̂τ , x̂
τ−1, if k∗ is the optimal server

index defined by Eq. (2) and k∗∗ is the server index such that y∗k∗∗ = 1 in the optimal solution y∗

of problem (4), then k∗ is identical to k∗∗.
Proof. Two indices k∗ and k∗∗ are equivalent since outer minimization with respect to k =

1, . . . ,K in (2) is modeled by binary variables yτk in (6). For any fixed k = 1, . . . ,K, if variable
yτk = 1, then optimization formulation (6) is reduced to a much simpler problem that has identical
form with the objective function in (2). Since in (6) we optimize over variables yτk for k = 1, . . . ,K
and we need to pick exactly one index k such that yτk = 1, then by solving (6) we select the server
assignment with the smallest objective value as defined in (2). 2

The aggregation idea of K separate optimization problems into one (6) is similar to a network-
based formulation of WFA algorithm for K-server problem developed by Rudec et al. (2013). The
MIO formulations of more complex problem settings with multidimensional and finite metric spaces
are discussed in Section 5.
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3. The K-server problem from a RO perspective

In the previous section, both formulations (5) and (6) assume that all request locations are
certain. More specifically, vector (σ̂1, . . . , σ̂N ) is a part of the input data for the offline formulation
(5), and vector (σ̂1, . . . , σ̂τ ) is certain in the WFA formulation (6) at time-step τ .

In our RO-based online algorithm framework described in Section 3.1, at each time-step τ (for
1 ≤ τ ≤ N) the allocation decisions {yτk}Kk=1 are made by solving one instance of a robust MIO
formulation under uncertainty (11). More precisely, we build upon the deterministic formulation
(5), assuming that at time-step τ requests σ̂ = (σ̂1, . . . , σ̂τ ) are exactly known, while the future
requests σ = (στ+1, . . . , σN ) are only known up to some uncertainty. We model this uncertainty
using a robust optimization approach (Ben-Tal & Nemirovski, 2008; Bertsimas et al., 2011). As
opposed to stochastic optimization, it does not require the knowledge of the probability distribution
for the parameters σ, but rather assumes that the uncertain data reside in a so-called uncertainty
set U . Probably the simplest (yet powerful) choice of set U is represented by a bounded polyhedral
set

U = {Aσ ≤ b,σ ≥ 0}, (7)

where A is a given m × (N − τ) matrix and b is a given m × 1 vector. This set of inequalities
(7) describes hard constraints, that is, constraint violation is impossible for any realization of
parameters σ in the uncertainty set. In this paper we concentrate on polyhedral uncertainty sets
because of their computational tractability and prominent modeling power. The robust optimization
approach developed in Section 3.1 leads to computationally tractable online algorithm for the K-
server problem. Moreover, it will allow us to design (in Section 3.2) more advanced adaptive robust
optimization methods that outperform the basic robust counterpart.

3.1. Multiperiod RO formulation of the K-server problem
In order to extend the deterministic formulation (5) to the online setting with partially unknown

values of request locations (namely, στ+1, . . . , σN are uncertain at time-step τ), we need to modify
two types of equalities.

First, given that any server assignment ytk = 1 incurs a non-negative traveling cost, we substitute
the requirement that exactly one of K servers should be assigned to each of the requests with the
following equivalent inequality

K∑
k=1

ytk ≥ 1, t = τ, . . . , N.

Second, we eliminate equations (4b) (used to keep track of the locations of the servers) as well as
variables x from formulation (5). In order to do it, we notice that the location xtk of server k at
the end of time-step t (for τ ≤ t ≤ N) can be expressed as a function of the initial location x̂τ−1k

(part of the input data at time-step τ), the sequence of requests σ and the assignment decisions
y = {ytk | k = 1, . . . ,K, t = τ, . . . , N}. Namely,

xtk = u[k, t, τ − 1] x̂τ−1k + u[k, t, τ ]σ̂τ +

t∑
j=τ+1

u[k, t, j]σj , (8)

where u =
{
u[k, t, j]

}
are new binary variables uniquely determining locations of the servers defined

as

u[k, t, j] = yjk ·
t∏

i=j+1

(1− yik), k = 1, . . . ,K, t = τ − 1, . . . , N, j = τ − 1, . . . , t. (9)
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For any time-step t, the server k can be in one of the following t− τ + 2 locations: x̂τ−1k , σ̂τ or σj
(for j = τ + 1, . . . t). Hence, the binary indicators u must satisfy the following constraint:

t∑
j=τ−1

u[k, t, j] = 1.

To see this let us consider all possible options. If the server k was not assigned to any of the requests
στ , . . . , σt, then it is at its initial location x̂τ−1k , corresponding in (8) to the case u[k, t, τ − 1] = 1.
If the last time the server k was assigned to a request was j (for some j ∈ {τ, . . . , t}), and was not
assigned to any of the subsequent requests σj+1, . . . , σt, then at time-step t it is at the location
of request σj , corresponding to the case u[k, t, j] = 1. We add auxiliary variables yτ−1k := 1 (for
k = 1, . . . ,K) to make definition (9) correct when j = τ − 1.

We also substitute the change of location of the server k at time-step t ∈ {τ, . . . , N} (previously
expressed as xtk − x

t−1
k in (5) and (6)) by a new expression dtk defined as follows:

dtk(u,σ) =
(
u[k, t, τ − 1]− u[k, t− 1, τ − 1]

)
x̂τ−1k +

(
u[k, t, τ ]− u[k, t− 1, τ ]

)
σ̂τ+

+

t∑
j=τ+1

(
u[k, t, j]− u[k, t− 1, j]

)
σj . (10)

