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ABSTRACT

This chapter explores incentive schemes that encourage clients to participate in federated
learning (FL) and contribute more valuable data. Such schemes are important to enable
collaboration in competitive situations where clients need justifiable incentives to partic-
ipate and benefit others with information acquired at significant costs and resources, such
as collecting and processing data, computing and communicating model updates, risking
the privacy of data via shared model updates. Incentivization addresses these concerns
through three key components: (1) fair contribution evaluation of each client’s data, (2)
client selection to maximize the utility of the global model, and (3) reward allocation to
clients. Intuitively, clients desire higher valued rewards which should at least outweigh
their costs. These and other requirements will be formally described as incentives. The
chapter will also discuss some recent solutions and open problems to achieve these in-
centives in various settings, which includes settings where the contribution evaluation is
declared or measured while the rewards can be monetary- or model-based.
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1.1 OVERVIEW AND MOTIVATION

Federated learning requires clients to contribute data and resources and seeks to
collaboratively train a global model with higher utility, e.g., validation accuracy.
In this chapter, we will discuss incentives required to encourage more clients to
participate, increase their contribution and address the concerns of the global
server (or model owner).

To begin, a key concern in adopting federated learning in practice is that clients
might be hesitant to participate considering their significant resources and costs



incurred to collect data, compute model updates as well as the risk of losing data
privacy while sharing information with the others. For example, a bank may
be cautious about collaborating with other organizations as it may leak sensitive
information about its customers and business. Furthermore, in most cases, the
bank will need a guaranteed profit to participate meaningfully in a contribution:
the benefit must outweigh the incurring cost and resources. On the other hand,
the global server (or model owner) seeks to maximize the global model utility
but may be constrained by a limited budget to compensate the clients. These
concerns and desires will be formally described as incentives in Section 1.3.

Incentivization addresses these concerns through three main components: (1)
contribution evaluation, valuing the (potential) contribution of each client; (2)
client selection, selecting a subset of potential clients; and (3) reward allocation
to the clients, deciding the target value of the rewards and realizing the target
value by giving out different monetary payments, collaboratively trained models
or outputs (such as predictions and generated dataset). Importantly, the non-
monetary rewards described above are freely replicable: Like digital goods, they
can be replicated at zero marginal cost for more clients.

These main components will be discussed in Sections 1.4-1.6. Subsequently, we
will discuss how incentives are achieved in the monetary reward (Section 1.8)
and the freely replicable non-monetary reward settings (Section 1.9).

1.2 PROBLEM SETTING

In this chapter, we consider a global server (model owner) S and n clients. As
described in the previous chapter on data valuation, the utility of any coalition (or
their collaboratively trained model) is measured with the same utility function v.
Each client m may contribute a resource C,,. The resource C,, can be client m’s
dataset D, in the non-FL setting; the corresponding weight/gradient updates or
computational resources used in the FL setting; and predictions on query dataset
in the federated prediction setting. Simultaneously, each client m expects to
receive at least a minimum reward or cost y,,(+) in return. Client m’s minimum
reward can be the utility of the model trained using C,,, i.e., v(w™), and cost
Xm(Cm»ym) may be client m’s total cost to collect data or compute weight up-
dates. Each client may have a different cost function y,, and cost type y,, (which
can be defined as the cost per unit of C,,). The main goal of incentivization is
to get each client m to contribute C,,, and increase his contribution, for example,
by computing the gradients based on a larger local dataset, removing noise and
participating in more iterations.

To achieve incentives outlined in Section 1.3, we require the 3 main components.
During contribution evaluation, we will assign each client m’s contribution C,,
a value ¢(C,,) which may depend on the utility function v. During the reward



Incentives in Federated Learning 3

allocation phase, each selected client’s value ¢(Cj,;) is used to determine his
reward value r,,,. Sometimes, we need an intermediate step of client selection to
select a subset of n clients, S, to maximize the utility of the global model, wS,
v(w®) and ensure that the global server’s total budget B(-) can cover the selected
clients total rewards, 3.,,cs 'm. The budget B(-) may be fixed or dependent on
the aggregated contribution C,,, across every client m € S.

