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A PRIORI SOLUTION OF A TRAVELING SALESMAN PROBLEM IN 
WHICH A RANDOM SUBSET OF THE CUSTOMERS ARE VISITED 

PATRICK JAILLET 
Ecole Nationale des Ponts et C7haussees, Paris, France 

(Received January 1986; revisions received December 1986, September 1987; accepted November 1987) 

Consider a problem of routing through a set of n points. On any given instance of the problem, only a subset consisting 
of k out of n points (0 < k < n) has to be visited, with the number k random with known probability distribution. We 
wish to find a priori a tour through all n points. On any given instance, the k points present will then be visited in 
the same order as they appear in the a priori tour. The problem of finding such a tour of minimum length in the expected 
value sense is defined as a Probabilistic Traveling Salesman Problem (PTSP). What distinguishes one PTSP from another 
is the probability distribution (or more generally, the probability "law") that specifies the number k and the identity of 
the points that need to be visited on any given instance of the problem. After motivating the problem by applications, 
we first derive closed form expressions for computing efficiently the expected length of any given tour under very general 
probabilistic assumptions. We then provide, in a unified way, an analysis of these expressions and derive several 
interesting properties of the problem. 

T he Traveling Salesman Problem (TSP) is per- 
haps the most intensively investigated of all com- 

binatorial optimization problems (Bellmore and 
Nemhauser 1968, Klee 1980, Parker and Rardin 1983, 
Lawler, Lenstra and Rinnooy Kan 1985). The effort 
spent on this problem is a reflection partly on the fact 
that this problem is an essential component of many 
other routing problems and that it also has other 
numerous, and occasionally surprising, applications 
(see, for example, Lenstra and Rinnooy Kan 1975). 

More generally, the scholarly literature devoted to 
routing problems in a deterministic context has been 
growing rapidly over the last several years (see Bodin, 
Golden, Assad and Ball 1983 with about 700 refer- 
ences!). By a deterministic context, we mean situations 
in which the number of "customers," their locations 
and the size of their demands are known with certainty 
before the routes are designed. One can identify, how- 
ever, a practically endless variety of problems in which 
one or more of these parameters are random variables, 
i.e., subject to uncertainty in accordance with some 
probability distribution. In fact, these problems, when 
specified in a probabilistic context, are often more 
applicable than their deterministic counterparts. 

Let us consider the following situation: assume a 
company wants to design a tour through n customers 
and desires to minimize only the routing cost: it is 
then legitimate to solve the corresponding TSP as if 
all the customers must actually be visited every day. 
Assume, however, that this tour is to be used for a 

given prolonged period of time (more than one day) 
and that for this time horizon, the set of customers to 
be visited on a daily basis varies. Moreover, assume 
the company cannot reoptimize (due to lack of 
advance information) or simply does not desire to 
reoptimize the route every day because it is either too 
expensive to do so or because it prefers regularity of 
service. The vehicle will then follow a predesigned 
tour every day and, on any given day, will simply skip 
the missing customers from the original tour. As an 
illustration of such a situation, one can think of the 
actual case of a postman who delivers mail according 
to a fixed assigned route. On any particular day, upon 
delivery at a given location, he checks what address 
has to be visited next on the regular route and proceeds 
accordingly. The problem is not a TSP anymore since 
the tour must be a "good" one (small routing cost) 
when all customers are present, but it must also 
remain "good" when some customers are skipped 
from the original set. We have no guarantee that an 
optimal TSP tour through all the potential points has 
this desirable property. 

This simple observation suggests the formulation 
and analysis of the following generic problem: Con- 
sider a problem of routing through a set of n points. 
On any given instance of the problem, only a subset 
consisting of k out of the n points (0 < k < n) must 
be visited, with the number k determined according 
to a known probability distribution. We wish to find 
a priori a tour through all n points. On any given 

Suibject classfification. Networks/graphs: traveling salesman; probabilistic version. 
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Figure 1. Simple graphical example of a PTSP. 
(a) Two a priori tours through the same set 
of 10 points. (b) The two resulting tours 
when points 4, 9 and 10 do not need to be 
visited. 

instance of the problem, the k points present will then 
be visited in the same order as they appear in the a 
priori tour (see Figure 1 for an illustration). The 
problem of finding such an a priori tour, which is of 
minimum length in the expected value sense, is 
defined as a Probabilistic Traveling Salesman Problem 
(PTSP). 