Expression (10) depends on allocation decisions u and uncertain parameters σ, and is derived from
the change of variables (8). Hence, in the RO-based algorithm framework, we solve the following
formulation (11) at each time-step τ (for 1 ≤ τ ≤ N):

min
y,v,u

K∑
k=1

N∑
t=τ

vtk (11a)

s.t. For k = 1, . . . ,K; t = τ, . . . , N :

vtk ≥ dtk(u,σ), ∀σ ∈ U (11b)

vtk ≥ −dtk(u,σ), ∀σ ∈ U (11c)

u[k, t, j] ≤ yjk, j = τ − 1, . . . , t (11d)

u[k, t, j] ≤ 1− yik, j = τ − 1, . . . , t, i = j + 1, . . . , t (11e)

u[k, t, j] ≥ yjk +

t∑
i=j+1

(1− yik)− (1 + (t− j)− 1),

j = τ − 1, . . . , t (11f)

t∑
j=τ−1

u[k, t, j] = 1 (11g)

0 ≤ u[k, t, j] ≤ 1, j = τ − 1, . . . , t (11h)

u[k, t, j] = 0, j = t+ 1, . . . , N (11i)

ytk ∈ {0, 1}
yτ−1k = 1; u[k, τ − 1, τ − 1] = 1, k = 1, . . . ,K (11j)
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K∑
k=1

ytk ≥ 1, t = τ, . . . , N. (11k)

The objective function (11a) is to minimize the total distance traveled as defined by constraints
(11b)-(11c) and expressions (10). Given that each variable u[k, t, j] is a product of binary variables
(9), inequalities (11d)-(11f) characterize the linear representation of variables u. Identity (11g)
states that server k at time-step t must be in exactly one of possible locations indexed by j =
τ − 1, . . . , t. Constraints (11i), (11j) define initial values of variables, while inequalities (11k)
guarantee that we assign at least one server for each request.

The formulation (11) includes the uncertain parameters σ only in the first two groups of inequal-
ities describing the feasible set. As such, it is a regular robust mixed integer linear optimization
problem and has been shown to be computationally tractable by virtue of standard duality tech-
niques (Bertsimas et al., 2011). We solve the RO problem (11), observe an optimal solution y∗ and
assign the server k at time-step τ to the request σ̂τ , if (yτk)∗ = 1.

Similarly to the idea of the truncated w-WFA method defined in (3), we introduce a new
parameter T for the RO formulation, which controls (and fixes) the number of subsequent time
periods taken into consideration. That is, in order to make a decision at time-step τ , we consider
the uncertainty set U associated to the next T requests (στ+1, . . . , στ+T ) only, as opposed to all
remaining N − τ requests (στ+1, . . . , σN ). The truncated version of the RO formulation with
parameter T (that we denote as RO(T )) has an identical form (11) with the only difference in the
limits for time index t. For RO(T ) algorithm, we substitute t = τ, . . . , N with t = τ, . . . ,min(τ +
T,N), where the new upper bound on time index guarantees that t is always less or equal than the
problem time horizon N .

3.2. Affinely adaptive robust formulation

In this subsection, we develop an online algorithm for the K-server problem based on an affinely
adaptive robust optimization (AARO) approach, which is a natural extension to the robust for-
mulation (11). AARO is a simple, but efficient methodology for solving multiperiod optimization
problems that was first suggested by Ben-Tal et al. (2004) and proven to yield less conservative
solutions compared to the robust optimization approach in a computationally tractable way.

The motivation for designing an AARO extension to our case is twofold. First, the K-server
problem is by definition a multiperiod optimization problem, justifying a natural split of variables
into two groups: non-adaptive here-and-now decisions that should be implemented before uncer-
tain parameters σ are realized, and adaptive wait-and-see variables that can be determined after
realization of the uncertain locations of future requests. Second, when the uncertainty set U is
not very restrictive and does not provide a lot of information about positions of future requests,
consideration of the worst-case scenario (which is intrinsic to robust optimization perspective) may
lead to risk-averse and therefore potentially suboptimal solutions. The AARO approach addresses
both of these issues.

Following the idea behind AARO (Ben-Tal et al., 2004), we increase the adaptability of the
model by assuming that variables ytk are affine functions of the uncertainty. More precisely, at
time-step τ ∈ {1, . . . , N} we set

ytk = β[k, t, τ ] +

t∑
p=τ+1

β[k, t, p]σp, k = 1, . . . ,K, t = τ, . . . N, (12)
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where β =
{
β[k, t, p]

}
become new decision variables replacing variables y. We do keep here-and-

now decisions (previously modeled by yτk , k = 1, . . . ,K) as binary variables by imposing

β[k, τ, τ ] ∈ {0, 1}, k = 1, . . . ,K,

while wait-and-see decisions (modeled by ytk, for k = 1, . . . ,K, t = τ + 1, . . . , N) are relaxed to
be continuous variables 0 ≤ ytk ≤ 1 for t = τ + 1, . . . , N, and interpreted as probabilities that at
time-step t the server k will be assigned to request σt. The auxiliary variables u,v from formulation
(11) remain unchanged. (It is worth mentioning that variables vtk can be also substituted by affine
expressions similar to Eq. (12). We tested performance of the extended methods AARO and HARO
empirically and observed its marginal improvement. Hence, we do not adopt this extension in the
definition of the AARO algorithm.)

In the online AARO algorithm framework, we solve one instance of the problem (13) at each
time-step τ (for 1 ≤ τ ≤ N). It is a standard mixed integer linear robust optimization problem
obtained from formulation (11) by substituting variables ytk according to formula (12) as follows:

min
β,u,v

K∑
k=1

N∑
t=τ

vtk

s.t. For k = 1, . . . ,K; t = τ, . . . , N :

vtk ≥ dtk(u,σ), ∀σ ∈ U
vtk ≥ −dtk(u,σ), ∀σ ∈ U

u[k, t, j] ≤ β[k, j, τ ] +

j∑
p=τ+1

β[k, j, p]σp, j = τ − 1, . . . , t, ∀σ ∈ U

u[k, t, j] ≤ 1−
(
β[k, i, τ ] +

i∑
p=τ+1

β[k, i, p]σp

)
,

j = τ − 1, . . . , t, i = j + 1, . . . , t, ∀σ ∈ U

u[k, t, j] ≥
(
β[k, j, τ ] +

j∑
p=τ+1

β[k, j, p]σp

)
+ (13)

+

t∑
i=j+1

(
1− (β[k, i, τ ] +

i∑
p=τ+1

β[k, i, p]σp)
)
− (1 + (t− j)− 1),

j = τ − 1, . . . , t, ∀σ ∈ U
0 ≤ u[k, t, j] ≤ 1, j = τ − 1, . . . , t

t∑
j=τ−1

u[k, t, j] = 1

K∑
k=1

(
β[k, t, τ ] +

t∑
p=τ+1

β[k, t, p]σp

)
≥ 1, t = τ, . . . , N, ∀σ ∈ U

0 ≤ β[k, t, τ ] +

t∑
p=τ+1

β[k, t, p]σp ≤ 1, t = τ + 1, . . . , N, k = 1, . . . ,K, ∀σ ∈ U
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β[k, τ, τ ] ∈ {0, 1}, k = 1, . . . ,K

u[k, τ − 1, τ − 1] = 1; β[k, τ − 1, τ ] = 1, k = 1, . . . ,K.

