Satisficing Models Under Uncertainty

Patrick Jaillet, Sanjay Dominik Jena, Tsan Sheng Ng, Melvyn Sim

*Corresponding author
Business School, National University of Singapore, Singapore 119245, Singapore

P-model, the probability measure

The concept of satisficing, a portmanteau of the terms “satisfy” and “suffice” first introduced by Simon (1959), addresses uncertainty with the aims of achieving feasibility in an uncertain environment. Here, decision makers may be more interested in obtaining solutions that can satisfice the constraints of the problem in some sense, as well as possible. Satisficing as an objective in decision making has mostly been explored from the economic perspective (Güth 2010, Stütgen et al. 2012). Charnes and Cooper (1963) were the first to incorporate the principal idea of satisficing in the mathematical framework of success probability maximization, which has been termed the P-model. In simplified form, the P-model can be stated as

\[
\max \quad \ln P[\tilde{z} \in T(x)] \\
\text{s.t.} \quad x \in \mathcal{X},
\]

where \(x \in \mathcal{X} \subseteq \mathbb{R}^N\) is an \(N\)-dimensional vector of decision variables, \(\tilde{z}\) is a \(K\)-dimensional random vector (under the probability measure \(\mathbb{P}\) and with a distribution of support \(\mathcal{W}\)) representing uncertain perturbations, and

Abstract. Satisficing, as an approach to decision making under uncertainty, aims at achieving solutions that satisfy the problem’s constraints as well as possible. Mathematical optimization problems that are related to this form of decision making include the P-model. In this paper, we propose a general framework of satisficing decision criteria and show a representation termed the S-model, of which the P-model and robust optimization models are special cases. We then focus on the linear optimization case and obtain a tractable probabilistic S-model, termed the T-model, whose objective is a lower bound of the P-model. We show that when probability densities of the uncertainties are log-concave, the T-model can admit a tractable concave objective function. In the case of discrete probability distributions, the T-model is a linear mixed integer optimization problem of moderate dimensions. Our computational experiments on a stochastic maximum coverage problem suggest that the T-model solutions can be highly competitive compared with standard sample average approximation models.

1. Introduction

Uncertainty is ubiquitous in many real-world decision problems. A common approach to deal with uncertainty in an optimization problem is to incorporate attitudes of risk when probability distributions are available or are ambiguous. Such models have been extensively studied in stochastic optimization (Prékopa 1995, 2003; Birge and Louveaux 2011), robust optimization (Ben-Tal and Nemirovski 1999, Bertsimas et al. 2011), and distributionally robust optimization (Delage and Ye 2010, Goh and Sim 2010, Wiesemann et al. 2014). In many practical situations, the goal of the decision maker may not necessarily be to maximize benefits or minimize costs but rather to mitigate a collection of risks such as running over budgets, nonfulfillment of service, and other execution failures for which the negative impacts are hard to quantify. For instance, it is reasonable in a project management problem with uncertain activity completion times to ensure that the project can be completed on schedule and within the allocated budget (Goh and Hall 2013).

The concept of satisficing, a portmanteau of the terms “satisfy” and “suffice” first introduced by Simon (1959), addresses uncertainty with the aims of achieving feasibility in an uncertain environment. Here, decision makers may be more interested in obtaining solutions that can satisfice the constraints of the problem in some sense, as well as possible. Satisficing as an objective in decision making has mostly been explored from the economic perspective (Güth 2010, Stütgen et al. 2012). Charnes and Cooper (1963) were the first to incorporate the principal idea of satisficing in the mathematical framework of success probability maximization, which has been termed the P-model. In simplified form, the P-model can be stated as

\[
\max \quad \ln P[\tilde{z} \in T(x)] \\
\text{s.t.} \quad x \in \mathcal{X},
\]

where \(x \in \mathcal{X} \subseteq \mathbb{R}^N\) is an \(N\)-dimensional vector of decision variables, \(\tilde{z}\) is a \(K\)-dimensional random vector (under the probability measure \(\mathbb{P}\) and with a distribution of support \(\mathcal{W}\)) representing uncertain perturbations, and
\(T(x) \subseteq \mathcal{W} \) defines the tolerance set of uncertain perturbations for which the solution \(x \) would remain feasible. For a given \(x \in \mathcal{X} \), the tolerance set \(T(x) \) can, for example, represent the ubiquitous linear optimization format
\[
T(x) = \{ z \in \mathcal{W} | A(z)x \geq b(z) \},
\]
for given affine maps \(A : \mathbb{R}^K \mapsto \mathbb{R}^{M \times N} \) and \(b : \mathbb{R}^K \mapsto \mathbb{R}^M \) (Ben-Tal et al. 2004, Chen et al. 2007; such ‘affine dependence’ assumptions are rather common in the literature for modeling influence of uncertainties on problem parameters). It can also represent a linear optimization with recourse such as
\[
T(x) = \left\{ z \in \mathcal{W} \left| \exists y(z) \in \mathbb{R}^{N_2} : A(z)x + By(z) \geq b(z) \right. \right\},
\]
for a given matrix \(B \in \mathbb{R}^{M \times N_2} \). Here, \(x \) can be referred to as the here-and-now decision variables, and a given realization of the uncertainty \(z \) is then acceptable for \(x \) (i.e., belongs to \(T(x) \)) if there exists a wait-and-see recourse variable \(y(z) \in \mathbb{R}^{N_2} \) that insures feasibility of the linear constraints in (3). We assume, however, unless otherwise stated, that \(T(x) \) can be general in structure and is therefore not limited to the above cases.

Even in the case of the linear optimization format, the P-model (1) is in general known to be a difficult optimization problem. For instance, evaluating the log-probability objective function can itself be computationally challenging even when \(M = 1 \) and the random variables are uniformly independent and identically distributed (i.i.d.) (Nemirovski and Shapiro 2006). For more general distributions, one may use sample average approximation approaches, such as Monte Carlo methods (Shapiro 2003) to approximate the objective function. Unfortunately, even small problems with relatively simple structure can require hundreds of samples to achieve a desired level of accuracy (Shapiro and Homem-de-Mello 2000, Pagnoncelli et al. 2009).

In view of this, the goal of this work is to develop a new and generalized representation of satisficing decision criteria inspired by the P-model, which evaluates how well a solution \(x \) would remain feasible in the problem’s constraints under uncertainty.

In this regard, the P-model is an optimization problem that maximizes a log-probability satisficing decision criterion, \(\nu_P : \mathcal{X} \mapsto \mathbb{R} \), given by
\[
\nu_P(x) = \ln \mathbb{P}[\tilde{z} \in T(x)].
\]
The decision criterion is based on a log-probability function instead of directly a probability function. Using the convention \(\ln 0 = -\infty \), if \(x \) is always infeasible in the problem’s constraints, then we can set \(\nu_P(x) = -\infty \) for such \(x \), thereby extending the definition of \(\nu_P \) to \(\mathbb{R}^N \) such that \(\nu_P : \mathbb{R}^N \mapsto \mathbb{R} \cup \{-\infty\} \). The log-probability is also convenient in some situations where it leads to a concave objective function. Consider the case of \(T(x) \) in (2) and assume also \(A(\cdot) \) to be constant and \(b(\cdot) \) to be affinely dependent on \(\tilde{z}_1, \ldots, \tilde{z}_K \), which are independently distributed random variables with log-concave density functions. In this special case, the log-probability criterion \(\nu_P \) is known to be concave (Prékopa 2003, theorem 2.5). Furthermore, in the absence of recourse, if the probability function is log-concave in \(x \), then the objective function of Problem (1) would be concave. In general, however, as also mentioned previously, (1) is computationally hard. Hence, our ambition is to develop alternative satisficing models that are computationally more attractive that can be applied to optimization paradigms such as the linear optimization context and yet retain some salient satisficing characteristics of the P-model.

In relation to this, in this paper, we propose a functional representation of a class of satisficing decision criteria and its corresponding S-model, where the objective is to maximize a satisficing decision criterion from that class. We show that the S-model framework encompasses as special cases the P-model and models based on robust optimization in the literature (see Section 2). In Section 3, we focus on tractable probabilistic S-models. We define a subclass, the T-model, which, while providing a lower bound for the P-model, can be much more computationally appealing than the P-model. Our numerical studies in Section 4 for a stochastic maximum coverage problem demonstrate that the T-model outperforms other benchmarks based on sample average approximations in terms of solution quality, computational efficiency, and scalability.

1.1. Notation
Given \(N \in \mathbb{N} \), we use \([N]\) to denote the set of running indices \(\{1, \ldots, N\} \). We generally use bold faced characters such as \(x \in \mathbb{R}^N \) and \(A \in \mathbb{R}^{M \times N} \) to represent vectors and matrices. We use \(x_i \) to denote the \(i \)-th element of vector \(x \). We let \(e_i \) be the unit vector, that is, the \(i \)-th column of the identity matrix. We use the tilde sign to denote an uncertain or random parameter such as \(\tilde{z} \) without necessarily associating it with a particular probability distribution. For a set \(\mathcal{U} \subseteq \mathbb{R}^K \), \(\mathbb{P}[\tilde{z} \in \mathcal{U}] \) represents the probability of \(\tilde{z} \) being in the set \(\mathcal{U} \) evaluated on the distribution \(\mathbb{P} \). We use the convention, \(\ln 0 = \max \emptyset = -\infty \) and \(\min \emptyset = \infty \).
2. Satisficing Decision Criteria and Models

In this section, we formalize the notion of satisficing decision criteria that would encompass, as special cases, the log-probability decision criterion in (4), as well as satisficing decision criteria derived from robust optimization models. We then provide a general representation of this class of satisficing decision criteria, which enables us to construct different types of satisficing models for decision-making. We then establish links to existing satisficing decision criteria in the literature and provide some examples of tractable satisficing models.

2.1. Definition and Representation of Satisficing Decision Criteria

Based on the premise of a satisficing approach to decision making under uncertainty as motivated in the introduction, we first define the key characteristics of a satisficing decision criterion. In the remainder of the paper, as also introduced in Section 1, \(W \) refers to the support of the \(K \)-dimensional primitive uncertain variables \(\bar{z}, x \in \mathcal{X} \) refers to values of decision variables from the set \(\mathcal{X} \subseteq \mathbb{R}^N \), and \(T(x) \) refers to its associated tolerance set, comprised of all \(z \) for which \(x \) remains feasible. By convention, we will set \(T(x) = \emptyset \) for any \(x \in \mathbb{R}^N \backslash \mathcal{X} \).

Definition 1. Given a family of tolerance sets, \(T(x) \subseteq W \). A function \(v : \mathbb{R}^N \mapsto \mathbb{R} \cup \{-\infty\} \) is a satisficing decision criterion if it has the following two properties.

1. (Satisficing dominance) If \(T(y) \subseteq T(x) \), then \(v(y) \geq v(x) \).
2. (Infeasibility) If \(T(x) = \emptyset \), then \(v(x) = -\infty \).

The satisficing dominance property ensures that, if for all \(z \in W, x \) is feasible (i.e., \(z \in T(x) \)) whenever \(y \) is feasible (i.e., \(z \in T(y) \)), then \(x \) should be no less preferred than \(y \). As a consequence, if \(x \) and \(y \) are always feasible across all uncertain outcomes \(z \in W \), then they should be most preferred (i.e., have highest \(v \) value) and \(v(x) = v(y) \), because \(v(x) \geq v(y) \) and \(v(y) \geq v(x) \). In contrast, the infeasibility property requires that a solution that is not feasible in any \(z \in W \) would not be an acceptable solution.

We now provide a general representation of any such satisficing decision criterion \(v \) in the following result.

Theorem 1. Given a family of tolerance sets, \(T(x) \subseteq W \), consider a function \(v : \mathbb{R}^N \mapsto \mathbb{R} \cup \{-\infty\} \) defined as

\[
v(x) = \max_{\alpha \in S} \left\{ \rho(\alpha) \mid \mathcal{U}(\alpha) \subseteq T(x) \right\}
\]

for some function \(\rho : S \rightarrow \mathbb{R} \cup \{-\infty\} \) on domain \(S \subseteq \mathbb{R}^Q \), and for some family of nonempty uncertainty sets \(\mathcal{U}(\alpha) \subseteq W \) defined for all \(\alpha \in S \). Then the function \(v \) is a satisficing decision criterion. Moreover, any satisficing decision criterion can be represented in a form given by (5) with \(S \subseteq \mathbb{R}^N \).

Proof. See Appendix A.1.

Theorem 1 provides a simple yet elegant representation of the satisficing decision criterion, and as an outcome, we can now propose a general format of the satisficing model, named the S-model, where satisficing is the objective as follows:

\[
\begin{align*}
\max & \quad \rho(\alpha) \\
\text{s.t.} & \quad \mathcal{U}(\alpha) \subseteq T(x) \\
& \quad x \in \mathcal{X}, \alpha \in S.
\end{align*}
\]

In this equation, the maximization is taken with respect to \(x \) and \(\alpha \), and \(\rho(\alpha), \mathcal{U}(\alpha) \) and \(S \subseteq \mathbb{R}^Q \) are specific problem-dependent representation choices.

It can be verified that the P-model is indeed an S-model. By applying (6) with objective \(\rho(\alpha) = \ln \mathbb{P}[\bar{z} \in \mathcal{U}(\alpha)] \), uncertainty set parameters \(\alpha \in \mathbb{R}^N \) and domain \(S = \mathcal{X} \), and the adjustable uncertainty sets \(\mathcal{U}(\alpha) = T(\alpha) \), we have

\[
\begin{align*}
\max & \quad \ln \mathbb{P}[\bar{z} \in \mathcal{U}(\alpha)] \mid \mathcal{U}(\alpha) \subseteq T(x), x \in \mathcal{X}, \alpha \in S \\
= & \quad \max \left\{ \ln \mathbb{P}[\bar{z} \in \mathcal{T}(\alpha)] \mid \mathcal{T}(\alpha) \subseteq T(x), x, \alpha \in \mathcal{X} \right\} \\
= & \quad \max \left\{ \ln \mathbb{P}[\bar{z} \in \mathcal{T}(x)] \mid x \in \mathcal{X} \right\},\end{align*}
\]

where the second equivalence follows from noting that for any given \(x \), choosing \(\alpha = x \) always solves the maximization over \(\alpha \).

