Chapter 14

Federated Sequential Decision
Making: Bayesian Optimization,
Reinforcement Learning, and
Beyond

Zhongxiang Dai*?, Flint Xiaofeng Fan*?, Cheston Tan®, Trong Nghia
Hoang9, Bryan Kian Hsiang Low?, and Patrick Jaillet®

National University of Singapore, Singapore, ? Massachusetts Institute of Technology, MA, USA,
CInstitute for Infocomm Research, A*STAR, Singapore, *Washington State University, WA, USA

ABSTRACT

Federated learning (FL) in its classic form involves the collaborative training of super-
vised learning models (e.g., neural networks) among multiple agents/clients. However, in
addition to supervised learning, many other machine learning tasks which are inherently
sequential decision-making problems, such as Bayesian optimization (BO) and reinforce-
ment learning (RL), also find important applications in the federated setting. For example,
the crucial problem of hyperparameter tuning of neural networks in the federated setting
calls for algorithms for federated BO; collaborative clinical treatment recommendation
among multiple hospitals is a natural application for federated RL. However, the extension
of these classic sequential decision-making algorithms into the federated setting is faced
with immense challenges. Firstly, these algorithms (e.g., BO and RL) have to be adapted
to satisfy the core principles of FL. For example, consistent with the requirement of FL,
the raw data (e.g., the history of observations in BO and the trajectories in RL) of every
agent can never be shared with the other agents. Next, it is challenging to preserve the
rigorous theoretical guarantees of these classic sequential decision-making algorithms
(e.g., the sub-linear regret upper bound of classic BO algorithms and the sample com-
plexity of classic policy gradient algorithms for RL) and at the same time consistently
improve their empirical performances by leveraging the federation of multiple agents.
In this regard, a number of recent works have tackled these challenges and hence intro-
duced federated versions of classic sequential decision-making algorithms (e.g., federated
BO and federated RL algorithms) which satisfy the core principles of FL and are both
theoretically grounded and practically effective. In light of these recent advances, this
chapter discusses federated sequential decision-making problems with a focus on recent
representative works on federated BO and federated RL, and describes open problems
and potential future directions in these areas.

* denotes equal contribution.
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1.1 INTRODUCTION

Classic federated learning (FL) is designed for supervised learning, i.e., multiple
agents/clients collaborate to train a supervised learning model such as a neural
network (NN) [54] or a decision tree-based model [44, 45]. However, in ad-
dition to supervised learning, many other machine learning methods which are
sequential decision-making problems in nature, such as the celebrated methods
of Bayesian optimization (BO) [28] and reinforcement learning (RL) [71], also
find important applications in the federated setting. For example, BO has been the
most popular method for tuning the hyperparameters of ML models, and hence
hyperparameter tuning of ML models in the federated setting naturally calls for
algorithms for federated BO (FBO); RL has been widely adopted for clinical
decision support, and therefore collaborative clinical treatment recommendation
among multiple hospitals is a natural and important application for federated RL
(FRL). Therefore, extending these classic sequential decision-making algorithms
(such as BO and RL) into the federated setting holds considerable promise for
more widespread applications of FL.

However, the extension of these classic algorithms into the federated setting
is non-trivial and faced with significant challenges. First of all, these classic
sequential decision-making algorithms need to be modified to satisfy the core
principles of FL. As a prime example, an important principle in FL is that the
raw data of an agent can never be transmitted [35]. Similarly, during federated
sequential decision-making, the raw data of an agent, such as the history of
observations in BO and the raw trajectories in RL, must also be retained by
the agent and hence never shared with others. This requirement, as well as
other requirements stemming from the core principles of FL, may necessitate
non-trivial problem-dependent algorithmic designs. Moreover, when modify-
ing these sequential decision-making algorithms for the federated setting, it is
challenging to preserve their rigorous theoretical guarantees (e.g., the sub-linear
regret upper bound of classic BO algorithms and the sample complexity of clas-
sic policy gradient algorithms for RL) and at the same time consistently improve
their empirical performances by exploiting the federation of multiple agents. In
recent years, a number of works have tackled these challenges and hence intro-
duced federated versions of classic sequential decision-making algorithms, such
as FBO [14, 15] and FRL [26] algorithms.

The works of [15] and [14] have proposed FBO algorithms. The work of [15]
has introduced the first FBO algorithm, named federated Thompson sampling
(FTS), which addressed several important challenges in FBO. Specifically, the
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FTS algorithm is free from the requirement to transmit the observations of BO,
requires a small number of parameters to be exchanged, and is theoretically guar-
anteed to be no-regret despite agent heterogeneity [15]. The more recent work
of [14] has extended the FTS algorithm of [15] to incorporate a rigorous privacy
guarantee and to further improve its practical performance via the method of
distributed exploration. Regarding FRL, the recent work of [26] has introduced
the first FRL framework with a theoretically guaranteed convergence. Specif-
ically, building on the classic policy gradient algorithm, [26] only requires the
agents to exchange their policy gradients instead of their raw trajectories and has
achieved low sample complexity by leveraging variance-reduced optimization
techniques. Moreover, [26] has also achieved theoretically guaranteed robust-
ness against Byzantine agents (i.e., caused by random failures or adversarial
attacks), which is another important consideration in FL. These recent works on
FBO [14, 15] and FRL [26] have been shown to be both theoretically grounded
and practically effective, and we will discuss them in more detail in Sections
1.2 and 1.3, respectively. In addition to FBO and FRL, another line of recent
works has extended multi-armed bandits [40], which is another classic sequential
decision-making problem, to the federated setting and hence introduced feder-
ated bandits [16, 22, 66]. These recent works on federated bandits mostly focus
on the theoretical perspective, and we will discuss them in Section 1.4.3.

In the remainder of this chapter, we will separately discuss FBO (Section 1.2) and
FRL (Section 1.3), including their background, representative existing works, al-
gorithms/frameworks, as well as theoretical and empirical results. Subsequently,
in Section 1.4, we will briefly review other recent related works on FBO (Section
1.4.1), FRL (Section 1.4.2) and federated bandits (Section 1.4.3). Lastly, we will
discuss open problems and potential future directions in the area of federated
sequential decision-making (Section 1.5).

