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ABSTRACT
Many modern and growing cities are facing declines in public
transport usage, with few efficient methods to explain why.
In this article, we show that urban mobility patterns and
transport mode choices can be derived from cellphone call
detail records coupled with public transport data recorded
from smart cards. Specifically, we present new data mining
approaches to determine the spatial and temporal variabil-
ity of public and private transportation usage and transport
mode preferences across Singapore. Our results, which were
validated by Singapore’s quadriennial Household Interview
Travel Survey (HITS), revealed that there are 3.5 million
public and 4.3 million private inter-district trips (HITS: 3.5
million and 4.4 million, respectively). Along with classify-
ing which transportation connections are weak, the analysis
shows that the mode share of public transport use increases
from 38 % in the morning to 44 % around mid-day and 52 %
in the evening.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Public transport, private transport, clustering,
cellphone call detail records

1. INTRODUCTION
Securing public transportation ridership is critical for de-

veloping a sustainable urban future. However, existing sys-
tems for analyzing and identifying weaknesses in public trans-
port connections face major limitations. In cities, origin-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
BigDataScience ’14, August 04–07, 2014, Beijing, China
Copyright 2014 ACM 978-1-4503-2891-3/14/08 ...$15.00
http://dx.doi.org/10.1145/2640087.2644164.

destination (OD) matrices—which measure the flow of peo-
ple between different geographical regions—are often gen-
erated using household surveys and roadside monitoring,
approaches which are time consuming, expensive, and lack
spatial and temporal accuracy [9]. Focus in more recent
research has been drawn towards using cellphones to over-
come the limitations mentioned above—using the cellphone
fluctuations in GSM signal strength [18, 7, 8] and location,
speed, and acceleration estimates obtained through GPS [16,
21, 19] to detect individual trips and categorize them into
classes such as walking, cycling, public transport and driving
a car. These approaches are indeed innovative and capture
in detail individual travel behavior, but are limited by their
sample sizes (e.g. number of volunteers) and currently face
difficulties scaling up. While these methods will continue to
be valid sources of data and insight, there are emerging op-
portunities to analyze urban transportation networks using
data mining approaches, specifically in using cellphone call
detail records to detect spatio-temporal patterns in urban
mobility and transport mode preferences.

As cities not only become denser but also more extensive,
there is an increasing pressure to maintain the connectiv-
ity and accessibility of goods and services through public
transportation networks and integrated urban design. How-
ever, despite operating highly effective public transporta-
tion systems, modern and growing cities such as Singapore
are facing declines in public transport usage; local govern-
ments and city planners are often equipped with few tools
to explain where and why such declines are occurring [11].
Given that cities are becoming increasingly digitized and
with the pervasiveness of cellphones, new data-driven meth-
ods are surfacing to help understand and explain charac-
teristics of urban mobility [20, 17, 9, 10, 13, 15]. Unlike
previous work, we derive the mode share of public and pri-
vate transportation (including taxis) by examining multiple
datasets, namely cellphone call detail records and a public
transportation smart card system.

In this article, we use 3.4 million cellphone users’ call de-
tail records to derive the inter-district (55 districts) mobility
of people in the dense, metropolitan city-state of Singapore.
We then subtract the number of Singapore’s public trans-
portation smart card system users from our calculated value



of urban mobility to estimate the share of private trans-
portation users between districts. By examining the spatial
and temporal patterns of public and private transportation,
we can determine to and from where people prefer to take
public or private transit and furthermore classify the time
periods and the districts that may be considered weakly con-
nected by public transportation. Ultimately, we present a
novel method of using cellphone data to map the mobility of
people in cities and posit that its application can not only
benefit urban transportation and planning efforts but also
other domains focused on or affected by the movement of
people across space.

2. DATASETS
We use cellphone call detail records and a public trans-

port dataset to estimate the flows of people using public and
private transport between the 55 administrative districts of
Singapore.

2.1 Cellphone dataset
The cellphone dataset consists of location data of 3.4 mil-

lion anonymized users of SingTel, Singapore’s largest telecom-
munications company with a market share of 45.3 %. The
data were recorded during a two-month period from mid-
March to mid-May 2011. A call detail record (CDR) in-
cludes the location of the cell tower each cellphone connects
to and was created by the billing system of SingTel in the
case of following network events:

• a phone call was initiated or received (at the beginning
and at the end of the call).