Incidentally, the S-model is quite broad and could encompass various kinds of optimization problems such as a robust linear optimization problem

\[
\max_{x \in A} \{ c'x \mid A(z)x \leq b(z) \quad \forall z \in \mathcal{U} \},
\]
where \(U \) is some assumed uncertainty set, and \(c \) are cost coefficients in the objective function. By introducing an auxiliary uncertain parameter, \(z_0 \), the previous equation can be rewritten as

\[
\begin{align*}
\max \quad & \alpha \\
\text{s.t.} \quad & A(z)x \leq b(z) \quad \forall z \in U \\
& c'x \geq z_0 \quad \forall z \in U : z_0 \leq \alpha \\
& x \in X \\
& \alpha \in \mathbb{R}_+,
\end{align*}
\]

noting that \(c'x \geq z_0 \ \forall z_0 \leq \alpha \) is equivalent to \(c'x \geq \alpha \). One can verify that Problem (8) is indeed a S-model (6) by defining \(\rho(\alpha) = \alpha \), \(\mathcal{U}(\alpha) = \{(z, z_0) \mid z \in U, z_0 \leq \alpha \} \), and \(T(x) = \{(z, z_0) \in \mathbb{R}^2 \mid A(z)x \leq b(z), \ c'x \geq z_0 \} \). Although the mathematical connection is interesting, it may not be intuitive for the decision maker to interpret Problem (8).

We next introduce some satisficing decision criteria that are quasi-concave or concave based on maximal uncertainty sets, so that the corresponding S-models can be formulated as tractable convex optimization problems. We say that the satisficing decision criteria \(\nu(x) \) is quasi-concave (concave) if \(\nu \) is a quasi-concave (concave) function of \(x \).

2.2. Satisficing Decision Criteria Using Maximal Uncertainty Sets

We consider satisficing decision criteria in which function \(\rho(\alpha) \) in (5) is related to the size of the adjustable uncertainty sets \(\mathcal{U}(\alpha) \). Suppose \(X \) and \(W \) are tractable convex sets; that is, optimizing a linear function over each of the set can be performed in polynomial time (Ben-Tal and Nemirovski 1999). Consider the following satisficing decision criterion

\[
\nu_{\mathcal{U}}(x) = \max_{\alpha \geq 0} \{ \alpha \mid \forall z \in \mathcal{U}(\alpha) \quad z \in T(x) \}
\]

for a family of convex uncertainty sets satisfying \(\mathcal{U}(\alpha_1) \subseteq \mathcal{U}(\alpha_2) \subseteq \mathcal{W} \) for all \(0 \leq \alpha_1 \leq \alpha_2 \), and a tolerance set of the form

\[
T(x) = \{ x \in \mathcal{W} \mid f_i(x, z) \leq 0, \ \forall i \in [M] \},
\]

where \(f_i : X \times W \mapsto \mathbb{R}, i \in [M] \) are saddle functions, that is, convex over \(x \in X \) for given \(z \in W \) and concave over \(z \in W \) for given \(x \in X \). Observe that, because the family of uncertainty sets \(\mathcal{U}(\alpha) \) is nondecreasing in \(\alpha \in \mathbb{R}_+ \), the level set \(X_{\beta} = \{ x \in X \mid \nu_{\mathcal{U}}(x) \geq \beta \} \) is a convex set,

\[
X_{\beta} = \{ x \in X \mid f_i(x, z) \leq 0, \ \forall i \in [M] \ \forall z \in \mathcal{U}(\beta) \},
\]

and hence \(\nu_{\mathcal{U}}(x) \) is a quasi-concave satisficing decision criterion.

Among the earliest applications of such satisficing model, Hendrix et al. (1996) consider robustness in product design problems for which the tolerance set has the form

\[
T(x) = \{ z \in W \mid a'_i(x + z) \leq b_i, \ \forall i \in [M] \},
\]

where \(z \) relates to the implementation errors of the design solution, \(x \). The decision criteria considered in the paper is the same as (9), where the uncertainty set \(\mathcal{U}(\alpha) \) is defined by a \(p \)-norm ball of size \(\alpha \).

Observe that by articulating the satisficing decision criterion as a constraint in the following optimization problem:

\[
\min_{x \in X} \{ c'x \mid \nu_{\mathcal{U}}(x) \geq \beta \},
\]

where the specified parameter \(\beta \) is associated with the size of the uncertainty set, and \(c \) are some cost coefficients in the objective function, we obtain the tractable robust optimization models proposed in Ben-Tal et al. (2015) as follows:

\[
\min_{x \in X} \{ c'x \mid f_i(x, z) \leq 0, \ \forall i \in [M] \ \forall z \in \mathcal{U}(\beta) \}. \tag{10}
\]

In an S-model, the decision maker maximizes the satisficing decision criterion, subject to a constraint on the cost budget \(\tau \) as follows:

\[
\max_{x \in X} \{ \nu_{\mathcal{U}}(x) \mid c'x \leq \tau \},
\]

or equivalently

\[
\max \{ \alpha \mid f_i(x, z) \leq 0, \ \forall i \in [M], \ \forall z \in \mathcal{U}(\alpha), c'x \leq \tau \}. \tag{11}
\]
Observe that the decision maker in the S-model has to specify the acceptable cost target, τ, which is often easier to interpret compared with the size of the uncertainty set, β, required in the robust optimization problem. Moreover, solving (11) is almost as efficient as solving the robust optimization problem based on Ben-Tal et al. (2015). The problem can be solved via a binary search in α, where in each step, the remaining problem with a fixed α is a robust optimization problem with a structure similar to that of (10).

In the more general case where \(\alpha \in S \subseteq \mathbb{R}^N \) with \(n > 1 \), the following satisficing decision criterion, inspired by Zhang et al. (2016), can lead to computationally amenable formulations. Given tractable convex sets \(\mathcal{X} \) and polyhedral support \(\mathcal{W} = \{ z \in \mathbb{R}^K \mid Dz \leq d \} \), we consider the following satisficing decision criterion:

\[
\nu_C(x) = \max_{(\Sigma, \mu) \in S} \{ \log \det \Sigma \mid \forall z \in \mathcal{U}(\Sigma, \mu) \ z \in T(x) \} \tag{12}
\]

for

\[
S = \{ (\Sigma, \mu) \mid \Sigma \succeq 0, \mu \in \mathbb{R}^N, \Sigma \zeta + \mu \in \mathcal{W} \ \forall \zeta \in B \},
\]

a family of convex uncertainty sets

\[
\mathcal{U}(\Sigma, \mu) \triangleq \{ z \in \mathcal{W} \mid \exists \zeta \in B, z = \Sigma \zeta + \mu \}, \tag{13}
\]

for some tractable full-dimensional base uncertainty set \(B \subseteq \mathcal{W} \), and a tolerance set of the form

\[
T(x) = \{ z \in \mathcal{W} \mid f_i(x) \leq b_i(z), \ \forall i \in [M] \},
\]

where \(f_i: \mathcal{X} \to \mathbb{R} \) and \(b_i: \mathcal{W} \to \mathbb{R}, i \in [M] \) are, respectively, convex and affine functions. Observe that the epigraph of \(-\nu_C(x) \), \(\{(x, y) \in \mathcal{X} \times \mathbb{R} \mid -\nu_C(x) \leq y \} \) is a convex set, and hence, \(\nu_C(x) \) is a concave satisficing decision criterion. Here, \(\Sigma \) and \(\mu \) are decision parameters that provide an affine transformation of the base uncertainty set \(B \) to the uncertainty set \(\mathcal{U}(\Sigma, \mu) \subseteq \mathcal{W} \). The objective function of the satisficing decision criterion is related to the volume of the uncertainty set, \(\mathcal{U}(\Sigma, \mu) \), because

\[
\text{vol}(\mathcal{U}(\Sigma, \mu)) = \det(\Sigma) \text{vol}(B).
\]

Hence, we can interpret the satisficing decision criterion of (12) as one that evaluates the volume of the largest uncertainty set that can be contained within the tolerance set.

With \((\Sigma, \mu) \in S \), we have for all \(i \in [M] \),

\[
f_i(x) \leq b_i(z) \quad \forall z \in \mathcal{U}(\Sigma, \mu)
\]

\[
\iff f_i(x) \leq b_i(\Sigma \zeta + \mu) \quad \forall \zeta \in B, \Sigma \zeta + \mu \in \mathcal{W}
\]

\[
\iff f_i(x) \leq b_i(\Sigma \zeta + \mu) \quad \forall \zeta \in B.
\]

Hence, the corresponding S-model can be formulated as a convex log-determinant semidefinite optimization problem with robust linear optimization type constraints as follows:

\[
\max \log \det \Sigma
\]

s.t. \(f_i(x) \leq b_i(\Sigma \zeta + \mu) \quad \forall \zeta \in B, i \in [M] \)

\[
D(\Sigma \zeta + \mu) \leq d \quad \forall \zeta \in B
\]

\[
x \in \mathcal{X}
\]

\[
\Sigma \succeq 0, \mu \in \mathbb{R}^K.
\]

The semi-infinite constraints in (14) involve uncertainty sets that are not dependent on the decision variables, which keeps the problem computationally tractable. We also remark that in the model of Zhang et al. (2016), \(\mathcal{W} = \mathbb{R}^K \) and \(f_i(x), i \in [m] \) are linear functions.

In Section 3, we show that satisficing decision criteria with maximal uncertainty sets can also conservatively approximate probability measures, which are typically hard to evaluate exactly. Consequently, for a class of linear optimization problems, we will propose probabilistic S-models that approximate the P-models and illustrate their benefits of obtaining deterministic solutions that perform well in out-of-sample studies and require less computational effort compared with sample average approximation methods.

2.3. Decision-Independent Worst-Case Uncertainty

In this section, we consider a special case which can lead to further simplification of the S-model. This is stated formally as follows.
Definition 2. Suppose there exists a mapping $\xi : S \mapsto W$, such that $\xi(\alpha) \in U(\alpha)$, and for any $x \in X$,

$$\xi(\alpha) \in T(x) \Rightarrow U(\alpha) \subseteq T(x).$$

Then, $\xi(\alpha)$ is a decision-independent worst-case outcome over the set $U(\alpha)$. Furthermore, we say that a problem has decision-independent worst-case uncertainty if for every $\alpha \in S$ there is some decision-independent worst-case outcome $\xi(\alpha)$.

The following result shows that, whenever there is decision-independent worst-case uncertainty, the corresponding S-model can be simplified.

Proposition 1. Let $\xi(\alpha)$ be a decision-independent worst-case outcome for a given α as in Definition 2. The S-model (6) is then equivalent to

$$\max_{x \in X, \alpha \in S} \{ \rho(\alpha) \mid \xi(\alpha) \in T(x) \}. \quad (16)$$

Proof. See Appendix A.2.

Proposition 1 implies that the S-model problem reduces to an equivalent problem without uncertainty. We provide a specific example of decision-independent worst-case uncertainty in Section 3. In practice, one can exploit the particular structure of Problem (16) to obtain a more tractable model than the general case of Problem (6). For example, when the tolerance set is described as

$$T(x) = \left\{ z \in W \mid \exists y(z) \in \mathbb{R}^{N_z} : Ax + By(z) \geq b(z) \right\},$$

the S-model solves the following deterministic optimization problem:

$$\max_{x \in X, \alpha \in S} \{ \rho(\alpha) \mid \exists y \in \mathbb{R}^{N_z} : Ax + By \geq b(\bar{y}(\alpha)) \},$$

instead of the more complex decision-dependent adaptive robust optimization model as follows:

$$\max_{x \in X, \alpha \in S} \{ \rho(\alpha) \mid \forall z \in U(\alpha), \exists y \in \mathbb{R}^{N_z} : Ax + By \geq b(z) \}.$$

We refer readers to Appendix B for a discussion on the S-model with recourse and the implication of decision-independent worst-case uncertainty.

2.4. Relation with Shortfall-Based Satisficing Criterion

A shortfall-based satisficing decision criterion has been proposed in Brown and Sim (2009) and extended in Lam et al. (2013). These criteria characterize how well the solution $x \in X$ associated with a shortfall function, $s : X \times W \mapsto [-\infty, \infty]$ would avoid shortfalls, that is, $s(x, z) \leq 0$ for all outcomes $z \in W$. Hence, the corresponding tolerance set associated with the shortfall function is

$$T(x) = \{ z \in W \mid s(x, z) \leq 0 \}.$$

Definition 3. Given a shortfall function $s(x, z)$, for $x \in X$, a shortfall-based satisficing criterion is a function $\rho : X \mapsto \mathbb{R} \cup \{-\infty\}$ that is endowed with the following properties.

For all $x, y \in X$,

1. (Monotonicity) If $s(x, z) \leq s(y, z) \ \forall z \in W$, then $\rho(x) \geq \rho(y)$.
2. (Satisficing) If $s(x, z) \leq 0 \ \forall z \in W$, then $\rho(x) \geq \rho(y)$.
3. (Infeasibility) If $s(x, z) > 0 \ \forall z \in W$, then $\rho(x) = -\infty$.

The shortfall-based satisficing criteria can be extended to encompass diversification preference as in Brown and Sim (2009) and Lam et al. (2013), and they can be characterized as optimizing over a family of monetary risk measures. As a distinction, we call the satisficing decision criterion in Definition 1 a feasibility-based satisficing decision criterion.

