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ABSTRACT
Federated Learning (FL) enables a form of collaboration among multiple clients in jointly
learning a machine learning (ML) model without centralizing their local datasets. Like
in any collaboration, it is imperative to guarantee fairness so that the clients are willing to
participate. For instance, it is unfair if one client benefits significantly more than others,
or if some client benefits disproportionately to its contribution in the collaboration.
Additionally, it is also unfair if the ML model makes biased predictions against certain
groups of clients. This chapter discusses three specific notions of fairness by highlighting
their motivations from real-world use-cases, examining several specific definitions for
each notion and lastly describing the corresponding algorithms proposed to achieve each
notion of fairness. At the end, this chapter will also summarize the identified gaps in
current research efforts into open problems.
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1.1 INTRODUCTION
Federated Learning (FL) [15] allows multiple clients to collaborate in training a
model with better performance (than before collaboration) without centralizing
their local datasets [5, 30]. However, most existing FL systems [5, 15, 27, 30, 31]
do not explicitly consider the willingness and simply assume that all clients want
to collaborate [15]. This assumption can be problematic when the clients are
self-interested and not obliged to participate. For example, clients might not
participate if they are treated unfairly (e.g., receiving no or less reward while
contributing resources) by the FL system. Therefore, it is imperative to guar-
antee fairness to encourage such collaborations in FL. This chapter discusses
three fairness notions, equitable fairness, collaborative fairness and algorithmic
fairness, by (1) motivating them in Section 1.1; (2) providing the formal def-
initions in Section 1.2; (3) describing the respective algorithms for achieving
them in Section 1.3; and (4) shedding light on some open problems in Section 1.4.
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FL systems can be viewed as a form of cost-sharing or resource-allocation
collaboration. The clients share the costs of collecting data by tapping into
the information from others’ local datasets to train a global model (i.e., model
trained on the server). The global model can be viewed as a “medium” of some
resources to be allocated to the clients. Each client receives the same global
model to make predictions on their local datasets.

However, due to the difference in their local datasets, the predictive performance
(or loss/objective function) of a single global model differs across clients. In
essence, the predictive performance is the resource that is allocated, through the
medium that is the global model. Because the clients do not necessarily have
an identical objective (i.e., heterogeneous [13]), it is important the training in
FL is fair w.r.t. these different objectives (i.e., training losses of their respective
local datasets). Specifically, it is unfair to allocate all the resources to a single
client (i.e., training the global model to exclusively optimize the performance
on that client’s local dataset) because it can result in poor performance on other
clients’ local datasets. Instead, the global model resource should be allocated
fairly (among all the clients’ objectives) so that the model has small performance
disparities on all local datasets, formalized as equitable fairness.

In some other practical scenarios, the clients compete with each other (e.g.,
companies providing similar services/products) [27, 31]. These clients are self-
interested, namely they focus on maximizing their own utility (e.g., the trained
model’s performance on their local dataset). In contrast to the aforementioned
scenario, these self-interested clients are only willing to contribute to help others
if doing so (strictly) improves their own utility. Moreover, it can appear exploita-
tive if a client 𝑖 that contributes more than client 𝑗 receives a reward lower than
that received by client 𝑗 , and can discourage collaboration. It thus motivates a
different notion of fairness. Formally, the contribution of a client characterizes
how much a client shares (directly or indirectly by training on its local dataset)
with other clients [22, 25] and the reward of a client specifies how much a client
gains from the collaboration [21, 29]. The so-called collaborative fairness [14]
stipulates that the rewards should be commensurate with the contributions, so
that the clients are rewarded more if they contribute more, and vice versa.

Lastly, dealing with bias in data in machine learning (ML) is a known challenge
[16, 33], which can be exacerbated by the multi-client setting of FL. Note
that this perspective differs from the two previous settings in that it explicitly
considers how the trained global model predicts on certain data. From the
perspective of each client, the goal of removing bias is to ensure the trained
model does not discriminate against certain protected groups (e.g., data whose
sensitive features such as gender, race having certain values) [2]. In practice,
the clients do not necessarily have aligned goals due to different local datasets
[1]. Consequently, trying to eliminate/reduce discrimination among groups for
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one client can deteriorate that for another. Therefore, ideally, the trained model
should not be biased w.r.t. any client’s local dataset, called algorithmic fairness.
In other words, suppose a data point is in the protected group (e.g., a record of
a person), then this data point should not be discriminated against regardless of
which local dataset it belongs to.

1.2 NOTIONS OF FAIRNESS

TABLE 1.1 Algorithms analyzed in
this chapter to achieve different no-
tions of fairness.

Category Fairness
notion

Algorithm

Equitable
fairness

Def. 1 Algo. 1
Def. 2 Algo. 2
Def. 3 FAFL[2]

Collaborative
fairness

Def. 4 FGFL [29]
GoG [18]

Def. 5 FGFL [29]
GoG [18]

Def. 6 FLI [32]
Algorithmic

fairness
Def. 7 FAFL [2]
Def. 8 FAFL [2]

TABLE 1.2 A summary of current works on
fairness in FL.

Algorithmic
fairness

Equitable
fairness

Collaborative
fairness

FairFL [34] ✓

FairFed [4] ✓

FCFL [1] ✓ ✓

FAFL [2] ✓ ✓

AFL [17] ✓

q-
FFL [12]

✓

Ditto [11] ✓

CFFL [14] ✓

RFFL [28] ✓

FGFL [29] ✓

FLI [32] ✓

1.2.1 Equitable Fairness
The equitable fairness aims to equalize the performance of the global model on
all clients. As enforcing strict equality is not always desirable depending on
the applications [1], three types of equitable fairness are defined: good-intent
equitable fairness [17], performance equitable fairness [12], and Pareto-optimal
equitable fairness [1].