The previous example of the postman can be 
modeled by considering the simplest possible version 
of this general framework. By calling p the probability 
that any particular address will require a visit on any 
given day (assuming independence between addresses 
and an equal p for all addresses), the number of 
addresses requiring a visit is a binomial random 
variable. 

We have introduced and motivated the PTSP 
through examples in the context of routing problems 
(involving physical traveling). The generic model, as 
stated, can be of interest in any situation in which an 
a priori sequence of entities has to be found for which 
the relative order has to be preserved even when some 
of the entities are absent. 

Let us mention some examples. In the area of job 
sequencing, consider the problem of loading n jobs on 
a machine in which a changeover cost is involved 
whenever a new job is loaded. With any given ordering 
of n jobs on the machine, we can then associate the 
sum of the changeover costs. (The problem of loading 
the jobs in order to minimize this total cost can be 
formulated as a TSP; see Gilmore and Gomory 1964.) 

A given ordering of the n jobs may also impose specific 
long-term requirements such as a set of tasks to be 
performed before and after the processing of the jobs 
on the machine (think of the organization of a firm 
preceding and following the processing of the jobs). 
Very often, these requirements are difficult to modify 
on a daily basis so that, if on a given day some jobs 
do not need to be processed, we nevertheless do not 
modify the relative ordering previously found. The 
PTSP is relevant in modeling such situations as well. 
Finally, in the area of warehouse operations, retrieval 
is commonly sequenced by simply visiting storage bins 
according to their bin number (see Bartholdi and 
Platzman 1988 for a discussion on this subject, as well 
as the consideration of spacefilling curves for obtain- 
ing "presequences"). The number of the bins can again 
be modeled as a PTSP problem. 

After specifying the notation and the probabilistic 
assumptions to be used throughout the paper (Section 
1), we will present several results obtained on the 
PTSP. In Section 2, we present the derivation of closed 
form expressions for computing efficiently the 
expected length of any given tour. In Section 3, we 
show through a simple example that the optimal TSP 
tour can be a very poor solution to the corresponding 
PTSP problem. In Section 4, we investigate the links 
between the TSP and PTSP problems and give prop- 
erties of optimum PTSP tours. In the conclusion 
(Section 5), we mention some related results. 

1. Notation and Assumptions 

Throughout this paper G = (N, A, d) denotes a com- 
plete, loopless, directed weighted graph where: 

N is the node set of cardinality I N 1, 
A is the set of arcs joining the nodes of N( I A I = 

I N I(IN I- 1)), 
d is a function: A > R +; (d(i, j) represents the weight 

of (i, j), i.e., the direct cost or distance from node 
i to node j). 

t represents a Hamiltonian circuit (tour) of G; by 
reindexing the nodes in their order of appearance 
along t, we write t as 

t =(1, 2, 3, 4,. . ., I N, 1). 

The set of nodes N is partitioned into two subsets 
N, and N2 (N, U N, = N, N1 n N, = 0). 

N, is the set of nodes that will always require a 
visit (be present) for each instance of the problem; 
IN, I = m. 

N2 is the set of nodes that will not always require a 
visit for each instance of the problem; I N2 I = n. 
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We use the terms black nodes and white nodes for 
the elements of N, and N2, respectively. 

We assume that given a probability distribution P 
on Q, the power set of N2; an outcome c defines the 
subset of white nodes that require a visit. We restrict 
P to be such that all outcomes of same cardinality 
have the same probability of occurring 

(for all , E Q for all w) E Q, 

I I I = I I) I POc , 1) = P($o2 ))D (#) 
If K is the random variable that represents the number 
of white nodes that require a visit we have 

P(K = ) 
n 

POWD. 

Hence, our probabilistic models can be specified 
equivalently by giving the probability P or the proba- 
bility distribution of K. Note also that the restriction 
imposed on P implies that, given K = k, the k nodes 
are taken uniformly at random among the set of n 
nodes; any probability P satisfying (#) will then be 
said to be node-invariant (NI). 