The resulting optimization problem (13) is a relaxation of the robust counterpart (11), since prod-
ucts of binary variables y defining u[k, t, j] in (9) are now approximated by the corresponding affine
expressions in terms of continuous variables β, rather than binary variables y (12). However, since
we still have constraints (11g) and (11h) in fromulation (13), we now can treat variables u[k, t, j]
as probabilities. The last group of constraints in (13) replaces the convention yτ−1k = 1 used in
formulation (11).

The optimization problem (13) yields an optimal solution β∗ that uniquely identifies the optimal
server assignment at the current time-step τ . Namely, if β∗[k, τ, τ ] = 1 for some k ∈ {1, . . . ,K},
then the server k is assigned to the request στ . It is worth mentioning that potentially fractional
future assignment decisions ytk for t = τ + 1, . . . , N (modeled by affine expressions (12)) are not
intended to be implemented in practice, since at each time-step τ we update the input data and
resolve the optimization formulation (13). Fractional wait-and-see decisions are needed only to
model a total future cumulative distance traveled by the servers.

The truncated problem formulation AARO(T ) is defined similarly to RO(T ) as described in
Section 3.1, that is, at time-step τ we restrict the number of time periods in the optimization
problem (13) from t = τ, . . . , N to t = τ, . . . ,min(τ + T,N).

Let us denote the feasible set in formulation (13) with up to T future time periods (t =
τ, . . . ,min(τ + T,N)) by F(τ, T, x̂τ−1,K,N,U), where paramaters τ, T, x̂τ−1,K,N,U uniquely de-
termine the optimization problem (13). In this case, a short representation of the AARO(T ) problem
(13) that we will use in subsequent sections is as follows:

min
β,u,v

K∑
k=1

N∑
t=τ

vtk

s.t. β,u,v ∈ F(τ, T, x̂τ−1,K,N,U).

(14)

4. Holistic adaptive robust optimization algorithm

Both the WFA and AARO approaches for the K-server problem have their own merits. The
main idea behind the design of the WFA is to reconsider past decisions in order to help find a high-
quality assignment for the current one. On the other hand, the AARO method exploits information
about future requests using uncertainty set in order to improve the current decision. The main
purpose of this section is to introduce a new holistic method for solving multiperiod optimization
problems which simultaneously incorporates information from the past and assumptions about
the future. This holistic adaptive robust optimization (HARO) approach is a combination of the
WFA method (involving past observations) and the AARO method (modeling future uncertainty
in adaptive manner by means of robust optimization).

The HARO approach can be seen as a natural extension of WFA in the following way. The
basic definition of WFA contains a “greedy” term:

d(x̂τ−1k , σ̂τ ) in definition (2), or equivalently
K∑
k=1

yτk · d(x̂τ−1k , σ̂τ ) in formulation (6),

which contains only information about the location of the current request σ̂τ and provides the
distance that server will travel at the current time-step τ . Within the HARO framework, the un-
certainty set U now contains additional information about future requests σ (not available before),
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and it is now possible to augment this “greedy” term. Instead of describing only one immediate
time period, the “greedy” term is replaced by an expression giving an uncertain cumulative distance
traveled by all servers during the next N − τ stages indexed by t = τ + 1, . . . , N .

At each time-step τ (for 1 ≤ τ ≤ N), an optimal assignment k∗ generated by the HARO
algorithm is now defined as follows:

k∗ = arg min
k=1,...,K

{
COPT (x̂0, σ̂1, . . . , σ̂τ , x̂

τ (k)) + d(x̂τ−1k , σ̂τ )+

+ CAARO
(
(στ+1, . . . , σN ) ∈ U ; x̂τ (k)

)}
, (15)

where the first two terms are identical to the definition in WFA (2). The last term

CAARO
(
(στ+1, ..., σN ) ∈ U ; x̂τ (k)

)
=

K∑
k′=1

N∑
t=τ+1

(vtk′)
∗

represents the total distance that servers will travel over the next N−τ time-steps (t = τ+1, . . . , N)
according to the optimal solution v∗ of the AARO method from Section 3.2 if at time-step τ we
assign server k (what described by configuration x̂τ (k)). The last time-step of WFA (indexed by
τ in (2)) and the first time-step of AARO (indexed by τ in (13) as well) now both simultaneously
represent the current time-step of the multiperiod optimization problem (15). This is the only
time-step where time periods of WFA and AARO formulations overlap.

Let us define the HARO(w, T ) method as a combination of the w-WFA and AARO(T ) methods.
More specifically, we formulate HARO(w, T ) as a mixed binary optimization model with w+T + 1
time-steps, where the WFA block has w periods, the AARO block has T periods, and the current
time-step has index τ . In order to solve one stage of the HARO(w, T ) problem at time-step τ we
need the following input data:

1. The previous request locations: σ̂max(τ−w,1), . . . , σ̂τ , where σ̂τ is the position of the current
request to be served. The definition of the first time index t = max(τ −w, 1) guarantees that
it is always greater or equal than 1.

2. The current configuration of the system, that is, vector x̂τ−1 = (x̂τ−11 , . . . , x̂τ−1K ) of server
locations at the end of previous time-step t = τ − 1.

3. The configuration of the system at the end of time-step t = max(τ −w− 1, 0), that is, vector
x̂max(τ−w−1,0) representing the starting configuration of the WFA block.