In FL, clients normally have heterogeneous local data distributions and local
objectives. However, the objective of FedAvg [15] algorithm is to minimize
the weighted average loss: 𝑔(w) = (1/∑𝑛

𝑖=1 |𝐷𝑖 |)
∑𝑛

𝑚=1 |𝐷𝑚 |𝑔𝑚 (w), which can
not guarantee equitable losses across all clients in the resultant model. Note
that 𝑔𝑚 (w) is the loss of model w on the local dataset of client 𝑚. For ex-
ample, the client 𝑚 with less data points than others will have a lower weight
|𝐷𝑚 |/

∑𝑛
𝑖=1 |𝐷𝑖 |, meaning that during training “less optimization resource” is

allocated to client 𝑚. Consequently, the client might suffer from a larger loss
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than others w.r.t. the trained model w. Additionally, if a client 𝑚 has local
data distribution significantly different from others’, namely heterogeneous, it
might suffer from bad performance on its local data distribution with the trained
model. Intuitively, the data from other clients are not so helpful in improving
the performance of the model on the client 𝑚’s data due to the heterogeneity.
Consequently, the client 𝑚 might have higher losses than others.

Therefore, without extra equality guarantees from the system, clients with fewer
data points or with more heterogeneous data distribution will not participate
in the collaboration due to the low performance of the trained model on their
local datasets. In that case, the inclusiveness of the system will decrease. For
example, there might exist a monopoly market in which one client (i.e., company)
has majority of the data and the rest of the clients each have very little data. The
clients with less data can be treated unfairly with low performance on their local
datasets and might leave the collaboration which will result in an undesirable
single-participant collaboration. Additionally, the utility of the collaboration
will be reduced (i.e., the performance of the trained model on a jointly agreed
test dataset) due to having less data in the collaboration. Based on this intuition, a
fairness notion that seeks to maximize the performance of the worst-performing
client is introduced:

Definition 1 (Good-intent equitable fairness [17]). For trained models w and w̃,
the model w achieves better good-intent equitable fairness than w̃ if
max𝑚∈{1,...,𝑛} 𝑔𝑚 (w) < max𝑚∈{1,...,𝑛} 𝑔𝑚 (w̃).

The good-intent equitable fairness states that a model from FL training is fairer
if the maximum loss across all clients is lower. Therefore, a fair model will not
underfit to a particular local dataset (i.e., having a very high loss on some client
whilst having low losses on others) and can generalize better to all local datasets.
In that case, the clients with less data or more heterogeneous data distribution can
obtain a better performance which will result in a lower performance disparity
among all clients. The good-intent equitable fairness does not enforce a strong
equitable performance across all the clients since it only optimizes the perfor-
mance of the worst-performing client without considering other clients and thus
high performance disparity might still be observed. In contrast, another notion
of equitable fairness considers the equitable performance across all the clients
directly, via a formal equality measure over the variation of the performances.
The standard deviation of model performances across the local datasets of all
clients is used to characterize how much the performances differ from each other.
It leads to the definition:

Definition 2 (Performance equitable fairness [12]). For a set of models W =

{w′ : |𝑔(w′) − minw 𝑔(w) | ≤ 𝜖}, model w1 ∈ W achieves better 𝜖 performance
equitable fairness than model w2 ∈ W if std((𝑎𝑚 (w1))𝑛𝑚=1) < std((𝑎𝑚 (w2))𝑛𝑚=1).
𝜖 is the tolerance of the degradation in performance, the 𝑎𝑚 (w) is the prediction
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accuracy on the local dataset of client 𝑚 with model w and std((𝑎𝑚 (w))𝑛
𝑚=1) is

the standard deviation of (𝑎𝑚 (w))𝑛
𝑚=1.

The performance equitable fairness aims to find a model that has the most eq-
uitable performances (quantified by standard deviation) among all models that
have the same (i.e., 𝜖 = 0) or similar performance w.r.t. the FedAvg objective.
To interpret, the model that achieves performance equitable fairness does not
sacrifice too much on the overall model performance with a tolerance of at most
𝜖 . The performance equitable fairness is similar to the egalitarian’s perspective
which also favors equal treatment (i.e., equal in performances in this case).

In some cases, Definition 2 can be unfair. For example, the dataset in client 𝑚
can have naturally higher irreducible error [7] than that of client 𝑚′. Enforcing
the loss on client 𝑚′ to be the same as client 𝑚 will be unfair to client 𝑚′ since
it might be possible for a model to achieve a lower loss on client 𝑚′ without
making the loss on client 𝑚 higher. Therefore, it is preferable to have a better
overall performance that does not trade off the performances of other clients. A
Pareto-optimal outcome is where no one in the collaboration can be better off
without making someone else worse off. Building on the good-intent equitable
fairness, a notion that additionally considers the Pareto-optimality is introduced:

Definition 3 (Pareto-optimal equitable fairness [1]). Among the models W =

{w∗ : w∗ = arg minw max𝑚∈𝑁 𝑔𝑚 (w)}, a model w𝑝 ∈ W achieves Pareto-
optimal equitable fairness if:

∄w ∈ W, 𝑠.𝑡. ∀𝑚 ∈ 𝑁 : 𝑔𝑚 (w) ≤ 𝑔𝑚 (w𝑝) and ∃𝑚′ ∈ 𝑁 : 𝑔𝑚′ (w) < 𝑔𝑚′ (w𝑝) .

The Pareto-optimal equitable fairness considers the improvement of performance
not only on the worst-performing client as in Definition 1 but also on other clients.
Specifically, if there exist multiple models that can achieve the min-max losses
(i.e., |W| > 1), the Pareto-optimal equitable fairness favors a model that achieves
maximum performances on the clients in which any of their performance cannot
be improved without decreasing some others’.

The models that achieve Pareto-optimal equitable fairness also achieve good-
intent equitable fairness while the same does not hold reversely. However, the
Pareto-optimal equitable fairness can conflict with performance equitable fair-
ness sometimes. For example, assume that there exists a model whose local
loss on each client’s local dataset is equivalent to the irreducible error of the
corresponding client’s dataset. Additionally, assume the irreducible errors are
different among the clients. Consequently, among all the models that achieve the
lowest loss on the worst-performing client (i.e., W in Definition 3), there exists a
model that can achieve better performances on some clients without hurting the
performance of others. It is fair in this case for these high-performing clients to
keep the better than worst-performing client’s performances (i.e., Pareto-optimal
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equitable fairness) instead of eliminating the excess performances completely
(i.e., performance equitable fairness).