1.3 INCENTIVES

In this section, we will describe what the global server (model owner) and clients
intuitively desire as formal properties. In particular, the global server requires:

Feasibility (F). The reward r,, allocated to each client m is limited by the
maximum reward available, such as the server’s fixed budget B(-).

Truthfulness (T). Each client m should truthfully report information about
his cost, xn(Cim, ¥m) and his contributions, C,,. For example, it is un-
desirable if any client m over-reports their data quantity or submits false
data to increase their reward r,, and decrease those of others.

Each client m requires:

Privacy (P). Each client m might be concerned about the global server
or other clients accessing and inferring its sensitive data through his
contribution, C,,. Furthermore, if the global server is untrustworthy
or may exclude clients due to its limited budget, each client m risks
benefitting others without getting a reward for his contribution and costly
effort, e.g., to collect data and compute model weight updates. Under
this risk, any client m, such as a bank, may be unwilling to submit its
customers’ data or other C,, to improve the credit rating or loan predictions
for other banks before receiving a reward.

Collaborative Fairness (CF). A client m should fairly receive a higher
¢(C,,) than another client j if his contribution Cj, is more valuable than
client j’s C; such as when m share gradient updates from a larger and
more informative dataset. In particular, a free-rider with a zero-valued
contribution should get no reward.

Individual Rationality (IR). Each client m must have non-negative profits:
The client’s benefit must at least balance its costs, i.e. ¥ = X (Cim, Ym)-

Moreover, to maximally incentivize both clients and server, we should consider:

Group Welfare (GW). The reward scheme should maximize the total wel-
fare, i.e., profits, of the server and all clients. For example, if a client is
selected and submits his contribution C,,, his profit will be the reward
received less his cost 7, — X (Ci, Ym). As another example, the server’s



benefit from the collaboration and profit increases as the utility of the
collaboratively trained global model, v(wS ), increases.

As an overview, privacy and truthfulness are addressed during contribution
evaluation. Fairness is addressed during contribution evaluation and special
care is needed to maintain it during reward allocation. To ensure feasibility,
individual rationality and maximize group welfare simultaneously, we control
the reward value r,,, for each client m and consider selecting a subset of clients S.
The incentives will be further elaborated as part of each component. Moreover,
additional but less common incentives are discussed in Section 1.7.

1.4 CONTRIBUTION EVALUATION

In this section, we will discuss how to assign each client m’s contribution, C,,,
a value, ¢(C,,), to address the privacy, fairness, and truthfulness incentives.

For collaborative fairness (CF), a client m should fairly receive a higher value
¢(C,,) than another client j if his contribution Cj, is more valuable than client
J’s C;. Similarly, client m’s new value ¢(C,,) should increase when his new
contribution C,, is more valuable than C,, (strict monotonicity). See the previ-
ous chapter on data valuation for federated learning for a detailed discussion on
how existing works define and evaluate more “valuable” formally through a util-
ity function v. The definition can be as simple as the data quantity or dependent
on the FL model (e.g., supervised vs. generative) and validation set(s).

For privacy (P), each client m can limit the extent that the global server and other
clients can infer about his dataset 9, by using differential privacy to protect
his contribution. [5] consider the setting where each client m decides his own
privacy budget and perturbs and protects his contribution C,, by adding random
noise before sending C,, to the server.

Moreover, to address the problem that clients might be unwilling to share their
contributions before receiving their rewards, the server can require each client
to declare the value of ¢(C,,) instead, such as during auctions [2], or estimate
¢(C,,) in round ¢ based on contributions from earlier rounds [3]. However, the
lack of access to client m’s contribution C,, limits the choice of ¢(C,,). For
example, if the model utility v (e.g., validation accuracy) of coalitions with multi-
ple clients cannot be computed, we cannot use the Shapley value to define ¢(C,;,).