Observe that

$$s(x, z) \leq s(y, z) \ \forall z \in W \Rightarrow T(y) \subseteq T(x),$$

$$s(x, z) > 0 \ \forall z \in W \Rightarrow T(x) = \emptyset.$$

Hence, any feasibility-based satisficing decision criterion associated with a given shortfall function is also a shortfall-based satisficing decision criterion.
More generally, for a given tolerance set \(T(x) \), we can also define the shortfall function
\[
s(x, z) = \min \{0 \mid z \in T(x) \}.
\]
Consequently, the properties of monotonicity and satisficing are collectively synonymous with the satisficing dominance property:
\[
T(y) \subseteq T(x) \iff s(x, z) \leq s(y, z) \quad \forall z \in W,
\]
\[
T(x) = W \iff s(x, z) \leq 0 \quad \forall z \in W.
\]
Likewise, for the property of infeasibility, we have the following relation:
\[
T(x) = \emptyset \iff s(x, z) > 0 \quad \forall z \in W.
\]
The feasibility-based satisficing decision criterion can therefore be viewed as a restricted form of a shortfall-based satisficing criterion. Indeed, a shortfall-based satisficing decision criterion may violate the property of satisficing dominance. Under this property, if two tolerance sets are identical, \(T(x) = T(y) \), then all feasibility-based satisficing decision criterion would yield \(v(x) = v(y) \), regardless of the level of infeasibility in the problems’ constraints. In contrast, the shortfall-based satisficing decision criteria proposed in Brown and Sim (2009) and Lam et al. (2013), especially those that favor diversification, are designed to be sensitive to the level of shortfalls. Therefore, as in the case of the probability measure, the feasibility-based satisficing decision criterion is better suited in applications where quantifying the level of infeasibility in the problems’ constraints are inconsequential to the decision maker.

3. Probabilistic S-Model
We now consider the S-model (6) with \(\rho(\alpha) = \ln \mathbb{P}[\tilde{z} \in \mathcal{U}(\alpha)] \), which relates to the probability that the adjustable uncertainty set \(\mathcal{U}(\alpha) \) allows feasibility of any random outcomes of \(\tilde{z} \). Correspondingly, we propose the probabilistic S-model
\[
\begin{align*}
\max & \quad \ln \mathbb{P}[\tilde{z} \in \mathcal{U}(\alpha)] \\
\text{s.t.} & \quad \mathcal{U}(\alpha) \subseteq T(x) \\
& \quad x \in \mathcal{X} \\
& \quad \alpha \in \mathcal{S}.
\end{align*}
\]
In general, this can be viewed as a conservative approximation of the P-model (1), because \(\mathbb{P}[\tilde{z} \in \mathcal{U}(\alpha)] \leq \mathbb{P}[\tilde{z} \in T(x)] \). In other words, Problem (18) gives a lower bound to the optimal value of the P-model by providing an internal approximation of \(T(x) \) with \(\mathcal{U}(\alpha) \). In the remainder of this section, we focus on a class of tractable probabilistic S-models in the linear optimization case. To provide explicit formulations, the following key assumptions are made for the rest of the paper.

Assumption 1. We assume the linear optimization case as in (2), where \(T(x) = \{z \mid A(z)x \geq b(z)\} \), and \(A(z) \) and \(b(z) \) are affine mappings in \(z \) as follows:
\[
a_{ij}(z) = a_{ij}^0 + \sum_{k \in [K]} a_{ikj}^k z_k \quad \forall i \in [M], \forall j \in [N], \quad b_{ij}(z) = b_{ij}^0 + \sum_{k \in [K]} b_{ijk}^k z_k \quad \forall i \in [M].
\]

Assumption 2. We assume that the uncertain parameters \(\tilde{z}_k, k \in [K] \) are independent but not necessarily identically distributed random variables with support \(W_k \) such that \(W = \times_{k=1}^K W_k \).

In view of (19), we can also refer to the uncertain parameters \(\tilde{z}_k, k \in [K] \) as random factors in our model of uncertainty. Again, as noted earlier, this model of uncertainty does allow the consideration of dependencies among the constraint coefficients.

In the following, define \(\underline{\alpha}_k, \overline{\alpha}_k \), with \(\underline{\alpha}_k \leq \tilde{z}_k \leq \overline{\alpha}_k \) and \(\underline{\alpha}_k, \overline{\alpha}_k \in W_k \) for all \(k \in [K] \). Define also \(\alpha = (\underline{\alpha}_1, \ldots, \underline{\alpha}_K, \overline{\alpha}_1, \ldots, \overline{\alpha}_K) \), and \(\overline{\alpha} = (\overline{\alpha}_1, \overline{\alpha}_2, \alpha, \overline{\alpha}) \), where \(\alpha \) are the adjustable uncertainty set parameters in Problem (6). We then have \(\alpha \in \mathcal{S} \subseteq \mathbb{R}^O \), where \(Q = 2K \) and \(\mathcal{S} = \{ (\alpha, \overline{\alpha}) \in \mathbb{R}^{2K} : \alpha \leq \overline{\alpha}, \alpha, \overline{\alpha} \in W \} \). The family of adjustable uncertainty sets \(\mathcal{U}(\alpha) \) in (18) is here defined as
\[
\mathcal{U}(\alpha) = \mathcal{U}(\alpha, \overline{\alpha}) = \{ z \in \mathbb{R}^K : z \in [\alpha, \overline{\alpha}] \}.
\]
Under the assumption of stochastic independence and the “box” typed sets \(\mathcal{U}(\alpha) \), the objective function of the probabilistic S-model can then be evaluated as
\[
\ln \mathbb{P}[\tilde{z} \in \mathcal{U}(\alpha, \overline{\alpha})] = \prod_{k \in [K]} \mathbb{P}[\underline{\alpha}_k \leq \tilde{z}_k \leq \overline{\alpha}_k] = \sum_{k \in [K]} \ln \mathbb{P}[\underline{\alpha}_k \leq \tilde{z}_k \leq \overline{\alpha}_k].
\]
A computational attractiveness of the previous equation is that it does not require high-dimensional integration to be performed. The probabilistic S-model in (18), which we now call the T-model, then takes the following form:

$$\begin{align*}
\max & \sum_{k \in [K]} \ln P[a_k \leq \hat{z}_k \leq \bar{\pi}_k] \\
\text{s.t.} & A(z)x \geq b(z) \quad \forall z \in [\underline{\alpha}, \overline{\alpha}] \\
& x \in \mathcal{X} \\
& \underline{\alpha} \leq \overline{\alpha}, \quad \underline{\alpha}, \overline{\alpha} \in \mathcal{W}.
\end{align*}$$

(20)

The next result shows a special case where the T-model (20) and P-model (1) turn out to be equivalent.

Theorem 2. The P-model (1) is equivalent to the T-model (20) if each constraint $a_i(\hat{z})x \geq b_i(\hat{z})$, $i \in [M]$ is affected by at most one random factor \hat{z}_{ki}, where $\kappa : [M] \mapsto [K]$ is a function that identifies the random factor \hat{z}_k for the ith constraint.

Proof. See Appendix A.3.

We now turn our attention to reformulations, or robust counterparts, of the T-model (20) that are more amenable to computation.

Theorem 3. The T-model (20), based on Assumptions 1 and 2, is equivalent to the following explicit nonlinear optimization problem:

$$\begin{align*}
\max & \sum_{k \in [K]} \ln P[a_k \leq \hat{z}_k \leq \bar{\pi}_k] \\
\text{s.t.} & \sum_{j \in [N]} a_{ij}^0x_j + \sum_{k \in [K]} v_{ik} \geq b_i^0 \quad \forall i \in [M] \\
& v_{ik} \leq \sum_{j \in [N]} a_{ij}^kx_j\bar{\alpha}_k - b_i^k\bar{\pi}_k \quad \forall i \in [M], \quad k \in [K] \\
& v_{ik} \leq \sum_{j \in [N]} a_{ij}^kx_j\underline{\alpha}_k - b_i^k\underline{\pi}_k \quad \forall i \in [M], \quad k \in [K] \\
& x \in \mathcal{X}, \quad v \in \mathbb{R}^{M \times K}, \\
& \underline{\alpha} \leq \overline{\alpha}, \quad \underline{\alpha}, \overline{\alpha} \in \mathcal{W}.
\end{align*}$$

(21)

Proof. See Appendix A.4.

The next result shows that, under some additional assumptions on the uncertainty model, we can also obtain a decision-independent worst case (see Definition 2) for the T-model.

Proposition 2. Suppose that in the T-model (20), there exists a partition $[\hat{K}], [\bar{K}] \subseteq [K]$, that is, $\hat{K} \cap \bar{K} = \emptyset$, $\hat{K} \cup [K] = \bar{K}$ such that for all $k \in \bar{K}$,

$$\sum_{j \in [N]} a_{ij}^kx_j \leq b_i^k \quad \forall i \in [M], \quad x \in \mathcal{X}$$

(22)

and for all $k \in \hat{K}$,

$$\sum_{j \in [N]} a_{ij}^kx_j > b_i^k \quad \forall i \in [M], \quad x \in \mathcal{X}.$$

(23)

For a given $\alpha = (\underline{\alpha}, \overline{\alpha})$, define the mapping $\xi : \mathcal{S} \mapsto \mathcal{W}$ as $\xi(\alpha) = (\xi_1, \ldots, \xi_{|\bar{K}|})$, with

$$\xi_k = \bar{\pi}_k \text{ if } k \in \hat{K}, \quad \xi_k = \underline{\alpha}_k \text{ if } k \in \bar{K}.$$

(24)

Then, $\xi(\alpha)$ is a decision-independent worst-case outcome (see Definition 2).

Proof. See Appendix A.5.

Speaking intuitively, the conditions in (22) and (23) arise if each uncertain parameter \hat{z}_k, $k \in \bar{K}$ always has the same direction of influence in a manner that reduces the feasibility of the problem’s constraints, regardless of the solution $x \in \mathcal{X}$. For instance, a constraint requiring customer demands to be fulfilled always becomes more stringent with increasing levels of customer demands.
Applying the decision-independent worst-case outcome, the T-model formulation (21) can then be straightforwardly reduced to the following:

\[
\begin{align*}
\max & \sum_{k \in [K]} \ln P[\tilde{z}_k \leq \bar{\pi}_k] + \sum_{k \in [K]} \ln P[\tilde{z}_k \geq \underline{\pi}_k] \\
\text{s.t.} & \sum_{j \in [N]} \left(a_{ij}^0 + \sum_{k \in [K]} a_{ij}^k \alpha_k + \sum_{k \in [K]} d_{ij}^k \beta_k \right) x_j \geq b_j^0 + \sum_{k \in [K]} b_j^k \alpha_k + \sum_{k \in [K]} b_j^k \beta_k & \forall i \in [M], \\
& x \in \mathcal{X}, \quad \underline{\alpha}, \bar{\alpha} \in \mathcal{Y}.
\end{align*}
\]

Nevertheless, there are still some computational challenges of the T-model. Specifically,
1. The objective function is not necessarily concave; and
2. The terms \(x_j \alpha_k\) and \(x_j \beta_k\) are bilinear.

We next look at some useful cases that enable the T-model to be solved via general purpose Mixed Integer Programming (MIP) solvers such as CPLEX or Gurobi.

3.1. Case of Log Concave Densities

For certain classes of continuously distributed random variables, the T-model objective function in (20) remains concave in \((\alpha, \bar{\alpha})\). This is the case, for instance, for the class of random variables with log-concave densities, which include commonly used distributions such as the exponential, uniform, and normal distributions. Indeed, this is a consequence of the well-known results of Prékopa (1980), from which we obtain the following corollary.

Corollary 1. (See Prékopa 1980, Theorem 9). Suppose \(\tilde{z}_k \) is a continuously distributed random variable with log-concave density function \(f_k(z) : \mathcal{W}_k \mapsto \mathbb{R}_+ \). Then the function \(F_k(\bar{\delta}, \tilde{\delta}) : D_k \mapsto \mathbb{R},\)

\[
F_k(\bar{\delta}, \tilde{\delta}) = \ln P[\tilde{\delta} \leq \tilde{z}_k \leq \bar{\delta}],
\]

is a concave function of \((\bar{\delta}, \tilde{\delta})\) on domain \(D_k = \{ (\bar{\delta}, \tilde{\delta}) \in \mathcal{W}_k^2 : \tilde{\delta} \leq \bar{\delta} \}. \)

Notwithstanding the fact that the constraint functions are bilinear, there are practical situations where Problem (21) will become tractable. Most notably, this is the case when the uncertainty occurs only at the right-hand side, so that \(a_{ij}^k = 0, \forall i \in [M], j \in [N], k \in [K] \). Another tractable situation arises when \(x_j \) is discrete, in which case the bilinear terms \(x_j \alpha_k \) and \(x_j \beta_k \) can be linearized using standard mixed integer programming techniques. For instance, if \(x_j \in \{0, 1\} \), the bilinear term \(x_j \alpha_k \) can be replaced by a new decision variable \(r_{jk} \) that satisfies the following linear inequalities:

\[
-\Theta(1 - x_j) \leq r_{jk} - \alpha_k \leq \Theta(1 - x_j), \quad \text{and} \quad -\Theta x_j \leq r_{jk} \leq \Theta x_j,
\]

for a sufficiently large constant \(\Theta \).

Although the objective function in (20) is nonlinear, an important advantage of maximizing a concave objective function is that it can be solved efficiently in practice via piecewise linear approximations of arbitrary accuracy. We refer the readers to Appendix C for more details on formulating such approximations using cuts in a branch-and-cut fashion to facilitate the solution of the corresponding T-models.

3.2. Case of Discrete Distributions

We now focus on T-models based on random variables with discrete distributions. In particular, we model \(\tilde{z}_k \) on the discrete support \(\mathcal{W}_k = \{ \xi_1^k, \xi_2^k, \ldots, \xi_{L(k)}^k \} \), with strictly positive probability mass functions \(P[\tilde{z}_k = \xi_\ell^k] = p_{\ell}, \forall \ell \in [L(k)] \). We also define \(\lambda_k^0 = 0 \) and \(\lambda_k^\ell = \sum_{\ell' \in [L]} p_{\ell'}, \forall k \in [K], \ell \in [L(k)] \). Without loss of generality, we assume that the outcomes \(\xi_\ell^k \) are ranked in nondecreasing values in \(\ell = 1, \ldots, L(k) \). A specification of the T-model is developed as follows.