1.2 FEDERATED BAYESIAN OPTIMIZATION

In this section, we firstly present some technical background on BO (Section
1.2.1) and FBO (Section 1.2.2). Next, we give an overview of the representative
existing works on FBO [14, 15] (Section 1.2.3), and then discuss their algorithms
(Section 1.2.4) as well as their theoretical and empirical results (Section 1.2.5).

1.2.1 Background on Bayesian Optimization

Bayesian optimization (BO) aims to use sequential queries to maximize an ob-
jective function f : X — R, i.e., to find x* € arg max, y f(x), in which X c R¢
is a discrete subset of the d—dimensional domain.! The function f is usu-

We assume X to be discrete for simplicity, but the extension to a continuous domain is straight-
forward using well known techniques [14].



ally black-box (i.e., non-differentiable and hence only available through queries)
and costly to evaluate. A typical example is hyperparameter tuning for deep
neural networks (DNNs), in which x € X is a hyperparameter configuration
for training a DNN (e.g., the learning rate, regularization parameter, etc.) and
f(x) represents the validation accuracy obtained after training the DNN using
the hyperparameter configuration x. Specifically, in iteration # = 1,...,T of
BO, an input x; € X is selected and queried, yielding an output observation:
y; £ f(x;) + ¢ where { is sampled from a zero-mean Gaussian noise with a
variance of 02: ¢ ~ N(0,c?). To select the input queries x,’s intelligently, BO
uses a Gaussian process (GP) [60] as a surrogate to model the function f.

A GP GP(u(-),k(-,-)) is characterized by its mean function u and kernel
function k. We assume w.l.o.g. that u(x) = 0 and k(x,x’) < 1,Vx,x’ € X,
and we mainly focus on the widely used squared exponential (SE) kernel here
[14, 15]. In iteration 7 + 1 of BO, given the first r observed input-output pairs,
the GP posterior is given by GP (i, (+), 02 (-, -)) where

e (x) =k, (x) T (K, + /H)_l)’t
a2(x,x') 1= k(x,X') -k, (x)T (K; + AD) 'Kk, (x')

where k;(x) = (k(x, X,))I:1 is a t—dimensional column vector, y; :=
.... , is also a r—dimensional column vector, K; := (k(X7,X7))r,77=1,...¢
is a t X r—dimensional matrix and 4 > 0 is a regularization parameter [10].
In iteration ¢ + 1, the GP posterior (1.1) is used to calculate an acquisition
function, which is then maximized to select the next query X,.;. For ex-
ample, the classic Thompson sampling (TS) [10] algorithm firstly samples a
function f;4+; using the GP posterior (1.1) and then uses it as the acquisition
function to chooses X;+; = argmaxxey fr+1(X). BO algorithms are usually
analyzed in terms of regrets [70]. A hallmark for well-performing BO al-
gorithms is to be asymptotically no-regret, which requires the cumulative re-
gret Ry := Z,T=1( f(x*) = f(x;)) to grow sub-linearly so that the simple regret
St i=min,—;_ 7(f(X*) — f(x/)) < Rr/T goes to 0 asymptotically.

(1.1)

To reduce the computational cost of GP posterior inference (1.1), random Fourier
features (RFFs) [59] is commonly adopted to approximate the kernel function
k using M-dimensional random features ¢: k(x,x’) ~ ¢(x)"¢(x’). RFFs
offers a high-probability guarantee on the approximation quality, i.e., we have
that sup, vy [k(X,X") — ¢(x) T¢(X')| < &, in which & = oO(M~'%) [59]. Of
note, RFFs makes it particularly convenient to approximately sample a function
from the GP posterior (1.1). Specifically, define ®; := (#(x;))' 1 (.e., a

TE(t
t X M-dimensional matrix), £, := ®; ®, + A1, and v, := £, !®]y,. To sample
a function f from the GP posterior with the approximate kernel k(x,x’) =
o (x)T ¢(x’), we only need to sample an M —dimensional vector

o~ N, AZ ) (1.2)
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and then set f(x) = ¢(x)"w,Vx € X. Refer to [15] for more details on RFF
approximations of GP.

1.2.2 Background on Federated Bayesian Optimization

Here we present the problem setting of federated BO (FBO), which follows the
works of [14] and [15]. FBO involves a central server and N agents/clients

Ay, ..., An. Every agent A, attempts to maximize its own objective func-
tion f* : X — R, i.e, to find X} € argmaxxex f"(X), by querying x} and
observing y?,Vt = 1,...,T. As a representative motivating example, N mo-

bile phone users (agents) who use DNNs for next-word prediction in a smart
keyboard application may wish to collaboratively tune the hyperparameters of
their DNNs. In this application, agent (mobile phone user) A, sequentially
queries the hyperparameter configurations x;' € X,Vt = 1...,T in order to
maximize its validation accuracy denoted by the function f* : X — R. As
another example, a hospital can use BO to select the patients to perform a med-
ical test to assess the possibility of readmission [81], and multiple hospitals
may wish to collaborate to achieve better patient selection strategies. In this
case, the input query x}' € X selected by hospital A,, in iteration ¢ corresponds
to the features representing the selected patient, and the corresponding value of
the objective function f" (x]') represents the test score for the selected patient x}'.

As a common ground for the collaboration among different agents, we assume
that all participating agents share the same set of random features ¢(x), Vx € X.
Similar to BO discussed above, in FBO, every agent A, aims to minimize its
own cumulative regret: R’ = ,T=1( () = f*(x}')). Without loss of gener-
ality, when presenting the theoretical results in Section 1.2.5, we focus on the
perspective of agent A;. That is, we derive an upper bound on the cumula-
tive regret of agent A; denoted as RIT. We characterize the similarity between
agents Ay and A, by d,, := maxyex |f'(x) — f*(x)|, such that d; = 0 and
a smaller d, indicates a larger degree of similarity (or equivalently, a smaller
degree of heterogeneity) between A; and A,. In the theoretical analysis, we
assume that the objective functions of all agents have a bounded norm induced
by the reproducing kernel Hilbert space (RKHS) associated with the kernel &,
i.e.,“ f"“k < B,Vn € [N]. This essentially assumes that the objective functions
are smooth and is a common assumption in the analysis of BO algorithms [10].

