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ABSTRACT
Federated Learning (FL) has become an increasingly popular solution paradigm for en-
abling collaborative machine learning (CML) in which multiple clients can collaboratively
train a common model without sharing their private training data with others. However,
broad adoption of FL in practice is still limited, as clients can often be reluctant to par-
ticipate in such federated effort unless their contributions are accurately recognized and
fairly compensated. Data valuation is thus extensively required to measure the relative
contributions among clients. In this chapter, we review data valuation methods in the
conventional supervised CML setting, followed by extensions to the FL paradigm. To
better address the challenge that the private data from local clients cannot be made avail-
able to the server, we further discuss many specialized data valuation methods developed
for both horizontal and vertical FL in detail. Overall, this chapter aims to provide a com-
prehensive suite of data valuation tools to empower FL practitioners in various practical
scenarios.
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1.1 INTRODUCTION
In recent years, there has been increasing interests in assessing the value of
data in many real-world machine learning applications. Broadly speaking, in
collaborative machine learning (CML), data valuation (DV) offers a trustworthy
way of attributing rewards among participating clients and identifying poten-
tially malicious ones in the learning effort. Federated learning (FL) is one of the
most widely practiced CML frameworks, but its distinguishing data communi-
cation, fusion and learning characteristics from the canonical machine learning

1



2

framework necessitate tailored designs to effectively evaluate data contributed
by various participating clients. For example, the server has no access to the
raw data and the learning happens in an iterative round-wise manner. These
characteristics pose challenges for developing effective and efficient methods.

More interestingly, different variants of FL based on the types of data partition
follow vastly different learning pipelines and thus require distinct data valuation
methods. FL can be typically categorized into horizontal and vertical variants.
In horizontal FL (HFL), multiple clients contribute data samples that share a
common feature space. For example, it can involve a large number of dis-
tributed mobile devices under a complex network. On the other hand, in vertical
FL (VFL), clients contribute distinct features corresponding to the same data
samples. VFL is commonly used among financial institutes and e-commerce
platforms to learn models for a common set of customers.

This chapter provides an overview of data valuation methods for FL, starting
with several representative data valuation methods in non-federated collaborative
machine learning in Sections 1.3 and 1.4. We then discuss the possibilities for
extending those established methods to the federated scenario in Section 1.5.
Concrete data valuation approaches specially designed for VFL and HFL are
discussed in detail in Section 1.6 and Section 1.7, respectively. Finally, we
briefly introduce a vastly different approach from the other methods, learning-
based valuation methods, in Section 1.8 and conclude the chapter with potential
future directions in Section 1.9.

1.2 DATA VALUATION: MOTIVATIONS AND INCENTIVES

The essence of FL involves aggregating data resources from multiple distributed
clients to collaboratively learn a better-performing machine learning model. For
example, credit rating companies may collaborate with e-commerce platforms
and mobile service providers for relevant data (e.g., shopping habits and phone
bills) in improving their credit rating model. However, the clients may be
self-interested and unwilling to participate in the federated effort unless their
contributions are accurately recognized and fairly compensated. In such situa-
tions, data valuation can be useful in performing contribution evaluations and
even guiding client selections, which are related to incentives in FL that will
also be discussed later in this book. As such, data valuation methods are essen-
tial in facilitating collaboration among clients where data from a large group of
participating clients are utilized together in a principled, efficient and fair manner.

Data valuation offers interpretability to machine learning models and decision-
making. It attributes the model predictions to the most responsible training
sample or feature. It also quantifies the importance of datasets (i.e., clients in
FL) in achieving the final global model. More practically, the valuation can
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be utilized to price each client’s participation and thus determine whether it is
worthwhile to involve a particular client.

Other applications of data valuation include data summarization, noise detection,
domain adaptation and etc. When resource constraints poses a major challenge
in practice, we can utilize data valuation to select the most valuable data samples
that achieve the best model performance given the limited budget [20, 23]. Sim-
ilarly, data valuation can guide more efficient model learning by training on the
most valuable dataset first. Conversely, low values detected by valuation methods
signal low-quality samples that could potentially improve model performance
when removed [7, 21]. Finally, data valuation facilitates domain adaptation by
valuing the training data in the context of the target validation data, which could
have a significantly different distribution from the training data [4, 25].

1.3 SIMPLE VALUATION METHODS
"How valuable is a dataset?"

While the whole chapter aims to address this difficult question in the context of
FL, we could start to examine this problem from a more intuitive viewpoint:

"Can we identify properties that characterize a valuable dataset?"

