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ABSTRACT

Traffic prediction lies at the core of many intelligent transport

systems (ITS). Commonly deployed prediction methods such

as support vector regression and neural networks achieve

good performance by explicitly predicting the traffic variables

(e.g., traffic speed or volume) at each road segment in the

network. For large traffic networks, predicting traffic variable

at each road segment may be unwieldy, especially in the

setting of real-time prediction. To tackle this problem,

we propose an alternative approach in this paper. We

first generate low-dimensional representation of the network,

leveraging on the column-based (CX) decomposition of

matrices. The low-dimensional model represents the large

network in terms of a small subset of road segments. The

future state of the low-dimensional network is predicted

by standard procedures, i.e., support vector regression.

The future state of the entire network is then inferred by

extrapolating the predictions of the subnetwork, using the

CX decomposition. Numerical results for a large-scale road

network in Singapore demonstrate the efficiency and accuracy

of the proposed algorithm.

Index Terms— Prediction in large networks,

low-dimensional models

1. INTRODUCTION

For Intelligent Transportation Systems (ITS), the collection

of real-time traffic data was the primary goal in the previous

decade. Nowadays, traffic sensors such as loop detectors

and probe vehicles collect data from thousands of road

segments with high temporal resolution [1]. The availability

of large amounts of data has enabled Data Driven Intelligent

Transport Systems (D2ITS) in many applications such as

traffic management, sensing, route guidance and congestion

avoidance [2]. Most of these applications highly rely on fast

and accurate traffic prediction. Consequently, real-time traffic

prediction has been regarded as critical to the success of ITS,

and it has become a foremost goal in the recent years [3–5].
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Traffic forecasting studies mostly deal with time-series

analysis and machine learning techniques [3, 5–7]. These

techniques consider past and current states of the individual

links to predict their future states. To improve the prediction

accuracy, some studies incorporate past and current values of

neighboring links [8]. It has been shown that traffic network

exhibits strong spatial correlations. Indeed, neighboring links

(road segments) may yield very similar predictions, and hence

there is inherent redundancy. These relationships, between

predicted states, have not yet been explicitly exploited to

speed up traffic prediction [3, 7–11]. Instead, in all existing

studies, the traffic is predicted at each link individually. Such

approach becomes unwieldy for large-scale traffic networks,

especially for real-time applications.

In this paper, we overcome this issue by proposing

compressed prediction of traffic. In principle, the method is

applicable to any kind of multivariate time-series. However,

we will limit ourselves to traffic prediction, as we have

access to large real-life datasets for that particular application.

Unlike the traditional forecasting models, we predict the

speed only for a small subset of the links, and use mapping

functions between the compressed state and the whole

network to perform network wide prediction. This approach

significantly reduces the computational cost, and allows

real-time prediction for large traffic networks.

Concretely, we organize the traffic data in a large matrix,

where columns of the matrix correspond to road segments

(links). The rows represent the time intervals of the observed

traffic variables. We apply the column-based (CX) matrix

decomposition method to decompose the large data matrix

in terms of a small number of columns of the original matrix

[12,13]. In other words, we compress the large traffic network

in terms of a small subset of road segments in the network,

which we will refer to as the “representative set”. The latter

is assumed to be representative of the entire network, and is

supposed to allow us to efficiently estimate the behavior of

any other link in the network. By applying the CX method,

we infer linear relationships between the representative set

and the rest of the network. To this end, we represent the

network matrix as product of two matrices: (1) data matrix of

the representative subset of the road network and (2) matrix

of mapping functions between this subset and the entire



network.

We predict future traffic state for the representative

subset of road segments using standard regression methods,

i.e., support vector regression [14]. Any other regression

method could be applied for this purpose. Then, we

extrapolate the predicted values at the representative subset

to the entire network by applying the mapping functions,

yielding predictions of the future traffic condition in the entire

network.