To conclude, the notion of good-intent equitable fairness and performance equi-
table fairness aim to achieve equal model performances across different clients
which are more suitable for application scenarios where clients have similar
data distribution. In contrast, when clients have highly heterogeneous local data
distributions (i.e., companies with user data from different geographic popula-
tions), improving the worst-performing client or forcing other clients to have
similar performances to the worst-performing ones would degrade some clients’
model performances on their local data distribution dramatically. In that case,
Pareto-optimal equitable fairness would be better since it allows improvements
in the model performances of some clients without hurting others.

1.2.2 Collaborative Fairness

In the case of self-interested clients (e.g., companies that compete with each
other), it will be unfair to the clients with data of higher quantity/quality (i.e.,
higher contribution clients) to receive the same models/rewards as the clients
with data of lower quantity/quality (i.e., lower contribution clients) in the FL sys-
tem. Otherwise, higher contribution clients may lose their competitive edge and
thus be discouraged from the collaboration. Therefore, to encourage the clients
with high-quality data to join the collaboration, the rewards given to all the clients
should be commensurate with their contributions. Pearson collaborative fairness
is introduced as a general idea of designing rewards that are commensurate with
the contributions of the clients [28]. The Shapley fairness [21, 29], incorporat-
ing the Shapley value from cooperative game theory, provides some desirable
properties. Finally, a notion of regret-minimized collaborative fairness [32] is
defined to additionally consider the costs for the resources of the clients.

To define collaborative fairness, a contribution estimation method and a reward
mechanism based on the contribution estimates are needed. The contribution
estimates are the values assigned to each client to represent their contributions
in training the global model. For example, an intuitive contribution estimate for
a client can be defined by how much the performance of the global model (e.g.,
test accuracy on a test dataset) is due to the participation of the client. Interested
readers can refer to the latter chapter on data valuation in federated learning for
a more detailed discussion on contribution estimates defined on data quality.
Some other works consider more specific contributions. [8] proposes to evaluate
the contribution based on the clients’ reputations and the amount of resources
they spend on computing/communicating the gradients obtained from their data.
[24] proposes to evaluate the contributions by a voting mechanism and design
rewards based on the voting results. [32] considers the long-term profit sharing
setting in which the waiting time of rewards is accounted for in designing the re-
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wards. Rewards can be classified into monetary reward [19] and non-monetary
reward [18, 28, 29]. The non-monetary reward is normally considered when
the monetary reward is unavailable [21]. An example of non-monetary reward
is the model reward which gives clients models with different performances
based on their contributions. Interested readers can find a more detailed discus-
sion on model reward in a latter chapter on incentive for federated learning. In
general, the reward for each client should be commensurate with its contribution.

Pearson correlation coefficient can be used to quantitatively evaluate the com-
mensurate relationship between rewards and contributions. Denote the rewards
for all clients as (𝑟𝑚)𝑚∈𝑁 and the contributions of all clients as (𝑐𝑚)𝑚∈𝑁 . It
leads to the following definition:

Definition 4 (Pearson collaborative fairness [28]). A federated learning (FL)
system achieves Pearson collaborative fairness if 𝜌((𝑐𝑚)𝑚∈𝑁 , (𝑟𝑚)𝑚∈𝑁 ) > 0
where 𝜌((𝑐𝑚)𝑚∈𝑁 , (𝑟𝑚)𝑚∈𝑁 ) denotes Pearson correlation coefficient between
(𝑐𝑚)𝑚∈𝑁 and (𝑟𝑚)𝑚∈𝑁 .

The Pearson collaborative fairness provides a simple method to certify if an FL
system achieves the core idea of collaborative fairness (i.e., higher rewards to
higher contribution clients). It does not specify how the contributions of clients
are defined or which form of rewards should be given to the clients. The Pearson
collaborative fairness only requires the reward 𝑟𝑚 to be positively correlated to
the contribution 𝑐𝑚.

However, it is not sufficient in some cases where a more careful and detailed
design of rewards based on the contributions is needed. For example, assume
that we have a contribution estimate of {0, 1, 1.1, 3} for a collaboration involving
4 clients with the corresponding reward values {1, 2, 2.1, 4}. This will result in a
Pearson correlation coefficient of 1 but since the reward is non-zero for the client
with zero contribution, it can attract free riders. In addition, take another exam-
ple where the corresponding reward values are set to be {0, 1.1, 1, 3}, which also
results in a high Pearson correlation coefficient (i.e., 0.998) with respect to the
contributions {0, 1, 1.1, 3}. In this case, the second client contributes less than
the third client but it receives a better reward. This is unfair for the third client
despite the fact that the rewards are positively correlated to the contributions in
general. Thus, a more detailed reward mechanism design is needed. To define it
properly, more detailed contribution estimates should be considered.

The existing literature [18, 22, 23, 29] commonly adopts the Shapley value [20]
to define the contributions of clients in FL. To determine the contribution of a
client, Shapley value computes the average marginal contribution of the client
to its predecessor coalitions over all possible sequential orders of participation.
Therefore, Shapley value is independent of the order of participation which is
favorable in FL since for a fixed iteration of FL training, the clients are selected
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without enforcing a particular order [5, 15, 27]. Besides, Shapley value uniquely
satisfies several properties (e.g., linearity, symmetry, null player etc.) [20] which
are desirable for designing the rewards. Denote 𝑁 = {1, . . . , 𝑛} as the grand
coalition formed by all the clients, and any 𝐶 ⊆ 𝑁 as coalitions of clients,
and 𝜈(𝐶) is the utility function that computes the utility of the model (e.g.,
test accuracy or negative log-likelihood on a test dataset) trained on the dataset
{𝐷𝑚}𝑚∈𝐶 . The Shapley value [20] for client 𝑚 ∈ 𝑁 is

𝜙𝑚 (𝜈) =
1
𝑁

∑︁
𝐶∈𝑁\{𝑚}

1(𝑁−1
|𝐶 |

) [
𝜈(𝐶 ∪ {𝑚}) − 𝜈(𝐶)

]
.