To answer this question, we first present several intuitive valuation concepts that
do not depend on model or validation dataset.

Data Quantity. Quantity can be one of the most intuitive measures of data
value. Roughly speaking, we expect a larger dataset to have a relatively higher
value than a smaller one. Take the LibriSpeech [13] corpus data as an example,
a data subset that contains 360 hours of speech is likely to have a higher value
than a subset that only contains 100 hours of speech. More formally, we define
the following utility to quantify the value of a dataset based on its size:

𝜈(𝐷𝑚) = |𝐷𝑚 | (1.1)

where |𝐷𝑚 | is the size of client 𝑚’s data. However, the utility is often insufficient
to quantify the contribution value of the data because it overlooks the presence
of other clients’ data in the collaboration. For example, adding the dataset from
client 𝑚 to an existing collaboration with limited data will create a significant
impact, but adding it to a collaboration which has already acquired a significantly
larger amount of data might only generate a marginal impact. Thus, to create
a more informative quantification metric, we can pair the utility function with a
simple valuation function to account for such relative effects (RE),

𝜙RE
𝑚 =

𝜈(𝐷𝑚)∑𝑛
𝑖=1 𝜈(𝐷𝑖)

(1.2)
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where 𝑛 is the total number of clients. One can imagine this valuation metric
to be reliable in the scenario where data samples from all 𝑛 clients are inde-
pendently and identically distributed (i.i.d.). We can regard this metric to be
implicitly performance-driven because it is commonly recognized in modern
machine learning that a larger dataset typically leads to a model with better
performance.

Data Variety. Quantity sometimes may not reveal the full picture. An extreme
example is that one can replicate a single data sample for an infinite number of
times to create an infinitely large dataset but the worth of the resulting dataset
should not scale infinitely. More broadly, large datasets that lack data variety
tend to have a lot of redundant information and might be less valuable than other
datasets with a smaller size but higher variety. Therefore, data valuation also
needs to account for the varieties in data (i.e., diversity), often in the forms of
input and target coverage of the population. For instance, the range of values
for an input feature (e.g., containing only ages 0 − 10 instead of the whole
demographic) and the number of target classes (e.g., containing only example
images of digit 0 instead of the whole set of digits from the MNIST dataset) are
all reflective of data variety. More concretely, let variety(𝑚) be the variety of
the dataset owned by client 𝑚, then the relative value of 𝐷𝑚 is expressed as

𝜈(𝐷𝑚) =
variety(𝑚)∑𝑛
𝑖=1 variety(𝑖) and 𝜙RE

𝑚 =
𝜈(𝐷𝑚)∑𝑛
𝑖=1 𝜈(𝐷𝑖)

(1.3)

where the exact measure for data variety requires more in-depth investigation.
For example, the relative data variety is often connected to the similarity measure
of distributions. If we assume a target reference distribution is sufficiently di-
verse (i.e., possibly covers the entire population), a dataset closer in distribution
to the reference distribution is more diverse and hence, more valuable. More
details will be studied in the rest of this chapter.

Communication Effort. This property is related to data quantity and is unique
to FL. The number of rounds of communications 𝜏𝑚 that a client 𝑚 participated
in could be a contribution indicator. More participation probably means more
data quantity and also contribution in various phases of FL. The relative value
of 𝐷𝑚 can thus also be expressed as

𝜈(𝐷𝑚) =
𝜏𝑚∑𝑛
𝑖=1 𝜏𝑖

and 𝜙RE
𝑚 =

𝜈(𝐷𝑚)∑𝑛
𝑖=1 𝜈(𝐷𝑖)

. (1.4)

Overall, the three valuation metrics we introduced in this section can be simplistic
at the first glance, but they can act as important guiding principles in more
sophisticated data valuation method designs. We will frequently revisit these
principles for the rest of this chapter.
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TABLE 1.1 List of data valuation methods we discuss in this chapter. Methods in
black are conventional data valuation methods applicable to FL. Methods in blue
are methods developed in the FL context.