One important specific example (hereafter named 
P,) is 

P,({0D = pk(1 - p)y-, with k = I (##) 

which corresponds to the case for which each white 
node has a probability p of being present, independ- 
ently of the others; we then speak informally of a 
Bernouilli process with parameter p. 

In Sections 2.1 and 3 we assume P = P; in all 
other sections we assume a general node-invariant 
probability. 

For a given a priori tour t, the length L, covered in 
traversing the set of nodes actually present on each 
instance of the problem is a random variable. The 
general PTSP can then be stated as follows. 

Problem PTSP 

Given G = (N, A, d, P) find an a priori tour t of 
minimum expected length, E[L,]. 

In Section 4, two specific tours play an important role: 

t 1: an optimal TSP tour through all m + n(= I N I) 
nodes 

tp: an optimal PTSP tour. 

2. The Expected Length of a Given Tour t 

Let us consider a PTSP problem defined as G = (N, 
A, d, P). For a given tour t, L, is a random variable 
that can have up to 2" different values. By considering 

all cases, its expected value would then be obtained in 
O((n + m)2") additions in the worst case, and this is 
not satisfactory. On the other hand, E[L,] can clearly 
be expressed as the sum over all arcs (i, j) of P("(i, j) 
appears in a subtour") times d(i, j). So if P("(i, j) 
appears in a subtour") can be computed efficiently, 
say in O((n + m)k), we would obtain E[Lj] in 
O((n + m)k+2). 

The purpose of this section is to show that, with a 
node-invariant P, we can obtain these probabilities 
efficiently, but, more importantly, we can express 
E[L,] in terms of a set of well defined quantities, 
whose analysis (Section 4. 1) proves to be fundamental 
in deriving properties of optimum PTSP tours (Sec- 
tion 4.2). 

2.1. Case of a Bernouilli Process 

In this subsection we assume that P = P,, i.e., each 
white node is present with a probability p, independ- 
ently of the others. 

Theorem 1. Given a graph G = (N, A, d, P,) where 

I N, I = m, II = n, and PI corresponds to a 
Bernouilli process with parameter p, the expected 
lengthE[L,]ofatourt=(1,2, ...,n+m, 1)is 

E[L1] = p2[ (1 - &)rL(r) 

+ p(l - p)-'L7L'I" + (1 - p)"L",' (1) 

where 

(i) L('7), = X+7"' d,4, (j, j + r + 1) 

]orallrE[O..n-1] 

with 

k = (k - 1) modulo (n + m) + 1 for k : 1 

d,1,,(j, j + r + 1) = d(j, j + r + 1) whenever the 
nodes j + 1, j + 2, .. ., j + r are all white nodes. 

d,I,IJ(j, j + r + 1) = 0=( d(kX, k,+) where ko -j 
k,+, -- j + 1 + r and (k,, k,, . .., k,) is the 
sequence of black nodes drawn from (j + 1, .... 
i+ r). 

(ii) L',,', is the length of the tour t through the m black 
nodes (i.e., when no white nodes are present). 

Proof. On any given instance of the problem, the arc 
(j, j + r + 1) is in the resulting tour if and only if 

* the nodes j and j + r + 1 are present, 
* the nodes j + 1, j + 2, ..., j + r are absent and 

thus skipped. 
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Four cases have to be considered to evaluate the 
probability of presence of this arc: 

1. if at least one node among j + 1, ., j + r is a black 
node, the probability of presence is 0, otherwise; 
2. if nodes j and j + r + 1 are white nodes, the prob- 
ability is p'( 1 - p)'; 
3. if nodes j or j + r + 1 is a black node, the proba- 
bility is p(l - p)'; 
4. if nodes j and j + r + 1 are black nodes, the prob- 
ability is (1 - p)'. 

For each case, the probability of presence does not 
depend on j but only on r, so that one can regroup 
arcs (j, j + r + 1) that belong to the same cases for a 
given r. The L'"),'s represent one way of regrouping 
arcs based on this idea; note, however, that cases 2, 3, 
and 4 do not correspond to each of the three terms in 
the expression on a one-to-one basis (see the Appendix 
for details). 

For an intuitive understanding of these quantities, 
it is worth mentioning that when m = 0, L,') is the 
sum of n elements, each representing the distance 
from node j to its (r + 1 )th "successor" along the tour 
t. For m > 0, the definitions can be kept similar, once 
we introduce a "transformed" distance d,,?., which 
reflects the possibility of having black nodes (hence, 
never skipped) between node j and node j + r + 1 
along the tour t. 