4. The description of the uncertainty set U of the form (7) for up to T future request locations
(στ+1, . . . , σmin(τ+T,N)).

In the HARO(w, T ) online framework, at each time-step τ (for 1 ≤ τ ≤ N) we solve the formulation
(16), which is by construction a combination of the w-WFA and AARO(T ) formulations:

min
x,y,z
β,u,v

K∑
k=1

τ∑
t=max(τ−w,1)

vtk +

K∑
k=1

yτk · d(x̂τ−1k , σ̂τ ) +

K∑
k=1

min(τ+T,N)∑
t=τ+1

vtk

s.t. For k = 1, . . . ,K :

vtk ≥ xtk − xt−1k , t = max(τ − w, 1), . . . , τ

vtk ≥ −(xtk − xt−1k ), t = max(τ − w, 1), . . . , τ

13



xtk = xt−1k + ytk σ̂t − ztk, t = max(τ − w, 1), . . . , τ − 1

x
max(τ−w,1)
k = x̂

max(τ−w−1,0)
k + y

max(τ−w,1)
k (σ̂max(τ−w,1) − x̂

max(τ−w−1,0)
k ) (16a)

xτk = x̂τ−1k + yτk (σ̂τ − x̂τ−1k ) (16b)

ztk ≤ ytk, t = max(τ − w, 1), . . . , τ − 1

ztk ≤ xt−1k , t = max(τ − w, 1), . . . , τ − 1

ztk ≥ ytk + xt−1k − 1, t = max(τ − w, 1), . . . , τ − 1

yτk = β[k, τ, τ ] (16c)

0 ≤ xtk, ztk ≤ 1, ytk ∈ {0, 1}, t = max(τ − w, 1), . . . , τ

K∑
k=1

ytk = 1, t = max(τ − w, 1), . . . , τ − 1

β,u,v ∈ F(τ, T, x̂τ−1,K,N,U). (16d)

The formulation (16) has a similar structure as the formulation (6) which represented the WFA
method. Equations (16a) and (16b) fix configurations of the system at time-steps t = max(τ −w−
1, 0) and t = τ − 1, respectively, as required by the w-WFA definition. The most important binary
assignment variables for the current time-step t = τ are modeled by yτk and β[k, τ, τ ], k = 1, . . . ,K
in the WFA and AARO blocks, respectively. These decision variables are consistent with each other
due to equations (16c). The last group of constraints (16d) duplicates the AARO(T ) block (14)
complementing the MIO formulation of the HARO(w, T ) algorithm.

The HARO approach is a computationally tractable method that is stable with respect to errors
in the uncertainty set. As we will see in Section 7 where we present numerical experiments, the
HARO framework demonstrates superior performance in terms of objective value as opposed to the
existing online algorithms and the adaptive algorithms under uncertainty (RO, AARO).

In this paper we concentrate on empirical competitive ratio (defined in Section 7) of RO-based
methods rather than a theoretical one (1) for several reasons that distinguish a classical setting for
competitive ratio analysis of online algorithms from a setting that we designed HARO algorithm for.
First, all presented RO-based algorithms by design have access to approximate locations of future
requests, while the key idea of competitive ratio analysis is to measure the price of not knowing the
future. Second, in the RO setting by selecting an uncertainty set (and particularly its size) we can
control the level of robustness of the server assignments or, equivalently, control the power of model
adversary that selects the future realizations of requests. Finally, holistic HARO(w,T ) algorithm
is partially build upon non-competitive w-WFA method that despite the absence of theoretical
guarantees is still known to generate efficient assignment recommendations in practical settings
(Baumgartner et al., 2012).

5. Generalizations of the K-server problem and HARO algorithm

In the previous sections, we have considered the simplest version of the K-server problem on a
one-dimensional continuous metric space in order to introduce our proposed mixed integer, robust
and adaptive optimization approaches. In this section, we discuss extensions of the basic formulation
of the K-server problem to more general settings.
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Multidimensional continuous metric space

If the metric space is the unit cube of dimension D ≥ 2, S = [0, 1]D, then all requests σ and
server locations x become vectors of dimension D and we can adjust the dynamics equation (4b)
as follows:

xtk,d = xt−1k,d + ytk(σt,d − xt−1k,d ), d = 1, . . . , D.

If the distance between points in the metric space S is induced by the first norm ‖ · ‖1 or infinity
norm ‖ · ‖∞, then all previous formulations (OPT, WFA, RO, AARO, HARO) remain linear and
have almost identical form as before. The only difference is that now we introduce variables vtk,d =

|xtk,d − x
t−1
k,d | for d = 1, . . . , D, replacing the one-dimensional counterparts vtk used when D = 1.

Moreover, for the case of the infinity norm ‖ · ‖∞, the distance traveled by all servers at time-step
t = 1, . . . , N , vt, can be expressed using inequalities

vt ≥ vtk,d, k = 1, . . . ,K, d = 1, . . . , D,

instead of a sum vt =
K∑
k=1

D∑
d=1

vtk,d, as is the case for the first norm ‖ · ‖1.

Finite metric space

We consider the setting when the metric space S consists of a finite number of fixed points
{αl | l = 1, . . . , L} ⊂ [ 0, 1]D, where D is the dimension of the embedding Euclidean space. In this
setting, we replace the previously considered uncertain parameters σ = (στ+1, . . . , σN ) (representing
the positions of requests) with new uncertain parameters ν = { νtl | t = τ + 1, . . . , N, l = 1, . . . , L}
defined as follows:

νtl =

{
1, if request σt is at location αl,

0, otherwise.
(17)

The connection between the old and new uncertain parameters is given by a linear equation

σt,d =

L∑
l=1

αl,d · νtl , t = τ + 1, . . . , N, d = 1, . . . , D. (18)

Hence, in case of a finite metric space equipped with distance d(x, y) = ‖x−y‖1 or d(x, y) = ‖x−y‖∞
the HARO algorithm for the K-server problem can be modeled similarly to (16) using the linear
change of variables (18). The only difference is that now a polyhedral uncertainty set should be
expressed in terms of the parameters ν, rather than σ, in the following way:

Uν = {Aνν ≤ bν , ν ≥ 0}, (19)

where the new parameters ν are supposed to be binary variables. We relax this integrality assump-
tion and consider 0 ≤ νtl ≤ 1 in order to use the same duality methodology as in (11), (13) and
(16). In this setting, we treat the uncertain parameters νtl as probabilities Pr(σt = αl) that request
σt is located at location αl.
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Weighted HARO algorithm

Burley (1996) introduced generalized WFA that can be parametrized by a weighting scalar of
the work function. The author demonstrated that carefully tuned weight may lead to a better
performance and a lower competitive ratio of WFA in some settings. Developing this idea, it is
possible to consider a weighted counterpart of the HARO method:

k∗ = arg min
k=1,...,K

{
COPT (x̂0, σ̂1, . . . , σ̂τ , x̂

τ (k)) + d(x̂τ−1k , σ̂τ )+

+ λ · CAARO
(
(στ+1, . . . , σN ) ∈ U ; x̂τ (k)

)}
, (20)

where a higher weight λ > 1 in front of CAARO term can be chosen if the quality of information
about the future requests is high. Indeed, the more precise information about the future requests
we have, the more emphasis we should put on minimization of the CAARO term in (20) while,
respectively, the past WFA block becomes less significant. In a limit, when parameter λ is very
high, and we know locations of future requests exactly, we can completely ignore the WFA term
and fully concentrate on minimization of the CAARO block (this setting by construction will be
identical to offline formulation (5)).

6. Construction of uncertainty sets

In this section, we describe simple polyhedral uncertainty sets as examples of sets that can
be effectively used in practice with HARO method. These examples present one possible way to
measure different levels of available information about future requests. We will use this “varying
information level” scale to empirically demonstrate in Section 7 that the performance of all RO-
based methods (RO, AARO and HARO) improves as more information becomes available.

In order to quantify the amount of available information about a future request σ̄, we simply
use a metric-based notion of neighborhood N (σ̄, r), defined as the ball centered around the true
location of the request and of radius r, that is,

N (σ̄, r) = {x ∈ S | d(x, σ̄) ≤ r},

where d(·, ·) is a chosen distance of the metric space. For the case of continuous metric space
S = [0, 1]D with the uniform norm ‖ · ‖∞ and radius r ≥ 0, we have

N (σ̄, r) = {x ∈ S | ‖x− σ̄‖∞ ≤ r}.

In the context of a finite metric space, the neighborhoodN (σ̄, r) with integral radius r ∈ {1, . . . , |S|}
consists of r closest neighbors to the point σ̄ including itself.

Having specified the notion of the neighborhood, one may now consider the following family of
uncertainty sets at any given time-step τ :

Uτ (T, r) = {(στ+1, . . . , στ+T ) |σt ∈ N (σ̂t, r), t = τ + 1, . . . , τ + T}, (21)

where T denotes time horizon and {σ̂t | t = τ + 1, . . . , τ + T} are true locations of future requests.
Generally speaking, we do not know the exact locations of T future requests {σ̂t | t = τ+1, . . . , τ+T},
but only their surrounding neighborhoods of radius r. In this case, the parameter r measures how
precise the information is. Moreover, for both cases of continuous and finite metric spaces, the
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uncertainty set Uτ (T, r) can be represented as a bounded polyhedron of the form (7) or (19),
expressed in terms of σ or ν, respectively.

In the next section, we use uncertainty sets of type (21) in order to show the increasing advantage
of the HARO method as the amount of available information grows. At the same time, other types
of polyhedral uncertainty sets describing future requests are also possible. One possible example is
a Central Limit Theorem-motivated set defined as

U =
{

(στ+1, . . . , στ+T ) |
∣∣∣∑τ+T

t=τ+1 σt − µ̄
s̄
√
T

∣∣∣ ≤ Γ
}
,

where µ̄ and s̄ denote empirical mean and standard deviation of requests σ, respectively, and Γ is a
predefined level of robustness (Bertsimas et al., 2011). In case of a finite metric space, parameters
ν defined in (17) allow a practitioner to incorporate information about the distribution of future
requests. For instance, inequalities

ρ ≤
∑

l:αl∈S0

νtl ≤ ρ̄

state that at time-step t probability that request σt will emerge somewhere in a subset S0 ⊂ S is
bounded by pre-specified parameters ρ and ρ̄. For more complex (and potentially non-polyhedral)
settings with correlated or multimodal distributions of uncertain parameters we refer an interested
reader to extensive practical guides for data-driven uncertainty sets suggested by Bandi & Bertsimas
(2012); Bertsimas et al. (2018); Hanasusanto et al. (2015).

7. Numerical experiments

In this section, we provide empirical evidence that the HARO method (16) designed in Section 4
for the K-server problem is computationally tractable, and almost uniformly outperforms existing
online methods, as well as adaptive optimization methods. We show that the HARO algorithm
gradually improves as more information about the future requests becomes available, and that it is
stable with respect to possible mistakes in the assumptions about uncertain request locations.

TheK-server problem as well as the proposed HARO method are characterized by many different
parameters and performance metrics. The most significant ones are:

- The underlying metric space S (continuous or finite) with distance metric d;
- The number of servers K and their initial locations x0 in S;
- The distribution of requests (uniform or non-uniform) in space S;
- The number of locations L in case of finite metric space S;
- The length of the WFA optimization window w and the AARO optimization window T in the

definition of the HARO(w, T ) method;
- The uncertainty set U describing future requests;
- The computational time required to find high-quality solutions.
The benchmark method in all our experiments is the optimal offline algorithm OPT. We imple-

mented OPT and WFA as network flow problems according to Rudec et al. (2013). Of all heuristic
online algorithms presented in Section 2.1, only results for GREEDY and WFA are reported, since
the rest of the methods (RAND, HARMONIC, BALANCE) resulted in all of our experiments in
worse objective values. We coded all algorithms in Julia/JuMP (Lubin & Dunning, 2015) and
solved them with Gurobi 6.5 on a computer with 2.5Hz processor and 16GB of memory.
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Figure 1: Typical convergence rate of the empirical competitive ratios zA,1 (for one instance i = 1)
and z̄A (average across I = 10 instances) with respect to N . Experiment description: S = [0, 1]2,
K = 5, T = 5, w = 10, U is defined by (23) with n = 5, distribution of requests is uniform.