VFL HFL

Performance-driven

VP ORC
DAVINZ FedSV
SHAP ComFedSV

Variety-driven RV

Similarity-driven MMD CGSV
DAVINZ FedFAIM

Information-driven IG
CMI

Learning-based DVRL
F-RCCE

1.4 RELATED WORK: CONVENTIONAL DATA VALUATION

Data valuation reflects how much each client contributes to the performance of
the final global model. We first introduce data valuation methods in the canoni-
cal supervised learning setting without federated clients. In this setting, multiple
clients contribute their dataset 𝐷𝑚 to collectively learn a predictive model 𝑓 . We
define a coalition to be a subset of clients C ⊆ A ≜ {1, . . . , 𝑛}. We denote the
aggregated dataset from all 𝑛 clients to be 𝐷A = {𝐷𝑚}𝑛𝑚=1 where 𝐷𝑚 is the local
training dataset of client 𝑚. We overload the notation and let 𝐷C = {𝐷𝑚}𝑚∈C .

In this convention, data valuation requires an utility function 𝜈 : P(𝐷A) → R
and a valuation function 𝜙(𝐷𝑚, 𝐷A , 𝜈), where P(𝐷A) denotes the power set of
𝐷A . Different designs on the utility and valuation function yield data valuation
of different properties. The utility function 𝜈 aims to produce a data utility,
which will be used by valuation functions 𝜙 to output the final value depending
on the existence of other clients’ data in FL. To offer an overview before delving
into the details, we categorize the methods we will discuss in the rest of the
chapter in Table 1.1.

1.4.1 Utility Functions

A utility function 𝜈 assigns a real-value utility to any coalition C formed among
the participating clients. Intuitively, utility measures the "usefulness" of a coali-
tion, which are used in valuation functions (see Section 1.4.2) to evaluate data.
We present several representative utility functions next.
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1.4.1.1 Performance-driven
Performance-driven utility functions award data coalitions that achieve high
model performance.

Validation Performance (VP). VP is the most straightforward surrogate for
model usefulness, adopted in Data Shapley [7]. Usually measured on a pre-
defined validation set 𝐷val of interest (or mutually agreed by the server and
clients), we define

𝜈(𝐷𝑚) = −ℓ(w𝑚; 𝐷val) (1.5)
where w𝑚 is the model trained on 𝐷𝑚 and ℓ denotes the loss function. Some-
times, validation accuracy is used as an alternative for negated validation loss in
Equation (1.5). This utility function is related to the performance-driven data
quantity introduced in Section 1.3. As discussed, a larger dataset typically leads
to a better-performing model, which means a lower validation loss and a higher
value. However, each evaluation of the VP on a coalition requires computation-
ally expensive model training, which could be prohibitively slow for deep neural
network models. This limits the complexity of models that can be considered
due to practical constraints.

Data Valuation at Initialization (DAVINZ). Motivated to value data in com-
plex deep neural network (DNN) applications while completely avoiding model
training, Wu et al. [21] theoretically derive a domain-aware generalization bound
to estimate the generalization performance of DNNs without model training.
Specifically, the utility function considers both in-domain DNN generalization
error characterized by the neural tangent kernel (NTK) matrix 𝚯0 at neural net-
work initialization and the generalization error caused by train-validation domain
divergence 𝑑H (𝐷𝑚, 𝐷val). We have

𝜈(𝐷𝑚) = −𝜅
√︃

ŷ𝚯−1
0 ŷ/|𝐷𝑚 | − 𝑑H (𝐷𝑚, 𝐷val) (1.6)

where each element in ŷ is defined as the residual on initialized network 𝑦̂ =

𝑦 − 𝑓 (x,w(0) ),H is a proper function space to evaluate domain divergence and
𝜅 is regarded as an balancing hyper-parameter. Intuitively, the first in-domain
term can be interpreted as a complexity measure of 𝐷𝑚, whereas the second
takes care of domain shifts. The authors adopt maximum mean discrepancy
(MMD) for domain discrepancy in practice. Overall, DAVINZ addresses the
computational efficiency problem of utility evaluation with an accurate estimate.
The practical limitation lies in the determination of the hyper-parameter 𝜅 that
balances the effort of in-domain and out-of-domain errors.