First, we define the adjustable uncertainty set parameters \(\alpha \) in (6). Let \(\underline{\alpha}_k = (\underline{\alpha}_1^k, \ldots, \underline{\alpha}_k^{L(k)}) \), \(\bar{\alpha}_k = (\bar{\alpha}_1^k, \ldots, \bar{\alpha}_k^{L(k)}) \), \(\alpha = (\underline{\alpha}_1, \ldots, \underline{\alpha}_K) \), and \(\alpha = (\underline{\alpha}, \bar{\alpha}) \). Hence, we have \(Q = 2 \times \sum_{k \in [K]} L(k) \). In the following, \(\xi_\ell^k \) and \(\xi_\ell^k \) are modeled as binary variables that take value 1 if \(\xi_\ell^k \) are the selected lower and upper bounds, respectively, of the interval that defines the discrete outcomes in the adjustable uncertainty set for random variable \(\tilde{z}_k \).
otherwise. We define

$$ S = \left\{ \alpha \in \{0,1\}^O \mid \sum_{\ell \in [L(k)]} \pi_k^\ell = 1, \sum_{\ell \in [L(k)]} \alpha_k^\ell = 1, \sum_{\ell \in [L(k)]} \ell(\pi_k^\ell - \alpha_k^\ell) \geq 0 \forall k \in [K] \right\}, \tag{26} $$

where S refers to the domain of the α variables in the S-model (6). The intuition for the choice of α is to enable a partial ordering on the adjustable uncertainty sets $U(\alpha)$ based on “counting” the total number of outcomes ζ_k^ℓ (and weighted by respective probabilities p_k^ℓ) contained in intervals indicated by α_k and π_k. The inequality $\sum_{\ell \in [L(k)]} \ell(\pi_k^\ell - \alpha_k^\ell) \geq 0$, together with the fact that ζ_k^ℓ is a nondecreasing sequence in ℓ, ensures that the outcome values corresponding to π_k are at least as large as those of α_k. A simple example is as follows. Suppose $L(k) = 3$ for some k, so that $\pi_k = (\pi_k^1, \pi_k^2, \pi_k^3)$, and $\alpha_k = (\alpha_k^1, \alpha_k^2, \alpha_k^3)$. Assume an instance with $\pi_k^1 = 1, \pi_k^2 = 0, \pi_k^3 = 0, \alpha_k^1 = 0, \alpha_k^2 = 1, \alpha_k^3 = 0$. This satisfies the first two constraints in (26), but does not satisfy $\sum_{\ell \in [L(k)]} \ell(\pi_k^\ell - \alpha_k^\ell) \geq 0$, because $1(1-0) + 2(0-1) + 3(0-0) = -1 < 0$. In this case, assuming that we fix $\alpha_k^3 = 1$, the only feasible α implies $\pi_k^2 = 1$ or $\pi_k^1 = 1$. The last set of inequalities can also be replaced by the following inequalities:

$$ \pi_k^\ell \geq \alpha_k^\ell \quad \forall k \in [K], \ell \in [L(k)], $$

which may potentially improve the computational performance. Next, we define the adjustable uncertainty sets:

$$ U(\alpha) = \left\{ z \in \mathcal{X} \mid \sum_{\ell \in [L(k)]} \zeta_k^\ell \alpha_k^\ell \leq z_k \leq \sum_{\ell \in [L(k)]} \zeta_k^\ell \pi_k^\ell, \forall k \in [K] \right\}. \tag{27} $$

It can be observed that the sets $U(\alpha)$ as defined previously are entirely analogous to the adjustable uncertainty sets of the previous case in Section 3.1 using continuous intervals, with the exception that here $U(\alpha)$ is finite and countable.

Combining the definitions of S in (26) and of $U(\alpha)$ in (27), the resulting T-model can then be written as

$$ \max \ln p[z \in U(\alpha)] $$

s.t. $A(z)x \geq b(z) \quad \forall z \in U(\alpha)$$

$$ \sum_{\ell \in [L(k)]} \alpha_k^\ell = 1, \sum_{\ell \in [L(k)]} \pi_k^\ell = 1, \forall k \in [K] $$

$$ \sum_{\ell \in [L(k)]} \ell(\pi_k^\ell - \alpha_k^\ell) \geq 0 \quad \forall k \in [K] $$

$$ \alpha_k, \pi_k \in \{0,1\}^{L(k)} \forall k \in [K], x \in \mathcal{X}. $$

The following result provides the robust counterpart model to (28), which can then be further reformulated as a linear MIP model.

Theorem 4. Under discrete distributions, the T-model (28), based on Assumptions 1 and 2, is equivalent to the following reformulation:

$$ \max \sum_{k \in [K]} s_k $$

s.t. $s_k \leq \ln(\gamma) - 1 + \sum_{\ell \in [L(k)]} \frac{1}{\ell}(\pi_k^\ell - \alpha_k^\ell^{-1} \alpha_k^\ell) \quad \forall \gamma \in \mathcal{C}_k, k \in [K] $$

$$ \sum_{j \in [N]} a_{ij}^0 x_j + \sum_{k \in [K]} v_k \geq b_i \quad \forall i \in [M] $$

$$ v_k \leq \sum_{\ell \in [L(k)]} \sum_{j \in [N]} \left(a_{ij}^\ell x_j - b_i^\ell \right) \zeta_k^\ell \pi_k^\ell \quad \forall i \in [M], k \in [K] $$

$$ v_k \leq \sum_{\ell \in [L(k)]} \sum_{j \in [N]} \left(a_{ij}^\ell x_j - b_i^\ell \right) \zeta_k^\ell \alpha_k^\ell \quad \forall i \in [M], k \in [K] $$

$$ \sum_{\ell \in [L(k)]} \pi_k^\ell = 1, \sum_{\ell \in [L(k)]} \alpha_k^\ell = 1 \quad \forall k \in [K] $$
The T-model in (20) is reproduced here in a more generic format:

\[
\sum_{\ell \in [L(k)]} \ell (\pi^{f}_{k} - \alpha^{f}_{k}) \geq 0 \quad \forall k \in [K]
\]

\[
x \in \mathcal{X}, \quad v \in \mathbb{R}^{MK}, \quad s \in \mathbb{R}^{K}
\]

\[
\alpha^{f}_{k}, \quad \overline{\alpha}^{f}_{k} \in \{0,1\}^{L(k)} \quad \forall k \in [K],
\]

where

\[
\mathcal{C}_{k} = \left\{ \lambda^{f}_{k} \alpha^{f}_{k} - \lambda^{f}_{k} - 1 | \ell, \ell' \in [L(k)], \ell \geq \ell' \right\} \quad \forall k \in [K].
\]

Proof. See Appendix A.6.

Formulation (29) contains bilinear terms \(x_\ell \alpha^{f}_{k}\) and \(x_\ell \pi^{f}_{k}\), which can further be linearized as in earlier cases. The resulting problem is then a linear MIP and can be solved by general purpose solvers. Although \(|\mathcal{C}_{k}|\) is at most \(2L(k)(L(k) + 1)\), it may still be impractical to introduce the entire first set of constraints of Problem (29). Nevertheless, as discussed earlier, we can also introduce these constraints as cuts and solve the MIP in a branch-and-cut fashion.

Finally, if the T-model also has decision-independent worst-case uncertainty, it can further be simplified as follows.

Corollary 2. Under discrete distributions, if the T-model (28) has decision-independent worst-case uncertainty (see Definition 2), then it has the following formulation:

\[
\max \sum_{k \in [K]} \sum_{\ell \in [L(k)]} \ln \left(\alpha^{f}_{k} \pi^{f}_{k} + \sum_{k \in [K]} \sum_{\ell \in [L(k)]} \ln \left(1 - \lambda^{f}_{k} - 1 \right) \alpha^{f}_{k} \right)
\]

\[
\text{s.t.} \sum_{j \in [N]} \left(a^{0}_{ij} + \sum_{k \in [K]} \sum_{\ell \in [L(k)]} a^{k}_{ij} \alpha^{f}_{k} \pi^{f}_{k} + \sum_{k \in [K]} \sum_{\ell \in [L(k)]} a^{k}_{ij} \alpha^{f}_{k} \pi^{f}_{k} \right) x_{ij}
\]

\[
\geq b^{0}_{i} + \sum_{k \in [K]} \sum_{\ell \in [L(k)]} b^{k}_{i} \alpha^{f}_{k} \pi^{f}_{k} + \sum_{k \in [K]} \sum_{\ell \in [L(k)]} b^{k}_{i} \alpha^{f}_{k} \pi^{f}_{k} \quad \forall i \in [M]
\]

\[
\sum_{\ell \in [L(k)]} \pi^{f}_{k} = 1, \quad \sum_{\ell \in [L(k)]} \alpha^{f}_{k} = 1 \quad \forall k \in [K]
\]

\[
\alpha^{f}_{k}, \overline{\alpha}^{f}_{k} \in \{0,1\}^{L(k)} \quad \forall k \in [K], \quad x \in \mathcal{X}.
\]

Proof. This equation follows from a straightforward application of Formulation (25) for the T-model with decision-independent worst-case uncertainty. □

3.3. On the T-Model and Sample Average Approximations to P-Models

The T-model in (20) is reproduced here in a more generic format:

\[
\max \sum_{k \in [K]} \ln \mathbb{P}[\hat{a}_{k} \leq \hat{z}_{k} \leq \overline{\alpha}_{k}]
\]

\[
\text{s.t.} \quad [\alpha^{f}_{k}, \overline{\alpha}^{f}_{k}] \subseteq T(x)
\]

\[
x \in \mathcal{X}
\]

\[
\alpha^{f}_{k}, \overline{\alpha}^{f}_{k} \in \mathbb{R}^{K},
\]

which maximizes the volume of the hyper-rectangle set \([\alpha^{f}, \overline{\alpha}^{f}]\) that can be contained within the tolerance set, \(T(x)\). Because of the assumptions of independent factors, \(\hat{z}_{k}, k \in [K]\), the objective function, which is related to the volume of the hyper-rectangle, can be easily computed. It is clear that the T-model can be viewed as an approximation of the P-model (1), which avoids intractable multidimensional integration operations of the tolerance set. Obviously, if \(T(x)\) are also hyper-rectangular for all \(x \in \mathcal{X}\), then the T-model is exactly the P-model (see Theorem 2 for the case of linear feasibility constraints).

However, it can well be the case that the probability of feasibility \(\mathbb{P}[\hat{z} \in T(x)]\), as used in the P-model, is significantly higher than \(\mathbb{P}[\hat{z} \in \mathcal{U}(\alpha)]\), as used in the probabilistic S-model objective (Ben-Tal et al. 2009), even when \(\alpha\) is optimal in (18) for the given \(x\). Consider an example of the feasibility probability of a single constraint without
decision variables as follows:

$$\mathbb{P}\left[3\sqrt{K} \geq \sum_{k \in [K]} \tilde{z}_k\right],$$

(31)

and assume for simplicity that \tilde{z}_k s are independent and standard normal-distributed so that the probability would be $\Phi(3) \approx 0.9987$, where $\Phi(\cdot)$ denotes the standard normal cumulative distribution function. Applying the T-model then produces the following:

$$\mathbb{P}[\tilde{z} \in \mathcal{U}(\alpha^*)] = \mathbb{P}[\tilde{z} \leq \alpha^*],$$

where

$$\alpha^* = \arg \max_{\alpha} \left\{ \sum_{k \in [K]} \ln \mathbb{P}[\tilde{z}_k \leq \alpha_k] \left| \sum_{k \in [K]} \alpha_k \leq 3\sqrt{K} \right\}$$

and $\ln \mathbb{P}[\tilde{z}_k \leq \alpha_k] = \ln \Phi(\alpha_k)$. Because of the log concavity of the normal distribution, we have $\alpha_k^* = \frac{3}{\sqrt{K}}$ for all $k \in K$, and consequently,

$$\mathbb{P}[\tilde{z} \in \mathcal{U}(\alpha^*)] = \Phi\left(\frac{3}{\sqrt{K}}\right)^K,$$

which diminishes quickly to zero as K increases. For $K = 15$, the probability evaluated in the T-model would be 0.0045, although the actual feasibility of the constraint remains at 0.9987 regardless of K.

Nevertheless, despite the weakness in the bound, the quality of the approximation depends on the geometry of the tolerance set and on how well it can be stretched maximally from within by a hyper-rectangular set. Take for example the case with right-side uncertainty on a single constraint:

$$\mathbb{P}\left[a'x \geq \sum_{k \in [K]} \tilde{z}_k\right],$$

for which the optimal solution for the T-model coincides with the P-model (refer also to Theorem 2) when $a'x$ is maximized over $x \in \mathcal{X}$.