In all experiments, we run I = 10 instances (indexed by i), each of which is determined by a
vector of initial server locations x0,i and by a sequence of requests σi with a fixed length of N = 1000
time-steps. Parameters in the HARO(w, T ) method vary from 10 to 30 for w, and from 5 to 15 for T .
Each method A that we test (OPT, GREEDY, WFA, RO(T ), AARO(T ), HARO(w, T )) generates
a sequence of server assignments y∗A,i = (y∗1 , . . . , y

∗
N ) that depends on instance i = 1, . . . , I. Having

obtained a sequence y∗A,i, one can calculate the total distance CA(x0,i, σi) traveled by all servers.
In all experiments, we report the average empirical competitive ratio z̄A as the performance metric
of algorithm A:

z̄A =
1

I

I∑
i=1

zA,i, where zA,i =
CA(x0,i, σi)

COPT (x0,i, σi)
. (22)

The optimal algorithm OPT (modeled by a single optimization formulation (5) for all N = 1000
requests) knows precisely the sequence of all future requests σ̂ = (σ̂1, . . . , σ̂N ). Online heuristic
algorithms GREEDY and WFA do not use information about future requests by construction.
RO-based algorithms (RO(T ), AARO(T ), HARO(w, T )) have access to approximate locations of
the next T requests. The approximation comes in a form of the Cartesian product of confidence
intervals centered around true locations (denoted by σ̂τ+1, . . . , σ̂τ+T ) and is modeled by uncertainty
sets of type (21).

The length of the request sequence N = 1000 and the number of test instances I = 10 were
empirically proved to be sufficient to statistically differentiate the behavior of the six methods
considered in our experiments. The typical convergence rate of the empirical competitive ratios
zA,1 and z̄A (22) with respect to the length N is presented in Figure 1.

The metric space S is either [0, 1]2 for the continuous case, or a set of L randomly generated
points in [0, 1]2 for the discrete case. The distance between locations is calculated using the metric
d(x, y) = ‖x − y‖1. The vector of initial locations for the servers x0 is generated uniformly at
random. By default, the uncertainty sets Uτ (T, r) (21) do not include possible errors and the
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points σ̂t, t = τ + 1, . . . , τ + T represent the true locations of the future requests.
In case of the continuous metric space S, we test the performance of each RO-based algorithm

with the same sequence of requests σ̂ = (σ̂1, . . . , σ̂1000), but different levels of information that is
available about the next T requests. We model this varying level of information by the uncertainty
sets Uτ (T, 1

n ), for n = 1, . . . , 10. For any fixed value of n, the decision maker knows that the next
T uncertain requests σt belong to the corresponding intervals of type

σ̂t −
1

n
≤ σt ≤ σ̂t +

1

n
. (23)

In the context of finite metric space S, for each instance i = 1 . . . I we run all online algorithms
12 times with identical sequence of requests σ̂i = (σ̂i1, . . . , σ̂

i
1000), but with gradually increasing

amount of information represented by uncertainty sets

Uτ

(
T, dL

(
1− n− 1

12

)
e
)
.

Generally speaking, for any given t = τ +1, . . . , τ +T , parameter n = 1, . . . , 12 controls the number
of neighboring locations that contain a true (but uncertain) location σ̂t. The units of parameter n
are different in two cases. In the setting of a continuous metric space, n is a measure of distance in
this space induced by the norm ‖ · ‖1, while for discrete setting, n is a fraction of a total number of
locations. However, the range of parameter n in both settings is similar (1 ≤ n ≤ 10 or 1 ≤ n ≤ 12)
by design and the larger values of n correspond to more precise information about the future
requests. In both cases, the case of n = 1 corresponds to the scenario when there is no information
available about the future requests and these requests can appear anywhere in the metric space.

In our experiments, we consider three types of request distributions over space S. The uniform
distribution models scenario when requests appear in different locations of S with equal probability.
The non-uniform distribution is defined as follows. When S = [0, 1]2, we consider a right top
quadrant of the square S̄ = {(x, y) | 0.5 ≤ x, y ≤ 1} ⊂ S and generate 50% of all requests in S̄
(permuted randomly), and the remaining 50% of requests are sampled outside this subset S̄. In case
of finite metric space S, we first randomly select 25% of locations L and then again assign 50% of
all requests to the specified subset of points S̄. Finally, we define distribution with remote locations
for the case of continuous metric space S = [0, 1]2 as follows. With probability 90%, a request is
generated uniformly at random in a central subset S̄ = [0.35, 0.65]2 ⊂ S , and with equal probability
5%, a request is generated either at the remote corner (0, 0) or (1, 1). This setting is inspired by
examples of special types of metric spaces (Rudec et al., 2013) demonstrating non-competitiveness
of GREEDY algorithm and advantages of WFA method when distribution of requests is highly
non-uniform.

In the next Sections 7.1 - 7.4, we conduct numerical experiments to empirically answer the
following questions. Does the HARO method generate more efficient solutions than other server
assignment algorithms? (Section 7.1) How stable the HARO method is with respect to potential
noise or errors in the description of the future modeled by the uncertainty set? (Section 7.2) How
does the performance of the HARO(w, T ) method change with respect to parameters w and T?
(Section 7.3) Does the HARO method preserve its strong performance across various scenarios
defined by the number of servers and locations and the distribution of requests? (Section 7.4)

7.1. Performance of the methods

In this experiment, we demonstrate that the HARO(w, T ) method outperforms the best existing
online algorithms (GREEDY, WFA) and adaptive methods (RO(T ), AARO(T )) in terms of the
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empirical competitive ratio z̄A for almost all tested levels of information about the future. We con-
sider several different scenarios: when the metric space S is continuous or finite, when distribution
of requests is uniform or not, and when there are remote locations in the space or not, as defined
in the beginning of this section.