Based on the Shapley value definition of contribution estimates, another notion
of collaborative fairness is defined:

Definition 5 (Shapley collaborative fairness [21, 22]). Given a utility function 𝜈,
an FL system achieves Shapley collaborative fairness if 𝑟𝑚 = 𝑓 (𝜙𝑚 (𝜈)), 𝑚 ∈ 𝑁 ,
where 𝑓 (·) is a strictly increasing function with 𝑓 (0) = 0. The reward defined
has the following properties:
• Uselessness. If client 𝑚 has zero marginal contribution to all coalitions,
𝑟𝑚 = 0.

• Symmetry. If client 𝑚 has the same marginal contributions to all coalitions
as another client 𝑚′, 𝑟𝑚 = 𝑟𝑚′ .

• Strict Desirability. If client 𝑚 makes a strictly better marginal contribution
to a specific coalition than client 𝑚′ and the same marginal contributions to
any other coalitions as 𝑚′, 𝑟𝑚 > 𝑟𝑚′ .

• Strict Monotonicity. If the client 𝑚 makes a strictly better contribution to a
specific coalition, ceteris paribus, it will receive a strictly better reward.

In contrast to Pearson collaborative fairness, Shapley collaborative fairness pro-
vides specific details of how the reward values should be decided. Moreover, it
inherits several desirable properties from Shapley value (i.e., uselessness, sym-
metry, strict desirability). Specifically, Shapley collaborative fairness explicitly
rewards more to the clients with higher marginal contributions than clients with
lower marginal contributions (i.e., Strict Desirability). For two clients with ex-
actly the same marginal contributions, it assigns the same reward to them (i.e.,
Symmetry). It also discourages free-riders from participating in the FL system
since they will get a zero reward (i.e., Uselessness) but have to bear their own
communication/computation costs. Beyond these properties, Shapley collabo-
rative fairness provides an extra property of Strict Monotonicity. It ensures that
if a client contributes more, ceteris paribus, this client will be better rewarded.
Hence, it incentivizes clients which have the potential to contribute more (e.g.,
having the ability to collect more data) to do so and receive a better reward.
Some existing works adopt this Shapley collaborative fairness. For instance, in
𝜌-Shapley fairness [21], 𝑟𝑚 = 𝑘𝜙

𝜌
𝑚 where 𝑘 and 𝜌 are adjustable parameters and
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in FGFL [29], 𝑟𝑚 ∝ ⌊tanh(𝛽𝜙𝑚)/max𝑖∈𝑁 tanh(𝛽𝜙𝑖)⌋ where 𝛽 is an adjustable
parameter and the function tanh() can be replaced with another monotonic func-
tion while preserving the theoretical properties.

The collaborative fairness defined above does not consider the costs of resources
within each client (e.g., costs of collecting data or computational resources).
However, the costs can also be a vital measure for clients to decide whether
to participate or not, especially if clients are organizations that make decisions
based on the net profit (i.e., reward minus cost). If a client receives a reward
lower than the costs of providing the corresponding resources, it will regret
participating in the collaboration due to the negative net profit and will not
participate next time. Therefore, it is desirable to minimize the overall regrets
of the clients. Denote the cost of resources of the clients as (𝑠𝑚)𝑚∈𝑁 , and the
regret of clients as 𝑘𝑚 = max

(
(𝑠𝑚 − 𝑟𝑚), 0

)
, 𝑚 ∈ 𝑁 , it leads to the following

notion of fairness which is a simplified version of [32]:

Definition 6 (Regret-minimized collaborative fairness). A federated learning
(FL) system achieves regret-minimized collaborative fairness if (𝑟∗𝑚)𝑚∈𝑁 =

arg min(𝑟𝑚 )𝑚∈𝑁

∑𝑛
𝑚=1 (𝑘𝑚)2 − 𝛼∑𝑛

𝑚=1 𝑟𝑚𝑐𝑚, 𝑠.𝑡.
∑𝑛

𝑚=1 𝑟𝑚 ≤ 𝑏 where 𝑏 is the
total reward budget and 𝛼 is an adjustable parameter.

In the objective of the optimization problem in Definition 6, the term
∑𝑛

𝑚=1 (𝑘𝑚)2

is the sum of square of the clients’ regrets. Thus, minimizing it will reduce overall
regrets. The quadratic expression 𝑘2

𝑚 naturally avoids the case that a few clients
have very high regrets while others have zero regrets. The term

∑𝑛
𝑚=1 𝑟𝑚𝑐𝑚 will

be large if the rewards 𝑟𝑚’s are high for clients with high contributions 𝑐𝑚’s.
Therefore, the regret-minimized collaborative fairness tries to divide the total
budget 𝑏 as rewards to minimize the overall regret while simultaneously ensuring
the clients with larger contributions receive higher rewards. The adjustable
parameter 𝛼 > 0 balances the importance of these two objectives.

1.2.3 Algorithmic Fairness
Informally, a model is said to achieve algorithmic fairness (specifically, group
fairness) in ML if it does not discriminate against certain groups (i.e., data with
sensitive attributes having certain values). Put differently, the trained model
should have similar performances across different groups, namely low perfor-
mance disparities across groups [16]. The algorithmic fairness in FL is closely
related to that in ML, so a notion of global algorithmic fairness is introduced as
an extension of that in ML. Another notion of multi-client algorithmic fairness
is introduced and specific to the FL setting.