To assess our approach, we predict traffic speed for roads

in a large urban network in Singapore, comprising more

than 6000 links. As comparison, we apply the support

vector regression (SVR) method at each individual link. Our

numerical results demonstrate that the proposed approach

yields predictions that are almost as accurate as for the

standard approach of predicting each link individually. The

computational complexity of the proposed approach is much

lower, and scales approximately linearly with the size of the

representative subset. In practice, this may speed up the

computations by a factor of 10 or more, making the approach

practical for real-time applications.

The paper is structured as follows. In section II, we

briefly review the column based (CX) matrix decomposition,

and explain how we apply it for compressed prediction. We

also provide a brief analysis of the error in compressed

prediction. In Section III, we explain the traffic data set under

consideration. In Section IV, we provide numerical results,

and compare the accuracy and computational complexity of

the proposed and traditional approach. In Section V, we

summarize our contributions in relation to prior work, and

suggest topics for future work.

2. COMPRESSED PREDICTION

We consider the test network as a directed graph G = (N,E),
where {si ∈ E}p

i=1 is the set of all the road segments in the

network (see Fig.1). The vector ai = [z(si, t1)...z(si, td)]
T

contains the speed profile for respective road si. We consider

z(si, t j) as the average speed on that road during the interval

(t j−δ , t j). Furthermore, the network profile A∈Rd×p for the

whole network G is A = [a1...ap]. We use these definitions to

propose the algorithm for compressed prediction in the next

sections.

2.1. Column based (CX) decomposition

Let us start by considering that speed profiles {a1, ...,ap}
are inter-related by certain global patterns in the network G.

Transportation related studies have shown that global traffic

patterns exist even in large and diverse networks [8, 15, 16].

Hence, we can find a suitable low-rank approximation Â for

the network profile A, such that:

A ≈ Â = CX, (1)

Fig. 1: The study area network.

where C ∈ R
d×r is the compressed network profile.

The matrix C = [c1...cr] is composed of the columns

of network profile A such that {c1, ...,cr} ⊆ {a1, ...,ap}.

The matrix X ∈ Rr×p is the relationship matrix. The

low-dimensional representation shown in (1) is often termed

as CX decomposition [12,17]. To obtain C, we need to select

an appropriate subset of roads Θ = {θ1...θr} : Θ ⊂ E . We can

then estimate X as:

X = (CT C)−1CT A, (2)

where C+ = (CT C)−1CT can be considered as the

Moore-Penrose pseudo-inverse of matrix C [18]. We utilize

historical data to learn the relationship matrix X.

Let us now explain the construction of C. To do so,

each road {si}
p
i=1 in the network G (or column {ai}

p
i=1 of A)

is assigned a selection probability P(si). We then perform

random sampling to obtain the appropriate subset of columns

({ci}
r
i=1) to construct C. We considered three strategies to

obtain {P(si)}si∈E . In the first strategy, each link has the same

probability of selection i.e. Pu(si) =
1
p
.

In the second case, we assign selection probability to the

link si, based on the energy of the corresponding column ai.

The probability Pe(si) is calculated as:

Pe(si) =
‖ai‖

2
2

‖A‖2
F

∀ i = 1, ...p, (3)

where ‖A‖F is the Frobenius norm of the matrix A.

In the third strategy, we first perform Singular Value

Decomposition (SVD) of the network profile A = UΣVT ,

where the matrix U ∈Rd×r contains the left singular vectors

and the matrix V ∈ Rp×r contains the right singular vectors.

Then, we assign selection probabilities as follows [12]:

Ps(si) =
1

r

r

∑
j=1

v2
i j ∀ i = 1, ...p, (4)

where vi j is i-th coordinate of j-th right singular vector. Since

the matrix V is unitary, the quantities Ps(si) sum to one.



2.2. Prediction

In the previous section, we developed a low-dimensional

representation to represent a large network G. Suppose that

we select a representative subset of roads Θ = {θ1...θr} : Θ ⊂
E and learn the relationship X between these roads and the

rest of the network. We train SVR predictors for each of

these representative links θi, for each prediction horizon. Let

us represent the compressed predicted state at time t j for kth

prediction horizon by the vector {wΘ(t j + kδ ) ∈ Rr×1}
f
j=1,

such that wΘ(t j + kδ ) = [ẑ(θ1, t j + kδ ), . . . , ẑ(θr, t j + kδ )]T .

