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Abstract—With the rise in the population of the world’s
cities, understanding the dynamics of commuters’ transportation
patterns has become crucial in the planning and management
of urban facilities and services. In this study, we analyze how
commuter patterns change during different time instances such
as between weekdays and weekends. To this end, we propose
two data mining techniques, namely Common Orthogonal Basis
Extraction (COBE), and Joint and Individual Variation Explained
(JIVE) for Integrated Analysis of Multiple Data Types and apply
them to smart card data available for passengers in Singapore.
We also discuss the issues of model selection and interpretability
of these methods. The joint and individual patterns can help
transportation companies optimize their resources in light of
changes in commuter mobility behavior.

I. INTRODUCTION

Due to the advancements in sensor technologies and rapid
expansion of transportation infrastructure in modern cities such
as Singapore, there have been rapid developments in the field
of Data-Driven Intelligent Transportation Systems (D2ITS) [1].
Our aim is to extract dominant commuter mobility patterns and
track changes in these patterns during different time periods.
With the aid of such analysis, pubic transportation companies
can optimize their resources in a better manner by tracking
changes in mobility patterns during different time instances
(e.g., morning and evening rush hours, or between weekdays
and weekends).

Although it is possible to apply different techniques to
obtain travel patterns based on any criterion, our focus shall be
to analyze the variations between the travel patterns observed
on weekdays and on weekends. In particular, we are interested
in knowing the “joint” patterns, which are observed in both
cases, and “individual” patterns, which can only be seen either
during a weekday or a weekend, and are thus, unique. To
extract these common and individual patterns, we propose
two techniques, Joint and Individual Variation Explained
(JIVE) [2] and Common Orthogonal Basis Extraction (COBE)
[3] and apply them to smart card (EZ-Link) data obtained
from the passengers using the Mass Rapid Transit (MRT)
services in Singapore. The data was provided by Singapore’s
Land Transport Authority (LTA). We have focused on the
formulation of a model showing the macro-level travel patterns
of passengers using the MRT in Singapore using the EZ-Link
smart card data.

A significant number of studies on the topic of origin
destination (OD) matrices for traffic networks have been
performed in the past. While some have formulated a unified
framework for estimating or updating OD matrices based on
traffic counts for a road network [4], others have focused on
doing the same for congested road networks [5]. The topic
of inferring passenger travel patterns from smart card data
of rail networks in urban regions has also been studied in
some detail in the past. One particular example is the case
study in Shenzhen, China, in which Liu et al. [6] analyzed
individual and collective passenger mobility patterns. However,
their analysis relied heavily on empirical observations and
could not make a strong distinction between common and
individual spatial or temporal patterns. Li et al. [7] introduced
the idea of clustering nearby stations and proposed models
for identifying morning, afternoon and evening peak patterns.
This study focused on using smart card data records resolved
in both space and time to study the collective spatial and
temporal mobility patterns. It also touched on studying travel
patterns at the individual passenger level and their regularity.
However, as in [6], Li et al. [7] did not make a clear distinction
between patterns that are “common” and “individual”. In
some studies, clustering algorithms were applied to obtain
spatio-temporal patterns [8]. The focus, here, however, was
mainly on temporal patterns, and consequently spatial patterns
received little attention, which are of particular importance.
In conclusion, none of the above studies have shed light on
joint and individual spatial patterns across different days of
the week, or even different times of the day. We address this
issue, by developing common and individual low-dimensional
models for urban rail road networks by applying JIVE and
COBE on smart card data.

Both JIVE and COBE function in similar ways on the raw
data but with subtle differences, to generate joint (common)
and individual (unique) features, depending on the type of
data sets being dealt with. In our application, we apply these
methods to raw passenger travel data to arrive at spatial
passenger travel patterns between different days of the week.
We also look at issues concerning interpretability of the results
obtained, in addition to factoring in model complexity by using
the Bayesian Information Criterion (BIC) as a model selection



criterion.
The remainder of the paper is structured as follows. In

section II, we introduce the data set used. In section III, we
briefly explain the mathematical models of JIVE and COBE
and how they are applied to our case. In section IV, we look
at methods to optimize the techniques used in terms of model
accuracy and model complexity. Finally, in section VI, we
summarize our contributions, and suggest topics for future
work.