Another popular approach to approximate the P-model is to use sample average approximation (SAA). For the SAA approach, we assume that a set of L independent samples $z_1, \ldots, z_L, \in \mathbb{R}^K$ is available. The SAA model can be written as the following optimization problem:

$$\max \ln \frac{|S|}{L}$$

s.t. $\text{CH}([z_i]_{i \in S}) \subseteq \mathcal{T}(x)$

$x \in \mathcal{X}$

$S \subseteq \{L\}$,

where $\text{CH}(\mathcal{W})$ denotes the convex hull of \mathcal{W}, assuming that the tolerance set is convex for any given $x \in \mathcal{X}$. Hence, the SAA in the previous format can also be viewed as an S-model, which essentially maximizes the number of samples that can be packed within the tolerance set. The SAA has the benefits of being more generic and not being confined to independent random factors as assumed in our T-model. However, because SAA is not a deterministic model, the quality of the approximation depends on the sample size L. Although SAA solutions are expected to improve with increasing L, in practice, they may not scale computationally well, in particular when the optimization problems are of combinatorial nature. Even if all the samples are feasible in the SAA model, the probability of \tilde{z} being in the convex hull of the SAA samples may not scale well with K. For instance, if $\tilde{z}_k, k \in [K]$ are i.i.d. discrete random variables, each taking values in $\{0, 1\}$ with equal probability, then we have

$$\mathbb{P}[\tilde{z} \in \text{CH}([z_i]_{i \in S})] \leq L/2^K.$$

We numerically evaluate the probability value for the case of i.i.d. uniformly distributed random variables, each taking values in $[0, 1]$. Table 1 shows the probability $\mathbb{P}[\tilde{z} \in \text{CH}([\tilde{z}_i]_{i \in [L]})]$ evaluated based on 10,000 randomly generated instances. For each instance, we solve a linear optimization problem to determine its feasibility, and we take the average number of feasible instances to determine each entry of the table. Similar to the T-model,
these probabilities may grossly under estimate the actual feasibility probability of the tolerance set, which is more complex to analyze precisely. To simplify the analysis, we consider an uncertain linear optimization problem with only right-hand side uncertainty. Suppose all the probabilities may grossly underestimate the actual feasibility probability of the tolerance set, which is

$$[A\tilde{x}]_i \geq \max_{k \in [L]} \{[b(\tilde{z})]_i\} \quad \forall i \in [M],$$

noting that the optimal SAA solution \tilde{x} is random because of the dependency on the L samples. Hence, by Bonferroni inequality, we have

$$P[\tilde{z} \in T(\tilde{x})] = P[A\tilde{x} \geq b(\tilde{z})] \geq P\left[\max_{k \in [L]} \{[b(\tilde{z})]_i\} \geq [b(\tilde{z})]_i \quad \forall i \in [M]\right]$$

$$\geq 1 - \sum_{i \in [M]} P\left[\max_{k \in [L]} \{[b(\tilde{z})]_i\} < [b(\tilde{z})]_i\right]$$

$$\geq 1 - \frac{M}{L+1} \frac{L+1-M}{L+1}.$$

If the right-hand side uncertainties among different constraints are independent, then the bound would be

$$P[\tilde{z} \in T(\tilde{x})] \geq \left(\frac{L}{L+1}\right)^M,$$

which can be tight if Constraints (32) are tight, and \tilde{z} are continuously distributed. For instance, if $M = 500$ and the computational limit permits at most $L = 1,000$, then using the SAA approach, the maximum assurance probability could be at most 50%, or 61% if independence among constraints can be assumed. This suggests that for an optimization problem with a large number of uncertain parameters and constraints, one may require the number of samples to be substantially larger as well. Indeed, this is consistent with the observations from our numerical studies (see Section 4), in which for a given L, the performance of the SAA degrades significantly as M increases, whereas it does not seem to have the same impact on the T-model.

4. Computational Studies on Stochastic Maximum Coverage Problems

In this section, we illustrate the advantages of the T-model by means of computational experiments on facility location problems under uncertainty. Specifically, we consider the stochastic maximum coverage problem (SMCP), in which a set of facilities has to be selected such that the probability that all uncertain customer demands can be met is maximized.

4.1. Definition, Formulations, and Experimental Setup

We consider a single-stage SMCP, in which selection of facilities and demand allocation are performed before the customer demands are observed. The notation for the SMCP is as follows. There are I number of candidate facility locations and J customer locations. The subset $I_i \subseteq [I]$ are facilities that can serve customer j, and $J_i \subseteq [J]$ is the subset of customers that can be served by facility i. Let c_i and f_i be the capacity and construction costs, respectively, for facility $i \in [I]$ and β the total budget available for facility constructions. The demand of each customer $j \in [J]$ is modeled as an affine function of K independently distributed random factors $\tilde{z}_1, \ldots, \tilde{z}_K$ given by

$$b_j(\tilde{z}) = b_j^0 + \sum_{k \in [K]} b_{jk}^i \tilde{z}_k.$$

Table 1. Feasibility Probability $P[\tilde{z} \in CH(\tilde{x}])$, for \tilde{z} and Each \tilde{z}_i Being a Vector of K i.i.d. Uniformly Distributed Random Variables, Based on 10,000 Randomly Generated Samples

<table>
<thead>
<tr>
<th>K</th>
<th>$L = 100$</th>
<th>$L = 200$</th>
<th>$L = 400$</th>
<th>$L = 800$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.981</td>
<td>0.989</td>
<td>0.995</td>
<td>0.997</td>
</tr>
<tr>
<td>3</td>
<td>0.689</td>
<td>0.791</td>
<td>0.869</td>
<td>0.917</td>
</tr>
<tr>
<td>5</td>
<td>0.269</td>
<td>0.405</td>
<td>0.535</td>
<td>0.644</td>
</tr>
<tr>
<td>7</td>
<td>0.056</td>
<td>0.124</td>
<td>0.216</td>
<td>0.326</td>
</tr>
<tr>
<td>9</td>
<td>0.010</td>
<td>0.026</td>
<td>0.065</td>
<td>0.114</td>
</tr>
<tr>
<td>15</td>
<td><0.0001</td>
<td><0.0001</td>
<td>0.0003</td>
<td>0.0009</td>
</tr>
</tbody>
</table>
We compare the performance of three models: T-model, P-model, and an expected demand shortfall model. To be fair in the comparison, the solutions to these models are obtained using the same empirical distribution of the random factors associated with the demands. Specifically, the empirical distribution of the random factors are given by the samples $\xi^f \in \mathbb{R}^K$, $f \in [L]$, each with equal probability of realization. Subsequently, the quality of the solutions are evaluated using out-of-sample tests based on the true underlying distribution of the random factors.

Details for modeling the customer demands are found in Appendix E. The test cases used in this section do not assume decision-independent worst-case uncertainty (see Definition 2 in Section 2.3). We refer readers to Appendix F for numerical studies where we consider a two-stage version of the problem for which decision-independent worst-case uncertainty has to be assumed.

4.1.1. P-Model for the SMCP. Let binary variables x_i be one if facility i has been selected and zero otherwise. In the single-stage problem SMCP, the demand allocation from facility i to customer j denoted by y_{ij} has to be decided before \tilde{z} is known. The formulation for the corresponding P-model is as follows:

\[
\begin{align*}
\max & \ln \mathbb{P} \left[\sum_{i \in I} y_{ij} \geq b_j(\tilde{z}) \quad \forall j \in [J] \right] \\
\text{s.t.} & \sum_{j \in J} y_{ij} \leq c_i x_i \quad \forall z \in \mathcal{W}, i \in [I] \\
& \sum_{i \in [I]} f_i x_i \leq \beta \\
& y_{ij} \geq 0 \quad \forall i \in [I], j \in J_i \\
& x_i \in \{0, 1\} \quad \forall i \in [I],
\end{align*}
\]

(35)

where the objective function maximizes the log-probability that the uncertain demands can be satisfied. The first set of constraints are the facility capacity constraints, whereas the second constraint restricts the costs of opening facilities to the available budget β.

In the computational exercises, we solve an SAA model of (35), defined as P-1, maximizing the probability of satisfying all demands using the empirical probability distribution. We further consider a second SAA model defined as E-1 that aims at minimizing the expected level of demand shortfall using the empirical distribution. A computational advantage of model E-1 over P-1 is that it avoids the use of additional binary variables for modeling the probability function in the objective. The explicit formulations for the SAA models are provided in Appendix D.2.

4.1.2. T-Model for the SMCP. In the numerical studies, we implement the T-model based on Formulation (21) using the empirical distribution of the random factors, which is for the case of discrete distributions of \tilde{z} (see Section 3.2). In general, the random demand factors \tilde{z}_k, $\forall k \in [K]$ may impact customer demands in either direction.

The T-model for the single-stage SMCP based on Theorem 4, which is termed here as model T-1, can then be stated as

\[
\begin{align*}
\max \sum_{k \in [K]} s_k \\
\text{s.t.} & \quad s_k \leq \ln \left(\frac{\gamma}{L} \right) - 1 + \frac{1}{\gamma} \sum_{\ell \in [L]} \left(\ell \alpha^f_k - (\ell - 1) \alpha_k^f \right) \quad \forall \gamma \in [L], k \in [K] \\
& \sum_{i \in I} y_{ij} \geq b_{j}^f + \sum_{k \in [K]} \sum_{\ell \in [L]} b_{j}^f c_{j}^f \alpha_{k}^f + \sum_{k \in [K]} \sum_{\ell \in [L]} b_{j}^f c_{j}^f \alpha_k^f \quad \forall j \in [J] \\
& \sum_{j \in J} y_{ij} \leq c_i x_i \quad \forall i \in [I] \\
& \sum_{i \in [I]} f_i x_i \leq \beta \\
& \sum_{\ell \in [L]} \alpha_{k}^f = 1 \quad \forall \gamma \in [L], k \in [K] \\
& \sum_{\ell \in [L]} \alpha_k^f = 1 \quad \forall k \in [K]
\end{align*}
\]
where \((\zeta_1^k, \ldots, \zeta_L^k)\) denotes the ordered statistics of the empirical samples \((\hat{\zeta}_1^k, \ldots, \hat{\zeta}_L^k)\) for each factor \(k \in [K]\).

In the numerical studies, all mathematical models have been implemented in C/C++ using the IBM CPLEX 12.8.0.0 Callable Library. All optimization problems have been solved to an optimality of 1%, because we found that proving optimality took unnecessarily long computing times without improving the solution quality. The code has been compiled and executed on openSUSE 11.3. Each problem instance has been run on a single Intel E5-2683 v4 processor (2.1 GHz), limited to 24 GB of RAM and a maximum of 12 hours of computing time. Out-of-sample tests were performed based on simulating 100,000 independent random demand samples. We refer readers to Appendix E for a detailed description of the settings for the computational experiments.

4.2. Computational and Solution Performance

4.2.1. Computational Efficiency

Table 2 compares the computational efficiency of the three models for the single-stage SMCP. Each row corresponds to the problem instances with \(J\) customers and presents average results over 12 instances (three different numbers of candidate facility locations, two different levels of customer-facility connectivity, and two levels of demand correlation). The results are based on solving the models using an empirical distribution with different sample sizes \(L\). The average computing times are based on all instances with the same number of customers \(J\) for which the respective model has found a feasible solution. The column No. no reports the number of instances that have not been solved to optimality using the respective model, whereas column No. ns refers to the number of instances for which the solver has not found any feasible solution.

The results suggest that for smaller- or moderate-sized problems, the solution times of all the models appear reasonably on par (these average times do not include instances that have not been solved). When sample sizes used are large (i.e., \(L = 1000\)), model P-1 required significantly longer solution times. Furthermore, some instances of model P-1 could not be solved within the time limit of 12 hours (or even find a feasible solution). In contrast, all instances of models T-1 and E-1 are solved.

4.2.2. Solution Performance

We next investigate how well the models perform in terms of success rate and demand shortfall as shown in Table 3. Here, only test instances that have been solved by all models for empirical sample sizes \(L\) (50, 250, and 500) are considered. In other words, all models have been evaluated on the same

<table>
<thead>
<tr>
<th>(J)</th>
<th>(L)</th>
<th>Model T-1</th>
<th>Model P-1</th>
<th>Model E-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>50</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>250</td>
<td>0.1</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>500</td>
<td>0.2</td>
<td>0.7</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>1,000</td>
<td>1.3</td>
<td>121.1</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>250</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>500</td>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>1,000</td>
<td>1.4</td>
<td>0.6</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>500</td>
<td>2.8</td>
<td>361.8</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>250</td>
<td>0.9</td>
<td>1.0</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>500</td>
<td>20.3</td>
<td>1.5</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>1,000</td>
<td>13.0</td>
<td>187.8</td>
<td>9.6</td>
<td>9.6</td>
</tr>
</tbody>
</table>

Notes. Average computing time (in minutes) are for the instances where the solver has found a feasible solution. Column No. no refers to the number of instances for which the solver has not proven optimality, whereas column No. ns represents the number of instances for which the solver did not find any feasible solution.
instances for a fair comparison. Also, two versions of the T-model are tested. The first version (model T-1) is assumed to observe the random factors \tilde{z} used in the affine factor demand model (34) and exploits the fact that \tilde{z} are independently distributed. The second version (model T*-1) observes only the customer demands $b_j(\tilde{z})$ for all $j \in [J]$ and wrongly assumes that the demands are independently distributed.

First, from the results, all the models benefit from larger sample sizes L, leading to solutions with higher success rates and shorter shortfalls in general. However, it can be observed that the solution performance achieved by model T-1 is consistently better than models T*-1, P-1, and E-1 across almost all problem sizes in J and sample sizes L used.

Model T*-1 assumes independent demands and can be expressed as the following factor-based model:

$$b_j(\tilde{z}) = \tilde{z}_j \quad \forall j \in [J],$$

albeit incorrectly compared with model T-1.

Observe that, if all the scenarios are feasible, then models P-1 and E-1 would also be optimal, in which case, the constraints with uncertain demands would also coincide with the T^*-1 constraints as follows:

$$\sum_{i \in J_j} y_{i,j} \geq \max_{\ell \in [L]} \{ z_{i,\ell} \} = \zeta_{j,\ell} \quad \forall j \in [J].$$

Hence, as we would expect in Table 3, the performance of model T*-1 is similar to that of models P-1 and E-1 because these models’ constraints require solutions to be feasible in the largest demand sample for each customer $j \in [J].$ Conversely, model T-1 generally outperforms the other models by a significant margin. A possible reason is that the T-model is able to exploit the fact that the random factors \tilde{z} are independently distributed, whereas P-1 and E-1, by construction, cannot do so. Indeed, from the results for model T*-1, it can be seen that when this information is not available, its performance advantage is significantly reduced. In the case for model T-1, however, there is an additional opportunity to exploit the structure of the affine factor demand model to stretch the hyper-rectangle sets $[a, \bar{x}]$ of the random factors as much as possible.