Without loss of generality, consider the case of binary classification where the
label 𝑦 ∈ {0, 1}, and assume that there exists a global sensitive attribute (e.g.,
gender) 𝑠 ∈ {0, 1}. Denote the trained federated model as a prediction function
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𝑓 (w, ·) parameterized by the learned parameters w, and denote the predicted
label for input 𝑥 as 𝑦̂w = 𝑓 (w, 𝑥). Denote 𝐷 (𝑖 𝑗 )

𝑚 = {(𝑥, 𝑦, 𝑠) : (𝑥, 𝑦, 𝑠) ∈
𝐷𝑚, 𝑦̂w = 𝑖, 𝑠 = 𝑗} and 𝐷 ( · 𝑗 )

𝑚 = {(𝑥, 𝑦, 𝑠) : (𝑥, 𝑦, 𝑠) ∈ 𝐷𝑚, 𝑦̂w ∈ {0, 1}, 𝑠 = 𝑗}.
There are various definitions using different measures to quantify the disparity
of the model performances among all groups (e.g., demographic parity [3],
equalized odds [6] and equal opportunity [6]). We focus on demographic parity
to describe the following definitions which can be easily extended to other
disparity measures. A definition of algorithmic fairness based on this measure
is:

Definition 7 (Global algorithmic fairness [2, 4]). In a federated learning (FL)
system, a model 𝑓 (w, ·) achieves 𝜖 global algorithmic fairness if:

ΔDP𝑔 (w) =

�����∑𝑛
𝑚=1 |𝐷

(11)
𝑚 |∑𝑛

𝑚=1 |𝐷
( ·1)
𝑚 |

−
∑𝑛

𝑚=1 |𝐷
(10)
𝑚 |∑𝑛

𝑚=1 |𝐷
( ·0)
𝑚 |

����� ≤ 𝜖 . (1.1)

Here,
∑𝑛

𝑚=1 |𝐷
(11)
𝑚 |/∑𝑛

𝑚=1 |𝐷
( ·1)
𝑚 | is the probability of the group with 𝑠 = 1

being predicted as positive, and
∑𝑛

𝑚=1 |𝐷
(10)
𝑚 |/∑𝑛

𝑚=1 |𝐷
( ·0)
𝑚 | is that for the group

with 𝑠 = 0. Therefore, ΔDP𝑔 (w) is the absolute difference of the probability
of data been predicted as positive with model w between two groups on the
aggregated dataset {𝐷𝑚}𝑚∈𝑁 . A model achieves global algorithmic fairness if
the difference of probability of predicting positive between two groups is less
than 𝜖 . Though the global algorithmic fairness is straightforward, enforcing it
can sometimes have limited usefulness, especially when the clients have hetero-
geneous local data distributions. Then, it is possible that the federated model
achieves algorithmic fairness in a specific client but not in some others.

For example, in the task of income level prediction (i.e., Adult dataset [9]),
a model is trained to predict if a person has high or low income (i.e., binary
classification) based on 14 features characterizing personal information (e.g.,
age, sex, education, occupation etc.). We define the age within 30 - 50 as high-
income age since most people with high income lie within this age interval.
Assume that sex is the sensitive attribute to protect. Additionally, assume that in
client 𝑚 the percentage of populations with high-income age is similar between
males and females while in client 𝑚′ the percentage of populations with high-
income age is higher in males than that of females. A simple model that makes
predictions based solely on the attribute age will probably achieve fairness in
client 𝑚 (i.e., predicting 1 with the same probability between male group than
female group). However, the model can hardly achieve fairness in client 𝑚′

since it will predict 1 with a higher probability on the male group due to its
higher percentage of high-income age populations. Another problem is that the
protected attribute can vary across clients. For example, the sensitive attribute in
the dataset of client𝑚 is sex while it is race in that of client𝑚′. It is not clear how
enforcing global fairness w.r.t. some unified sensitive attributes can be useful to
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each client in these scenarios. Therefore, a more refined algorithmic fairness
notion with performance disparity defined w.r.t. each client is needed. Define a
unique sensitive attribute for each client 𝑚: 𝑐𝑚 ∈ {0, 1} which can be the same
across different clients. Denote 𝐷 (𝑖 𝑗 )

𝑚 = {(𝑥, 𝑦, 𝑐𝑚) : (𝑥, 𝑦, 𝑐𝑚) ∈ 𝐷𝑚, 𝑦̂w =

𝑖, 𝑐𝑚 = 𝑗} and 𝐷 ( · 𝑗 )
𝑚 = {(𝑥, 𝑦, 𝑐𝑚) : (𝑥, 𝑦, 𝑐𝑚) ∈ 𝐷𝑚, 𝑦̂w ∈ {0, 1}, 𝑐𝑚 = 𝑗}. It

leads to the definition:

Definition 8 (Multi-client algorithmic fairness [1]). In a federated learning (FL)
system, a model 𝑓 (w, ·) achieves {𝜖𝑚, 𝑚 ∈ {1, . . . , 𝑛}} multi-client algorithmic
fairness if:

ΔDP𝑚 (w) =

����� |𝐷 (11)
𝑚 |

|𝐷 ( ·1)
𝑚 |

− |𝐷 (10)
𝑚 |

|𝐷 ( ·0)
𝑚 |

����� ≤ 𝜖𝑚 ∀𝑚 ∈ {1, . . . , 𝑛} . (1.2)

ΔDP𝑚 (w) is the absolute difference of the probability of samples been predicted
as positive with model w between two groups on the local dataset of client 𝑚.

The multi-client algorithmic fairness requires low performance disparity with
respect to each client 𝑚 with a possibly unique sensitive attribute 𝑐𝑚 and an
individual budget 𝜖𝑚 for the performance disparity in each client. As illustrated
in the income level prediction example, achieving fairness in the local dataset of
different clients can sometimes conflict with each other. Therefore, it is more
challenging to achieve multi-client algorithmic fairness than global algorithmic
fairness even if

∑𝑛
𝑚=1 𝜖𝑚 = 𝜖 .

1.3 ALGORITHMS TO ACHIEVE FAIRNESS IN FL

1.3.1 Algorithms to achieve equitable fairness
We will focus on discussing the details of the AFL [17] and q-FFL [12] al-
gorithms to achieve good-intent equitable fairness and performance equitable
fairness correspondingly here and refer readers to [2] for an in-depth discussion
on the algorithm to achieve Pareto-optimal equitable fairness.