The truthfulness (T) incentive is related to incentive compatibility (IC). A
mechanism, such as an auction to decide the reward values, is IC when it is
optimal (individually profit-maximizing) for all clients to truthfully declare their
cost, Xm(Cm,ym) (oOr cost type v,,) and contribution value, ¢(C,,). Separately,
to incentivize clients to submit true and high-quality information instead of false
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and adversarial ones, the server can assign and consider each client’s reputation
and values in earlier rounds [10] or define ¢(C,;,) using the correlation in clients’
predictions [8] or model updates [9].

1.5 CLIENT SELECTION

In this section, we will discuss how selecting a subset of clients, S, out of all
n clients can address the rationality, group welfare and truthfulness incentive.
Client selection is especially important when the server has a limited budget
B(-) and cannot afford to pay the total costs across all clients, Y, xm(+), due to
feasibility (F) constraint.

For individual rationality (IR), any client with negative profits, i.e., 7, < xo(+),
should be excluded and not selected for the collaboration. For any unselected
client o, his cost and reward (hence profits) is zeroed, i.e., r, = x,(:) = 0.

To maximize group welfare (GW), the global server should select clients that
increase the global model’s utility v(w<) at a lower total cost to selected clients,
Ymes Xm(+). If costs are ignored, the global server can rank each client m
based on their contribution value ¢(C,,), defined using utility functions from
the previous chapter on data valuation in federated learning. There are more
specific strategies to increase group welfare. For example, the work of [15] uses
deep reinforcement learning to intelligently choose clients to participate in each
round of FL to counterbalance the bias introduced by non-IID data and improve
the utility of the global model with fewer communication rounds.

To simultaneously encourage truthfulness (T) / incentive compatibility, [10]
propose that the global server assigns a reputation score for each client based on
past validation set performance and selects clients with the highest reputation in
each round.

1.6 REWARD ALLOCATION

This section further discusses how to set the reward values (r,,),cs using the
contribution value (¢(Cy,))mes to maintain fairness and maximize group wel-
fare. In addition, we also discuss how the value r,, can correspond to monetary
rewards or non-monetary rewards. The incentive conditions may differ slightly
in the two settings.

For monetary rewards, each selected client m receives monetary payment 7,
from the global server’s budget B(-) and can optionally get the same global
model wS. A negative r,, implies that client m should pay the global server
instead. Using monetary rewards for incentives is convenient to implement:
after the payment to each client is decided, it is easy to realize and pay each



client the exact amount. However, the global server and clients must agree on
the monetary value per unit change in the contribution value ¢(C,,) or the utility
function v. The global server’s profit is the monetary value of the model less
the total monetary payments, v(wS) — 3,.cs7m. For each selected client m,
the profit is the payment received less cost 7, — Xim(Cmsvim). The incentive
conditions for monetary rewards that must be simultaneously satisfied are:
Feasibility (F). The reward scheme must ensure budget balance: the total
monetary rewards should not exceed the budget, i.e., 3 ,c5 'm < B(+).

Individual Rationality (IR). Each client m must be paid a reward r,,, which
is at least his cost y,,,(+), i.e., 7y = xm(+).

Group Welfare (GW). The total welfare/profit of the server and clients to
maximize is v(ws) — Ymes Xm(Cms¥Ym)-

Additionally, to maximize the welfare of clients only and incentivize their partic-
ipation, the server should fully use the budget, i.e., B(-) = J,,c s 'm (efficiency).

For non-monetary rewards, each selected client m will not receive any mone-
tary payment but may receive a different model, w™" or additional data D;, .
Non-monetary rewards may be preferable when there is no available budget to
compensate clients (e.g., due to legal restrictions or financial constraints). More-
over, we focus on non-monetary rewards that are freely replicable: Like digital
goods, we can replicate a model, its outputs or data at zero marginal cost for
more clients. This increases the profits for all clients and is hence preferable to
monetary rewards setting where increasing the reward r,,, (and profit) for client
m requires a decrease in reward r; for another client j when the budget is fully
utilized. However, non-monetary rewards might be less convenient to implement:

For each client m, how do we efficiently generate a reward model or data worth
some arbitrary value r,, and ensure that a higher reward value r,, would corre-
spond to a higher utility measured by v?