Core Principles and Challenges of FBO. Since FBO needs to follow the
core principles of FL, it also inherits a number of important challenges of the
federated setting. Firstly, the raw data (e.g., the history of queried hyperparameter
configurations and observed validation accuracies during BO) of every agent can
never be shared with others. Secondly, the heterogeneity among different agents
is another crucial challenge of FBO. For example, since different mobile phone
users may have distinct typing habits, the optimal hyperparameters of their DNNs



for next-word prediction may vary significantly. In addition, same as FL, there
are also other important challenges in FBO, such as communication efficiency
(i.e., the total number of exchanged parameters), rigorous privacy guarantees for
the agents, decentralized communication, fairness among different agents, etc.
As we will discuss in detail in Section 1.2.3, the works of [14, 15] have tackled
a number of these challenges (e.g., retaining the raw data, agent heterogeneity,
communication efficiency and rigorous privacy guarantees), whereas the others
are still important open problems for FBO.

1.2.3 Overview of Representative Existing Works on FBO

The work of [15] has introduced the federated Thompson sampling (FTS) algo-
rithm, which is the first algorithm for FBO. The FTS algorithm [15] has mainly
tackled three of the major challenges faced by FBO (Section 1.2.2).

The first challenge results from the requirement to retain (hence not transmit)
the raw data, which is a unique challenge faced by FBO yet not FL. Specifically,
the information about a BO task is contained in its GP surrogate model (Section
1.2.1). However, unlike DNNs in standard FL for supervised learning, GPs are
nonparametric [60]. Therefore, a BO task has no parameters (except for the raw
data of BO) that can represent the GP surrogate and thus be exchanged among
agents, while the raw data of BO should never be transmitted [39]. To overcome
this challenge, the work of [15] has exploited RFFs (Section 1.2.1) to approxi-
mate a GP, which naturally yields parameters that contain the information about
the approximate GP surrogate and can thus be communicated among the agents
without exchanging the raw data. The second challenge concerns the commu-
nication efficiency, for which [15] has adopted TS as the acquisition function
(Section 1.2.1), which reduces the number of exchanged parameters while main-
taining competitive performances. The third challenge is caused by the potential
heterogeneity among different agents, which is an important practical consider-
ation in FL since different agents can have highly distinct properties [48]. In
FBO, heterogeneity arises because different agents may have disparate objective
functions. To address this challenge, [15] has derived a theoretical convergence
guarantee to ensure that their FTS algorithm is asymptotically no-regret even
when all agents have highly different objective functions.

More recently, the work of [14] has extended the FTS algorithm [15] by addi-
tionally addressing the challenge of rigorous privacy guarantees (Section 1.2.2)
through the classic method of differential privacy (DP) [24]. Specifically, [14]
has incorporated the general DP framework adopted by the DP-SGD [1] and
DP-FedAvg [55] algorithms into (a modified version of) the FTS algorithm [15],
to protect the user-level privacy of the agents in FBO. By achieving a guarantee
on the user-level privacy, [14] guarantees that an adversary, even with arbitrary
side information, cannot infer whether an agent has participated in FBO, hence
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FIGURE 1.1 (a) DP-FTS algorithm without distributed exploration; (b)-(c) replacing steps (3) and
(5) in (a) with that in (b) and (c) to derive the DP-FTS-DE algorithm (P = 2 sub-regions).

assuring every agent that its participation will not reveal its sensitive information.
In addition, to compensate for the performance loss due to privacy preservation,
[14] has proposed the technique of distributed exploration (DE) to further im-
prove the practical performance (i.e., utility) of their algorithm. Intuitively, the
DE technique is based on the idea of local modelling in GP [25] and is incorpo-
rated into the general DP framework in a seamless way thanks to the flexibility
of the framework to model multiple parameter vectors [53].

Since the method introduced by [14], named DP-FTS-DE, is the state-of-the-art
algorithm for FBO, we will introduce the details of the DP-FTS-DE algorithm in
the next section (Section 1.2.4), and then discuss its theoretical guarantees and
empirical performances in Section 1.2.5.

1.2.4 Algorithms for FBO

For ease of understanding, in this section, we will firstly introduce the DP-FTS
algorithm without the DE technique, and then describe how DP-FTS can be
modified to incorporate DE to derive the DP-FTS-DE algorithm.

The DP-FTS Algorithm. Fig. 1.1a illustrates the DP-FTS algorithm. Every
iteration ¢ of DP-FTS consists of the following steps:

Steps @ and @ by the agents: Every agent A, samples a vector w,, ; fol-
lowing equation (1.2) using its own current history of ¢ input-output pairs (step

), and then sends w,, ; to the central server — step .

Steps @ and @ by the central server: Next, the central server processes the
N received vectors {wy ¢ }n=1,...,n Using a sub-sampled Gaussian mechanism —

step @ — which consists of four steps:

A. Selecting a random subset of agents S; C {1, ..., N} by choosing each agent
with probability g,



B. Clipping the vector w,  of every selected agent s.t. its Ly norm is upper-
bounded by S: @, = w,,/max(l, |wn,,H2 /5),

C. Calculating a weighted average of the clipped vectors with {¢,}n=1,  n:
Wy = (9)71 ZnGS, ©n®n,;, and

D. Adding noise € ~ N (0, (z2S@max/q)?) to w; Where @ma = max,—;
and z is a parameter controlling the privacy-utility trade-off. The final vector w;,
is then broadcast to all agents — step (4 ).

