
Multi-Drone Rescue Search in a Large Network∗

Victor Gonzalez (victorgo@mit.edu)†1 and Patrick Jaillet (jaillet@mit.edu)2

1Operations Research Center, MIT
2Operations Research Center, Electrical Engineering and Computer Science, MIT

February 2025

Abstract

Natural disasters are recurring emergencies that can result in numerous deaths and injuries. When

a natural disaster occurs, rescue teams can be sent to help affected survivors, but deploying them

efficiently is a challenge. Rescuers not knowing where affected survivors are located poses a significant

challenge in delivering aid. With the development of new technologies, there are new possibilities to

reduce this uncertainty, alleviating this challenge. One can first send out automated drones to locate

affected survivors and then send rescue teams to their locations. We develop a model for the search

process and construct mathematical methods to construct efficient search routes. We utilize a divide and

conquer technique to determine the routes that are most likely to yield an efficient search. We combine

this with our mathematical methods to construct efficient search routes in real-time and a method to

update these routes in real-time as drones gather information.

Keywords: Nonlinear programming, large-scale optimization, routing, networks

1 Introduction

Natural disasters kill thousands of people each year globally. Deaths can be reduced by sending rescue

teams to help those in vulnerable situations, but without proper information, this can be very inefficient.

People could die because a rescue team was not sent to their location. If a rescue team is sent somewhere

it is not needed, it will be unavailable to help someone else. The rescue process can be improved by first

deploying automated search drones to find where rescue teams should be sent. The goal of this paper is

to develop methods to construct and update efficient search routes in real-time to maximize the number

of people found who need rescue services. In this paper, we consider a general natural disaster setting so

that this work can be applied in a wide-range of instances where time is critical such as an earthquake or

∗accepted, European Journal of Operational Research
†corresponding author

1

hurricane. Of high importance is the time-sensitive nature of this problem because time spent computing

routes is time that could be spent finding someone who needs help from a rescue team.

We approach this problem by assuming that the area affected by the natural disaster can be discretized

into “nodes” where someone may need rescue. These nodes can reference a building that was damaged

in the disaster or a neighborhood where many people live or anything else. Discretizing the search area

reduces the problem space, but it remains large because we must choose which node to send each drone

to and how long to spend searching at each area and how these two change when drones gather new

information. We reduce the problem further by defining the static problem which are the optimal search

routes if we assume that drones cannot change their strategy upon gathering new information. Then, when

drones gather new information, the operator can re-optimize the updated static problem. We develop a

mixed-integer program (MIP) that can solved to compute a solution to the static problem, but with many

nodes and drones this is still computationally challenging. We implement simplifying policies which are

not guaranteed to be true at the optimal solution to the static problem but have favorable properties for

a solution. These simplifying policies allow us to reformulate the MIP into one that can be solved quickly.

Since these MIPs must be solved multiple times, the overall computation time of each MIP must be

considered. We exploit the fact that consecutive static problems are similar to each other by using route-

limited optimization to limit the routes that drones can take to those most likely to yield good solutions.

We do this by introducing a pre-processing step in which we use a divide and conquer heuristic to compute

many solutions in parallel and use the routes that drones take most frequently to be those drones are

allowed to take in route-limited optimization.

The remainder of the paper is organized as follows. In Section 2, we begin with a brief review of related

work. In Section 3, we introduce the mathematical model that we use to represent this search problem.

We then formulate a method that constructs optimal plans for drones in this model. In Section 4, in

order to solve this model in real-time, we present simplifying methods which can be used to prune the

feasible region of the method to solutions that are most likely to yield a good solution so approximate

solutions can be computed quickly. We then present steps to update these solutions as the operator learns

new information from the drones. In Section 5, we run computational experiments and discuss how our

methods perform in a real-time optimization setting. The main contributions of this paper are to introduce

a rigorous mathematical model for the problem under consideration, we construct a MIP that we can solve

to construct good search efforts for drones in this model, and propose algorithmic methods that can improve

computation to quasi real-time.