2.2. Generalizations 

Theorem 1 assumes that P = P, or, equivalently, that 
K is a binomial random variable. Under the node- 
invariant property, this result can be generalized to 
the case of a general discrete probability distribution 
for K. Expression 1 is still valid under this general 
setting if one replaces 

p2(1 -p)' 

by 
n - r ()]P(K = n - k) 

for all r E [O .. n - 2] 

p(1 -p)"-1' by P(K = 1)/n (2) 

( 1-p)" by P(K = 0). 

Indeed, let us consider case 2 of the previous proof. 
Now given K = n - k (i.e., k nodes do not require a 
visit), the probability of presence of arc (j, j + r + 1) 
is 

0 o-r )/ke 

O otherwise, 

(k - r nodes "not present" have to be chosen among 
the n - 2 - r yet unchosen nodes). Hence, the uncon- 
ditional probability of the event is given by the first 
line of (2). The other cases are treated in a similar 
fashion, and by regrouping arcs as described in Theo- 
rem 1, we obtain the desired result. 

Comments 

1. One can also apply the same technique to com- 
pute the expected length of a path instead of a tour. 
The closed form expressions remain identical after the 
definitions of the L,,,'s are slightly modified. For more 
detailed results on this matter, as well as on the PTSP 
in the special cases for m = 0 and m = 1, the reader 
is referred to Jaillet (1985). 

2. One can define a broader class of probability 
distributions P for which E[L,] can efficiently be 
computed. The general property is that for any parti- 
tion of N, into subsets A, B, C, one can easily compute 
the probability that A is in the subtour and B is not 
where C does not matter. Of course, with such a 
general P, we are no longer able to express E[L,] in 
terms of the L,,,, so that the results of Section 4 do 
not generally follow. 

3. The complexity of computing E[L,] (for a node- 
invariant P and by using (1) and (2)) is O(m + n2). 

3. Using the TSP Solution to Solve a PTSP 
Counterexample 

Let us present an example showing that an optimal 
TSP tour is not necessarily a good solution to the 
corresponding PTSP problem. In this example, the 
graph G contains 24 white nodes (and no black node) 
that are positioned at the vertices of two concentric 
12-gons as shown in Figure 2a. We assume P = P, 
(Bernouilli process with parameter p). In Figure 2b, 
two tours have been designed through this set of nodes: 
tour a is an optimal TSP tour, tour b is an alternative 
tour (see Jaillet 1985 for the numerical derivations). 
One can then show that for a probability of presence 
of 0.5, the expected length of tour a is 31 % greater 
than the expected length of tour b. This numerical 
example raises the following question: in general, how 
well would a TSP tour do as a solution to a PTSP 
problem? In the next section we address, among other 
topics, this particular question. 

4. Properties and Characteristics of Optimal 
Solutions to PTSP's 

This section shows that the PTSP introduces many 
features that are different from those of its famous 
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Figure 2. Graph and tours for the numerical example. 
(a) A 24-node graph. (b) Two tours of the 
24-node graph. 

special case, the TSP. The TSP is a special case of the 
PTSP in which all the nodes are black; it is then 
natural to investigate the possible links between the 
two problems. We will be concerned with two differ- 
ent, but related, issues in the next two theorems: first 
we examine the question of how far an optimal TSP 
tour can be from optimality for a PTSP problem 
(Theorem 2); then we determine conditions, if any, 
under which the PTSP problem is solved by the opti- 
mal TSP tour (Theorem 3). 

4.1. Analysis of the Closed Form Expression 

Most of the properties obtained in this section are 
derived from a detailed analysis of the generalized 
closed form expression of Theorem 1; in what follows, 
we give the main results of this analysis in the form 
of two lemmas (see Jaillet 1985 for the proofs) for the 
case of a general distribution for K. 

The expression derived in Section 2 can be written 
as follows in a general weight-form notation 

E I 

E[L,]= a,.LI,',7 . 

, -0 

where 

a.E2 k( r 2-)( P(K= n - k) 

for any r E [O .. n - 2] 

= P(K = 1)/n 

a,, = P(K = 0). 