Step @ by the agents: After an agent (A, receives the vector w, from the
central server, it can choose its next query X!, | (step @). Choose ¢ € (0,1)

and define B, := B + 0y/2(y,-1 + 1 + log(4/6), in which B is an upper bound
on the RKHS norm of the objective functions f™’s (Section 1.2.2), o is the noise
standard deviation (Section 1.2.1), and y,_; is the maximum information gain
about f” from any set of ¢t — 1 queries [70].

Then, with probability of p;+1 € (0,1], A, chooses x}', | using standard TS
by sampling a function f;", | from its posterior of QP(u;‘(-),ﬁtz+la't"(~, 92) (1.1)
and then choosing x7,, = argmaxxeyx f/},(x). Otherwise, with probability
of 1 = psy1, An chooses X7, using w, received from the server: X7
arg maxyex ¢(X)Tw,. The sequence (p;);ez+ is chosen as a monotonically
increasing sequence such that p, € (0,1],Vs and p; — 1 as t — oo. This
ensures when 1 — p, is large, an agent can leverage the information from the

other agents (via w;) to improve its convergence by accelerating its exploration.

n

After choosing X',

and observing y” ,, the agent A, adds (x,,,y7,,) to its
history of observations and then samples a new vector w, ;+1 — step . Next,

A, sends w,, ;41 to the central server — step @ and the algorithm is repeated.

The DP-FTS-DE Algorithm. The DP-FTS-DE algorithm is obtained by incor-
porating the technique of DE into DP-FTS described above.

Specifically, DE divides the entire domain X into P > 1 disjoint sub-regions
X1, ...,Xp, and the incorporation of DE requires three major modifications to
DP-FTS. Firstly, during the initialization stage, every agent only explores a local
sub-region X; instead of the entire domain X.

Next, instead of a single vector w;, the central server produces and broadcasts P
vectors {wf') }i=1.....p, each corresponding to a different sub-region X; and using

a different set of weights {goff)}nzl ,,,,, ~. Interestingly, the different privacy-
preserving transformations performed by the central server to produce P vectors
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can be interpreted as a single sub-sampled Gaussian mechanism producing a

single joint vector @™ £ (w!");c(p) (Fig. 1.1b).

Then, if agent A, uses the vector a)jt(’im = (wii))ig[ p| received from the central
server to choose the next query x?', | (with probability 1 — p;41), it chooses X?H
by maximizing the reconstructed functions for all sub-regions, as illustrated in
Fig. 1.1c. Refer to the work of [14] for a more complete description of the

DP-FTS-DE algorithm.

1.2.5 Theoretical and Empirical Results for FBO

The work of [14] has provided theoretical guarantees on both the privacy and
utility of DP-FTS-DE. The privacy guarantee is given by the proposition below:

Proposition 1. There exist constants c| and c; such that for fixed g and T and
any € < ¢1¢°T, 8 > 0, DP-FTS-DE is (€, 6)-DP if 7 > cog+/T log(1/6) /€.

The following theorem gives a guarantee on the utility/performance of DP-FTS-
DE in terms an upper bound on RIT (Section 1.2.2), in which all notations have
been defined in Sections 1.2.1, 1.2.2 and 1.2.4:

Theorem 1 (Informal). With high probability,
Ry = O((B+1/p)yrVT + Sl + BIL, 0,).

Ur = O((1 = pO) Pomaxq ™ (A +2SVM)), and A, := ¥ O(eBt> + B+ VM +
dy + V7). B 1= (1= p) X8, Sec, €, Ci = {n € [N]|llwnsll2 > S/VPY.

The first interesting insight from Theorem 1 is that agent A; is asymptotically
no-regret even if all other agents are heterogeneous, i.e., all other agents have
significantly different objective functions from A;. This ensures that DP-FTS-
DE is robust against the heterogeneity of agents, which is a significant challenge
in FBO (Section 1.2.2).

Moreover, Theorem 1, when interpreted together with Proposition 1, also re-
veals some interesting theoretical insights regarding the privacy-utility trade-
off. Firstly, a larger z (i.e., larger variance for the added Gaussian noise, Section
1.2.4) improves the privacy guarantee (Proposition 1) yet results in a worse
utility since it leads to a worse regret upper bound (through ;). Secondly, a
larger g (i.e., more selected agents in each iteration, Section 1.2.4) improves
the utility since it tightens the regret upper bound (by reducing the value of ;)
at the expense of a worse privacy guarantee (Proposition 1). The value of the
clipping threshold S affects the regret upper bound (hence the utility) through
two conflicting effects: a smaller S (1) reduces the value of ¢, (hence, the regret
bound) but is also likely to enlarge the cardinality of the set C; which increases
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FIGURE 1.2 Scatter plots showing the trade-off between privacy loss and performance after
60 iterations for (a) the landmine detection, (b) human activity recognition, and (c) EMNIST
experiments. In the above plots, plotted points leaning more towards the left (bottom) correspond to
trade-oft that favors privacy (utility), respectively.

the value of ¢, and hence, the regret bound (Theorem 1). Refer to Section 4 of
[14] for a more detailed discussion on the theoretical guarantees of DP-FTS-DE,
as well as the associated insights.

Empirical Results. The work of [14] has also demonstrated the practical effec-
tiveness of DP-FTS-DE using three real-world experiments on landmine detec-
tion, human activity recognition, and EMNIST image classification. Some of
the experimental results are displayed in Fig. 1.2, which show that FTS (from
the work of [15]) consistently outperforms standard (non-federated) TS whereas
FTS-DE (with the DE technique) further improves the performance of FTS.
Moreover, Fig. 1.2 shows that with small privacy losses (in the single digit range
[1]), DP-FTS-DE achieves a competitive performance (utility) and significantly
outperforms standard TS in all settings. Furthermore, the figure also reveals
a clear privacy-utility trade-off, i.e., a smaller privacy loss (more to the left)
generally results in a worse utility (larger vertical value). Refer to Section 5 of
the work of [14] for more details on the experimental settings, as well as more
experimental results and discussions.