A common approach to equitable fairness is to modify the global objective of
the training to achieve similar model performances on the clients’ local data.
AFL [17] proposes a min-max objective. Define Δ𝑛 as a 𝑛 − 1 dimension
probability simplex and 𝜆 ∈ Δ𝑛, the objective function is defined as 𝑔(w, 𝜆) =∑𝑛

𝑚=1 𝜆𝑚𝑔𝑚 (w) where 𝑔𝑚 (w) is the local training loss of model parameterized
by w ∈ W on client 𝑚. The objective of the AFL is defined as:

min
w∈W

max
𝜆∈Δ𝑛

𝑔(w, 𝜆) . (1.3)

The objective in Eq. (1.3) can be viewed as a two-player game, where the player
𝐴 wants to find 𝜆 such that the weighted loss can be maximized, and the player 𝐵
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wants to find the parameter w such that the weighted loss can be minimized. Since
𝑔(w, 𝜆) is linear in 𝜆, the optimal 𝜆 would be in {𝜆 : ∃𝑚 ∈ 𝑁 : 𝜆𝑚 = 1,∀𝑚′ ∈
𝑁 \{𝑚} : 𝜆𝑚′ = 0}. Therefore, the solution w∗ of Eq. (1.3) is also the solution of
minw∈W max𝑚∈{1,...,𝑛} 𝑔𝑚 (w). Consequently, solving Eq. (1.3) will get a model
that achieves good-intent fairness according to the definition. To solve the opti-
mization problem in Eq. (1.3), gradient estimators for ∇𝜆𝑔(w, 𝜆) and ∇w𝑔(w, 𝜆)
can be used. Denote the gradient estimators as 𝛿𝜆𝑔(w, 𝜆) and 𝛿w𝑔(w, 𝜆) accord-
ingly. Denote [n] as the uniform distribution on {1, . . . , 𝑛}. In AFL, 𝛿𝜆𝑔(w, 𝜆)
is computed as follows: sample 𝑚 ∼ [𝑛], and then sample 𝑖 ∼ [|𝐷𝑚 |]. Then set
[𝛿𝜆𝑔(w, 𝜆)]𝑚 = 𝑛ℓ(w; 𝑥𝑚,𝑖 , 𝑦𝑚,𝑖) and [𝛿𝜆𝑔(w, 𝜆)]𝑘 = 0,∀𝑘 ∈ 𝑁 \ {𝑚} where
ℓ(w; 𝑥𝑚,𝑖 , 𝑦𝑚,𝑖) is the loss function of model w on the 𝑖-th data point in client 𝑚.
Similarly, to compute 𝛿w𝑔(w, 𝜆), firstly sample 𝑖𝑚 ∼ [|𝐷𝑚 |],∀𝑚 ∈ 𝑁 with uni-
form distribution accordingly, then 𝛿w𝑔(w, 𝜆) =

∑𝑛
𝑚=1 𝜆𝑚∇wℓ(w; 𝑥𝑚,𝑖𝑚 , 𝑦𝑚,𝑖𝑚 ).

The pseudo-code for STOCHASTIC-AFL which is the algorithm to solve AFL
objective is presented in Algorithm 1. The PROJECT(w̃,W) in Algorithm 1 is
the projecting function that finds w𝑝 = arg min𝑤∈W ∥w − w̃∥2 and can be effi-
ciently solved in near-linear time [26]. Its convergence guarantee is established
in [17].

Algorithm 1 STOCHASTIC-AFL
Input: Step size for gradient update
𝛾w and 𝛾𝜆, number of gradient up-
date step 𝑇 .

Initialization: w0 and 𝜆0
for 𝑡 = 1 to 𝑇 do.

Compute the stochastic gradi-
ent estimators: 𝛿w𝑔(w, 𝜆) and
𝛿𝜆𝑔(w, 𝜆).
w̃𝑡 = w𝑡−1 −

𝛾w𝛿w𝑔(w𝑡−1, 𝜆𝑡−1).
𝜆̃𝑡 = 𝜆𝑡−1 − 𝛾𝜆𝛿𝜆𝑔(w𝑡−1, 𝜆𝑡−1).
w𝑡 = PROJECT(w̃𝑡 ,W).
𝜆𝑡 = PROJECT(𝜆̃𝑡 ,Δ𝑛).

end for
Output:

w𝑇 = 1/𝑇 ∑𝑇
𝑡=1 w𝑡

and 𝜆𝑇 = 1/𝑇 ∑𝑇
𝑡=1 𝜆𝑡 .

Algorithm 2 q-FedSGD
Input: The number of clients selected

every iteration 𝐾 , the total training it-
eration 𝑇 , constant 𝐿.

Initialization: w0.
for 𝑡 = 0 to 𝑇 do

𝑀 clients are selected which form
a set 𝑆𝑀 , each client 𝑚 is chosen
with probability 𝑝𝑘 .
for 𝑘 ∈ 𝑆𝑀 do

𝛿𝑡
𝑘
= 𝑔

𝑞

𝑘
(w𝑡 )∇𝑔𝑘 (w𝑡 ).

ℎ𝑡
𝑘

=

𝑞𝑔
𝑞−1
𝑘

(w𝑡 )∥∇𝑔𝑘 (w𝑡 )∥2 +
𝐿𝑔

𝑞

𝑘
(w𝑡 ).

end for
𝑤𝑡+1 = 𝑤𝑡 −

∑
𝑘∈𝑆𝑀 𝛿𝑡

𝑘∑
𝑘∈𝑆𝑀 ℎ𝑡

𝑘

.
end for

Output: 𝑤𝑇 .
For performance equitable fairness, q-FFL [12] is proposed. Intuitively, if a
local objective has a higher weight, the global objective prioritizes the mini-
mization of this local objective. Therefore, q-FFL proposes to assign higher
weights for the local objectives with higher loss values and thus make the losses
distributed equitably among clients. The reweighting process is done during
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training dynamically since it is difficult to do a priori. The objective of q-FFL is

min
w

𝑓𝑞 (w) =

𝑛∑︁
𝑚=1

𝑝𝑚

𝑞 + 1
𝑔
𝑞+1
𝑚 (w) (1.4)

where 𝑝𝑚 = |𝐷𝑚 |/
∑𝑛

𝑚=1 |𝐷𝑚 | and 𝑞 is an adjustable parameter. Borrowing the
idea from 𝛼-fairness [10], q-FFL can adjust 𝑞 to satisfy different levels of equal-
ity for the clients’ performances. A larger 𝑞 means that the objective emphasizes
the loss of the lower performing clients and thus enforcing better equality of
performance across all clients. In contrast, a lower 𝑞 makes the objective more
similar to that in FedAvg which does not consider equality, in particular, 𝑞 = 0
recovers the FedAvg objective. The pseudo-code for q-FedSGD, the algorithm
to solve the q-FFL objective, is shown in Algorithm 2. To make the algorithm
converge, the step size of the gradient update is chosen according to different
values of 𝑞. q-FedSGD proposes to use ℎ𝑡

𝑘
to control the step size so that no

manual tuning on step size is needed for different 𝑞 to ensure convergence.