1.4.1.2 Variety-driven
Variety-driven utility functions examine the variety or diversity of data in coali-
tions as a surrogate for utility.
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Robust Volume (RV). Xu et al. [23] propose a new perspective that attributes
data value to intrinsic characteristics of a dataset itself regardless of tasks or
models. To quantify the utility of a dataset in a machine learning task, the
authors propose to use volume to measure the diversity of data samples in it and
established theoretical connections between a high diversity dataset and a good
learning performance. This formulation thus follows the data variety principle
and theoretically connects to model performance considered in performance-
driven methods. Let 𝑝𝑚 be the number of data samples in 𝐷𝑚 and 𝑑 be the
feature dimension. The volume of a data matrix 𝐷𝑚 ∈ R𝑝𝑚×𝑑 is defined as

𝜈(𝐷𝑚) =
√︁

det(𝐷⊤𝑚𝐷𝑚) (1.7)

where det(·) denotes the determinant of a matrix. RV, a robust variant of
volume in Equation (1.7), is also proposed in [23] to address the data replication
issue in valuation. Overall, RV provides a viable alternative to VP-driven data
valuation techniques, decoupling valuation from validation and circumventing
the challenges associated with selecting a suitable validation set. The method is
computationally efficient because it is training-free (i.e., no training is required).
However, the disadvantage is that the theoretical performance guarantee applies
to regression tasks only.

1.4.1.3 Similarity-driven
Different from methods driven by performance, similarity-driven methods in-
spect a dataset against a representative and trusted reference to determine values.
Simply put, a dataset more similar to the aggregated data or a reference target
distribution is assigned a high value.

MMD. Tay et al. [17] propose to use 𝐷A ∪ 𝐺A as the reference set where 𝐺A
represents a synthetic dataset generated from a generative model (e.g., variational
autoencoder, generative adversarial networks, etc.) trained using 𝐷A . MMD is
utilized to efficiently measure the distributional similarity between two sampled
datasets. Specifically, we express

𝜈(𝐷𝑚) = −MMD2
𝑢 (𝐷𝑚, 𝐷A ∪ 𝐺A) (1.8)

where MMD𝑢 evaluates an unbiased MMD estimate. The work also discusses
kernel selection for MMD and extension to incentivizing CML via synthetic data
rewards, which will be discussed further in the following chapter on incentives
for federated learning.

DAVINZ. Relatedly, the DAVINZ framework that we introduced earlier in Equa-
tion (1.6) has elements of a similarity-driven metric in the out-of-domain term.
Accounting for domain shifts is especially important in CML and FL because
clients normally have heterogeneous local data distributions which might not be
identical to the target distribution at test time.
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1.4.1.4 Information-driven
Information theory provides an alternative to quantifying the "usefulness" of a
model through uncertainty associated with the model. This measure is inde-
pendent of the validation dataset, thus circumventing the need of choosing an
appropriate validation dataset for data valuation and associated biases.

Information Gain. Sim et al. [15] propose to measure the quality of a dataset 𝐷𝑚

via the amount of uncertainty reduction in the trained model parameters w𝑚 after
training on 𝐷𝑚. Following the notions of information theory, the entropy of a
random variable reflects the amount of "information" or "uncertainty" pertaining
to the variable’s outcome. Thus, using the prior entropy 𝐻 (w𝑚) and posterior
𝐻 (w𝑚 |𝐷𝑚) to represent the uncertainty associated with w𝑚 before and after
training, data value based on information gain (IG) can be expressed as

𝜈(𝐷𝑚) = 𝐻 (w𝑚) − 𝐻 (w𝑚 | 𝐷𝑚) . (1.9)

To interpret, a more valuable dataset results in a greater uncertainty reduc-
tion during model training. Interestingly, IG is related to performance-driven
methods because it can be regarded as a predictive performance surrogate with
unknown validation [9, 10]. However, the valuation method requires a Bayesian
treatment of w𝑚 (and 𝐷𝑚) and IG may be expensive to compute for some models
such as multi-layer Bayesian neural networks.

1.4.2 Valuation Functions
Valuation functions operate on utilities calculated from the utility functions on
multiple coalitions C with datasets 𝐷C ⊆ 𝐷A . While we usually consider
coalitions of clients in C, note that the value for each individual data sample
is also well-defined under the same formulation. In this section, we discuss
valuation functions with any arbitrary utility function 𝜈.

1.4.2.1 Leave-one-out (LOO)
LOO contribution test finds its root in robust statistics, where Cook [3] uses it
to study the influence of individual data points in linear regression. Intuitively,
it computes the distance between the model fitted on the complete data and the
model fitted on data with the 𝑚-th point or client deleted. In the context of data
valuation, we employ

𝜙LOO
𝑚 = 𝜈(𝐷A) − 𝜈(𝐷A\{𝑚}) (1.10)

where 𝜈 is an arbitrary utility function (some examples are given in Section 1.4.1).
LOO only considers the marginal utility improvement of data to the grand
coalition (excluding itself).
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1.4.2.2 Shapley Value (SV)
Several game-theoretic solution concepts have proved their usefulness in data val-
uation, including Shapley value (SV) [7], Banzhaf value [19] and least core [24].
We focus on SV here as it is an unique solution that satisfies efficiency, symmetry,
linearity and null player properties [5].