II. DATA SET

According to LTA, a journey is defined as a set of rides
on bus and train from the origin to the destination. It may
involve one or more rides. Rides are considered to belong
to one journey when they fulfil the transfer condition for
the Distance-based journey fare. In the data provided, one
record is one ride. We represent the smart card (EZ-Link)
data as origin-destination (OD) pair matrices whose rows
correspond to origin MRT stations, while their columns
correspond to destination MRT stations. We assigned a unique
index number (starting from 1) to each MRT station in the
network, which serves as an identifier for that station in the
OD pair matrices. Every element of an OD pair matrix shows
the number of passengers travelling from the origin MRT
station corresponding to the specific row to the destination
MRT station corresponding to that particular column. At the
time the data was acquired, which is April 2011, there were
107 functional MRT stations, and thus, we constructed 107 x
107 sized square matrices for two days, Monday (11th April
2011) representing weekdays, and Sunday (17th April 2011)
representing weekends. We chose these two days to look at
specific differences between passenger traffic on weekdays and
weekends.

III. PATTERNS IN ORIGIN-DESTINATION (OD) PAIR DATA

Many fields of scientific research today deal with
high-dimensional data, one of them being the field
of transportation. These data tend to include multiple
high-dimensional data sets measured for a common set of
objects. In our case, this translates to the OD pair matrices
containing passenger travel counts for 107 MRT stations during
two separate days. Given the relatively periodic and regular
nature of transportation patterns in large metropolitan cities [9],
it is reasonable to expect shared patterns between multiple data
sets, in particular, the travel patterns between different days of
the week, or between different time slots of the day, and so
forth. We shall refer to such shared patterns as joint structure.
It is also expected that a particular subset of data would have
certain variation unrelated to other data sets. We shall refer to
such individual variation as individual structure. We will now
briefly explain the models of JIVE and COBE in the following
subsections.

A. Joint and Individual Variation Explained (JIVE)

JIVE separates joint and individual passenger travel patterns
between data sets by decomposing a data set as a sum of three
terms as follows:

(a) A low-rank approximation capturing “joint” passenger
travel patterns common to all the days.

(b) A low-rank structure capturing “individual” passenger
travel patterns unique to a particular day.

(c) Residual noise that falls under neither joint or individual
patterns.

The individual structure can identify potentially useful
information that exists in one set of variables, but not others.
Accounting for the individual structures also implies more
accurate estimation of the joint structure. JIVE assumes the
data sets to be arranged in the form of multiple matrices, X1,
X2,· · ·,Xk, where k ≥ 2. All matrices have n columns each,
corresponding to a common set of n objects. The ith matrix has
pi rows, with each row corresponding to a variable. Applying
this definition to our case, we can have X1,X2, · · ·,Xk represent
the OD pair matrices for different days of the week. In this
paper, we limit our analysis to only two days of the week;
Monday (weekday) and Sunday (weekend). Therefore, the data
sets in concern are only X1 and X2. As OD pair matrices are
square, we have pi = n in our case. The two matrices may be
combined into a single matrix X of size p × n as

X =

[
X1
X2

]
. (1)

Joint structure is represented by a single p × n matrix J of
rank r < min{rank(X1),rank(X2)} defined as

J =

[
J1
J2

]
. (2)

Individual structure for each Xi is represented by a pi × n
matrix of rank ri < rank(Xi). Let Ai be the sub-matrix of
the individual structure matrix A, representing the individual
structure of Xi, such that

A =

[
A1
A2

]
, (3)

and let Ji be the sub-matrix of the joint structure matrix J that
is associated with Xi. The JIVE model for two data sets can
then be described as

X1 = J1 +A1 + ε1,

X2 = J2 +A2 + ε2,
(4)

for the two data matrices in our case. Here εi are error matrices
with independent entries, i.e., E(εi) = 0pi×n. The orthogonality
constraint JAT

i = 0p×pi ensures that patterns responsible for
joint structure between data sets are unrelated to patterns
responsible for individual structure [2].

Various rank selection criteria are discussed in [2] and [10].
JIVE estimates joint and individual structures by minimizing
the Frobenius Norm of the Residual Structure matrix R

R =

[
R1
R2

]
=

[
X1−J1−A1
X2−J2−A2

]
, (5)

by iteratively applying Alternating Least Squares (ALS) [2].
The Frobenius norm of the matrix R (ri j) is defined as

||R||F =
√

∑
i, j

r2
i j.



B. Common Orthogonal Basis Extraction (COBE)

JIVE requires intermediate matrices to be stored during
every iteration of the process. This involves extra cost in terms
of memory. This problem can be tackled with another approach
termed as Common Orthogonal Basis Extraction (COBE).