• a short message was sent or received.

• the cellphone user accessed the data network (for ex-
ample, to open a website or retrieve emails).

There is no information about handovers between base sta-
tions during long phone calls. Logging in and out of the
cellphone network was also not recorded.

We use the location of the base station a cellphone con-
nects to as the location of a cellphone user and estimate the
localization error as follows. The average service radius of a
base station is approximately r = 212 m. Due to confiden-
tiality of the data, the locations of the base stations were
offset by a maximum of 200 m. This leads to an average
uncertainty radius of 412 m for the location estimation of
cellphones. However, the cellphone might not always con-
nect to the closest base station (for example, if the closest
base station is busy), which can further increase the local-
ization error. A study by Ferris et al. [12] shows that the
median localization error can be reduced to 128 m with the
help of Gaussian processes when considering the received
GSM signal strength as well. The received signal strength
is, however, not included in our dataset.

The location of a cellphone is only recorded in the case
of the network events listed above, which means that sub-
scribers using their cellphone frequently can be tracked more
precisely. To measure how frequently cellphone subscribers
access the cellular network, we introduce the network inter-
event time. Let t = [t1, t2, . . . tn] be the timestamps of the
network events related to the cellphone subscriber α. We
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Figure 1: To measure how frequently cellphone sub-
scribers access the cellular network, we introduce
the network inter-event time. The average inter-
event time for the entire dataset is 320 min. The
first quartile of the inter-event time is τ25 = 41 min,
the median is τ50 = 114 min and third quartile is
τ75 = 406 min.

then define the network inter-event time τα of α as

τα =
1

n− 1

n∑
i=2

(ti − ti−1). (1)

We determined the distribution of the inter-event time. The
average inter-event time for the entire dataset is 320 min.
The first quartile of the inter-event time is τ25 = 41 min, the
median is τ50 = 114 min and third quartile is τ75 = 406 min.
The distribution of the inter-event time is shown in Figure 1.

To show that the cellphone dataset is representative of
Singapore, we compare the distribution of the home loca-
tions of SingTel customers with official census data from
2010 [1]. Call detail records accumulate at home and work
locations as these are the places where people spend most
of their time [14]. To determine these clusters of call detail
record locations, we apply the K-means clustering algorithm
to the recorded locations of each subscriber, searching for
at most K = 10 clusters. Next, we remove those location
points from each cluster that are farther than 1.0 km away
from the respective centroid to make sure that no outliers
are assigned to clusters. Finally, we have to find home and
work locations among the identified clusters. If the majority
of call detail records in a particular cluster occurs between
6 pm and 6 am, we consider that cluster to be a potential
home location. Otherwise, that cluster is assumed to be a
potential work location. Among all potential home (work)
locations of a cellphone subscriber, we consider the cluster
with the most call detail records to be the real home (work)
location.

Singapore is divided into 55 administrative districts [4].
We determine the population of SingTel customers in these
districts based on the identified home locations (see Fig-
ure 2) and compare the results with the 2010 census data
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Figure 2: Population (number of home locations)
per district determined from the SingTel dataset.
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Figure 3: Population in Singapore’s districts accord-
ing to the 2010 census versus the population deter-
mined from the SingTel dataset. With a correlation
coefficient of 0.94, the two distributions are highly
linearly correlated.

[1]. With a correlation coefficient of 0.94, the two distribu-
tions are highly linearly correlated (see Figure 3).

2.2 Public transport dataset
The public transport dataset consists of trips made by

4.4 million anonymized users of Singapore’s public trans-
port system during a two-week period in April 2011, which
overlaps with the recording period of the cellphone dataset.
As mentioned earlier on, we consider taxi trips as private
rather than public transport in this study. In Singapore,
passengers use smart cards when getting on and off trains
and buses [5]. The smart card system records the station
and the time of departure and arrival for each trip. Single
trips from the same passenger within a certain short pe-
riod are merged as a combined trip which reflects the actual
origin-destination pair.

3. APPROACH

The flow of people between different geographical regions
R = {r1, r2, . . .} in a given time interval is commonly repre-
sented through a quadratic origin-destination (OD) matrix
A(ts, te). Ai,k(ts, te) counts the number of trips from re-
gion ri to region rk that arrive in the time interval [ts, te].
OD matrices can be aggregated and normalized over time,
for example to get hold of the average number of trips on
Mondays between 6 and 9 in the morning. We determine
origin-destination matrices of Singapore on an hourly ba-
sis and average them over all workdays covered by the two
datasets.