E[L,] is thus composed of two families of elements: 
the a, and the L),. 

We will always assume that n , 1; n + m , 3. (Note 
that for n = 0 the PTSP reduces to the traditional TSP 
and for m + n S 2 we have a unique tour; both cases 
are obviously of little interest for our purposes.) 

a. Properties of the Weights ar 

The properties of the weights a, are summarized by 
the following lemma, which is valid for any tour t. 

Lemma 1. Given any choice for the discrete probability 
distribution of K we have: 

(i) a, . a,. for O < r' < r n -2 
(ii) Elrz( a, = E[K]/n 

(iii) "- I (r + I)a', + a,, = 1. 

b. Properties of Lrt 

They are summarized in the following lemma. 

Lemma 2. Given a graph G with n white nodes, m 
black nodes, and given a tour t, then: 

a. If d is any function: 
(i) ,'=, L,, L(t '7 '1, L)P are tour-independent. 

(ii) L, r) L'", for any r such that G.C.D(n, r + 1) 
= 1. 

b. If d is symmetric: 
(i) L7>' = L(> for any r C [O .. n - 2] (Note: 

this is not true for L(,u), when m > 1.) 
(ii) '= L('X L("', ?, and LP) become tour- 

independent. 
c. If d satisfies the triangular inequality: 

(i) L,, > L"I,I for any m > 1 for any r c 
[O..n- 1] 

(ii) < 6 L', + L('.:!) for any m > O for any r c 
[1 .. n- ]foranyrl, r2:rl + r2 = r- 1. 

4.2. Some Properties of Optimum PTSP Tours 

The material covered in Section 4.1 turns out to be 
instrumental in deriving several interesting results 
concerning the PTSP. We present some of these here 
under the assumption of a general node-invariant 
probability P. 



934 / JAILLET 

Theorem 2. Given a graph G wvith n white nodes, m 
black nodes, a distance function d that satisfies the 
triangular inequality, an optimal PTSP tour tp on G, 
and an optimal TSP tour t 1 on G, wve have 

(E[L] -E[L,,,])IE[L,,,] 

- (1 - E[K]/n)/(E[K]/n) 

for any m ; 1 for any n (for m = O for any n prime). 

Proof. For m > 1: From Lemma 2 (ci) and Lemma 1 
(ii) we have 

,, 

E[L,,] = a,L(2,),,, , LO) ,(E[KI]/n) + , (3) 

From Lemma 2 (cii) and Lemma 1 (iii) we have 
,, 

E[L,L ,] - a,L,) < L<',') ,(1 - a,,) + a,,Lj, i . (4) 

Combining (3) and (4) we obtain 

E[L,, ]-E[L,,,] S L<"),, [1 -E[K]/n]. (5) 

Dividing (5) by (3) the theorem is proved for m > 1. 
For m = 0 and n prime, the proof is similar. (We 

conjecture but have not been able to prove that the 
theorem also holds for all n if m = 0.) 

Comments 

1. When K is a binomial random variable with 
parameter p, Theorem 4 gives (E[L,,] - E[L,,])/ 
E[L,,,] S (1 - p)/p. 

2. For m = 1, L(") = 0 so that (4) and (5) give a 
slightly better bound, namely 

(1 - E[K]/n -a,)1(E[K]/n). 

3. When E[K]/n approaches zero, the sharpness of 
this bound is questionable. Note that when E[K]/n = 

1, the bound gives the correct answer. In fact, one can 
show (using a generalization of the star-shaped exam- 
ple of Section 3) that the TSP can indeed be arbitrarily 
bad under the conditions of Theorem 2. 

Theorem 3. Given a problem instance with n white 
nodes and m black nodes, an optimum TSP tour solves 
the PTSP optimally for any underlying graph G = 
(N, A, d) and for any probability distribution of K if 
and only if: 

(i) d is symmetric and m + n < 4; if m = 0 this is 
also true for n = 5. 
(ii) d is not symmetric and m + n S 3. 

Proof. If: using Lemmas 1 and 2 one can show that 
E[L,] is, in each case, a linear function of L"), with 

positive slope so that 

min E[LJ] -min L 
I I 

Only if: to prove the "only if" proposition it suffices 
to construct a counterexample (see Jaillet 1985) for 
each of the following cases: 

1. d symmetric, m = 1, n =4, Kbinomial, 
2. dsymmetric, m= 0, n = 6, Kbinomial, 
3. d not symmetric, m = 1, n =3, Kbinomial. 