The raw data of interest is contained in matrices Xn ∈
RI×Mn ; n ∈ {1,2}, for the two OD pair matrices, with X1
containing the raw OD pair data for Monday (11th April 2011),
representative of weekdays and X2 containing that for Sunday
(17th April 2011), representative of weekends. COBE aims to
solve the following factorization problem for each matrix

min
Pn, Qn

||Xn−PnQn
T ||F ; n ∈ {1,2}.

The columns of matrix Pn ∈RI×Rn contains the latent variables
in Xn, while matrix Qn ∈ RMn×Rn is the corresponding
co-efficient matrix; Rn represents the number of latent
components. Although COBE imposes the restriction Rn < I,
it is more than likely to be obeyed in our case since we are
computing low-rank approximations of the actual data. The
probability of this being true is further increased when we
consider that the latent rank is often significantly lower than
the dimensionality of the actual data [11].

COBE considers the data sets X1 and X2 to be naturally
linked sharing some common components. For this purpose,
Pn is partitioned as [3]

Pn =
[
P̄ P̆n

]
, (6)

with P̄ ∈RI×c and P̆n ∈RI×(Rn−c). The variable c is a positive
integer defined as

c≤min{R1,R2},

where c can be described as the number of common
components shared by matrices X1 and X2. With the above
partitioning of Pn and a compatible partitioning of QT

n , each
data matrix can be factorized as

Xn =
[
P̄ P̆n

][Q̄T
n

Q̆T
n

]
,

= P̄Q̄T
n + P̆nQ̆T

n ,

= Jn +An,

(7)

with n ∈ {1,2}. Each matrix Xn is represented by two parts:
the common space Jn spanned by the common components
(columns of P̄), and the individual space An spanned by
the individual components (columns of P̆n). The objective of
COBE is therefore to seek P̄ and P̆n without the knowledge
of Qn and possibly the number c. The optimization problem
earlier defined now becomes [3]

min
Pn, Qn

∑
n∈{1,2}

||Xn− P̄Q̄T
n − P̆nQ̆T

n ||
2
F ,

subject to: P̄TP̄ = Ic,

P̆T
n P̆n = IRn×c,

P̄TP̆n = 0, (Orthogonality Constraint).

(8)

The above orthogonality constraint is similar to that in
JIVE. The restriction that rank(P̄)+ rank(P̆n) = Rn implicitly
guarantees that we are seeking common components [3]. In
order to facilitate easier comparison with JIVE, we use the
variant “COBEc” of the COBE algorithm, which assumes that
the number of common components c is known beforehand.
This allows a certain control over the model, similar to the
control provided by rank r of the joint structure in JIVE.

Additionally, it can be shown [3] that

Q̄n = XT
n P̄. (9)

With P̄ and thus the common space J̄n computed by COBEc,
the individual space An can be calculated from a rank k
truncated-SVD (tSVD) of the residual structure Xn−Jn, where
k < Rn− rank(Jn).

C. Equivalence between JIVE and COBEc

We can draw a certain degree of similarity between the
parameters used in JIVE and those used in COBEc. While the
free parameters in JIVE are the rank r of joint structure J and
ranks r1 and r2 of individual structures A1 and A2 respectively,
those in COBEc are the number of common components c and
the rank k of the truncated-SVD (tSVD) used in computing
the respective individual spaces. We shall use this equivalence
while implementing the two algorithms and comparing the
results.

TABLE I: Equivalence between JIVE and COBEc

Model: Xn=Jn+An+εn
JIVE COBEc

Nomenclature Notation Nomenclature Notation
Joint structure J Common space J
Ind. structure A Ind. space A

Joint structure rank r Common components c
Ind. structure ranks r1, r2 t-SVD rank k
J and A computed simultaneously J computed first followed by each Ai

IV. MODEL SELECTION

Both the algorithms JIVE and COBEc aim to minimize the
sum of squared error (SSE), which is ||X−J−A||2F in both the
models. However, they do not account for the complexity of the
model formed as a result of the choice of the free parameters
mentioned in the previous section. In this section, we use
Bayesian Information Criterion (BIC) to account for model
complexity and strike a balance between model accuaracy and
complexity for both JIVE and COBEc. We shall go on to select
optimal values of free parameters (r, r1, r2) in the JIVE model
and (c, k) in the COBEc model, based on the results of BIC.