1.3 FEDERATED REINFORCEMENT LEARNING

In this section, we will firstly present some technical background on RL (Section
1.3.1) and FRL (Section 1.3.2). Next, we will briefly overview the representative
existing works on FRL (Section 1.3.3) and discuss its framework (Section 1.3.4),
as well as its corresponding theoretical and empirical results (Section 1.3.5).

1.3.1 Background on Reinforcement Learning

Reinforcement learning (RL) considers a discrete-time Markov decision pro-
cess (MDP) [71]: M & {S,U,P,R,y,p}, in which § and U represent the
state space and action space respectively, P (s’|s, a) defines the transition prob-
ability from state s to s’ after taking action a, R(s,a) : S X U — R is the
reward function for each state-action pair (s,a), y € (0,1) is the discount
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factor, and p is the initial state distribution. The behavior of an agent is con-
trolled by a policy 7, where 7 (a|s) defines the probability that the agent chooses
action a at state s. We consider episodic MDPs with trajectory horizon H.
A trajectory T £ {s0,a0,51,41,...,SH_1,ag_1} is a sequence of state-action
pairs traversed by an agent following any stationary policy, where so ~ p.
R(1) & fial v'R (s;,a,) gives the discounted cumulative reward along 7.

Policy Gradient (PG) methods have achieved impressive successes in model-free
RL [63, 64, etc.]. Compared with deterministic value function-based methods
such as Q-learning [56], PG methods are generally more effective in high-
dimensional problems and enjoy the flexibility of stochasticity. In PG, we use
g to denote the policy parameterized by 8 € R? (e.g., a neural network), and
p(t|mg) to represent the trajectory distribution induced by the policy mg. For
brevity, we use 6 to denote the corresponding policy my. The performance of a
policy @ can be measured by J(0) £ E,. p(10) [R(7)|M]. Taking the gradient
of J(@) with respect to 8 gives

Vo () = / R(1)Vop(r | 0)dr = Erp(ia) [Valog p(r | O)R(T) | M] (13)

Then, the policy € can be optimized using gradient ascent. Since computing (1.3)
is usually prohibitive, stochastic gradient ascent is typically used. In each
iteration, we sample a batch of trajectories {Tl-}f; , using the current policy 6,
and update the policy by 6 « 6 + rﬁBJ (@), where n is the step size and
VpJ(0) is an estimate of (1.3) using the sampled trajectories {Ti}filz VgJ(0) =
% Zfi  Vologp (7; | 8) R (). The commonly used policy gradient estimator,
namely GPOMDP [6], can be expressed as

_ 1 &
Vsl (0) = 5 > s(xilo).
i=1

(1.4)
H-1 _ h
g(xil6) = > | 3" Vologma(as |'s:) | (+"r(snan) = Ciy, ).
h=0 " 1=0
in which 7; = {sf), aé), s’i, a,..., 5;1—1’ aiq_l} and g(7;|0) is an unbiased esti-

mation of Vg log p(7; | )R(7;) [S8, 77].

To improve the sample efficiency of the estimation of (1.4), stochastic variance-
reduced gradient (SVRG) [4, 34, 61, 75] has recently been adopted to reduce
the variance of policy gradient estimators. The work of [58] has adapted the
theoretical analysis of SVRG to PG to introduce the stochastic variance-reduced
policy gradient (SVRPG) algorithm. More recently, [77] has refined the analysis
of SVRPG [58] and shown that SVRPG enjoys a sample complexity of O(1/e/3).
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1.3.2 Background on Federated Reinforcement Learning

It is well established that RL systems suffer from poor sample efficiency in real-
world applications [23, 42], which has motivated the development of federated
RL (FRL) [86]. Here, we present the problem statement of FRL following the
work of [26]. In FRL, K distributed agents/computing nodes AV, ..., AK)
are operating in separate copies of the same underlying MDP with random
initial state distributions p¥)’s. Each agent independently runs an RL algo-
rithm by interacting with its environment. Like FBO, FRL involves a central
server which is assumed to be trustworthy and governs the federation process.
The objective/incentive for agents to participate in the federation is to obtain a
well-performing policy 8* with fewer agent-environment interactions compared
to independent learning on their own. As a representative motivating exam-
ple, K hospitals, each of which only possesses a limited number of admission
records, who apply RL algorithms to provide clinical decision support may wish
to collaboratively discover better treatment protocols for the same disease. To
improve the sample efficiency of this application, in every iteration, each agent
(hospital) A interacts with its environment following a parameterized policy
(clinical trial protocols) 8%) and then shares some information with the trust-
worthy server (e.g., government), who aggregates all received information and
then broadcasts it back to all agents to improve their subsequent decision making.

FRL assumes that all participating RL agents share the same sets of states S
and actions U as a common ground for collaboration. In addition, an FRL
system is concerned with only a single task (e.g., treatment for a single dis-
ease), and hence the underlying MDP M (i.e., the transition probability # and
reward function R) is assumed to be the same for all agents. Similar to RL
discussed above, every agent A %) in FRL aims to maximize the objective func-
tion J(K) & Eo p1om) [R(7)|M] with fewer interactions with the environment
compared with independent learning. That is, to reach a certain performance
threshold, the required total number of trajectories |7(¥)| of agent-environment
interactions of agent AX) should be smaller than that of independent learning on
its own. In other words, the agent aims to improve its sample efficiency by joining
the federation. To ensure that FRL leads to a speedup in sample efficiency with
a larger number of agents, [26] has presented a convergence guarantee for their
proposed federated policy gradient framework and derived an upper bound on
the average number of trajectories required by each agent for the policy to reach
an e-stationary performance point (Section 1.3.5). In their theoretical analysis,
the objective function J(@) is assumed to be L-smooth, which is a commonly
adopted assumption in non-convex optimization [4, 61] and recent convergence
results of policy gradient [58, 77]. Furthermore, the initial states of the agents
are assumed to be uniformly distributed, i.e., the p(") ’s are uniform distributions.