Furthermore, the results also suggest that the solution quality of models P-1 and E-1 tend to be more sensitive to the changes in sample size L compared with model T-1. As discussed in Section 3.3, SAA approximations to the P-model can result in quite poor performance if sample sizes used are not sufficiently large. This could be a possible reason why the out-of-sample success rates achieved by model P-1 (and also E-1) are quite low in Table 3 (particularly for the cases of $J = 500$). More specifically, we note that the sample size L used in Table 3 is rather small in comparison with the dimension of the problem solved (i.e., with respect to number of customers J, in which case the number of constraints $M = J$). For example, when $M = 250$ and $L = 500$, the Bonferroni bound on the probability of the feasibility in the demand constraints (i.e., applying (33)) is $F_t \approx 0.5$. This implies that the SAA model could yield solutions that achieve success probabilities as low as 50%, even if all L samples are feasible. The out-of-sample probability in Table 3 in this case is about 63%. When M increases to 500, the bound reduces to almost zero, and the out-of-sample probability observed in the results reduces to about 51%, whereas the T-model yields a solution that achieves more than 90% feasibility. To ensure this in the SAA model, the bound would suggest a sample size of $L = 5,000$ or larger, which can become computationally prohibitive.

4.2.3. Scalability

To demonstrate the scalability of the models, Table 4 shows some further performance comparisons (including average, minimum, and maximum of the average success rates over all 60 test instances,
based on 10 replications) for the different models and increasing sample sizes L. Instances for which no feasible solution has been found were counted as zero success rates. For models P-1 and E-1, only results for sample sizes $L = 250$ and $L = 500$ are available, because in our computational tests, these models were unable to solve many instances of larger sample sizes. Model T-1, on the other hand, could solve instances up to $L = 5,000$. For $L = 250$ and $L = 500$, the average results of model T-1 outperform those of the SAA benchmarks at all instance sizes. Larger sample sizes used for model T-1 also led to increasing success rates and lower sample-to-sample variation. In conclusion, the T-model, when implemented as a sample based approximation to the P-model, experiences much better scalability compared with standard SAA models P-1 and E-1.

4.2.4. Impact of Investment Budget

We now repeat the computational studies by varying β, the available investment budget. This type of analysis can be useful for decision makers in calibrating and justifying investment budget requests. Figure 1 shows the average success rates, as well as the intervals spanned by the minimum and maximum success rates across 10 optimization runs for a specific problem instance with 500 facilities, 250 customers, and $A = 20$. In each run, a sample of size $L = 250$ demand scenarios was generated and used for models T-1, P-1, and E-1. The investment budget β is varied by introducing percentage increments B of up to 220% of the minimum level assumed (that level of capacity budget required if all demands were to take on their average values). In the solutions for all three models, the success rates continuously improve as more budget becomes available. Interestingly, both SAA benchmarks provide slightly higher success rates than the T-1 model with an additional budget of up to 100%. After that point, their success rates stagnate below 70% and do not improve even with high levels of β. Such performance of models P-1 and E-1 is likely because of the relatively small sample size L used in the numerical studies in comparison with the dimension of the problem solved (e.g., in terms of the number of customer demands J and consequently the number constraints $M = J$). For the case presented here with $M = L = 250$, the Bonferroni bound on the probability of the feasibility in the linear constraints (see (33)) is $\frac{250+1-250}{250+1} \approx 0.004$. This suggests that, even in the case when the budget is generous and the optimal SAA solution

Table 4. Scalability Study for Single-Stage SMCP, Comparing Average [Minimum, Maximum] Success Rates (over All 60 Instances) Among 10 Replications with Different Sample Sizes L

<table>
<thead>
<tr>
<th>J</th>
<th>Model P-1</th>
<th>Model E-1</th>
<th>Model T-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>44.45 [35.0, 56.5]</td>
<td>44.61 [35.2, 56.7]</td>
<td>67.46 [35.2, 98.1]</td>
</tr>
</tbody>
</table>

Note. Average success rates and intervals between the minimum and maximum success rates across 10 replications (using sample size $L = 250$) for the single-stage SMCP problem and an instance with 500 facilities, 250 customers, and 10 random factors per customer.
is feasible in all L samples, it is possible that the actual feasibility probability is very low. In contrast, the T-1 model makes effective use of the additional budget, converging to solutions that achieve nearly perfect feasibility in the random customer demand constraints. This suggests that the ability of the T-1 model to stretch its hyper-rectangle sets maximally is not significantly hindered by the sample size L used to calibrate the model.

The proposed T-1 model, a tractable instance of the S-model, has shown to be an attractive alternative to classical SAA models. Although the previous experiments report on a single-stage stochastic problem, we note that experiments carried out on a two-stage stochastic variant of the problem have led to similar conclusions. For details, we refer the reader to Appendix F.

5. Conclusion

We proposed a new satisficing decision criteria based on two key properties of satisficing decision making and provided a functional representation of any such decision criterion. Based on this, we introduced a general formulation the S-model, in which the satisficing decision criterion is maximized. The P-model of Charnes and Cooper (1963) and other models based on robust optimization can be shown to be special cases of the S-model.

We next introduced a class of tractable S-models that incorporates available probability distributions, termed the T-model, which, beyond its own merit, can also be regarded as a conservative and tractable approximation of the P-model. In the case when probability density functions of the uncertainties are log-concave, we propose a solution approach based on piecewise-linear concave approximations. In the case of discrete probability distributions, we provide a linear MIP formulation of the T-model. Finally, we presented computational studies on a single-stage and a two-stage stochastic maximum coverage problem, for which we have shown that the T-models outperform other benchmarks based on sampling average approximations both in terms of solution quality, and computational efficiency and scalability.

Appendix A. Technical Proofs

A.1. Proof of Theorem 1

Proof. We first establish that the function in (5) is indeed a satisficing decision criterion. Let $x,y \in X$ such that $T(y) \subseteq T(x)$. We then have $U(a) \subseteq T(x)$ whenever $U(a) \subseteq T(y)$. This implies that $v(y) \leq v(x)$ by definition of (5), which establishes the satisficing dominance property. Assume now that $T(x) = \emptyset$, then Problem (5) will always be infeasible for all $a \in S$. Hence, we have $v(x) = -\infty$, which shows the infeasibility property.

We next show that any satisficing decision criterion can be represented in a form given by (5) in which $Q = N$. Consider a satisficing decision criterion, $\nu : \mathbb{R}^N \mapsto \mathbb{R} \cup \{-\infty\}$, as described in Definition 1. Define

$$S = \{a \in \mathbb{R}^N \mid T(a) \neq \emptyset\},$$

$$U(a) = T(a)$$

and $\rho(a) = \nu(x)$. Assume that S is nonempty (otherwise any satisficing decision criterion ν would be degenerate, that is, $v(x) = -\infty$ for all $x \in \mathbb{R}^N$, a trivial case). It follows from the previous definition that $S \subseteq \mathbb{R}^N$ and $U(a) \neq \emptyset$ for all $a \in S$. For a given $x \in \mathbb{R}^N$, define $v(x)$ as

$$v(x) = \max_{a \in S} \{\nu(a) \mid U(a) \subseteq T(x)\}.$$

(A.1)

Note that $v(x)$ is of the form represented in (5). We show that $v(x) = \nu(x)$. First, if $T(x) = \emptyset$, Problem (36) would be infeasible for all $a \in S$. Hence, we would have $v(x) = -\infty = \nu(x)$. Next, suppose $T(x) \neq \emptyset$. It is clear that $a = x$ must be a feasible solution in (5), because $U(a) = T(a)$ by definition. Furthermore, because for all such feasible a, we have $T(a) = U(a) \subseteq T(x)$, by satisficing dominance of ν, we have $\nu(x) \geq \nu(a)$, and hence indeed $v(x) = \nu(x)$ as claimed.

A.2. Proof for Proposition 1

The S-model in (6) is rewritten here as

$$\max_{x,1 \leq i \leq k} \{\rho(a) \mid U(a) \subseteq T(x)\}.$$

(A.2)

Any feasible solution in (16) must be feasible in the S-model (A.2) based on the definition of $\xi(a)$. Conversely, (16) is a relaxation of (A.2) in the constraints, because $\xi(a) \in U(a)$. Finally, the objective functions of both problems are the same. The equivalence thus follows.

A.3. Proof for Theorem 2

Proof. We focus on the nontrivial case when the objective of the P-model (1) is finite. Because each constraint is affected by at most one random factor, we consider the following restricted affine factor model based on (19):

$$a_i(z) = a_i^0 + a_i^0(z_{x(i)}) \forall i \in [M], j \in [N], \quad b_j(z) = b_j^0 + b_j^0(z_{x(j)}) \forall i \in [M].$$
Consider any \(x \in X \) such that \(P[A(z)x \geq b(z)] > 0 \). Let

\[
M_k^0(x) = \left\{ i \in [M] \mid \sum_{j \in [N]} a_{ij}^0 x_j = b_i^0, \ k(i) = k \right\}, \quad M_k^-\!^+\!^+(x) = \left\{ i \in [M] \mid \sum_{j \in [N]} a_{ij} x_j > b_i^0, \ k(i) = k \right\},
\]

for \(k \in [K] \). Observe that under the restricted affine uncertainty, the robust counterpart for the \(i \)th constraint \(a_i(z)'x \geq b_i(z) \), \(\forall z \in [\underline{z}, \overline{z}] \), \(i \in [M] \) of Problem (20) is equivalent to

\[
\sum_{j \in [N]} a_{ij}^0 x_j + \min_{z \in \mathbb{R}^N} \left\{ \sum_{j \in [N]} a_{ij}^{z(i)} x_j - b_i^{z(i)} \right\} \geq b_i^0,
\]

or equivalently, we have for all \(k \in [K] \),

\[
\sum_{j \in [N]} a_{ij}^0 x_j \geq b_i^0 \quad \forall i \in M_k^0(x), \quad z_k = \underline{z}_k \geq \frac{b_i^0 - \sum_{j \in [N]} a_{ij}^0 x_j}{\sum_{j \in [N]} a_{ij}^0 x_j - b_i^0} \quad \forall i \in M_k^+\!^-\!^+(x), \quad z_k = \overline{z}_k \leq \frac{b_i^0 - \sum_{j \in [N]} a_{ij}^0 x_j}{\sum_{j \in [N]} a_{ij}^0 x_j - b_i^0} \quad \forall i \in M_k^-(x).
\]

Because \(P[A(z)x \geq b(z)] > 0 \), it follows that the constraints from the set \(\cup_{k \in [K]} M_k^0 \) are all satisfied. Based on the convention that maximization and minimization objective values are \(-\infty \) and \(+\infty \), respectively, for the case of infeasibility, we have that

\[
\ln P[A(z)x \geq b(z)] = \ln P \left\{ \sum_{j \in [N]} \left(a_{ij}^0 + a_{ij}^{z(i)} z(i) \right) x_j \geq b_i^0 + a_{ij}^{z(i)} z(i) \right\}, \quad \forall i \in M_k^0(x) \cup M_k^+\!^-\!^+(x) \cup M_k^-(x), \quad k \in [K]
\]

\[
= \ln P \left\{ \max_{k \in [K]} \left(b_i^0 - \sum_{j \in [N]} a_{ij}^0 x_j \right) \leq \underbar{z}_k \leq \overline{z}_k \right\}, \quad \forall i \in M_k^0(x) \cup M_k^+\!^-\!^+(x) \cup M_k^-(x), \quad k \in [K]
\]

\[
= \max_{\underline{z}, \overline{z} \in \mathcal{V}} \left\{ \sum_{k \in [K]} \ln P \left[\underline{z}_k \leq \underline{z}_k \leq \overline{z}_k \right] \mid A(z)x \geq b(z) \quad \forall z \in [\underline{z}, \overline{z}] \right\}. \quad \Box
\]

A.4. Proof for Theorem 3

Proof. Under the general affine factor model in (19), the robust counterpart for each of the \(i \)th constraint \(a_i(z)'x \geq b_i(z) \), \(\forall z \in [\underline{z}, \overline{z}] \), \(i \in [M] \) of Problem (20) can be written as

\[
\sum_{j \in [N]} a_{ij}^0 x_j + \min_{z \in \mathbb{R}^N} \left\{ \sum_{k \in [K]} \left(\sum_{j \in [N]} a_{ij}^k x_j - b_i^k \right) z_k \right\} \geq b_i^0.
\]

Because the minimization operates on a linear function in \(z \), with \(z \in [\underline{z}, \overline{z}] \), the previous is equivalent to

\[
\sum_{j \in [N]} a_{ij}^0 x_j + \min_{k \in [K]} \left(\sum_{j \in [N]} a_{ij}^k x_j - b_i^k \right) z_k \geq b_i^0,
\]

which results in the desired formulation. \(\Box \)

A.5. Proof for Proposition 2

Based on the affine factor model assumption in (19), the constraints in (20) can be rewritten as

\[
\sum_{k \in [K]} \sum_{j \in [N]} (a_{ij}^k x_j - b_i^k) z_k + \sum_{j \in [N]} a_{ij}^0 x_j - b_i^0 \geq 0 \quad \forall i \in [M] \quad \forall z \in [\underline{z}, \overline{z}]
\]

\[
\Leftrightarrow \sum_{k \in [K]} \min_{\alpha \in [\underline{z}, \overline{z}]} \sum_{j \in [N]} (a_{ij}^k x_j - b_i^k) z_k + \sum_{j \in [N]} a_{ij}^0 x_j - b_i^0 \geq 0 \quad \forall i \in [M]
\]

\[
\Leftrightarrow \sum_{k \in [K]} \sum_{j \in [N]} (a_{ij}^k x_j - b_i^k) \overline{z}_k + \sum_{k \in [K]} \sum_{j \in [N]} (a_{ij}^k x_j - b_i^k) \underline{z}_k + \sum_{j \in [N]} a_{ij}^0 x_j - b_i^0 \geq 0 \quad \forall i \in [M],
\]

where the last equivalence follows from applying the conditions in (22) and (23). Hence, \(\xi(\alpha) \) as defined in (24) is indeed a decision-independent worst-case outcome. \(\Box \)
A.6. Proof for Theorem 4