A. Factoring in Model Complexity-JIVE

The JIVE algorithm has a pre-requisite of specifying the
appropriate values of the joint structure rank r and the
individual structures ranks r1 and r2. Each combination of
these ranks is essentially a model to be chosen or discarded.
BIC calculates a score for each model, and states that the
optimum model can be identified as the one having the lowest
score [12]. We compute the BIC score for a model according to



[13], under the assumption that model errors are independent
and follow a normal distribution. The definition of the BIC
score for the JIVE model is given as

BICJIVE = n ln
(

SSE
n− pJIVE−1

)
+ pJIVE ln(n). (10)

Let us define m= 107, which is the number of MRT stations in
the network. Then, n, which is the total number of data points
considered, can be defined as

n = 2m2 = 2(1072) = 22,898.

It should be noted that n is the total number of elements in
both X1 and X2. The Sum of Squared Error (SSE) is defined
as

SSE = ||X−J−A||2F , (11)

where X, J and A are defined in (1), (2) and (3) respectively.
We define pJIVE, which is a measure of the number of free
parameters (model complexity), as

pJIVE = 2mr+mr1 +mr2 = m(2r+ r1 + r2).

Although r1 and r2 may have different positive integer values
generally, we cosider r1 = r2 in order to limit the number of
free parameters to two, i.e., r and ri = (r1 = r2).

We are interested in finding low-rank approximations for
the available OD pair data. Therefore, we shall restrict the
joint structure rank r as well as the individual ranks ri from
taking values above a certain threshold. Considering that the
data matrices Xi are of size 107 × 107, we shall place the
following restriction on r and ri

r ≤ 40,
ri ≤ 40, i = {1,2},

(12)

so that the joint structure and individual structure ranks are
limited to less than half the full-rank value. BIC scores are
then computed for all possible models formed with the above
limits, i.e., for 1≤ r ≤ 40 and 1≤ ri ≤ 40. We plot the scores
as a 3-dimensional surface plot in Fig. 1.

Fig. 1: Surface plot of BIC scores for JIVE model with rank
restrictions.

The model with the lowest BIC score is considered the
optimal model out of all the available models [12]. We found
that the lowest BIC score occurs at rank values r = 1, r1 =
r2 = 10. Consequently, we implement JIVE on the raw data
contained in matrices X1 and X2 with these rank values.

B. Factoring in Model Complexity-COBEc

The two free parameters used in the COBEc model are c and
k. We use BIC to facilitate the selection of optimal values for
these parameters, as we did for JIVE. The BIC score definition
for COBEc is given as

BICCOBEc = n ln
(

SSE
n− pCOBEc−1

)
+ pCOBEc ln(n). (13)

The Sum of Squared Error (SSE) for the COBEc model is
defined in the same manner as the JIVE model, as in (11).
The variable pCOBEc is the measure of the number of free
parameters and is defined as

pCOBEc = 2mc+2mk = 2m(c+ k).

Similar to the restrictions on the values of the ranks in
the JIVE model, we place the following restrictions on the
values of c and k, since we are interested in the low-rank
approximations of the OD pair data

c≤ 40,
k ≤ 40.

(14)

We calculate BIC scores for 1 ≤ c ≤ 40 and 1 ≤ k ≤ 40.
The surface plot of the BIC scores is shown in Fig. 2.

Fig. 2: Surface plot of BIC scores for COBEc model with
parameter restrictions.

As in the JIVE model, we search for parameter values
yielding the lowest BIC score [12]. We found that c = 1
and k = 11 produces the lowest BIC score with the above
restrictions holding. Therefore, we implemented COBEc with
these parameter values,

However, we observed that the COBEc implementation
results in J containing a large number of negative values, which
pose interpretability issues. This issue was encountered in JIVE
as well, but the negative values observed were much fewer
and their magnitudes were much smaller. In order to tackle
this problem in the COBEc case, we applied Non-Negative
Matrix Factorization (NMF) instead of the normal Singular
Value Decomposition (SVD) approach used in COBEc. This
modified algorithm (Algorithm 1) is briefly presented below.

Here, Wci (n×c) and Hci (c×n) are low-rank non-negative
matrices factored out of the original data matrices Xi (n× n)
using a suitable Non-Negative Matrix Factorization algorithm
[14], [15]. For a general matrix Y of size n×m, the function



Algorithm 1 Modified COBEc algorithm with NMF

1. [Wc1 ,Hc1 ] = nnm f (X1,c)
2. [Wc2 ,Hc2 ] = nnm f (X2,c)
3. J1 = Wc1Hc1

4. J2 = Wc2Hc2

5. A1 = tSV D(|X1−J1|,k)
6. A2 = tSV D(|X2−J2|,k)

nnm f (Y,c) factors Y into non-negative factors W (n× c) and
H (c× m). In our implementation, we use the alternating
least-squares algorithm for implementing Non-Negative Matrix
Factorization. The function tSV D(Z, p) returns the closest rank
p approximation to Z using the p largest singular values
and associated singular vectors of matrix Z. Using the above
approach, the severity of the problem of interpretability of
negative values in J and A in the COBEc model is significantly
reduced.