The term ẑ(θi, t j + kδ ) represents the k-step ahead predicted

value for road θi at time t j, obtained by SVR. We can

estimate the future state of the entire network {wE(t j + kδ ) ∈

R
p×1}

f
j=1 as:

wE(t j + kδ ) = XT wΘ(t j + kδ ), (5)

where wE(t j + kδ ) = [ẑ(s1, t j + kδ ), . . . , ẑ(sp, t j + kδ )]T .

We represent the time instances for which we performed

prediction by the set {t j}
f
j=1. The resulting compressed and

network profiles would be CT
pred = [wΘ(t1 + kδ )...wΘ(t f +

kδ )] and ÂT
pred = [wE(t1 + kδ )...wE(t f + kδ )] respectively,

such that Âpred = CpredX.

2.3. Compressed prediction error

The overall performance of the proposed algorithm is

sensitive to errors due to prediction (SVR predictors) as well

as estimation (CX-approximation). Suppose Â = CpredX is

the compressed prediction for the network profile A. Let

us represent compressed profile as Cpred = C0 +∆C, where

C0 contains the actual speed values and ∆C represents the

variation due to prediction error. Furthermore, let H = C0X

be the estimated network profile, without any prediction error

in C. The mean squared error (MSE) can be decomposed as:

1

p f
‖A− Â‖2

F =
1

p f
‖(A−C0X)− (CpredX−C0X)‖2

F , (6)

=
1

p f
‖(A−H)− (Â−H)‖2

F , (7)

=
1

p f

( f

∑
i=1

p

∑
j=1

(ai j − hi j)
2 +

f

∑
i=1

p

∑
j=1

(âi j − hi j)
2

− 2
f

∑
i=1

p

∑
j=1

(ai j − hi j)(âi j − hi j)
)

.

(8)

We refer to the error factors in (8) as:

MSEtotal = MSEcx +MSEsvr − 2ξcor. (9)

We will analyze the behavior of these errors for different

compression ratios (total number of links divided by the

number of representative links) in Section 4.

3. EXPERIMENTAL SETUP

We deploy the proposed method in large traffic network

in Singapore (see Fig. 1), comprising of n = 6024 links.

The selected area contains different types of roads. The

Land Transportation Authority (LTA) in Singapore provided

speed data for the months of August, September and October

2011, with sampling interval of 5 minutes. The reported

speed represents the average speed of all vehicles which

traverse a link during the given sampling interval. There is

3% of missing data in the data set at hand due to sensor’s

malfunctions and other reasons. We impute missing data

values by following the procedure in [19]. We represent the

data set as a matrix, where each column represents the average

speed data from a particular road segment (link) during the

three months of data. Each row of matrix corresponds to a

5-minute time interval. The data set is divided into training

and testing subsets. Training part involves first two months of

data. Testing subset contains speed data for October 2011.

First, we apply column based (CX) decomposition

method on the training data for two purposes: (1) to extract

most suitable roads in the network and (2) to learn mapping

functions between selected roads and the rest of the network.

We test different selection methods (random, energy-based,

and SVD-based) in order to choose the best one for further

implementation. Then, we predict the speed values for the

subset of the selected links, using SVR. We learn SVR

predictors using two months of training set and further apply

it for October data. For the rest of the network, future state

is estimated using learned mapping functions. Consequently,

prediction of the entire network is provided. As comparison,

we follow traditional approach which explicitly predicts

traffic speed for each link in the network using SVR

technique. We refer on it as uncompressed method. We

perform experiments for different sizes of selected subset and

various prediction horizons. To evaluate performances of the

proposed method, we consider percent root mean distortion

(PRD) error [20].

4. RESULTS

In this section we provide results for the proposed

(compressed) and traditional (uncompressed) prediction

methods. First, we investigate how to select representative

links in the network. We use two months of data (August and

September 2011) to test the performance of three selection

methods (random, energy-based, and SVD-based). We select

a representative subset of the roads and learn relationships

between this subset and the rest of the network. The speed at

each link in the network is approximated using the selected

subset of roads according to the CX approximation (1). Fig.