The flows of people can be partitioned into flows by public
and by private transport, as people travel either by a private
car (including taxis) or by the public transport system. That
means, the overall mobility Asingapore in Singapore can be
decomposed into the OD matrix Apublic containing trips by
public transport and the OD matrix Aprivate containing trips
by private transport:

Asingapore = Apublic +Aprivate. (2)

As geographical regions, we use the 55 administrative dis-
tricts of Singapore. We estimate the overall mobilityA∗

singapore

in Singapore by upscaling the OD matrix Asingtel derived
from the cellphone dataset (see 3.1) and determine the ac-
curate public transport OD matrix Apublic from the public
transport dataset (see Section 3.2). To do this, we extract
individual trips from the cellphone and the public trans-
port datasets. We then map the start and end points of
all determined trips to the 55 administrative districts and
group them into hourly OD matrices. Finally, subtracting
Apublic from the estimated overall mobility A∗

singapore yields
an estimate of the private transport OD matrix A∗

private (see
Section 3.3).

As every public trip is captured by the public transport
smart card system, the public transport OD matrix rep-
resents actual numbers. This means that the accuracy of
A∗

private only depends on the accuracy of the overall mobil-
ity A∗

singapore estimated from the cellphone dataset. More
specifically, every trip that is not detected in the cellphone
dataset directly contributes to the underestimation of the
number of private trips. At first sight, it might seem that
private trips are more difficult to detect from the cellphone
data as people driving a car are much less likely to use their
cellphones than while traveling on a train or a bus. However,
our trip extraction algorithm is based on the recognition of
origins and destinations of trips and only requires cellphones
be used before and after, but not during trips.

3.1 Overall OD matrices
We determine the mobility of SingTel customers Asingtel

from the cellphone call detail records with a trip detection
algorithm (Section 3.1.1) and estimate the overall mobility
A∗

singapore by upscaling Asingtel to the entire population (Sec-
tion 3.1.2).

3.1.1 Trip extraction
The idea behind our trip detection algorithm is that call

detail records of a particular subscriber accumulate at ori-
gins and destinations of trips in the form of clusters. We use
an approach inspired by Calabrese et al. [10] to detect these
clusters:

• Let xα = [x1
α,x

2
α, . . . ,x

n
α] denote the sequence of recorded



locations of the cellphone user α.

• Then, the consecutive locations from xkα through to
xk+sα (with 1 < k < k + s < n) can be combined
if ‖xkα − xiα‖ < ∆d∀i ∈ [k + 1, k + s]. We use the
threshold value ∆d = 2 km, which is sufficiently high
to filter out jumps among adjacent cell towers that
do not happen due to trips of the cellphone user in
Singapore. We define the virtual location ypα as the
centroid of the combined locations:

ypα =
1

s+ 1

s∑
i=k

xiα. (3)

Let yα = [y1
α,y

2
α, . . . ,y

m
α ] denote the sequence of vir-

tual locations determined for α.

• These virtual location do not necessarily have to be ori-
gins or destinations of trips as call detail records may
also occur cumulatively during a trip (for example,
when writing texts on a train) or a short interruption
of a trip (for example when refueling at a gas station
or when waiting for a bus). We therefore define clus-
ters as those virtual locations that can be considered
as origins and destinations of trips. A virtual location
ykα is referred to as a cluster if and only if there are at
least two call detail records associated with ykα and the
time α spends at ykα exceeds the threshold value ∆t,
which we select as 20 min. Let zα = [z1

α, z
2
α, . . . , z

p
α]

denote the sequence of clusters of α.

• We then define a trip skα as the path between the two
consecutive clusters zkα and zk+1

α . z1
α is the origin of

the first trip of α in the recorded period, and zpα is the
destination of the last trip. All other clusters zkα serve
as both origins and destinations of trips.

To determine the origin-destination matrix Asingtel(ts, te),
we map the start and end points of all detected trips to the
55 administrative districts of Singapore and add only these
trips to Asingtel(ts, te) whose end time is ∈ [ts, te].