Proof. From the uncertainty set \(\mathcal{U}(\alpha)\), the lower and upper limits of \(\tilde{z}_k, k \in [K]\) are \(\sum_{\ell \in [L]} \alpha_{k,1}^\ell\) and \(\sum_{\ell \in [L]} \alpha_{k,0}^\ell\), respectively. Also,

\[
\ln \left(\sum_{\ell \in [L]} \pi_{k,1}^\ell \alpha_{k,1}^\ell \leq \tilde{z}_k \leq \sum_{\ell \in [L]} \pi_{k,0}^\ell \alpha_{k,0}^\ell \right) = \ln \left(\sum_{\ell \in [L]} \left(\lambda_k^\ell \alpha_{k,1}^\ell - \lambda_k^\ell \alpha_{k,0}^\ell \right) \right).
\]

Because \(\ln(\delta)\) is a concave function on domain \(\delta > 0\), it follows that

\[
\ln(\delta) \leq \ln(\gamma) + \frac{1}{\gamma}(\delta - \gamma) = \ln(\gamma) - 1 + \frac{\delta}{\gamma}
\]

for all \(\gamma > 0\) and that equality is achieved trivially at \(\gamma = \delta\). Moreover, we observe that

\[
\sum_{\ell \in [L]} \pi_{k,1}^\ell = 1, \quad \sum_{\ell \in [L]} \alpha_{k,1}^\ell = 1, \quad \sum_{\ell \in [L]} \ell(\pi_{k,1}^\ell - \pi_{k,0}^\ell) \geq 0.
\]

Hence, we have

\[
\ln \left(\sum_{\ell \in [L]} \left(\lambda_k^\ell \pi_{k,1}^\ell - \lambda_k^\ell \pi_{k,0}^\ell \right) \right) \leq \ln(\gamma) - 1 + \sum_{\ell \in [L]} \frac{1}{\gamma}(\lambda_k^\ell \pi_{k,1}^\ell - \lambda_k^\ell \pi_{k,0}^\ell)
\]

for all \(\gamma > 0\) and note that equality is achieved when

\[
\gamma = \sum_{\ell \in [L]} \left(\lambda_k^\ell \pi_{k,1}^\ell - \lambda_k^\ell \pi_{k,0}^\ell \right) \in \mathcal{C}_k.
\]

The remaining constraints follow trivially from Theorem 3. \(\square\)

Appendix B. S-Model with Recourse

We consider a satisficing problem based on a linear optimization problem with recourse, where we have (reproduced from (3)):

\[
T(x) = \left\{ z \in \mathcal{W} \mid \exists y(\xi) \in \mathcal{R}^N : \forall \xi \in \mathcal{W} : A(z)x + By(\xi) \geq b(z) \right\}.
\]

The satisficing decision criterion in (5) can then be written as

\[
\nu(x) = \max_{\alpha \in \mathcal{S}} \left\{ \rho(\alpha) \mid \forall z \in \mathcal{U}(\alpha), \exists y \in \mathcal{R}^N : A(z)x + By(\xi) \geq b(z) \right\}.
\]

The corresponding S-model (with recourse) is written as

\[
\max_{\alpha \in \mathcal{S}} \rho(\alpha) \quad \text{s.t.} \quad \forall z \in \mathcal{U}(\alpha), \exists y \in \mathcal{R}^N : A(z)x + By(\xi) \geq b(z)
\]

\[
x \in \mathcal{X}, \quad \alpha \in \mathcal{S}.
\]

Unfortunately, in such a case, the S-model is not computationally tractable (because even for a fixed \(\alpha\), the problem involves checking the feasibility of \(x\) in an adjustable robust optimization problem, which itself is NP-hard). To achieve tractability, a common approach in the literature is to use approximations such as affine decision rules and their extensions (Zhang et al. 2016). However, such approximation schemes do not necessarily result in being consistent with the satisficing decision criteria of Definition 1. We illustrate this in the following example.

Example B.1. A straightforward approach to approximate \(\nu(x)\) in (B.1) is based on a static decision rule defined as

\[
\hat{\nu}(x) = \max_{\alpha \in \mathcal{S}} \left\{ \rho(\alpha) \mid \exists y \in \mathcal{R}^N : A(z)x + By(\xi) \geq b(z) \forall z \in \mathcal{U}(\alpha) \right\}.
\]

Let us consider a simple case where \(T(x) = \{ z \in \mathcal{W} \mid \exists y(z) : \mathbb{R} \rightarrow \mathbb{R} \text{ such that } z \leq y(z) \leq z + x \}, \) with \(\mathcal{W} = [0,1]\) being the support of \(z\). Because \(T(0) = T(1)\), we must have \(\nu(0) = \nu(1)\) according to Definition 1 for any satisficing decision criterion \(\nu\). Using (B.3), for \(x = 1\), we can have \(y = 1\) satisfying the nonadjustable constraints for all \(z \in \mathcal{W}\), because \(1 \leq y \leq 0 + 1\). However, for the case \(x = 0\), clearly no such \(y\) exists because this requires \(1 \leq y \leq 0 + 0\). Consequently, \(\nu(0) \neq \nu(1)\) and is hence not consistent with the satisficing decision criteria. \(\square\)

Nevertheless, in some special situations, applying the static decision rule as in the previous example turns out to be exact. This is, for instance, when the T-model has decision-independent worst-case uncertainty (see Definition 2). In this case, let \(\mathcal{G}(\alpha) \in \mathcal{W}\) be a decision-independent worst-case outcome, given \(\alpha \in \mathcal{S}\). Based on Proposition 1, the S-model in
(B.2) can then be reduced as

$$\max_{x \in X', \alpha \in S} \rho(\alpha) \left| b(\xi(\alpha)) \right|$$

(B.4)

Appendix C. Piecewise Linear Approximations for T-Models with Log-Concave Probability Density Functions

For any $D_k' \subseteq D_k = \{(\overline{\mu}, \overline{\sigma}) \in W_k^2 : \overline{\sigma} < \overline{\delta}\}$, each term $\ln P[\alpha_i \leq \overline{\zeta}_i \leq \overline{\pi}_i]$ in the objective function of (20) can be written as follows:

$$\ln P[\alpha_i \leq \overline{\zeta}_i \leq \overline{\pi}_i] = \max \left\{ p_k \in \mathbb{R} \mid p_k \leq (F_k(x_k, \pi_k)) \right\}$$

$$= \max \left\{ p_k \in \mathbb{R} \mid p_k \leq \min_{(\overline{\mu}, \overline{\sigma}) \in D_k} \left(F_k(\overline{\mu}, \overline{\sigma}) + F_k^1(\overline{\mu}, \overline{\sigma}) - \overline{\pi}_k \right) \right\}$$

$$\leq \max \left\{ p_k \in \mathbb{R} \mid p_k \leq \left(F_k(\overline{\mu}) + F_k^1(\overline{\mu}) - \overline{\pi}_k \right) \forall (\overline{\mu}, \overline{\sigma}) \in D_k' \right\}$$

where the function F_k is as defined in Corollary 1, and F_k^1, and F_k^2 on the domain D_k are defined as

$$F_k^1(\overline{\mu}, \overline{\sigma}) = \frac{\partial}{\partial \overline{\mu}} F_k(\overline{\mu}, \overline{\sigma}) = -\frac{f_k(\overline{\mu})}{F_k[\overline{\mu} \leq \overline{z}_k \leq \overline{\delta}]}$$

and

$$F_k^2(\overline{\mu}, \overline{\sigma}) = \frac{\partial}{\partial \overline{\sigma}} F_k(\overline{\mu}, \overline{\sigma}) = \frac{f_k(\overline{\mu})}{F_k[\overline{\mu} \leq \overline{z}_k \leq \overline{\delta}]}$$

The second equality follows from the first-order necessary and sufficient conditions of concave functions and by noting that for any given $(x_k, \pi_k) \in D_k$, the minimum is trivially achieved by choosing $(\overline{\mu}, \overline{\sigma}) = (x_k, \pi_k)$. This thus establishes the equivalent reformulation of $F_k(x_k, \pi_k)$ as a point-wise minimum of a set of affine functions. Hence, a relaxation of the problem can be achieved by replacing the original objective function with the last construct in the previous inequality for some D_k', for each $k \in K$.

The constraints

$$p_k \leq F_k(\overline{\mu}) + F_k^1(\overline{\mu}) - \overline{\pi}_k \forall (\overline{\mu}, \overline{\sigma}) \in D_k'$$

which are affine in the decision variables, can be efficiently implemented on general purpose solvers. In practice, the problem can be solved in an iterative cut generation procedure (if all variables are continuous) or in a branch-and-cut procedure (if some of the variables are integer) (Wolsey 1998), adding cuts (C.1) whenever they are violated. From a computational point of view, this approach is likely to be particularly attractive when the number of violated cuts is small.

Appendix D. Model Formulations for SMCP

In this section, we provide the model formulations for the SMCP not shown in full in the main body of the paper.

D.1. Formulations for Two-Stage SMCP

We first consider the P-model for the two-stage SMCP, in which demand is allocated after the actual customer demands are observed.

Let binary variables x_i be one if facility i has been selected and zero otherwise. The second-stage demand allocation from facility i to customer j is denoted by $y_{ij}(z)$, where $y_{ij}(z) : R^d \rightarrow R$ is a measurable function that depends on the realization of the uncertain customers’ demand quantities z. Function $y_{ij}(\cdot)$ is optimized over the family of all measurable functions $R(i, 1)$ that map from R^d to R. The formulation for the two-stage P-model for the SMCP is as follows:

$$\max \ln P \left[\sum_{i \in I} y_{ij}(z) \geq b_j^1 + \sum_{k \in [K]} b_j^k \overline{\zeta}_k \right] \quad \forall j \in [J]$$

s.t. $\sum_{i \in I} c_{ij} x_i \leq \beta$,

$$\sum_{i \in [I]} f_i x_i \leq \beta$$

$$y_{ij}(z) \geq 0 \quad \forall z \in \mathcal{W}, i \in [I], j \in \mathcal{J}_i$$

$$y_{ij} \in R(i, 1) \quad \forall i \in [I], j \in \mathcal{J}_i$$

$$x_i \in \{0, 1\} \quad \forall i \in [I],$$

where the objective function maximizes the probability that the uncertain demand can be met. The first set of constraints are the facility capacity constraints, whereas the second constraint restricts the construction costs to the available budget.
D.1.1. T-Models for the SMCP Under Decision-Independent Worst-Case Uncertainty. For the case where T-models assume decision-independent worst-case uncertainty as by Definition 2, we evaluate two implementations: model T-2, assuming log-concave probability densities (see Section 3.1), and model T-2, based on the discrete distribution case (see Section 3.2) using an empirical distribution of $\hat{z}_k^\ell \in \mathbb{R}^K$, $\ell \in [L]$, each with equal probability of realization. We assume \hat{z} themselves are independently distributed, and furthermore each \hat{z}_k^ℓ always impact all customer demands either positively or negatively (see Appendix E for full details). The random factors can therefore be divided into two disjoint sets \mathcal{K} and \mathcal{K}, which satisfy the decision-independent worst-case uncertainty (Definition 2 and Proposition 2).

The two variants of T-models for the two-stage SMCP can then be formulated as follows:

\[
\max \sum_{k \in [K]} \sum_{\ell \in [L]} \ln \left(1 - \frac{\ell}{L}\right) a_k^\ell + \sum_{k \in [K]} \sum_{\ell \in [L]} \ln \left(1 - \frac{\ell}{L}\right) \pi_k^\ell
\]

s.t. \[
\sum_{\ell \in [L]} y_{ij} \geq b_{ij}^\ell + \sum_{k \in [K]} \sum_{\ell \in [L]} b_{ij}^k \hat{c}_k^\ell \forall j \in [J], \ell \in [L]
\]

\[
\sum_{\ell \in [L]} y_{ij} \leq c_{ij} \forall i \in [I], j \in J_i
\]

\[
\sum_{\ell \in [L]} f_i x_i \leq \beta \forall i \in [I]
\]

\[
\sum_{\ell \in [L]} a_k^\ell = 1 \forall k \in [K]
\]

\[
\sum_{\ell \in [L]} \pi_k^\ell = 1 \forall k \in [K]
\]

\[
y_{ij} \geq 0 \forall i \in [I], j \in J_i
\]

\[
x_i \in \{0,1\} \forall i \in [I]
\]

\[
a_k^\ell, \pi_k^\ell \in \{0,1\} \forall \ell \in [L], k \in [K].
\]

Note that $(\hat{c}_1^k, \ldots, \hat{c}_K^k)$ denotes the ordered statistics of the empirical samples $(\hat{c}_1^k, \ldots, \hat{c}_K^k)$ for each factor $k \in [K]$.

D.2. SAA Model Formulations

We consider two types of SAA optimization models that assume as input a sample of L scenarios of the demand observations obtained using the affine factor model with the samples \hat{c}_k^ℓ for each random factor \hat{z}_k^ℓ, $\ell = 1, \ldots, L$. The first type of SAA models corresponds to the P-model objective for the single- and two-stage SMCP, maximizing the number of feasible scenarios in the given sample. The model involves one demand satisfaction constraint for each scenario $\ell \in [L]$. Binary variables p^ℓ take value 1 if demand scenario $\ell \in [L]$ is covered by the set of selected facilities and zero otherwise. Because the P-model objective is monotone in the feasibility probability $P \left[\sum_{\ell \in [L]} y_{ij}(\hat{z}) \geq b_{ij}^\ell + \sum_{k \in [K]} b_{ij}^k \hat{c}_k^\ell \forall j \in [J] \right]$, we consider the following SAA models for the single-stage and two-stage SMCP:

\[
\max \frac{1}{L} \sum_{\ell \in [L]} p^\ell
\]

s.t. \[
\sum_{\ell \in [L]} y_{ij} \geq b_{ij}^\ell + \sum_{k \in [K]} b_{ij}^k \hat{c}_k^\ell \forall j \in [J], \ell \in [L]
\]

\[
\sum_{\ell \in [L]} y_{ij} \leq c_{ij} \forall i \in [I], j \in J_i
\]

\[
\sum_{\ell \in [L]} f_i x_i \leq \beta \forall i \in [I]
\]

\[
y_{ij} \geq 0 \forall i \in [I], j \in J_i
\]

\[
x_i \in \{0,1\} \forall i \in [I]
\]

\[
p^\ell \in \{0,1\} \forall \ell \in [L],
\]

to

\[
\max \frac{1}{L} \sum_{\ell \in [L]} p^\ell
\]

s.t. \[
\sum_{\ell \in [L]} y_{ij} \geq b_{ij}^\ell + \sum_{k \in [K]} b_{ij}^k \hat{c}_k^\ell \forall j \in [J], \ell \in [L]
\]

\[
\sum_{\ell \in [L]} y_{ij} \leq c_{ij} \forall i \in [I], j \in J_i
\]

\[
p^\ell \in \{0,1\} \forall \ell \in [L]
Like models P-1 and P-2, models E-1 and E-2 can be implemented and solved directly using general purpose MIP solvers. A computational advantage of models E-1 and E-2 over models P-1 and P-2 is that they avoid the use of general-purpose MIP solvers.