2 shows the performance of this approximation for the three

methods for selecting representative links. As can be seen

from that figure, the SVD-based method generates the best



2 4 6 8 10
4

6

8

10

12

Compression Ratio

P
R

D
 (

%
)

 

 

Random
Energy
SVD

Fig. 2: Performance of CX method for different sampling

procedures.

2 4 6 8 10

MSEsvr 29.23 25.66 22.47 19.84 18.20

MSEcx 11.58 26.80 33.26 37.82 41.42

ξcor 1.75 2.98 2.94 2.79 2.89

MSETotal 37.32 46.50 49.85 52.08 53.84

Table 1: The MSE error of proposed method for different

compression ratios.

prediction performance (lowest PRD) for all compression

ratios (total number of links divided by the number of

representative links). Consequently, we will adopt this

selection method for the proposed compressed prediction

approach.

The prediction error of the proposed method has two

components: the error induced by the (imperfect) SVR

predictions, and the approximation associated with the

column based (CX) decomposition. Table 1 shows the

mean squared error (MSE) associated with those two error

components, the correlation between those two errors, and

the total MSE, for different compression ratios. From the

table it can be seen that there is small correlation between the

two error components. By increasing the compression ratio,

the error associated with the CX approximation increases. In

other words, leveraging on smaller subset of representative

links will induce larger estimation error, as expected.

Fig. 3 shows the percent root mean distortion (PRD) error

of the proposed and the traditional methods for 5 and 30

minutes prediction horizons. These results suggest that the

proposed CX-based method has (slightly) larger prediction

error than the standard (uncompressed) approach. The

increased prediction error is caused by the low-dimensional

network representation, where the predicted state for most of

the links is computed as a linear combination of predictions

for the small set of representative links. Intuitively, this

additional error will decrease if the set of representative links

is increased. Consequently, the additional prediction error

associated with the compressed prediction approach increases

gradually with the compression ratio (see Fig. 3).

The main contribution of proposed method is the

substantial reduction in computational complexity, making

it useful for real-time traffic prediction. Table 2 shows

the required computation time (in seconds) for predicting

the speed for the entire network, for the compressed and

traditional SVR method. We assume that training for

both methods is performed offline, which is a reasonable
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(a) 5 minutes prediction horizon.
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(b) 30 minutes prediction horizon.

Fig. 3: Performances of proposed and traditional method.

Compression

Ratio (CR)

2 4 6 8 10

Traditional

Method (SVR)

206.02 206.02 206.02 206.02 206.02

SVR 103.01 51.51 34.34 25.75 20.60

Matrix

multiplication

0.0103 0.0076 0.0071 0.0060 0.0049

Proposed

Method

103.02 51.51 34.34 25.76 20.61

Savings 50% 75% 83% 87% 90%

Table 2: Comparison of computation time (in seconds) for

proposed and traditional method.

assumption for practical scenarios. The computation time for

the traditional method is the required time for SVR prediction

at one link times the total number of links in the network.

In the proposed compressed method, two computations

are required: (1) predicting the speed for the subset of

representative links by means of SVR; (2) extrapolation of

the predictions to the entire network, which involves a simple

matrix multiplication. As can be seen from Table 2, the

computation time for the latter is negligible. Therefore, the

computation time for the compressed prediction approach is

proportional to the number of representative links, and the

speedup is proportional to the compression ratio. Therefore,

substantial reduction in the computational complexity can be

obtained, at the expense of only minor reduction in prediction

accuracy.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we applied the column based (CX) matrix

decomposition method for fast yet accurate prediction of

large scale traffic networks. We predict the traffic speed at a

subset of carefully chosen representative road segments, and

disseminate the predictions through the rest of the network.

The proposed method significantly reduces the computational

cost (at the expense of slightly increased prediction error), and

may be useful for real-time applications.

In the future, we will incorporate additional information

(e.g., weather data) to boost the prediction performance of

low-dimensional network models. Moreover, to enhance

the robustness of the proposed method, we will investigate

irregular traffic conditions due to, e.g., accidents and special

events.
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