3.1.2 Upscaling
Next, the OD matrix Asingtel must be upscaled to repre-

sent the overall mobility of Singapore. Taking into account
the market share of SingTel, we estimate there were about
7.5 million cellphone subscribers in Singapore in 2011:

number of cellphone subscribers =

number of SingTel subscribers

SingTel market share
= 7.5× 106.

(4)

A population of around 5.2 million in 2011 [3] yields a cell-
phone penetration of about 144 % when not considering pre-
paid cellphones. To estimate the overall mobility A∗

singapore,
we upscale Asingtel by dividing it by the SingTel market share
and the cellphone penetration in Singapore:

A∗
singapore =

Asingtel

market share× cellphone penetration
. (5)

This scaling assumes that the travel behavior of SingTel cus-
tomers represents the travel behavior of all people in Singa-
pore.

3.2 Public transport OD matrices
Trips can be extracted fairly easily from the public trans-

port dataset as each entry represents a single trip. Should
the time between two consecutive trips of a particular per-
son be less than 45 min—which is the time allowed by the
smart card system to transfer [6]—we consider this as tran-
sit time and combine these trips as we are only interested
in the final destination of trips. Finally, the origins and the
destinations of the trips are mapped to the 55 administra-
tive districts of Singapore, and hourly public OD matrices
can be determined. As each trip is captured by the smart
card system, the resulting OD matrices are not an estimate
but represent actual numbers of public transport trips.

3.3 Private transport OD matrices
Subtracting the public transport OD matrix Apublic from

the estimated overall mobility A∗
singapore yields an estimate

of the number of people that do not take public transport:

A∗
private = A∗

singapore −Apublic. (6)

As a trip is either public or private, the resulting OD matrix
describes the flows of passengers using private transport.

4. EVALUATION
We use the results of the latest Household Interview Travel

Survey (HITS) from 2008 to evaluate the performance of
our trip extraction algorithm and the precision of the cor-
responding OD matrices. According to the HITS, 20 % of
all trips remain in the same district. On the contrary, only
4 % of all trips remain in the same district according to our
study. Short intra-district trips cannot be recognized from
the cellphone dataset for the following two reasons:

1. In our study, we estimate the location of a cellphone
as the location of the connecting base station. To fil-
ter out jumps between adjacent base stations, our trip
recognition algorithm is based on a clustering algo-
rithm. As a consequence, trips shorter than 2.0 km
cannot be detected with our dataset.

2. If two consecutive trips are too short, it is unlikely
even for very frequent users with an inter-event time
of 60 min that a network event occurs, resulting in only
one detected trip rather than two.

We therefore do not consider intra-district trips in our anal-
yses. The number of samples of the latest HITS is not suffi-
cient to compare the number of people traveling on specific
connections (only one percent of all households were inter-
viewed), which is why we focus on the overall number of
trips and the mode share of public transport. Our mobility
study shows a good correspondence with the latest HITS
and a more recent study by the Land Transport Authority:

• We estimate the number of inter-district trips (both
public and private) as 7.8 million per day. According
to the HITS from 2008, there were 9.9 million trips
per day in Singapore, 7.9 million of which were inter-
district [11].

• According to our study, 45 % of the trips in Singapore
are produced by public transport and 55 % by private
transport (including taxi trips) on average. These re-
sults are backed up by a travel survey conducted by



the Land Transport Authority in 2011 (44 % by public
transport and 56 % by private transport) [2].

These figures suggest that our trip detection algorithm for
call detail records as well as the presented correction and up-
scaling methods produce good estimates of the overall mo-
bility in Singapore as well as the flows of private transport.

5. RESULTS
To identify weak public transport connections depending

on the time of the day, we determine OD matrices for the
morning (6 am to 10 am), mid-day (10 am to 5 pm) and
the evening (5 pm to 10 pm) based on hourly OD matrices
that were averaged over all workdays. We investigate the
evolution of the public transport mode share over the day
and identify weak public transport connections.

5.1 Mode share of public transport
The mode share of public transport in Singapore increases

with time of the day. It is 38 % in the morning, reaches 44 %
around mid-day and peaks at 52 % in the evening. One rea-
son for this observation could be people feeling tempted to
go to work by taxi when being in a hurry in the morning and
using public transport back home in the evening, people car-
pooling in the morning and returning back home separately,
or parents dropping their kids at school on the way to work.