2

2 Literature review

Classical Search Problem: The first fundamental work on search problems was published by Brown

[4]. The author finds an optimal search plan for the allocation of a searcher’s effort to maximize the

probability of finding a single target moving between nodes in discrete time intervals. The author solves

this by exploiting the fact that at each of the discrete time intervals, the optimal search effort to allocate

is the effort if you assume that the target was not found at a previous time step. This makes sense because

if the target was found at a previous time step, it does not matter if it is found at the current time

step. Our problem similarly has discrete nodes where people can be located. However, in our problem we

have multiple targets and an objective based on maximizing the number of people found, rather than the

probability of finding someone, and our search plan adapts upon receiving new information.

Search Problems with Multiple Targets: Simonin et al. [20] look at the problem of maximizing the

probability that multiple targets are all found. The authors solve this problem by formulating the problem

as a max-min problem to allocate search effort to maximize the probability that the target with minimum

probability of discovery (given that search effort) is found. Lau et al. [13] address a similar question which

incorporates the travel time of searchers to travel from one node to another. When a searcher arrives at a

node, they can either search it or move to an adjacent node. The authors solve this problem using dynamic

programming. Wong et al. [26] look at the problem of maximizing the sum of the cumulative detection

probability of each target. They solve this by using Bayesian filtering to update the distribution for each

target and a rolling time horiozon to solve the search control problem. Hou et al. [12] consider search

scenarios where all targets must be found in the shortest time. They partition the search space into a grid

where UAVs and targets each can occupy a node. UAVs can move between nodes, but their movement

is constrained by the angle they are facing. They use a multi-agent reinforcement learning algorithm to

solve this problem where each UAV is an agent. In our paper, we also consider search for multiple targets,

but we formulate our objective differently in the way we formulate the objective based on the number of

targets found.

Large-Scale Search Problems: Simonin et al. [21] consider the problem of searching for a moving

target in problems that are large compared to the number of resources available. The authors approach

this problem with a hierarchical, two-level approach. At the higher level, the region is split up into subsets

of the search region, and at the lower level, sensors are allocated to these subsets. Delavarnhe et al. [6] look

at a similar problem where the searcher has access to multiple mobile sensors that they use to maximize

3

the probability of finding the target. The authors solve this problem without dividing the search region

into several subsets of the search region by constructing an algorithm which iteratively adds resources to

nodes over several steps. Booth et al. [1] look at the problem of maximizing the cumulative probability of

discovering a target when UAVs have limited charge. UAVs can be recharged at mobile recharging vehicles

(MRVs). They define a set of routes that UAVs and MRVs are allowed to take and develop algorithms using

a MIP approach and constraint programming approach to choose the best routes from the set. Similar to

[21], we simplify the large problem by breaking it into small problems, but the exact method is different.

Similar to [1] we look at a route-based approach and limit our optimization to those most likely to yield

good solutions.

Techniques in Typical Search Problems: A lot of work has been done on search problems with

small details distinguishing them from each other. However, there are many recurring techniques that

are used to solve similar search problems that we summarize here. One approach is to model the search

problem as a set of nodes that need to be searched an constructing a convex optimization problem that

can be solved to find how much effort should be allocated to searching each node [7, 22]. Another is using

evolutionary metaheuristics such as motion encoded swarm optimization and ant colony optimization

[16, 17]. Alternatively, a Bayesian approach can be used to update the probability density of the target

[2, 3, 8, 11]. A different option is using a Gaussian mixture model to identify good subsets of the continuous

space to search [15, 28]. A new perspective is looking at a “coverage problem” where rather than directly

searching for a target, UAVs take paths that “cover” the region [14, 15, 27, 31]

Strategic Planning during Natural Disasters: While the focus of this paper is searching for people

during a natural disaster, the overall goal is to rescue as many people as possible during a natural disaster.

We now shift our attention to papers focused on strategic planning during natural disasters. Hentenryck

et al. [24] address the single commodity allocation problem in which a commodity can be stored at various

nodes in a network to satisfy demand in the event of a disaster. They approach this problem by separating

the problem into three stages. They start by determining which repositories should store the resource.

Then, they compute the routes to be used for each repository to deliver the commodity to the customers.