V. RESULTS AND DISCUSSION

In this section, we analyze the passenger travel patterns
obtained from the results of implementation of both JIVE and
COBEc. We analyze passenger traffic patterns on Monday
using the data provided by LTA for 11th April 2011 as a
representative for weekday travel patterns, and on Sunday
using the data for 17th April 2011 as a representative for
weekend travel patterns. In particular, we are interested in
knowing the travel patterns that occur during both the days
and are hence “joint” or “common”, and the travel patterns
that occur during one of the days but not the other, and are
thus “individual” or “unique” to that day.

We implement JIVE on the raw OD pair data contained
in matrices X1 and X2 using r = 1 and r1 = r2 = 10.
For visualization, we set a threshold value of 1000 for the
number of passengers travelling from any origin station to
any destination station. In other words, we are interested
in knowing which routes have more than 1000 passengers
travelling along them via MRT over the course of the day.
Depending on whether such a large value is observed in J or
A, the pattern is accordingly classified as a “joint” (occurring
in both J1 and J2) pattern or an “individual” (occurring in one
of A1 or A2) pattern.

As an example, we analyze the travel patterns for three
major stations, namely, Boon Lay, Tampines, and Harbour
Front. Considering these stations as “sources” or origins of
high volume passenger traffic, we find the important routes
by examining those elements in J and A with values of more
than 1000 in the row corresponding to that particular source
station. In this way, uni-directional passenger travel patterns for
an entire day can be obtained. This results in travel patterns
maps, as shown in Figs. 3, 4, 5 and 6. The blue arrows in Fig.
3 and Fig. 5 represent uni-directional travel patterns common
to both weekdays and weekends. On the other hand, in Fig.
4 and Fig. 6, the blue arrows represent uni-directional travel

patterns unique to weekdays, while the yellow arrows represent
travel patterns unique to weekends. In all figures, the red dots
represent the three chosen major traffic sources, while the black
dots represent the major passenger destinations or “sinks”.

Fig. 3: Passenger travel patterns common to both weekdays
and weekends (blue arrows): JIVE results.

Fig. 4: Passenger travel patterns unique to weekdays (blue
arrows) and to weekends (yellow arrows): JIVE results.

A quick comparison between the individual day-wise
patterns indicated by JIVE and those indicated by COBEc with
NMF show a close resemblance. The differences between them
are the omission of some patterns in COBEc while a change in
the “sink” of some, although a few patterns may be added or
lost. This is an assuring fact since it implies that the patterns
obtained are stable and do not change substantially with a
change in the technique or method used.

The patterns have some intuitive sense as well. For instance,
the centrally located stations such as Toa Payoh and Orchard
were found to be popular destinations on both weekdays
and weekends. Travel patterns unique to Monday (weekdays)
indicate a high volume of traffic (>1000) to industrial and
commercial hubs such as Bukit Batok and Raffles Place,



Fig. 5: Passenger travel patterns common to both weekdays
and weekends (blue arrows): COBEc results.

Fig. 6: Passenger travel patterns unique to weekdays (blue
arrows) and to weekends (yellow arrows): COBEc results.

typical of a working day routine. Travel patterns unique to
Sunday (weekends) indicate a high volume of traffic (>1000)
to shopping and leisure destinations such as Bugis and City
Hall, expected of a holiday routine. Yishun was observed
as a heavy traffic destination on both the days. Thus, the
travel patterns deciphered follow basic intuition, and can be
qualitatively justified in that sense.

VI. CONCLUSION AND FUTURE WORK

Although JIVE and COBEc have similarities, they have
certain differences in their methodologies. Therefore, a
reasonable degree of similarity between the travel patterns
obtained from JIVE and COBEc was expected. This
assumption was found to be true when the patterns returned
by JIVE and COBEc were found to be similar.

In summary, both JIVE and COBEc provide useful
tools for quick discovery of travel patterns hidden inside
high-dimensional data. However, the interpretability issues
posed in COBEc and to some degree in JIVE due to negative

values in output matrices need to be effectively addressed. It
is possible to extend this analysis to other temporal patterns,
i.e., travel patterns specific to a certain time period of the day,
e.g. morning and evening rush hours or the afternoon period,
etc. Factoring in time of travel will also aid in identifying such
cases where more than required transport resources are being
put to use during a particular time and instead transfer them
to a time slot where greater resources are needed.
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