The second SAA model used for comparison aims at minimizing the total expected demand shortfall:

$$\sum_{\ell \in [L]} \left(\sum_{i \in [I]} y_{ij}(\tilde{z}) - \left(b^0 + \sum_{k \in [K]} b^r_k \tilde{z}_k\right) p' \right)^+.$$

Let s'_j be the demand shortfall for the demand of customer j at scenario ℓ. The approximation for the single-stage problem variant is formulated as

\[
\begin{align*}
\min & \quad \frac{1}{L} \sum_{\ell \in [L]} \sum_{i \in [I]} s'_j \\
\text{s.t.} & \quad \sum_{i \in [I]} y_{ij} + s'_j \geq \left(b^0 + \sum_{k \in [K]} b^r_k \tilde{z}_k\right) p' \quad \forall j \in [J], \ell \in [L] \\
& \quad \sum_{i \in [I]} y_{ij} \leq c_i x_i \quad \forall i \in [I] \\
& \quad \sum_{i \in [I]} f x_i \leq \beta \\
& \quad y_{ij} \geq 0 \quad \forall i \in I, j \in [J] \\
& \quad s'_j \geq 0 \quad \forall j \in [J], \ell \in [L] \\
& \quad x_i \in \{0,1\} \quad \forall i \in [I].
\end{align*}
\]

(Model E-1)

The corresponding two-stage model SMCP is

\[
\begin{align*}
\min & \quad \frac{1}{L} \sum_{\ell \in [L]} \sum_{i \in [I]} s'_j \\
\text{s.t.} & \quad \sum_{i \in [I]} y_{ij} + s'_j \geq \left(b^0 + \sum_{k \in [K]} b^r_k \tilde{z}_k\right) p' \quad \forall j \in [J], \ell \in [L] \\
& \quad \sum_{i \in [I]} y_{ij} \leq c_i x_i \quad \forall i \in [I], \ell \in [L] \\
& \quad \sum_{i \in [I]} f x_i \leq \beta \\
& \quad y_{ij} \geq 0 \quad \forall i \in I, j \in [J], \ell \in [L] \\
& \quad s'_j \geq 0 \quad \forall j \in [J], \ell \in [L] \\
& \quad x_i \in \{0,1\} \quad \forall i \in [I].
\end{align*}
\]

(Model E-2)

Like models P-1 and P-2, models E-1 and E-2 can be implemented and solved directly using general purpose MIP solvers. A computational advantage of models E-1 and E-2 over models P-1 and P-2 is that they avoid the use of additional binary variables for modeling the objective function.

Appendix E. Generation of Problem Instances for SMCP

We generate the problem instances for the SMCP as follows. The number of customers J is taken from $J \in \{100, 250, 500\}$; the number of candidate facility locations is chosen accordingly from $I \in \{0.5J, 2\}$. The arcs between customers and facilities have been generated randomly such that each customer is connected to $A\%$ of the I facilities, where the parameter $A \in \{20, 40\}$ can be regarded as a surrogate for the level of facility-customer connectivity assumed in the problem.

We generate instances with independent and correlated customer demands. The demands are modeled as affine functions of independently distributed random factors $\tilde{z}_1, \ldots, \tilde{z}_K$, with $K > J$, written as

$$b_j(\tilde{z}) = b^0_j + b^r_j \tilde{z}_j + \sum_{k=1}^K b^r_k \tilde{z}_j, \quad \forall j \in [J],$$
and, for simplicity, we assume in all our instances that the constant term $b^0_j = 0$ for all $j \in [J]$. For instances with independent customer demands, the parameters $b^0_j = 0$ for all $k = 1, \ldots, K$. For instances with correlated customer demands, the demand of each customer is composed of an individual random term $b^0_j z_j$ plus up to 10 random factors that are randomly selected from a pool of shared demand factors. Among those, 20% are assumed to negatively impact the customer demands. We assume that the total number of random factors $K = [J]$, so that the number of shared random factors $(K - J) = [\sqrt{J}]$. For example, with $J = 500$ customers, we assume that the demand of each customer is a linear combination of its own random factor, as well as some of the $[\sqrt{500}] = 23$ shared random factors. We further assume that the individual term accounts for approximately 30% of the entire demand; therefore, $b^0_j = 0.3$, $\forall j \in [J]$. The coefficients of the random factors are uniformly chosen at random normalized in each linear combination, such that $\sum_{d=1}^{K} b^d_j = 1$, $\forall j \in [J]$. Therefore, we need to choose b^1_j, \ldots, b^K_j in a way such that $\sum_{d=1}^{K} b^d_j = 1 - b^0_j = 0.7$. In practice, it is reasonable to assume that the number of random factors each customer demand depends on, here referred to as $nRFC$, does not exceed 10. Each customer demand is therefore modeled by an individual random factor, as well as up to 10 random factors that it may have in common with other customers. For each customer, these 10 random factors are chosen randomly according to a uniform distribution from $[1, 100]$. The 10 random factors are randomly sampled with replacement, and sampling the same random factor more than once implies that the corresponding random coefficients are summed. In addition to problem instances including customer demands generated with significant correlation, we also generate the same instances without shared random factors, that is, $nRFC = 0$ and $K = [J]$. The random factors themselves are generated as follows. All random factors in $[K]$ follow a continuous normal distribution with mean μ_k and standard deviation $\sigma_k = 0.5 \mu_k$, where μ_k is chosen randomly according to a uniform distribution between 1 and 100. If the random outcome of a factor has been smaller than zero, it is set to zero. We assume that the random individual random factors z_1, \ldots, z_J have a positive influence on the customer demand; that is, they can only take nonnegative values. Among the shared random factors, we randomly choose 20% to have a negative influence on customer demands (i.e., they are nonpositive) and the remaining to have a positive influence.

Here, a subtle detail impacts whether the resulting instances will allow the T-model to exploit demand-independent worst-case uncertainty. Specifically, if the 20% of individual random factors with negative impact on the demand are the same for all customers (i.e., if a random factor negatively impacts demand for one customer, then it never positively impacts demand for another customer), the T-model has demand-independent worst-case uncertainty. Instances generated in this way are used in the computational experiments for the two-stage problem variant. In contrast, if we randomly select the 20% of the random factors with negative impact separately for each customer (i.e., a random factor may negatively impact demand for one customer but positively impact demand for another), then the T-model does not necessarily have demand-independent worst-case uncertainty. These instances are used in the experiments for the single-stage problem variant.

For the facilities that can be constructed, capacities are set sequentially to 500, 750, and 1,000 units, that is, $c_{i'} = 500$, $c_{i'+1} = 750$, and $c_{i'+2} = 1,000$ for the running index i'. As the average customer demand is about 50 units, a total construction budget of $50 \times J$ would, on average, ensure that all customer demands can be met if each customer could be served by any facility (i.e., $A = 100$). However, as demands are uncertain and the number of service arcs between

Table F.1. Performance Comparison for Different Instance Sizes J and Sample Sizes L for Two-Stage SMCP: Success Rate, Average Demand Shortfall (in 1,000 Units), and Average Computing Time (Minutes) for the Instances Where the Solver Has Found a Feasible Solution

<table>
<thead>
<tr>
<th>J</th>
<th>L</th>
<th>Model T-2</th>
<th></th>
<th>Model P-2</th>
<th></th>
<th>Model E-2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Success Rate (%)</td>
<td>Short fall</td>
<td>Time (min)</td>
<td>No. ns</td>
<td>Success Rate (%)</td>
</tr>
<tr>
<td>100</td>
<td>5</td>
<td>63.68</td>
<td>0.1</td>
<td>2.3</td>
<td>0</td>
<td>63.58</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>64.75</td>
<td>0.1</td>
<td>0.3</td>
<td>0</td>
<td>59.48</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>60.05</td>
<td>0.1</td>
<td>1.3</td>
<td>0</td>
<td>52.42</td>
</tr>
<tr>
<td>250</td>
<td>100</td>
<td>48.71</td>
<td>0.1</td>
<td>110.6</td>
<td>0</td>
<td>36.11</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>67.22</td>
<td>0.3</td>
<td>3.6</td>
<td>0</td>
<td>61.66</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>65.32</td>
<td>0.3</td>
<td>0.3</td>
<td>0</td>
<td>64.83</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>69.39</td>
<td>0.3</td>
<td>0.2</td>
<td>0</td>
<td>15.98</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>67.92</td>
<td>0.3</td>
<td>0.3</td>
<td>0</td>
<td>4.30</td>
</tr>
<tr>
<td>500</td>
<td>5</td>
<td>77.34</td>
<td>0.3</td>
<td>1.5</td>
<td>0</td>
<td>77.33</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>77.52</td>
<td>0.3</td>
<td>0.1</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>77.51</td>
<td>0.3</td>
<td>0.2</td>
<td>0</td>
<td>5.17</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>77.51</td>
<td>0.3</td>
<td>0.5</td>
<td>0</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Notes. The number of instances where the solver did not find any feasible solution is reported in column No. ns. As L increases, models P and E find feasible solutions for less instances, decreasing the average success rate and increasing the demand shortfall. In contrast, model T-2 remains relatively stable.
facilities and customers are restricted, we allow for an additional budget of \(B \% \); that is, we set the total budget allowance \(\beta = (1 + B/100) \times 50 \times J \). If not otherwise stated, we set \(B = 5 \) for the two-stage problems. For the single-stage problem, we allow a higher budget with \(B = 150 \) because demands are naturally more difficult to satisfy in this nonadjustable problem variant.

Appendix F. Computational Results for the Two-Stage SMCP

In this section, we report on computational results for the two-stage SMCP defined in Appendix D.1. The studies will follow the same format as those for the single-stage problem variant. However, to enable a tractable two-stage T-model, we rely on demand-independent worst-case uncertainty. All computational experiments have therefore been carried out on instances, in which random factors either negatively impact demand for all customers, or positively impact demand for all customers (see Appendix E for details).

We compare the performance of models T-2, P-2, and E-2. To correctly measure the P-model objective and account for the fact that demands can be reallocated after observing it, we evaluate the success rates and demand shortfalls for each of the scenarios based on the optimal decision allocation between the given set of facilities and the customer demands of the specific scenario. Table F.1 reports average results for all instances that have been solved by the respective models. Although model E-2 may provide good results when sufficient time is available, model P-2 would theoretically provide the best results when \(L \) is large (which, however, becomes computationally intractable). Because of the ability to exploit the decision independent worst-case uncertainty, model T-2 is significantly more tractable computationally (and even more so compared with model T-1 in Section 4). For all instances that have either more than 100 customers or use more than 25 samples, models P-2 and E-2 often hit the time limit of 12 hours and report suboptimal solutions, compromising the overall success rates and demand shortfalls. Model T-2 finds feasible solutions for all problem instances and number of samples, therefore consistently providing the best overall performance among all three models.

We next investigate the performance of the sample-based models with respect to the problem and sample size under multiple replications. Table F.2 shows the average, minimum, and maximum of the average success rates (over all 60 instances) for the different models and different sample sizes \(L \). Instances for which no feasible solution has been found were counted as zero success rates. For models P-2 and E-2, we also report results for sample size \(L = 5 \), as these models were unable to handle large sample sizes in our computational studies. The T-2 results are shown for different sample sizes, from 5 to 1,000. The average success rates and sample-to-sample variation tend to slightly decrease with higher sample sizes.

The average computing times of model T-2 across all instances are 69, 57, 64, 56, and 59 minutes when using 5, 25, 100, 500 and 1,000 demand scenarios, respectively. The results hence suggest that model T-2 is highly scalable in the size of the samples used. However, it seems that, for this problem variant, using a large number of samples does add little value to the final solution quality.

References

Table F.2. Scalability Study for Two-Stage SMCP, Comparing Average [Minimum, Maximum] Success Rates (over All 60 Instances) Among 10 Replications with Different Sample Sizes \(L \)

<table>
<thead>
<tr>
<th>(L)</th>
<th>Model P-2</th>
<th>Model E-2</th>
<th>Model T-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>51.62 [38.1, 54.5]</td>
<td>51.22 [47.2, 54.4]</td>
<td>50.88 [41.7, 54.5]</td>
</tr>
<tr>
<td>250</td>
<td>65.33 [54.8, 70.3]</td>
<td>63.78 [54.9, 67.9]</td>
<td>67.83 [65.5, 69.6]</td>
</tr>
<tr>
<td>500</td>
<td>66.12 [46.0, 77.6]</td>
<td>75.50 [67.2, 77.6]</td>
<td>77.47 [77.3, 77.6]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(L)</th>
<th>Model P-2</th>
<th>Model E-2</th>
<th>Model T-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>49.79 [39.1, 54.4]</td>
<td>46.17 [40.5, 50.0]</td>
<td>50.52 [65.5, 69.6]</td>
</tr>
<tr>
<td>250</td>
<td>38.74 [23.3, 46.8]</td>
<td>21.35 [18.4, 25.9]</td>
<td>61.3 [61.4, 68.9]</td>
</tr>
<tr>
<td>500</td>
<td>3.01 [0.0, 12.9]</td>
<td>21.35 [18.4, 25.9]</td>
<td>77.47 [77.3, 77.6]</td>
</tr>
</tbody>
</table>