Other parameters of the experiment are: T = 5, w = 20, K = 7, and L = 25 (when space S
is finite). Given that N = 1000 and I = 10 are large enough, we report the performance results
based on I realizations of the sequences σ̂i = (σ̂i1, . . . , σ̂

i
1000) that yield an accurate estimation of

the performance metric z̄A. The simulation results (most of which are visualized in Figure 2 and 3)
infer the following conclusions:

1. All three proposed methods (RO(T ), AARO(T ), HARO(w, T )) improve as the amount of
available information measured by parameter n grows. The performance of online heuristic
GREEDY and WFA by construction does not depend on n what can be seen in Figure 2.

2. In all five scenarios, the asymptotic empirical competitive ratio of the RO-based methods
is approximately the same, and it is between 1.08 and 1.16 depending on the particular
experiment. This level is strictly greater than 1, because even for large values of information
precision n, our model incorporates information only about the next T = 5 requests.

3. For small values of n, RO(T ) method yields solutions that are too conservative with worse
objective values. It illustrates the situation when there is almost no information about the
next T requests, and RO(T ) tries to find server assignments against the worst-case scenario.
The AARO(T ) method has a slightly better performance than RO(T ) for small values of n,
but after some point RO(T ) and AARO(T ) results are almost indistinguishable.

4. The HARO(w, T ) algorithm, as a combination of stable w-WFA and adaptive AARO(T )
methods, does not have high empirical competitive ratios for small values of n and at the
same time improves with increasing of the available information. In most of the cases, even
for large values of n, HARO(w, T ) method outperforms AARO(T ) algorithm. In case when
there is no information about next T requests (n = 1), the HARO(w, T ) method with selected
type of uncertainty set is as efficient as online algorithms GREEDY and WFA.

5. In case of the finite metric space S, AARO(T ) requires more information (compared to the
case of continuous S) in order to approach the quality of existing methods GREEDY and
WFA. This is why the benefit of the HARO(w, T ) algorithm over AARO(T ) becomes more
pronounced for finite spaces.

6. The average run time of one step of HARO(w, T ) algorithm is 2.35 s when S is continuous
and 4.11 s when S is finite.

In addition, we tested a setting with a highly non-uniform request distribution in the continuous
metric space S with remote locations. By construction, the locations of five out of K = 7 servers
were generated uniformly at random inside the central subset S̄, while the remaining two servers
were initially positioned in opposite corners (0, 0) and (1, 1). In this setting, GREEDY algorithm
never assigns a corner server to a request in the central part S̄, despite the fact that vast majority
of requests emerge in S̄. The WFA method, on contrary, quickly learns from historical observations
that it is beneficial for minimization of a total distance traveled by all servers to move a corner
server to S̄. By design, the HARO method also takes into account past request observations and
inherits this positive property of the WFA method (Fig. 3).

Overall, the empirical performance of the HARO(w, T ) algorithm is the best out of all considered
methods (GREEDY, WFA, RO(T ), AARO(T )) for most of the information levels n, characteristics
of the metric space and the distribution of requests.
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(c) S is continuous; non-uniform distribution of σ
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Figure 2: Empirical performance of online algorithms

7.2. Sensitivity of the HARO approach with respect to noise

The second experiment demonstrates the stability of the HARO(w, T ) algorithm with respect
to noise in the description of the uncertainty sets Uτ (T, r). More precisely, we introduce a new
parameter µ which is equal to the probability that the true location of future request σ̂t is mistakenly
replaced with some random point σ̃t(µ) in S, for t = τ+1, . . . , τ+T . That is, we define the perturbed
version of the uncertainty set as follows:

Ũµτ (T, r) =
{

(στ+1, . . . , στ+T ) |σt ∈ N
(
σ̃t(µ), r

)
, t = τ + 1, . . . , τ + T

}
,

where for each t = τ + 1, . . . , τ + T the perturbed request σ̃t(µ) is defined by

σ̃t(µ) =

{
σ̂t, with probability 1− µ,
αl, with probability µ, for some randomly chosen l ∈ {1, . . . , L}.

For this experiment we select the finite space S with L = 30 locations and a uniform distribution
of requests σ̂. We fix the level of available information n = 4, and set parameters I = 10, K = 10,
N = 7, w = 15. From Figure 4 we infer that when the distortion probability µ = 0 and, therefore,
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Figure 3: Performance of the algorithms in a setting with remote locations.
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Figure 4: Performance of the HARO method with perturbed sets Ũµ.

there are no errors in provided information, then the HARO(w, T ) method performs significantly
better than GREEDY and WFA. Obviously, the mistakes in uncertainty set Ũµτ (T, r) aggravate the
efficiency of the HARO(w, T ) algorithm, but deterioration of the method performance is slow. The
HARO(w, T ) method starts to perform at the level of the best existing online algorithm when the
probability of distortion µ is greater than 35% for each of the time-steps t = τ + 1, . . . , τ + T .

We also tested HARO(w, T ) algorithm with assymetric uncertainty sets Uτ (T, r), when the true
location of request σ̂t was not necessarily in the middle of the uncertainty interval as in Eq. (23),
but rather just a random point of an interval of length 2

n :

σ̂t − (1− θt)
2

n
≤ σt ≤ σ̂t + θt

2

n
,

where parameters θt were generated uniformly at random between 0 and 1. This pivot in the
definition of the uncertainty sets did not observably change the performance of the HARO(w, T )
method presented in Figure 2 - 4.
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Table 1: Average time needed to find an optimal assignment for one time-step of the HARO(w, T )
method.

T = 5 T = 10 T = 15
w = 10 1.21 s 6.75 s 10.52 s
w = 20 2.2 s 17.96 s 28.4 s
w = 30 5.17 s 27.33 s 43.97 s

7.3. Sensitivity of the HARO approach with respect to the number of time-steps

In this experiment, we demonstrate the influence of parameters w and T on the performance
of the HARO(w, T ) method, which are equal to the number of time-steps in WFA and AARO
blocks, respectively. Typically, performance of the HARO(w, T ) method remains at least at the
same level and often improves as more information about the future and the past (provided by
larger values of w and T ) is incorporated to the formulation. However, we also discuss a trade-off
between the efficiency of the HARO(w, T ) algorithm and the computational time needed to find
optimal assignments.