The SV of a client 𝑚 is defined as the average marginal contribution of 𝑚 to all
coalitions C ⊆ A \ {𝑚},

𝜙𝑚 =
1
|A|

∑︁
C⊆A\{𝑚}

1( |A |−1
| C |

) [𝜈(𝐷C∪{𝑚}) − 𝜈(𝐷C)] . (1.11)

SV is more comprehensive than LOO as it considers marginal contributions to
every possible coalition. SV is the most popular choice of valuation function to
pair with the utility functions such as VP, RV, DAVINZ, MMD, IG, etc.

1.5 EXTENDING TO THE FEDERATED SETTING: DOES IT WORK?
Data valuation in the canonical supervised learning setting above requires (1) full
access to the raw data and (2) a central server. This poses potential challenges
when executing DV in FL.

HFL. We first recall the procedure of HFL. (1) The server broadcasts the latest
global model w(𝑡 ) to all clients. (2) Clients perform local updates using their
resepective local datasets. (3) Server selects clients and aggregates their gradi-
ents (or updated local models) to update the global model. The three steps are
repeated until convergence. Unfortunately, extending conventional DV methods
to HFL is nontrivial because raw data is never shared. Instead, the server only
receives the gradient information or the locally updated model. The utility func-
tions in Section 1.4.1 would not work with aggregated gradients. Therefore, we
need to develop specialized DV methods for HFL (refer to Section 1.7).

VFL. We recall the general procedure of VFL. Overall, the model is divided into
multiple client-owned bottom models and a server-owned top model as shown
in Figure 1.1. The intermediate representations produced by the bottom models
are subsequently passed as inputs to the top model for prediction or inference.
We present the key steps below: (1) Before learning, a set of data samples with
common identifiers are aligned across the participating clients. (2) Every client
transmits the intermediate representation of the data using the respective bottom
model. (3) Top and bottom models are updated through forward and backward
propagation. Steps 2 and 3 are then repeated until convergence. A unique
property of VFL is that each client separately owns a part of the grand model.
Additionally, intermediate data representations based on the local models are
shared with the server, which is usually the label owner in VFL. Therefore, DV
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FIGURE 1.1 Intermediate representation valuation in VFL with 3 clients.

in VFL can be regarded as valuating the contribution of data in the form of
intermediate representations. Specifically, we show an example with 3 clients in
Figure 1.1. The dataset 𝐷C with C = {1, 2} is the concatenation of intermediate
features from all 3 local models, where clients 1 and 2 output intermediate fea-
tures with original local raw input data and client 3 outputs features with imputed
median input data (or other reasonable imputation methods). To interpret, 𝐷C
only includes meaningful data from clients in coalition C. With this modified
data representation, all utility functions and valuation functions introduced in
Section 1.4 can be used in VFL.

Overall, depending on the information received by the server, data valuation in FL
involves feature and gradient valuations. Conventional data valuation methods
are still applicable to VFL with slight modifications on data representation.
However, gradient evaluation in HFL requires a new approach. In the next
section, we describe methods specially developed for data valuation in VFL and
HFL, respectively.

1.6 VERTICAL DATA VALUATION: FEATURE VALUATION
As discussed in Section 1.5, data valuation in VFL can be viewed as grouped
feature attribution since each client holds part of the federated model that con-
tributes partial intermediate feature representations. We name data valuation in
VFL as vertical data valuation and next discuss feature evaluation methods in
the context of VFL.

1.6.1 Feature Importance and Attribution
Shapley additive explanations (SHAP) is a popular explainable artificial intel-
ligence (XAI) tool that attributes the model prediction of an instance x to each
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feature of x [12]. Interestingly, we can adapt SHAP into our data valuation
formulation by using the final model output of an input instance as the utility
function and SV as the valuation function. Note that SHAP, in its original form,
considers single-instance multi-feature explanations. Therefore, Section 1.5 and
Figure 1.1 provide us with a more suitable and flexible approach to vertical data
valuation for sets of input data. Wang et al. [18] have proposed a similar method
for vertical data valuation.