Core Principles and Challenges of FRL. In addition to the fundamental
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challenge of retaining the raw data (i.e., the trajectories of agent-environment
interactions 7(¥) shall never be shared), FRL is faced with a few other critical
challenges. Firstly, with N agents independently interacting with their own
copy of the environment, does FRL theoretically guarantee the convergence and
proportionally improved sampled efficiency thanks to the federation? Unlike
FL where the training data can be collected offline, FRL requires every agent
to sample trajectories online by interacting with the environment, which can
be slow and expensive. Therefore, theoretical guarantees on the convergence
and sample efficiency speedup provide assurance and incentives for practical
applications. Secondly, FRL systems need to account for fault tolerance, which
is a critical challenge in practical decision-making applications since distributed
systems are likely to fail periodically. Being fault-tolerant allows the FRL
system to continue operating properly without interruption when one or more
of its agents fail. Furthermore, the heterogeneity among different agents (e.g.,
the difference in their initial state distributions, computational budgets, etc.)
is another crucial challenge for FRL. For example, since different hospitals
may administer patients from distinct geographic locations, their initial state
distributions may vary significantly. Similarly, hospitals may possess different
computational budgets and hence can adopt disparate policy parameterization
schemes and optimization methods. Moreover, FRL is also faced with other
challenges which plague FL in general, such as rigorous privacy guarantees,
decentralized communication, fairness, etc. The representative work of [26],
which we will discuss in Section 1.3.3, has tackled a number of these challenges
(e.g., retaining the raw data, guaranteed convergence and proportional sample
efficiency speedup, and fault tolerance), whereas the others remain important
open problems for FRL.

1.3.3 Overview of Representative Existing Works on FRL

Firstly introduced by [86], FRL has been applied to a number of practical appli-
cations [50, 51, 57, etc.]. The first general-purpose framework for FRL is the
federated Policy Gradient with Byzantine Resilience (FedPG-BR) framework
introduced by [26]. The FedPG-BR framework [26] has mainly addressed three
of the aforementioned challenges faced by FRL (Section 1.3.2). For brevity, we
defer the details of the FedPG-BR algorithm to Section 1.3.4, followed by discus-
sions on its theoretical guarantees and empirical performances in Section 1.3.5.

The first challenge addressed by [26] is regarding the theoretical guarantees on the
convergence and sample efficiency improvements. To this end, [26] has adopted
the stochastically controlled stochastic gradient (SCSG) algorithm [41], which
is a variant of SVRG (Section 1.3.1), in the federated policy gradient framework,
which provides a refined control over the variance of the gradient estimation.
Their theoretical analysis has shown that their proposed framework is guaranteed
to converge and enjoys a proportional sample efficiency speedup with respect to
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FIGURE 1.3 Workflows of (a) the Federated Policy Gradient algorithm (without fault tolerance)
and (b) the Federated Policy Gradient algorithm with Byzantine Resilience Filter (i.e., the FedPG-BR
framework); and (c) visualizing diagram of the concentration bound constructed by the BR filter.

the number of agents. The second challenge results from the fact that distributed
systems are vulnerable to random failures or adversarial attacks coming from the
distributed agents, which may slow down or completely disrupt the convergence
of the FRL systems. These random failures and adversarial attacks are modeled
as Byzantine faults, which is the most stringent fault formalism in distributed
computing [7, 52]. Byzantine faults consider a distributed computing system
with up to half of the computing nodes being random failures or adversarial
attackers. They are hard to detect when the raw data of the agents is not accessible
to the server, which makes them a considerable practical challenge in FL [79].
To address this challenge, [26] has designed a gradient-based Byzantine filter on
top of their proposed federated policy gradient framework, in order to remove
those gradients that are likely sent by Byzantine agents with high probability.
This has enabled the algorithm of [26] to be tolerant to Byzantine faults when
less than half of the agents are Byzantine agents.

1.3.4 Frameworks and Algorithms for FRL

In this section, we will describe the details of the FedPG-BR framework [26],
which consists of the Federated Policy Gradient (FedPG) algorithm and the
Byzantine Resilience (BR) filter.

The FedPG Algorithm. Fig. 1.3a illustrates the FedPG algorithm. Every itera-
tion ¢ of FedPG includes the following steps:

Step @ by the central server: FedPG starts with a randomly initialized pa-
rameter 6y at the server. At the beginning of the z-th iteration, the server keeps
a snapshot of its parameter from the previous iteration (i.e., 06 «— 6;_1) and
broadcasts this parameter to all agents.

Step @ and @ by the agents: Every agent A samples B, trajec-
tories {Tt(lj)}fi’l using the policy 06, computes a gradient estimate ,u,(k) =

B
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1/B; Zi’l g(Tt(]?|06) following Equation (1.4) — step @ — and sends ,u,(k)
back to the server — step @

Steps @ and @ by the central server: The server computes the batch gradient
U, by averaging the received gradient estimates — step @ —and updates the policy

parameters 6 via the following semi-stochastic gradient —step @ — according
N b .
to SCSG optimization [41]: v, = bL, Zj’:l [g(rr’l,j|0;) - g(T}’Lj|06)] + Uy, in
which b, trajectories are sampled independently by the server on a separate copy
of the MDP M and the number N, of optimization steps is sampled from a
geometric distribution with the parameter B The server then stores a new

B;+b; *
snapshot of the updated parameter, and the algorithm is repeated.

The BR Filter. Fig. 1.3b demonstrates the complete FedPG-BR framework,
which is obtained by incorporating the Byzantine Resilience filter (Fig. 1.3c)
into the FedPG algorithm described above. After receiving all the gradients, the
server applies the BR filter (step @), which is designed based on the following
assumptions: firstly, at any given iteration ¢, there are less than K /2 Byzantine
agents; secondly, the gradient estimates sent by the good (non-Byzantine) agents
should concentrate in a region containing the true analytical gradient defined
in (1.3). In particular, the work of [26] has assumed that there exists a constant
o such that ||g(7]0) — VJ(0)|| < o for any T ~ p(+|@) and any policy mg, which
implies that the discrepancy between any two gradient estimates is at most 20 in
the Euclidean space. Therefore, the BR filter computes the pair-wise Euclidean
distances of all gradients? and selects a set of gradients S, £ {,Ut(k)} that are
close (within 20 in Euclidean distance) to more than K /2 other gradients. Any

gradient ,u,(k) that is the closest to the mean of S, will be noted as the Mean
of Median vector of all received gradients, denoted as u;"°™. Thereafter, the
BR filter removes any received gradient ,ut(k/) whose distance to u}"°™ is more
than 20" from the gradients aggregation step (step step @). Essentially, the BR
filter constructs a concentration bound such that the server aggregates only those
gradient estimates that are not far away from the true analytical gradient. Refer

to the work of [26] for a more complete description of the FedPG-BR framework.