We consider continuous metric space S with K = 5 servers with a uniform distribution of
requests and standard uncertainty sets (21). Computational results presented in Figure 5 imply
that for any fixed value of T increasing the window size w often improves the performance of the
HARO(w, T ) algorithm, particularly for medium values of information level 4 ≤ n ≤ 7. Further-
more, there is a substantial improvement in the efficiency of the HARO(w, T ) algorithm when length
of an adaptive window grows from T = 5 to T = 10. First, when T = 10 the method on average has
a steeper slope for 1 ≤ n ≤ 4, and it converges to lower empirical competitive ratio 1.065, rather
than 1.075 for HARO(w, T ) with T = 5. At the same time, there is no observable change when
parameter T is increased from 10 to 15. Probably, for K = 5 servers knowing the approximate
locations of the next T = 10 requests is already sufficient.

It is worth mentioning, that the vast majority of variables in formulation (16) are auxiliary, and
only vector y∗(τ) = {(yτk)∗ | k = 1, . . . ,K} determines which server k = 1, . . . ,K should be assigned
at the current time-step τ . A typical behavior of the solution progress is that the optimal assignment
values y∗(τ) are obtained by Gurobi solver in seconds and remain unchanged after this, while it
takes from minutes to tens of minutes (depending on the instance size) to optimize over auxiliary
variables and prove the optimality of vector y∗(τ). Table 1 displays average computational times
needed to find the optimal values of binary assignment variables y∗(τ) for each of the variants
of HARO(w, T ) approach. As a result, we infer that the HARO(w, T ) algorithm provides the
decision maker with a high-quality recommendation within seconds for instances of practical size.
(The online algorithms GREEDY and WFA generated assignment recommendations in less than 1
second.)

7.4. Performance of the HARO approach in various settings

In this experiment, we demonstrate a substantial advantage of the HARO(w, T ) algorithm over
existing online methods (GREEDY, WFA) in various scenarios that differ by a number of servers
K, locations L and distribution of requests in space S. In some sense, we extend experiment from
Section 7.1 for finite metric space S to a large number of possible combinations of K and L, but
present results in a more concise form. Instead of reporting a vector of length 12 describing the
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(a) Performance of HARO with T = 5 and w ∈ {10, 20, 30}
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(b) Performance of HARO with T = 10 and w ∈ {10, 20, 30}
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(c) Performance of HARO with T = 15 and w ∈ {10, 20, 30}

Figure 5: Sensitivity of the HARO(w,T ) approach with respect to w and T

performance of the HARO(w, T ) method for various n = 1, . . . , 12, we present in Table 2 and 3 a
scalar which is equal to the average empirical competitive ratio of HARO approach:

HARO (mean) =
1

12

12∑
n=1

Cost of HARO(w, T ) with information level n

Cost of OPT
. (24)

Having fixed optimization window sizes w = 15 and T = 5, and parameter I = 1, we infer from
Monte Carlo simulations that on average empirical competitive ratio of all methods (including
HARO(w, T )) increases when number of servers K grows or number of locations L decreases. The
empirical competitive ratios of the HARO(w, T ) algorithm are higher when the distribution of re-
quests σ̂ is non-uniform (Table 3) for large enough values of L, when compared to the corresponding
experiments with uniformly distributed requests.

In all tested scenarios the HARO(w, T ) algorithm has a similar behavior to one presented in
Section 7.1 and it almost uniformly outperforms existing online methods. The mean advantage
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Table 2: Empirical competitive ratio and average computational time of the methods

(uniform request distribution).
Number of locations, L 15 25 40
Number of servers, K 3 5 10 3 5 10 3 5 10

GREEDY 1.23 1.41 1.58 1.17 1.37 1.55 1.15 1.23 1.33
WFA 1.24 1.43 1.51 1.24 1.45 1.48 1.21 1.27 1.39
HARO (mean) 1.17 1.35 1.40 1.15 1.29 1.31 1.11 1.21 1.30

Aver. comp. time /HARO/ 1.22 s 1.57 s 2.01 s 1.9 s 2.11 s 2.56 s 1.92 s 3.26 s 4.04 s

Table 3: Empirical competitive ratio and average computational time of the methods

(non-uniform request distribution).
Number of locations, L 15 25 40
Number of servers, K 3 5 10 3 5 10 3 5 10

GREEDY 1.18 1.36 1.56 1.32 1.46 1.69 1.26 1.41 1.43
WFA 1.19 1.34 1.39 1.22 1.47 1.67 1.23 1.39 1.44
HARO (mean) 1.15 1.33 1.30 1.16 1.39 1.53 1.16 1.28 1.36

Aver. comp. time /HARO/ 1.17 s 1.58 s 1.82 s 2.03 s 2.64 s 2.56 s 2.1 s 3.4 s 4.13 s

of the HARO(w, T ) method defined in (24) varies from 2% (K = 3, L = 25, Table 2) to 26%
(K = 10, L = 15, Table 3). Average time needed for the HARO method to find the optimal server
assignment (Table 2 and 3) demonstrates the computational tractability of the algorithm for online
applications.

8. Conclusion

In this paper, we have considered the K-server problem from the perspective of mixed integer,
robust and adaptive optimization. We have designed new MIO formulations for the offline version
of the problem and for the online WFA. We have also introduced new algorithms that employ robust
optimization and include into consideration assumptions about future locations of requests.

We have combined ideas behind an efficient online algorithm (WFA) and AARO techniques and
designed a new holistic algorithm (HARO) that simultaneously incorporates data describing the
past and information about the future. We have empirically demonstrated that HARO method is
tractable and almost uniformly yields lower objective cost than existing heuristic algorithms and
standard RO approaches. In most of the settings defined by the level of information about the
future, the metric space structure, the distribution of requests and number of servers, the HARO
algorithm has led to lower empirical competitive ratios than other methods. Finally, we have shown
that the HARO method is stable with respect to potential noise in the uncertainty sets associated
with future requests.
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