The global server’s profit is simply the value of the global model v(w®). For
each selected client m, the profit is the reward value less the minimum expected
reward (i.e., cost) 7, — xm(+). If the reward value r, is defined as the utility
of the rewarded model, v(w""), it would be more appropriate if the “cost” is
similarly defined using the utility. The incentive conditions for non-monetary
rewards that must be simultaneously satisfied are as follows:

Feasibility (F). No client m can get more than the most valuable model
or dataset derived using the aggregated contribution of clients in S.
Formally, if the utility measured with v does not decrease as clients are
added, we require r,,, < v(wS).

Individual Rationality (IR). Each client m may expect the utility of his
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rewarded model, r,,, to be at the least the utility the model he can build
without participating in FL, i.e., y, (+) = v(W™).

Group Welfare (GW). The total welfare/profit of the server and clients to
maximize is V(W) + ¥ cs 7m — Somes Xm(Cm»¥m). As the rewards are
freely replicable, increasing r,, does not cost the global server and will
improve group welfare. Group welfare is maximized when all clients get
the most valuable model, e.g., wS. However, there will be no fairness.
A weakened desirable condition is weak efficiency — the most valuable
client k should fully utilize the contributions, i.e., ry = v(wS ).

To preserve the collaborative fairness (CF) incentive, a higher contribution
value ¢(C,,) should translate to a higher reward value r,,. This is achieved
by the naive solution of rewarding each client m with their contribution value,
ie., rm = ¢(C,,). However, the IR and efficiency/weak efficiency conditions
may not be satisfied. They can be satisfied when the reward for each client is
determined by some monotonically increasing functionr : ¢(Cy,) — rp, € R If
client m has a higher contribution evaluation than client k, client m should have
a higher reward. Formally, if ¢(C,,) > ¢(Cy) then r,,, > ri. To disincentivize
free-riders, a client m with zero-valued contribution, ¢(C,,) = 0, should get no
reward, r; = 0, thus, we require r(0) = 0. A valid function for r is r(x) = (ax)”
with a, p > 0,x > 0. Later, we will discuss how these incentives are satisfied for
monetary (Section 1.8) and non-monetary (Section 1.9) rewards.

1.7 OTHER INCENTIVES

From existing surveys [14, 17], there may be other requirements for the client
selection and reward allocation:

Nash equilibrium [11]. Any client m and the server S cannot unilaterally
increase their profits, 7, — X (Cn» Ym) and v(wS) = 3, g 7, respec-
tively by changing their decisions, e.g., on Cp,, and B(-) respectively,
when others’ decisions are fixed. A Nash equilibrium affords stability
and predictability of outcomes as neither any client nor the server has an
incentive to change their decision.

Computational efficiency. For resource-constrained scenarios, e.g., FL on
mobile devices, it may not be suitable to use computationally costly
approaches for contribution evaluation (e.g., Shapley values without ap-
proximation), client selection and reward decision and realization.

Robustness to adversarial contributors. The model owner should filter
out or discount adversarial updates.

Robustness to replication. A client m cannot increase his total profits or
rewards by duplicating himself and participating as more clients such as
m’. [4] analyzes existing cooperative game theory solution concepts and



proposes a replication-robust reward distribution.

Stability of S. If clients are free to form alternative coalitions and the re-
wards available depend on the aggregated contribution Cy,, for m € S,
an additional incentive is that the coalition S is stable. There must exist
some client m € S who has no incentive to form another coalition, i.e.,
all coalitions would not increase client m’s profits. [12] discusses the
stability of the grand coalition for freely replicable model rewards.

1.8 MONETARY REWARDS

In the basic setting where any client m does not incur costs or expect a minimum
reward to participate, i.e., y,,(-) = 0, we can reward each selected client a share
of the global server budget B(-) proportional to its contribution value ¢(Cp,).
For efficiency and collaborative fairness, each client m’s reward should be

M X B(+). In the more complex setting where each client expects some
Zj €S ¢(CJ)

minimum reward to participate, it is apt to use economic theory solutions to de-
cide the monetary reward r,, for every potential client m and achieve incentives.