5.2 Weak public transport connections
We define a connection to be weak by public transport

when more people use private than public transport on this
connection in a given period of time. Being particularly
interested in the major connections, we present only the 50
busiest out of the 2970 inter-district connections in Figure 4.
The plots show the number of passengers taking public as
well as private transport. Almost all trips are directed to-
wards the city center in the morning. In the evening, the
situation is reverse with most trips departing from the city
center. The highest mode share of private traffic (around
80 %) can be observed between Bukit Timah, a large resi-
dential area without access to a subway line, and the city
center in the morning and in the evening. The Downtown
Line, a new subway line in Singapore opening from 2013
to 2017, will cover this connection. Moreover, many weak
public transport connections can be found around Bedok
and Tampines, the most and third-most populated districts,
which are located in the east of Singapore.

6. OUTLOOK
Traditional approaches to understanding public and pri-

vate transportation flows through a city use travel surveys
that are not only expensive, but also time consuming, in-
accurate, and only sample a small percentage of a city’s
total population. Using a data mining approach, we present
methods and analyses that show that mobility and con-
nectivity in cities can be accurately described by cellphone
call detail records quickly, efficiently, in real-time, and with
district-level spatial resolution or better. Coupled with pub-
lic transport smart card records, we show that we can fur-
ther identify the spatio-temporal variability of public and
private transport use and begin to examine how and why
such patterns exist. However, the value and reliability of
such an approach is not limited to only this use-case. In
fact, the implications of harnessing these types of datasets,

specifically those being created from pervasive urban sensor
networks and smartphones, are immense for planning and
designing more livable and sustainable cities.

By analyzing these highly granular datasets, produced in
real-time, there are emerging opportunities to address a wide
range of environmental, epidemiological, and socio-cultural
questions that result from urban living and vis-a-vis human
mobility in cities. With respect to transportation, using
cellphone based mobility patterns opens up new ways to
plan for the ever growing population of aging citizens—a
particular issue for countries in Europe and in Japan, the
United States, Singapore, among others. In order to guaran-
tee accessibility to goods and services for populations with
limited mobility options, big, urban datasets such as cell-
phone call detail records can help inform short-, medium-
, and long-term decisions to plan, locate, and design, for
example, mixed-use settlements, walkable connections and
corridors, and mobility on-demand services.

Lastly, a role for cellphone based urban mobility detection
has significant implications for disease control in cities. As
humans serve as the primary and secondary vectors of many
infectious diseases, understanding from where people arrive
and depart and by which transportation modes people are
traveling, we have the potential to model how and where
diseases might be spreading and from where they might
originate. Big data analytics such as the analysis presented
here, may introduce a distinctly new and interdisciplinary
approach to modern epidemiological studies in both the de-
veloped and developing world.

Examining the digital breadcrumbs left behind by people
in cities introduces new methods for examining urban mo-
bility. Here, we emphasize the promising role for cellphone
network analysis to generate meaningful descriptions of city
scale transportation use and to comment on future avenues
of urban research and planning.
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(c) Evening (5 pm to 10 pm).
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represents the number of people traveling between the connected districts. Blue lines indicate the number
of people taking public transport, and red lines the number of people taking private transport. The highest
mode share of private traffic can be observed between Bukit Timah and the city center. Moreover, many
weak public transport connections can be found around Bedok and Tampines.

origin destination data from a mobile phone network.
Intelligent Transport Systems, 1(1):15–26, 2007.

[10] F. Calabrese, G. Di Lorenzo, L. Liu, and C. Ratti.
Estimating origin-destination flows using
opportunistically collected mobile phone location data.
Pervasive Computing, 10(4):36–44, 2011.

[11] C. Choi and R. Toh. Household interview surveys
from 1998 to 2008 – a decade of changing travel
behaviors. Technical report, Land Transport
Authority, Singapore Government, 2008.

[12] B. Ferris, D. Hähnel, and D. Fox. Gaussian processes
for signal strength-based location estimation. In
Proceedings of Robotics: Science and Systems II,
Cambridge, Massachusetts, USA, 2007. MIT Press.

[13] V. Frias-Martinez, C. Soguero, and E. Frias-Martinez.
Estimation of urban commuting patterns using
cellphone network data. In Proceedings of the ACM
SIGKDD International Workshop on Urban
Computing (UrbComp 2012), pages 9–16. ACM, 2012.

[14] S. Isaacman, R. Becker, R. Cáceres, S. Kobourov,
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