In the last stage, they determine the best way that the fleet of vehicles should be distributed to complete

these routes as quickly as possible. Pillac et al. [18] look at the problem of determining evacuation routes

from evacuated nodes to safe nodes in the event of a disaster. Edges have time limits for when they can

be used as well as capacity. They approach this problem by applying a conflict-based path generation

4

algorithm. They compute paths to be added to the master problem by solving a multiple-origins, multiple

destinations shortest path problem. Zheng and Ling [29] look at the problem of emergency transportation

planning with the goal of delivering relief supplies to targets in a fast and efficient manner. This paper

decomposes this plan into the steps of task allocation, resource allocation, delivery scheduling, and vehicle

routing. They iteratively solve these subproblems together to reach an end result near pareto-optimal.

Zheng et al. [30] look at an assignment problem in which rescue teams which can perform various jobs

are assigned to different rescue tasks. These rescue teams must perform three jobs in order at each of the

target positions, and each rescue team has different capabilities to accomplish each task. They approach

the two problems of minimizing the total completion time and minimizing the total risk. They develop

an algorithm to solve this problem using biogeography based optimization and adding in new migration

and mutation operators. Reyes-Rubiano et al. [19] look at the problem of exploring a road network in the

aftermath of a natural disaster for disrupted and functional roads. In the aftermath of a natural disaster,

there can be road disruptions that prevent emergency services from serving victims. However, UAVs can

be used to determine what victims can be served by emergency vehicles (if there is a route of undisturbed

roads from the disaster management center to the victim). The authors develop online algorithms with

the goal of minimizing the route length necessary to determine the accessibility of all victims.

Use of Drones in Logistics: We last turn our attention to research specifically in the use of drones,

as these are the tool that we will use to search. Haidari et al. [10] use simulation to analyze the impact

of using unmanned aerial vehicles to transport vaccines in underdeveloped regions. They compare the

required costs to a traditional multi-tiered land transport system and showed that drones can reduce costs

and improve vaccine availability. Ghelichi et al. [9] look at the problem of using drones to serve a set

of demand points such that they minimize the total completion time. They use a reduction method to

remove candidate routes that are dominated by others. In addition to humanitarian causes, drones can also

be used in commercial logistics tasks such as package delivery, working in collaboration with traditional

delivery methods [5, 23, 25].

3 Our model

While there could be survivors who do not need rescue, rescuers do not need to know where they are. For

brevity, we use “survivors” to refer only to those in need of rescue.

5

Node assumptions: We model this problem as a network by partitioning the physical world into nodes

where survivors might be in set N home-base nodes in set H. There is an an edge of length dij between

any pair of nodes i and j. For each node i ∈ N , we define a random variable Si ∈ {0, 1} such that

Si =

{
1 if there is a survivor at node i

0 otherwise

Drone assumptions: The operator has a fleet of m drones divided into K types and there are mk

drones of type k. All drones of type k have constant travel speed vk and Tk battery life. We assume drones

have access to constant, instantaneous communication with a centralized operator. Each drone ℓ of type

k begins searching from a stationary home-base hkℓ ∈ H at time t = 0. They can return to any home-base

to replace their battery, and replacement takes negligible time. There is no limit to how many times this

can be done. At the end of the search time t = T , all drones must be at a home-base node.

Search assumptions: Finding survivors at one node could indicate survivors at nearby nodes, but a

complete formulation of these relationships would require 2|N | combinations. To facilitate the set-up and

computations in practical settings, we assume Si are independent. For each node i ∈ N , we define pi to be

the prior probability belief that a survivor is at node i, i.e., P(Si = 1) = pi. We assume 0 < pi < 1 without

loss of generality. In some settings, drones can immediately learn whether or not there are survivors at a

node upon arrival e.g. if the drone is searching a building and survivors are outside or if the building is

completely unaffected by the earthquake. For each node i ∈ N , we define qi1, qi0 ≥ 0 to be the probability

that a drone immediately learns whether a survivor is at node i. This only applies to the first drone

arriving at the node and does not depend on the drone type. In settings where this does not occur, we

can define qi1 = qi0 = 0. In some settings, nodes cannot be searched for the entire search duration e.g. if a

building is still being impacted by an earthquake or it is structurally damaged and will fall soon. For each

node i ∈ N , we define tmin
i and tmax

i to be the times at which node i becomes available and unavailable

respectively and we assume that these values are known. We define search rates w1
ki ≥ 0 and w0

ki ≥ 0 for

searching when there is a survivor at node i or not, respectively, at node i. The higher the search rate, the

faster the drone can learn Si. We define the probability that a drone k learns whether there is a survivor

at node i after searching for duration t:

{
1− exp

(
−w1

kit
)

if Si = 1

1− exp
(
−w0

kit
)

if Si = 0

6

When w1
ki > 0 or w0

ki > 0, the average time to learn whether there is a survivor is 1/w1
ki or 1/w0

ki

respectively. In settings where drones cannot confirm that there are no survivors at a node, we can define

w0
ki = 0. Intuitively, if multiple drones are searching the same node, their search efforts can be interpreted

to “add up” together. We apply this intuition by assuming the probability of learning Si is independent for

each drone. The connection between the intuition and assumption can be verified in the following theorem:

Theorem 3.1. Suppose that we have mk drones with search rates w1
ki and w0

ki for all drone types k and

nodes i. If each drone ℓ of type k searches node i for time tkℓi, the probability that at least one drone learns

whether or not there is a survivor at node i is:


1− exp

(∑K
k=1

∑mk
ℓ=1−w

1
kitkℓi

)
if Si = 1

1− exp
(∑K

k=1

∑mk
ℓ=1−w

0
kitkℓi

)
if Si = 0

Further, if the true value of Si is not learned by any drones, the posterior probability that Si = 1

becomes:

p(1− qi1) exp
(∑K

k=1

∑mk
ℓ=1−w

1
kitkℓi

)
p(1− qi1) exp

(∑K
k=1

∑mk
ℓ=1−w1

kitkℓi

)
+ (1− p)(1− qi0) exp

(∑K
k=1

∑mk
ℓ=1−w0

kitkℓi

)
Proof. If Si = 1, the probability that Si is not be learned by any drone is

K∏
k=1

mk∏
ℓ=1

exp
(
−w1

kitkℓi
)
= exp

(
K∑
k=1

mk∑
ℓ=1

−w1
kitkℓi

)

This means that the probability that at least one drone learns Si is

1− exp

(
K∑
k=1

mk∑
ℓ=1

−w1
kitkℓi

)

If Si = 0, the proof follows the same steps where w1
ki is replaced with w0

ki. Let X be the event where no

drone learns about Si. We can use Bayes’ theorem to compute the new probability for Si:

P(Si = 1|X) =
P(X|Si = 1) · P(Si = 1)

P(X|Si = 1) · P(Si = 1) + P(X|Si = 0) · P(Si = 0)

=
p(1− qi1) exp

(∑K
k=1

∑mk
ℓ=1−w

1
kitkℓi

)
p(1− qi1) exp

(∑K
k=1

∑mk
ℓ=1−w1

kitkℓi

)
+ (1− p)(1− qi0) exp

(∑K
k=1

∑mk
ℓ=1−w0

kitkℓi

)

7

At the end of the search period, the operator must choose whether or not to send a rescue team to

each node. If Si is learned, this decision is trivial, but if not, the operator must make a decision based on

the updated probability from Bayes’ theorem. Some nodes might be “more important” to search if they

represent an area that more people live or work. We define the utility that the operator receives for a true

positive, false negative, true negative, and false positive detection at node i as U i
TP , U

i
FN , U i

TN , and U i
FP

respectively. Positive refers to the event that there are survivors and negative refers to the event that there

are no survivors. The objective is to maximize the sum of the utilities of each node. We also assume that

for every node i, U i
TP > U i

FN and U i
TN > U i

FP to match real-world incentives.

Fact 1. Suppose that node i has utilities U i
TP , U

i
FN , U i

FN , and U i
FP . Define

γi =
U i
TN − U i

FP

(U i
TN − U i

FP) + (U i
TP − U i

FN)

If at time t = T , the operator has belief pi > γi that a survivor is at node i i.e. Si = 1, then it is optimal

to diagnose that there is a survivor at node i. If pi < γi, then it is optimal to diagnose that there are no

survivors at node i i.e. Si = 0.