1.6.2 Information-driven Valuation
Han et al. [8] propose to use conditional mutual information (CMI), a commonly
used metric for feature selection [1], as the data valuation metric. CMI is very
similar to the information gain (IG) metric introduced in Section 1.4.1.4, except
that CMI is conditioned on an additional task dataset 𝐷task by the label owner
in VFL. The task dataset is unique to the FL setting and the label owner holds
corresponding task labels 𝑌 . Thus, [8] propose the DV metric based on the
mutual information between the input set 𝐷𝑚 and label 𝑌 conditioned on the
task dataset 𝐷task. Specifically,

𝜈(𝐷𝑚) = 𝐼 (𝐷𝑚;𝑌 |𝐷task) . (1.12)

The computation of CMI above requires further federated computations since
𝐷𝑚 and 𝐷task are typically stored separately and privately, which is outside
the scope of DV discussion here. Remarkably, different from model-dependent
methods like SHAP, such an information-driven metric can evaluate federated
data in the absence of a pre-determined model.

1.7 HORIZONTAL DATA VALUATION: GRADIENT VALUATION
In HFL, gradients instead of raw data are shared with the central server. However,
conventional data valuation techniques require full access to the raw data. Intu-
itively, if the contribution of each gradient to the global model can be evaluated,
it will indirectly reflect the client’s contribution.

1.7.1 Gradient Contributions
A straightforward data valuation method for HFL utilizes the gradient infor-
mation readily available in the FL training procedure. Wei et al. [16] propose
one-round contribution (ORC) to reconstruct trained models by aggregating lo-
cal gradients throughout the training. The method effectively keeps track of
𝑂 (2𝑛) models (or equivalently, gradients information uploaded by clients) for
each C ⊆ A, which are later used to evaluate the VP of a global model trained
with data from C. Specifically, for each coalition C, we use the aggregated gra-
dients of clients from this coalition C to update the corresponding model. Note
that although subset models are of interest, we still only compute the gradients
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in each round using the global model. VP is used as the utility function 𝑣 in data
valuation.

However, gradients on the global model are used each round even when we
are concerned with a subset model trained using only data from clients from
the coalition C. Subset models can thus be different from the actual ones and
affect the effectiveness of gradient values. To solve this issue, we can rely on
the linearity property of Shapley value and regard each training round as a co-
operative game. The overall SV is simply the sum of SV from all training rounds.

As such, federated SV (FedSV) [20] is proposed for valuing decentralized and
sequential data in FL. The updated model performance conditioned on the ex-
isting global model is used as the utility function. Specifically, 𝜈(C; w(𝑡 ) ) is
defined to be the VP of the updated global model additionally trained using the
aggregated gradients of C from the existing global model w(𝑡 ) . Following the
Shapley formulation, the federated SV in a round 𝑡 is defined as

𝜙
(𝑡 )
𝑚 =


1
|𝐼𝑡 |

∑
C⊆𝐼𝑡\{𝑚}

1
( |𝐼𝑡 |−1
|C| )
[𝜈(C ∪ {𝑚}; w(𝑡 ) ) − 𝜈(C; w(𝑡 ) )] if 𝑚 ∈ 𝐼𝑡

0 otherwise
(1.13)

where 𝐼𝑡 is the set of selected clients in round 𝑡. Then, the overall federated SV
is the sum of all training rounds,

𝜙𝑚 =

𝜏∑︁
𝑡=1

𝜙
(𝑡 )
𝑚 . (1.14)

This requires 𝜏 rounds of SV computation to calculate the final FedSV. The
above formulation can be generalized in two ways.

First, the weights of all coalitions are not necessarily equal. We can replace the
coefficient 1

|𝐼𝑡 | in Equation (1.13) with a general factor 𝛼C , that depends on spe-
cific formulations of C. For example, Beta Shapley [11] uses a beta distribution
to weight coalitions based on their cardinalities such that the effect of noises in
the utility evaluations can be reduced. Note that Beta Shapley reduces the SV to
a semivalue without the efficiency axiom.

Second, we can vary the importance of different learning rounds. A significant
drawback of ORC and FedSV is that they treat gradients from all training rounds
equally. Mixing gradients from different training rounds together for gradient
valuation may obfuscate essential gradients in the learning process. Therefore,
Equation (1.14) can be generalized and normalized into

𝜙𝑚 =

𝜏∑︁
𝑡=1

𝛽 (𝑡 )

[
𝜙
(𝑡 )
𝑚∑𝑛

𝑖=1 𝜙
(𝑡 )
𝑖

]
. (1.15)
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Here, we may introduce a decay factor 𝜆 ∈ (0, 1) to account for the diminishing
effect of the gradients, such that 𝛽 (𝑡 ) = 𝜆𝑡 . We decrease the importance of the
later training iterations as they usually take smaller gradient steps and influence
the predictions to a smaller extent [16]. In addition, we may upweight rounds that
lead to higher performance (i.e., accuracy). This stems from the observation that
improvements over models with high accuracy are much harder than randomly
initialized ones. To this end, we can set 𝛽 (𝑡 ) = 𝜆𝑡 · Perf(w(𝑡 ) ) where Perf(w(𝑡 ) )
denotes the validation performance of the global model at round 𝑡.