Both STOCHASTIC-AFL and q-FedSGD make changes to the training objective
to achieve their corresponding targeted fairness notions. Additionally, both al-
gorithms are shown to converge under certain assumptions [12, 17]. q-FedSGD
provides a more flexible control over the trade-off between fairness and utility
than STOCHASTIC-AFL due to the adjustable parameter 𝑞 in Eq. (1.4). Sur-
prisingly, though q-FedSGD does not explicitly strive to get a better performance
on the worst-performing client, it achieves better good-intent equitable fairness
than STOCHASTIC-AFL on several datasets [12] while achieving better perfor-
mance equitable fairness simultaneously. From Tab. 1.3, STOCHASTIC-AFL
is more costly than q-FedSGD in both communication and running time. Both
of them take extra communication costs than FedAvg.

1.3.2 Algorithms to achieve collaborative fairness
For different notions of collaborative fairness, FGFL [29] and GoG [18] are
proposed to achieve Pearson collaborative fairness and Shapley collaborative
fairness, and FLI [32] is proposed to achieve regret-minimized collaborative
fairness. We will specifically outline FGFL and GoG algorithms in detail and
refer readers to [32] for FLI due to the space limits. Since a contribution esti-
mation and an incentive mechanism based on the contribution estimates are two
vital components in designing algorithms to achieve collaborative fairness, we
will focus on discussing the differences between FGFL and GoG in designing
these two components correspondingly.

To compute the contribution estimates, FGFL uses the gradient information from
each client and calculates their similarities to the aggregated gradients to estimate
their contribution to the training. Intuitively, the aggregated gradient is the
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direction in which the global loss will decrease. If a client has a gradient (vector)
that is (directionally) similar/aligned to the aggregated gradient (vector), it means
that the client’s gradient is highly effective in reducing global loss and thus has a
high contribution to the training. Using this intuition of vector alignment between
gradient vectors, a cosine similarity-based Shapley value contribution is defined
(i.e., cosine similarity as 𝜈). With the contribution estimates, FGFL gives clients
models with different performances commensurate with their contributions. To
differentiate the performance, FGFL gives clients gradient updates with different
proportions of values masked by zero. Intuitively, a higher proportion of masked
values means less information about gradient update is given to the clients, which
will lead to lower model performance. The gradients are computed as follows:

𝑟
(𝑡 )
𝑚 =

⌊
Dw tanh

(
𝛽𝑐

(𝑡 )
𝑚

)
/max
𝑖∈N

tanh
(
𝛽𝑐

(𝑡 )
𝑖

)⌋
and v(𝑡 )

𝑚 = mask
(
u(𝑡 )
N , 𝑟

(𝑡 )
𝑚

)
(1.5)

where 𝑐 (𝑡 )𝑚 and 𝑟 (𝑡 )𝑚 are contribution and reward of client 𝑚 up to iteration 𝑡,
u(𝑡 )
N is the aggregated gradients in iteration 𝑡, Dw is the number of dimension of

parameters for model w and the function mask(u(𝑡 )
N , 𝑟

(𝑡 )
𝑚 ) is to retain the largest

max(𝑟 (𝑡 )𝑚 , 0) number of values in terms of magnitude and assign zero to all other
values in the aggregated gradient u(𝑡 )

N . The sparsified gradient v(𝑡 )
𝑚 is distributed

to the client𝑚 as the reward. Therefore, a high contributing client will have a less
sparsified gradient update and thus better model performance. The 𝛽 is to control
the degree of altruism. When 𝛽 → ∞ the framework returns to vanilla FL in
terms of the clients receiving the same unmasked/unspasified gradient (i.e., u(𝑡 )

N ) .

GoG uses an additional validation dataset 𝐷𝑣 to compute the contribution es-
timates for each client with Shapley value. As an interpretation, the more a
client’s model update improves to the model performance on the validation
dataset, the higher contribution estimate is for this client [18, 22]. For the re-
ward mechanism, GoG gives different clients different chances to be selected
and synchronize their local model with the most up-to-date global model thus
achieving different model performances for each client. To elaborate, in iteration
𝑡 the model will only select 𝑘 < 𝑛 clients to be updated and the probabilities of
the clients being selected are commensurate with their contribution estimates up
to iteration 𝑡: 𝑐 (𝑡 )𝑚 . Thus, a lower contributing client will get a low probability of
being selected and its local model will stall for a longer period which will result
in relatively lower model performance, and vice versa.

Both FGFL and GoG adopt Shapley value to compute the contribution esti-
mates and use the model rewards (i.e., non-monetary reward). Therefore, both
algorithms achieve the Shapley collaborative fairness and also the Pearson col-
laborative fairness. GoG requires a jointly agreed validation dataset to compute
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the contribution estimates which can be unavailable in some cases. Additional
performance evaluations on the validation dataset for models trained on differ-
ent coalitions also bring higher computational complexity in GoG. In contrast,
FGFL removes the need for the validation dataset and uses the gradient similarity
as a proxy to compute the utility of coalitions which reduces the computational
complexity. From Tab. 1.3, GoG always has 𝑂 (𝑟𝑀 |𝐷𝑣 |) times higher running
time complexity than FGFL, but lower communication costs than FGFL due to
the allowance of partial clientz selection. However, both FGFL and GoG lack
convergence guarantees for the models [18, 29].

1.3.3 Algorithms to achieve algorithmic fairness
For algorithmic fairness, we will focus on discussing the FAFL [2] algorithm.
FAFL can be used to achieve both global algorithmic fairness and multi-client
algorithmic fairness separately with minor modifications.