1.3.5 Theoretical and Empirical Results for FRL

The work of [26] has provided theoretical guarantees on the convergence of
FedPG-BR:

It can be implemented using the Euclidean Distance Matrix Trick [3].
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TABLE 1.1 Sample complexities of relevant works to achieve E||VJ(6)]? < e.

SETTINGS  METHODS COMPLEXITY
REINFORCE [74] O(1/€?)
GPOMDP [6] 0(1/€?)
K=1 SVRPG [58] 0(1/€?)
SVRPG [77] O(1/€33)
FedPG-BR 0(1/€53)

K>1,a=0 FedPG-BR o(m)

aA/3

K>1,a>0 FedPG-BR O( sk + %)

Theorem 2 (Informal). The output of FedPG-BR, 0, satisfies:

2y [J(é*) — J(Bo) 802 960202V

0 2
E[IVI(0a)IP] < TE T U-aPkB  (1-a)B

where a denotes the ratio of Byzantine agents s.t. 0 < @ < 0.5 and 8" is a global
maximizer of J. ¥ is a smoothness constant and V is another constant used to
refine the concentration bound of the BR filter. For brevity, readers are referred
to [26] for the detailed definitions of ¥ and V.

This theorem leads to many interesting insights, such as the sample complexity
(of each agent in FedPG-BR) to reach an e-stationary point which is summarized
in Table 1.1. The table reveals that the sample complexity of FedPG-BR in the
single-agent setting matches that of SVRPG derived by [77]. In addition, when
K > 1, @ = 0, Table 1.1 shows that the total number of trajectories required
by each agent is upper-bounded by O (1/(e>/*K?/3)). This result gives us the
theoretical grounds to encourage more agents to participate in the federation
since the number of trajectories each agent needs to sample decays at a rate
of O(1/K?/). Furthermore, for a more realistic system where an a-fraction
(a > 0) of the agents are Byzantine agents, the results in Table 1.1 assure us that
the total number of trajectories required by each agent will be increased by only
an additive term of O(a*/3/€>/3), the impact of which vanishes when a — 0.

Empirial Results. The work of [26] has also demonstrated the practical ef-
fectiveness of FedPG-BR using standard RL benchmarks including CartPole
balancing [5], LunarLander, and the 3D continuous locomotion control task of
HalfCheetah [21]. The experimental results shown in Fig. 1.4 suggest that the
performance of FedPG-BR is comparable to SVRPG in the single-agent training
setting (K = 1), and is improved significantly with the federation of K = 3
and K = 10 agents. This corroborates our theoretical insights implying that the
sample efficiency of FedPG-BR is guaranteed to improve proportionally with
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FIGURE 1.4 Performance of FedPG-BR in ideal systems with a = O for the three tasks.
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FIGURE 1.5 Performance of FedPG-BR in practical systems with @ > 0 for HalfCheetah. Each
subplot corresponds to a different type of Byzantine failure exercised by the 3 Byzantine agents.

the number of agents K. Furthermore, Fig. 1.5 shows another experiment on the
HalfCheetah task with K = 10 agents, among which 3 are Byzantine agents.

The Byzantine agents are simulated using the following three schemes: Random
Noise (RN): each Byzantine agent sends a random vector to the server; (b)
Random Action (RA): every Byzantine agent ignores the policy from the server
and takes actions randomly, which is used to simulate random system failures
(e.g., hardware failures); (c) Sign Flipping (SF): each Byzantine agent computes
the correct gradient but sends the scaled negative gradient, which is used to
simulate adversarial attacks aiming to manipulate the direction of policy updates
at the server. The three subplots show that the existence of only 3 Byzantine
agents causes the performance of federated policy gradient systems (GPOMDP
and SVRPG) to be worse than that in the single-agent setting. In contrast,
our FedPG-BR is robust against all three types of Byzantine failures. That is,
FedPG-BR (K =10 B =3) with 3 Byzantine agents still significantly outperforms
the single-agent setting, and more importantly, performs comparably to FedPG-
BR (K =10) with 10 good agents (shown in the rightmost subplot in Fig. 1.4).
These results demonstrate that even in practical systems with random failures
or adversarial attacks, FedPG-BR is still able to deliver superior performances,
providing an assurance on the reliability of the framework to promote its practical
deployment and significantly improving the practicality of FRL.
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1.4 RELATED WORK
1.4.1 Federated Bayesian Optimization

To the best of our knowledge, the works of [14, 15] (Section 1.2.3) are the only
works on FBO to date. However, a number of previous works on BO have
considered similar settings to the FBO setting, which we review here.

The work of [68] has also considered collaborative BO involving multiple agents.
However, since their method is not designed for the FBO setting, they did not
address the important challenges faced by FBO (e.g., they have assumed that all
agents share the same objective function and hence did not consider the issue
of heterogeneity), but have instead focused on the issue of fairness among the
agents [68]. Furthermore, a number of works such as [13, 65] have studied
BO in the multi-agent setting from the perspective of game theory. FBO also
shares similarities with batch/parallel BO, which has seen a large body of works
in recent years [12, 18, 20, 27, 30, 37, 72]. However, batch BO has many
important differences with FBO. For example, batch BO aims to maximize a
single objective function whereas FBO allows different agents to have different
objective functions, and the sharing of the raw observations in batch BO is not
prohibited. Another popular line of works on BO which is also related to FBO
is multi-fidelity BO [17, 36, 83, 84]. This is because, from the point of view of
an agent in FBO, the information from the other agents (received via the central
server) can be considered as low-fidelity information.