When the server and clients have perfect information but binding agreements are
not possible (e.g., client m can always alter C,,), non-cooperative game theory is
appropriate. Each participant optimizes their individual profit while anticipating
the actions of other profit-maximizing participants. In the non-cooperative set-
ting, such as the Prisoner Dilemma’s game, the resulting solution will be a Nash
equilibrium that may have lower group welfare than a cooperative outcome. We
can consider a simultaneous game or Stackelberg game where the leader, e.g.,
the model owner, moves first and declares its decision @ after using backward
induction to predict the actions of the followers, e.g., clients as in [5, 18].

When binding agreements are possible (e.g. a legal contract states that enforce a
reward function), each client m may be willing to submit their contribution C,,
before receiving their reward. We can apply cooperative game theory (CGT) [1]
to achieve higher group welfare. The most basic and studied form of cooperative
games is a characteristic function game (CFG) defined by the set of clients and a
characteristic function v that maps coalitions (or their contributions) to a value.
Note that CFG sets the minimum expected reward y,,,(-) = v({m}) and does not
support arbitrarily defining the cost x,,, (Cy:, ¥m). The solution to a CFG is a par-
tition of clients into a coalition structure and a reward vector, which distributes
the value of each coalition among its members. As CFG implicitly assumes the
participation of all clients and that the total reward available B(-) is proportional
to v(-), further client selection step is needed to ensure budget balance when
the budget is a limited constant. Solution concepts, such as the Shapley value
and the core, can ensure fairness and stability. However, the Shapley value
does not always ensure individual rationality for all games/clients and the core
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may be empty (i.e., no viable solution)s. Moreover, there is no consideration of
truthfulness. These incentives have to be addressed in additional steps such as
through the reward mapping function and future solutions.

Auction theory and contract theory are useful tools to incentivize clients to share
private information about their data quality and cost types truthfully with the
global server (model owner). They explicitly consider incentive compatibility,
individual rationality as constraints, support arbitrarily defined costs and client
selection. However, both tools may not enforce fairness — clients with the same
contribution but different declared costs may get different rewards. In a reverse
auction, multiple bidders (clients) want to sell their contribution C,, and declare
its value ¢ (C,,) and cost type y,, to the buyer (server) with abudget B(-). Auction
design involves explicitly setting rules for selecting winning bidders (clients) S
and deciding the monetary payment, (r,,)ncs to optimize the group welfare
while satisfying IC/IR and budget balance constraints. For example, Vickrey
auction/mechanism incentivizes each client m to truthfully share his private and
true cost/data quality with the server by setting m’s reward r,, only based on the
valuation/total profits of others and independent of client m’s declared values.
[2, 3, 6] use auctions to incentivize clients. Alternatively, the server can design
specific contracts (which specify the payment for the contribution, i.e., mapping
from ¢(C,,) — ry,) for clients with different cost types to maximize the server’s
profits. Each client m will choose and sign none/one of the provided contracts
which ensures its profit is non-negative and maximized. If the client does not
contribute C,, the server can withhold payment. See [7] for a contract theory in
FL example.

1.9 NON-MONETARY REWARDS

For freely-replicable non-monetary rewards, such as model and data derivatives,
existing CGT literature is largely inapplicable as CGT assumes the constraint of
limited rewards. Without this constraint, one can naively decide to allocate the
maximum possible reward to all clients to maximize group welfare. However,
this violates collaborative fairness which demands that a client m with a higher
contribution value ¢(C,,) get a strictly more valuable reward. This raises the
following two questions:

First, how should we decide the reward value to increase group welfare (GW)
further while still maintaining other desired incentives such as collaborative
fairness (CF)? Is there a parameter that can control altruism and tradeoff between
GW and CF while ensuring weak efficiency?