Intuitively, we can formulate optimization problems to find models that achieve
the global algorithmic fairness as minw∈W 𝑔(w) s.t. ℎ(w) ≤ 𝜖 where ℎ(w) =

ΔDP𝑔 (w) (defined in Definition 7). Similarly, for the multi-client fairness,
the optimization problem is defined by changing the constraint to ℎ𝑘 (w) ≤
𝜖𝑘 ,∀𝑘 ∈ {1, . . . , 𝑛} where ℎ𝑘 (w) = ΔDP𝑘 (w) (defined in Definition 8). Both
optimization problems minimize the average loss under the constraint that the
disparity measures do not exceed their respective budgets. However, the dis-
parity measures are not differentiable w.r.t. the model parameters w. To ad-
dress this, FAFL [2] proposes an alternative constraint that is differentiable
w.r.t. w. Intuitively, if the distance of data points to the decision boundary
is similar across different groups, the model performance on these groups
can be similar. Following this intuition, the constraint can be replaced by:
ℎ′ (w) = 1/𝑛∑𝑛

𝑚=1
∑ |𝐷𝑚 |

𝑖=1 (𝑠 (𝑖)𝑚 − 𝑠)𝑑 (w, 𝑥 (𝑖)𝑚 ) ≤ 𝜖 ′ where the 𝑠 (𝑖)𝑚 is the value of
the attribute for 𝑖-th data point in client𝑚. Here, 𝑑 (w, 𝑥 (𝑖)𝑚 ) is the distance of data
point 𝑥 (𝑖)𝑚 to the decision boundary defined by model parameter w. It is tractable
in the case of linear model (e.g., logistic regression model). 𝑠 is the average at-
tribute value defined as 𝑠 =

∑𝑛
𝑚=1

∑ |𝐷𝑚 |
𝑖=1 𝑠

(𝑖)
𝑚 /∑𝑛

𝑚=1 |𝐷𝑚 |. Consequently, FAFL
uses the following objective:

𝐽 (w) =
1
𝑛

𝑛∑︁
𝑚=1

𝑔𝑚 (w) + 𝜆

(
1
𝑛

𝑛∑︁
𝑚=1

|𝐷𝑚 |∑︁
𝑖=1

(
𝑠
(𝑖)
𝑚 − 𝑠

)
𝑑

(
w, 𝑥 (𝑖)𝑚

))2

(1.6)

where 𝜆 balances the importance of fairness constraint and utility (i.e., model
performance). By simply replacing the objective function in Eq. (1.6) with the
multi-client case, the FAFL can achieve multi-client algorithmic fairness. From
Tab. 1.3, FAFL has no extra communication costs and no extra running time for
the fairness mechanism compared to FedAvg. However, it is only applicable to
linear models due to the computation of distances between data points and the
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decision boundary.

There are other algorithms to achieve global algorithmic fairness. FairFed [4]
proposes to reweight the objective of FL dynamically during the training to
achieve global algorithmic fairness. FairFL [34] proposes to apply multi-agent
reinforcement learning to achieve global algorithmic fairness. We leave the
reader to refer to [4, 34] for more details.

TABLE 1.3 Communication cost and running time for the fairness mechanism for
different algorithms. 𝑛𝑔 is the number of dimensions of model gradients, 𝑟 is the
fraction of clients selected in each iteration, 𝑀 is the number of Monte Carlo simu-
lations in GoG and |𝐷𝑣 | is the number of data points in validation dataset for GoG.

Algorithm Communication costs Running time
FedAvg 2𝑛𝑔𝑟 𝜏𝑛 –

STOCHASTIC-AFL a 2𝑛𝑔𝑟 𝜏𝑛 + 𝑟 𝜏𝑛2 𝑂 ( (𝑛𝑔 log(𝑛𝑔 ) + 𝑛 log(𝑛) )𝜏 )
q-FedSGD 2𝑛𝑔𝑟 𝜏𝑛 + 𝑟 𝜏𝑛 𝑂 (𝑛𝑔𝜏 )

FGFL 2𝑛𝑔𝜏𝑛 𝑂 (𝑛𝑔𝑛𝜏 )
GoG 2𝑛𝑔𝑟 𝜏𝑛 𝑂 (𝑟𝑀𝑛𝑛𝑔 |𝐷𝑣 |𝜏 )

FAFL a 2𝑛𝑔𝑟 𝜏𝑛 –

We compute the communication costs for STOCHASTIC-AFL and FAFL by modifying the
algorithms to select 𝑟𝑛 number of clients in each iteration for fair comparison.

1.4 OPEN PROBLEMS AND CONCLUSION
Apart from the notions and algorithms discussed here, there are still unsolved
open problems in fairness FL. For collaborative fairness, contribution estimation
remains a challenging problem (e.g., it is time-consuming to perform contribu-
tion estimation in FL, demonstrated in Table 1.3). Additionally, there is relatively
little work on gauging the quality of contribution estimates (i.e., how well do
these contribution estimates in FL reflect the clients’ true contributions).

For the reward mechanism, developing algorithms with fair model rewards while
guaranteeing the convergence of the model is worth exploring since most current
works (e.g., GoG and FGFL) do not provide convergence guarantees which can
be crucial to make the mechanism applicable in real applications. For algo-
rithmic fairness and equitable fairness, the discussed algorithms provide con-
vergence guarantees without incurring significant increases in communication
costs/running time compared to FedAvg. Therefore, these notions are relatively
well studied when considered separately. However, for systems to satisfy multi-
ple fairness notions simultaneously, some open challenges remain. For example,
to increase the inclusiveness of the FL system, we might want to incentivize low-
contribution clients to participate (e.g., clients with less data) with the equitable
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fairness guarantee while at the same time incentivizing high-contribution clients
to participate with the collaborative fairness guarantee. It is still unclear how to
design algorithms to achieve both equitable and collaborative fairness.

In conclusion, creating a fair environment is an emerging and important research
area, especially to the real-world applications of FL. In this chapter, we provide
a summary of the existing notions of fairness in FL motivated by different appli-
cation scenarios. We also provide a comparative analysis on various algorithms
to achieve the respective fairness notions with respect to the assumptions, target
applications, communication costs and running time complexity. We discuss
some open problems in improving certain fairness algorithms and point out
some remaining research gaps in application scenarios where multiple fairness
notions may need to be satisfied altogether.
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