To conclude the investigation of the relationship 
between TSP and PTSP let us give a last result. 

Lemma 3. Let G = (N, A, d) be a given graph lying 
in R2 with d the Euclidean metric. Let W(N) be the 
set of points of N that belong to the convex hull oj 
N(K(N) C N): 

(i) if W(N) = N, then the solutions of the TSP and 
PTSP problems are identical for any probability dis- 
tribution of K. 
(ii) if K(N) $ N, one can construct instances for 
which the optimal PTSP tour intersects itself. 

Proof 

(i) Based on the following well known property for the 
Euclidean TSP: the order in which the points on the 
convex hull appear in an optimal TSP tour must be 
the same as the order in which these points appear on 
the convex hull (see, for example, Larson and Odoni 
1981). 
(ii) By construction (Figure 3), the exact calculations 
are given in Jaillet ( 1985). 

5. Conclusion 

In this paper, we have introduced the PTSP, a problem 
that provides a conceptual model for many practical 
situations likely to be encountered in various forms 
in several application areas. We note that in addition 
to the specific examples mentioned in the Introduc- 
tion, the PTSP methodology could be used in other 
areas, such as facility location or preliminary planning 
for routing problems (see Jaillet 1985). 

Following the formulation of the PTSP, we then 
presented closed form expressions to obtain efficiently 
(i.e., in polynomial time of low order) the expected 
length of tours under various probabilistic assump- 
tions. More important than just the efficiency in 
computing E[L,] is the fact that these closed form 
expressions express E[L,] in terms of a set of well 
defined quantities (namely, the L,s,). Understanding 
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Figure 3. Intersection of the optimal PTSP tour. 
(a) The set of five points. (b) The optimal 
PTSP tours. Left side: optimal tour 1 when 
p > 0.75; right side: optimal tour 2 when 
p<O.25. 

the properties of these quantities proved to be funda- 
mental in comparing the TSP and PTSP. 

The analysis presented in this paper implies that 
under specific conditions the TSP solution can serve 
as a good approximation for the PTSP problem. In 
general, however, the problem presents sufficiently 
different features from its special case to necessitate 
devising entirely new solution procedures. In Jaillet 
(1985) we propose a branch-and-bound scheme and 
several heuristic methods, but this remains of an intro- 
ductory nature and much has yet to be discovered and 
tested in this difficult area. 

A forthcoming paper will present a comprehensive 
analysis of the PTSP in the plane that eventually leads 
to interesting asymptotic results. These latter results, 
obtained in the limit (as the number of points m and/ 
or n grows to infinity) are in the same spirit as those 
of Beardwood, Halton and Hammersley (1959) for 
the TSP. Let us also mention that we obtained some 
results on probabilistic versions of other well known 
problems such as the vehicle routing problem (Jaillet 
1987a) and the shortest path problem (Jaillet 1987b). 

Appendix 

End of the Proof of Theorem 1 

The purpose of this appendix is to fill in the gap 
between (1) and the three cases considered in the proof 
of Theorem I (see Section 2. 1). 

First of all, it is important to note that we have 
arcs of 

case 2 iff r n n-2, 

case3 iffr n-1, (A.1) 

case 4 iff r n, 

since we have a total of n white nodes. 
Now, by carefully following the definition of the 

L,,,, one can see that arcs of 

case 2 are involved in L('), only, 

case 3 are involved in L(h) 
for k E [r.. n-1], (A.2) 

case 4 are involved k + 1 - r times in Lm., 
for k E [r .. n - 1] and once in L271J,. 

So (A.2) implies that the weight of the contribution 
of each arc in (1) is, respectively, for 

case 2: p2(l - p), 

case 3: p 
2 (1 - p)k + p(l -p) = p(l - p) 

case 4: p[ (k + 1- r)(l - p)k 

+ (n - r)p(l - p)"-' +(1 Pp)" = ( - p), 

and these correspond to the probabilities of presence 
as derived previously in Section 2.1. This fact, com- 
bined with (A. 1), terminates the proof of Theorem 1. 
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