Second, how can we flexibly and efficiently control the reward value? Before
considering the FL setting, we will first study some non-FL setting examples to
cover some general strategies.
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1.9.1 NON-FL SETTING

Existing works have considered rewarding clients with different informative-
ness of data or model for fairness. Hence, it is natural that the reward value
of client m is set to exactly the utility of the non-monetary reward mea-
sured using v, i.e., r,, = v(-). However, instead of rewarding client m with
rm = ¢(Cp,), using alternatives such as the p-Shapley value [12] which sets
ri 2 (¢(Cp)/max; ¢(C;))P x v(wS), p € (0, 1] and where ¢ is the Shapley
value can increase the reward further and is fairness-preserving and weakly
efficient. By selecting a smaller p, we increase altruism, group welfare and
give higher reward values to weaker contributors. Setting p = 0 assigns the
best possible reward v(w®) to all clients. While this maximizes group welfare,
fairness is lost.

The next challenge is to efficiently achieve the target reward value (7;,)nes and
some solutions are discussed below:

Model rewards, adding noise to data. In [12], each client m will get a different
rewarded model w;, trained on data with additional noise injected to the training
labels y. For example, in Bayesian regression models, Gaussian noise of differ-
ent variance o2, can be added and optimized by root finding. Higher variance
o2 reduces the information gained on the model parameters and log-likelihood
of the validation set. A more general approach can add noise to other quantities,

such as FL gradients.

Synthetic data rewards, controlling number of data samples. In [13], each
client m participates in the collaborative training of a generative model and is
rewarded with a synthetic dataset drawn from the generative model that augments
their original dataset. Stronger contributors will have an augmented dataset with
a lower maximum-mean discrepancy (MMD) to a reference data distribution.
This reference distribution is approximated with all clients’ data together with
a large pool of synthetic data. [13] use a modified version of the p-Shapley
value from [12] to compute rewards that achieve similar incentives such as
fairness. The structure of the problem allows a group welfare-maximizing set of
parameters to be found with linear optimization. The synthetic reward dataset is
generated by greedily sampling synthetic data points from the generative model’s
data distribution G until the target reward value is reached. The sampling
probability of a synthetic data x point is set using the softmax function and
proportional to exp[SA”] where A is the scaled marginal improvement in
v of client m due to x. A larger § will sample points with higher marginal
improvement, resulting in higher similarity to G but a smaller synthetic dataset.
This sampling algorithm stops when the target reward value is reached.
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1.9.2 FL SETTING

During conventional FL, the global server will share the current model weights
with each selected client and request the clients to compute weight updates.
Thus, if we view trained models as rewards to achieve incentives, conventional
FL unfairly gives each selected client the same reward, the latest v(wS) in each
iteration, to sustain federated learning. Hence, [16] reward clients with different
training-time gradients/ weight updates. A weaker contributor will be rewarded
with a more sparsified gradient vector with more components zeroed out. How-
ever, this results in clients subsequently reporting weight updates from different
locations in the weight space for the server aggregation.

Additionally, if the reward value r,, is exactly the utility of the non-monetary re-
ward measured using v, it may be challenging or inefficient to solve for the weight
updates to achieve the desired v, e.g., validation accuracy at every iteration. A
simpler approach lets r,, represent a quantity that correlates to higher utility,
e.g., the number of unsparsified gradient components. Formally, a client m with
aggregated gradients contribution valued at ¢(C,,) will be rewarded with a gra-
dient component that retains the top r,, = tanh(8¢(C,,))/max; tanh(S¢(C;))
fraction of the components with the largest magnitude. A larger g8 sparsifies fewer
components, leading to less fairness but higher group welfare. S corresponds
to an altruism factor. This causes the client’s converged model parameters and
predictive performance to diverge more from the global server’s.

1.10 CONCLUSION AND FUTURE WORK

This chapter gives a preview of incentives in FL, its main components (con-
tribution evaluation, client selection and reward allocation) and some existing
works that strive to achieve these incentives using monetary and non-monetary
rewards. Next, we briefly describe open problems to be addressed in future work:

First, how can we better achieve the truthfulness incentive during contribution
evaluation and identify if clients are giving real, high-quality data or contribution
C? Second, during client selection, instead of maintaining a single coalition of
selected clients, S, can clients be partitioned into multiple coalitions to improve
group welfare? Last, during reward allocation, what are other ways we can con-
trol the non-monetary, e.g. model, reward value in FL? Possible considerations
include non-iterative and non-gradient rewards such as the number of rounds
participated or updates received.
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