1.4.2 Federated Reinforcement Learning

FRL was initially introduced by [86] which studied how to collaboratively learn
two Q-networks when one of the two agents does not receive rewards from the
MDP. Thereafter, FRL has been applied to a number of practical applications,
such as autonomous driving [50, 62], fast personalization [57], robots naviga-
tion [51], traffic sign control [80], and resource management in networking [82].
Despite their promising applications, these works were not equipped with the-
oretical guarantees and hence did not provide theoretical understandings to the
important challenges faced by FRL we have discussed in Section 1.3.2.

The work of [26] has presented the first federated policy gradient framework
in the FRL setting which guarantees a proportional sample efficiency improve-
ment with respect to the number of agents and achieves robustness against faulty
(Byzantine) agents, hence tackling the challenges of theoretical guarantees and
fault tolerance (Section 1.3.2). Regarding the challenge of the heterogeneity
among different agents, the work of [76] has defined the heterogeneity in FRL
as the data heterogeneity resulting from the difference in the initial state distri-
butions and environment dynamics among different agents. As a result, [76] has
proposed an FRL framework to tackle such heterogeneity in FRL by penalizing
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the Kullback-Leibler (KL) divergence (i.e., encouraging the similarity) between
the local policies and the global policy.

FRL also bears close similarity to another line of works on distributed and
parallel RL [2, 8, 31, 38], because some of the challenges faced by FRL (Sec-
tion 1.3.2), such as theoretical guarantees and fault tolerance, are also important
considerations for these works. However, there are also substantial differences
between these settings and FRL, since FRL also poses some unique challenges
such as the requirement to retain the raw data. One representative work in dis-
tributed and parallel RL is [9], which has proposed the Byzantine-robust mean
estimation technique for both online and offline distributed RL.

1.4.3 Federated Bandits

Multi-armed bandits is another popular sequential decision-making problem [40]
with important applications such as recommender systems. A growing number
of recent works have introduced federated versions of classic bandit algorithms.

Some works have focused on federated K -armed bandits where the number K of
arms is finite and the arms are not associated with feature vectors. The works of
[46] and [47] have focused on federated K-armed bandits with rigorous privacy
guarantees, and have considered both centralized and decentralized communi-
cation. The work of [66] has proposed a setting for federated K-armed bandits
in which the goal is to minimize the regrets of a global bandit model, which has
the same set of arms as the agents. The reward of every arm for the global bandit
model is the average of the rewards of the corresponding arm from all agents.
The more recent work of [67] has extended [66] to incorporate personalization
such that every agent attempts to maximize a weighted combination between the
global and its local rewards. After that, subsequent works have focused on other
aspects of federated K-armed bandits, such as decentralized communication via
the gossiping algorithm [85], the security of federated K-armed bandits through
cryptographic techniques [11], uncoordinated exploration [78], and robustness
against Byzantine attacks [19].

In addition, a number of works have considered the problem of federated linear
contextual bandits. The work of [73] has proposed a distributed linear contextual
bandit algorithm that allows every agent to use the observations from the other
agents without requiring them to share their raw data. Subsequently, the work
of [22] has extended the method from [73] to incorporate differential privacy
and decentralized communication. The work of [32] has considered a setting
of federated linear contextual bandits where every agent is associated with a
unique context vector. The works of [29, 43] have both focused on extending the
method from [73] in order to allow asynchronous communication. The work of
[33] has focused on the robustness of federated linear contextual bandits against
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Byzantine attacks. A few recent works have relaxed the assumption of a linear
reward function adopted by linear contextual bandits to consider non-linear
reward functions. The work of [16] has introduced the first federated neural
bandit algorithm which is able to exploit neural networks to learn the reward
function. Moreover, the works of [49] and [69] have, respectively, extended
x—armed bandits and combinatorial bandits to the federated setting.

1.5 OPEN PROBLEMS AND FUTURE DIRECTIONS

As we have discussed in this chapter, extending classic sequential decision-
making algorithms (e.g., BO and RL) into the federated setting holds enormous
potential yet is also faced with immense challenges. Some of these challenges
have been addressed by recent works, such as the works of [14, 15] for FBO
(Section 1.2.3) and the work of [26] for FRL (Section 1.3.3). However, some
other challenges remain to be tackled and are hence still important open problems.

For FBO, note that the theoretical analyses from the works of [14, 15] have
focused on the robustness against agent heterogeneity. Therefore, it remains an
open problem to theoretically show the benefit of the federation when the agents
are in fact homogeneous (or when the degree of heterogeneity is low), i.e., to
show that a larger number of agents lead to better regret upper bounds. Further-
more, extending FBO algorithms to cater to other important considerations of
the federated setting also represents important future directions in order to make
FBO algorithms more practical. For example, allowing decentralized and asyn-
chronous communication in FBO is an important challenge and a meaningful
extension, since it allows FBO to work under more flexible communication pro-
tocols. Ensuring fairness among different agents in FBO is another significant
open problem, since societal issues such as fairness have been receiving growing
concerns and are hence crucial considerations for the real-world deployment of
FBO algorithms. To this end, the method from [68], which has studied fairness
in collaborative BO among multiple agents, may provide interesting inspirations.

For FRL, although the work of [26] has managed to avoid the transmission of the
raw data (i.e., RL trajectories) of the agents, they have not provided a rigorous
privacy guarantee. Therefore, it is an intriguing future direction to equip FRL
systems with rigorous privacy guarantees (e.g., via differential privacy) in order
to protect the privacy of the participating agents in a principled way. In addition,
the theoretical analysis of [26] has focused on improving the sample efficiency
for homogeneous agents. Therefore, a natural future extension is to derive
theoretical guarantees when the agents are in fact heterogeneous and to study
situations under which the benefits of the federation can be guaranteed in the
presence of heterogeneity. Furthermore, designing decentralized FRL systems
and achieving fairness among different FRL agents also represent promising
future directions for FRL.
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