1.7.1.1 Improving on FedSV
An innate problem with Equation (1.13) is that the unselected clients in a spe-
cific training round receive zero utility, regardless of their datasets. This raises
potential unfairness because, for example, two clients with the same data can
receive different FedSV due to the sampling process. Fan et al. [6] empirically
shows that randomly selecting 3 out of 10 clients for 10 rounds can cause larger
than 50% relative FedSV difference 65% of the times.

Fan et al. [6] propose completed federated SV (ComFedSV) to improve fairness
by imputing the missing entries of intermediate FedSV. ComFedSV collects
round-wise Shapley value of all possible coalitions into a utility matrix U with
𝜏 rows. Then, it imputes the missing values via low-rank matrix completion [2].
Intuitively, this method is effective because U should be approximately low-
rank. On the one hand, similar data shared across clients can lead to similar
utilities and thus columns of U. On the other hand, utilities of the same coalition
should be similar between successive rounds. Moreover, ComFedSV also gives
a theoretical guarantee for a fair data valuation and demonstrates convincing
empirical performance.

1.7.2 Similarity-driven Gradient Valuation

When the subject of interest changes from data to gradients in HFL, similarity-
driven utility functions are still versatile enough to be applicable. Since clients
usually send gradients to the server which will be aggregated later, similarity
metrics more tailored for gradient comparisons have been proposed.

Xu et al. [22] propose to capture the contribution of gradient uploaded by a
client using gradient vector alignment. Intuitively, the closer the gradient is
to the aggregated gradient from all clients, the more contribution it has made.
The aggregated gradient is the direction in which the loss value of the global
model decreases fastest. From this perspective, a (directionally) similar gradient
would be more effective in reducing loss. Specifically, let the parameter update
from client 𝑚 in iteration 𝑡 be Δw𝑚,𝑡 ≜ −𝜂𝑡∇𝑔𝑚 (w(𝑡 )𝑚 ) where 𝜂𝑡 is the learning
rate for iteration 𝑡 and 𝑔𝑚 (w(𝑡 )𝑚 ) is the 𝑚-th client’s local training loss with
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respect to w(𝑡 )𝑚 . The server normalizes and aggregates the gradients as follows,
u𝑚,𝑡 ≜ ΓΔw𝑚,𝑡/| |Δw𝑚,𝑡 | |, uC,𝑡 ≜

∑
𝑚∈C 𝑟𝑚u𝑚,𝑡 where Γ is a normalization

coefficient used to prevent gradient explosion and 𝑟𝑚 is an optional importance
weight factor. Under this formulation, gradient alignment can be measured via
the cosine similarity and the utility function is defined as follows,

𝜈(𝐷𝑚) = cos(u𝑚,𝑡 , uA,𝑡 ) =
⟨u𝑚,𝑡 , uA,𝑡 ⟩
| |u𝑚,𝑡 | | · | |uA,𝑡 | |

. (1.16)

Note that the above utility function can be applied to data 𝐷C from a coalition of
clients C. We use (1.16) with (1.13) and (1.14) to obtain the respective Shapley
values for data. This method is named cosine gradient Shapley value (CGSV).
It enable us to perform data valuation on contributed gradients without any
auxiliary dataset. Notably, Shi et al. [14] share the same perspective and propose
a similar formulation for gradient contribution assessment named FedFAIM. On
top of the cosine similarity in (1.16), they additionally consider quality detection
and filtering of low-quality local gradients.

1.8 LEARNING-BASED VALUATION
In this section, we deviate from game-theoretic solution concepts, which can be
inefficient when the number of clients is large despite existing approximation
efforts. Can we directly model the data value or the scoring function using
advances in deep learning and reinforcement learning?

Yoon et al. [25] first came up with the idea of data valuation using reinforcement
learning (DVRL). It integrates data valuation with the training process of the
target predictive model and utilizes reinforcement signals to train a network for
data valuation. Most specifically, an evaluator 𝑔𝜓 : (x, 𝑐) → 𝜔 maps training
samples to a selection probability 𝜔, which represents the probability of using
the sample in a training iteration. The target predictor model is denoted as 𝑓𝜃 .
In a training iteration, the evaluator first estimates the selection probabilities 𝝎
for a batch of training samples {(x(𝑖) , 𝑐 (𝑖) )}𝐵𝑠

𝑖=1 of size 𝐵𝑠 . Sample selection
is then performed stochastically based on 𝝎, and we obtain a selection vector
S = [𝑠1, . . . , 𝑠𝐵𝑠

] where 𝑠𝑖 ∈ {0, 1}. Here, 0 and 1 represent discarding or in-
cluding the sample, respectively. Selected samples continue to train the predictor
𝑓𝜃 whose validation loss compared to the moving average 𝛿 of previous losses
is then used as a reward signal to train the evaluator via reinforcement learning.
After the convergence of the evaluator network, the selection probabilities serve
as a surrogate of relative contribution (i.e., data value) in this learning effort.

The above idea has been applied to FL by Zhao et al. [26]. Instead of data
samples, we consider contribution or value at the granularity of clients. Federated
REINFORCE client contribution evaluation (F-RCCE) modifies the evaluator to
take in gradients (or equivalently, local model at the end of the communication
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round) as input, i.e., 𝑔𝜙 : w(𝑡 )𝑚 → 𝜔. Similar to DVRL, S(𝑡 ) ∈ {0, 1}𝑛 and the
reward function is defined as

𝑟 (S(𝑡 ) ) =
1
𝑛val

𝑛val∑︁
𝑘=1

ℓ

(
w(𝑡 ) ; xval,𝑘 , 𝑐val,𝑘

)
− 𝛿 (1.17)

where ℓ is the loss of the global model on the validation set {(xval,𝑘 , 𝑐val,𝑘)}𝑛val
𝑘=1

and 𝛿 is a moving average of the previous losses. The evaluator’s model parameter
𝜓 is updated with learning rate 𝛼:

𝜓𝑡+1 ← 𝜓𝑡 − 𝛼𝑟 (S(𝑡 ) )∇𝜓 log 𝑝(S(𝑡 ) |𝜓) |𝜓𝑡 . (1.18)

Note that in this framework, the evaluator and the global target model are first
fully trained before fixing the evaluator to measure contributions in another fresh
round of target model re-training. In this case of FL, the selection probability at
an iteration 𝑡 is interpreted as the relative contribution of the client in commu-
nication round 𝑡. Overall, similar to (1.14), the value of a client 𝑚’s data is the
summation of its selection probability over all the rounds.

DVRL and F-RCCE are relatively efficient as it only requires one complete
training of the valuation network (i.e., evaluator). However, the method now
measures how likely a datum or a client will be used in training the predictive
model, which cannot draw a direct parallel to the relative contributions in learn-
ing. Consequently, the above papers [25, 26] only perform experiments based
on the ranks, rather than relative data values. Notably, the desirable properties
and axioms of an equitable and fair data valuation achieved by Shapley value are
not guaranteed by DVRL or F-RCCE.

1.9 CONCLUSION AND FUTURE WORK
Motivated by the growing interest in assessing the value of data in machine learn-
ing applications, this chapter presents an overview of data valuation methods in
collaborative machine learning with a primary focus on federated learning. Data
valuation offers an interpretable contribution attribution method for datasets in
collaborative learning scenarios. However, it is important to notice the limita-
tions of the existing methods and open problems for future research.

First, the current vertical data valuation methods are not tailored to the itera-
tive learning process of FL. It is debatable whether we should perform feature
valuations on the final model or consider round-wise valuations like those in hor-
izontal data valuation. Second, learning-based valuation has only been applied
to HFL. It would be interesting to investigate the applicability of learning-based
valuations on VFL. Third, properties like communication bandwidth, computa-
tional power, honesty and availability of clients are additional aspects of client
contribution to FL, which can potentially constitute a more complete client val-
uation framework. The list of open problems is certainly not comprehensive and



16

we invite interested readers to conduct further research on this growing field of
practical significance.

To conclude, we have discussed extensions of the conventional data valuation
methods to the federated setting and described horizontal and vertical data valu-
ation methods specially developed for FL. This chapter serves as a guideline for
a versatile suite of tools that empower FL practitioners to apply data valuation
in various scenarios.
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