Proof. The operator achieves utility:

{
piU

i
TP + (1− pi)U

i
FP if they diagnose that there is a survivor at node i

piU
i
FN + (1− pi)U

i
TN if they diagnose that there is not a survivor at node i

If pi > γi,

pi > γi

pi >
U i
TN − U i

FP

(U i
TN − U i

FP) + (U i
TP − U i

FN)

piU
i
TP + (1− pi)U

i
FP > piU

i
FN + (1− pi)U

i
TN

which means that it is optimal to diagnose that there is a survivor at node i. If pi < γi, the proof proceeds

as before where “ > ” is replaced with “ < ”.

Consequently, we can assume without loss of generality that U i
TN = U i

FN = 0 for all nodes i ∈ N

because the “threshold probability” γi can be expressed in terms of only (U i
TN −U i

FP) and (U i
TP −U i

FN).

As a final modeling consideration, all computations should be achievable in real-time. We aim at developing

methods that can effectively address networks of sizes up to 96 nodes and 48 drones. As a reference, refer

to Table 15 in the supplementary materials for terms that define the model.

8

4 Optimization methods

4.1 Methodology

An optimal solution consists of an initial route (any sequence of nodes that the drone visits) for each drone,

the time allocated to searching each node, and how these change when a drone detects whether or not

a survivor is at a node. To guarantee optimality, these must be determined before any searching occurs.

Since we consider continuous time, there are infinitely many times at which a drone can detect whether or

not a survivor is at a node leading to an intractable problem that cannot be solved in real-time.

We simplify this by considering static methods, methods that compute routes and time allocations

as if they could not change them as drones learn new information. We refer to this problem of maximizing

the expected utility given this assumption as the static problem. This simplification drastically reduces

the decision space to one that is tractable. In real-life, drones are not limited to the routes and time

allocations that they are assigned at the beginning. When the operator learns whether or not a survivor

is at a node, routes and time allocations can be updated by solving an updated static problem.

We first develop a MIP that is equivalent to the static problem. However, even with few nodes and

drones, this MIP can still be computationally challenging to solve. To facilitate a solution to the static

problem, we implement simplifying policies which are not guaranteed to be true at the optimal solution

to the static problem but have favorable properties for a solution. These simplifying policies allow us

transform the MIP into one that can be solved quicker.

Since these MIPs must be solved multiple times, the overall computation time of each MIP must be

considered. We exploit the fact that consecutive static problems are similar to each other by using route-

limited optimization to limit the routes that drones can take to those most likely to yield good solutions.

We do this by introducing a pre-processing step in which we use a divide and conquer heuristic to compute

many solutions in parallel and use the routes that drones take most frequently to be those drones are

allowed to take in route-limited optimization.

4.2 General method

We first construct two MIPs that can be solved to compute an optimal solution to the static problem. We

refer to a round as any time that the drone takes a route which leaves a node in H and returns to a node

in H. We define a trivial route to be any route (i, i) for i ∈ H, and we define a trivial round to be any

round where the drone takes a trivial route. Since replacing the battery requires negligible time, we can

assume that each drone has maximum charge at the beginning of each round.

9

We use Table 1 to define terms based on the model parameters:1

Table 1: Terms for defining the general method
P All routes that begin and end at a node in H

L Length of the longest route in P
Pis Routes P ∈ P such that i is the sth node in P

Pi Routes P ∈ P such that i ∈ P

P1
i (P−1

i) Routes P ∈ P such that i is the first (last) node

Ps
ij Routes P ∈ P such that Ps = i and Ps+1 = j

P−1
ij Routes P ∈ P such that P|P |−1 = i and P|P | = j

Define the binary decision variables:

xkℓPr =

{
1 if drone ℓ of type k takes route P in its rth round

0 otherwise

and auxiliary decision variables to express the utility function:

zi =

{
1 if node i is visited by at least one drone during any round

0 otherwise

We use Table 2 to define decision variables related to search effort time:

Table 2: Search effort time decision variables for the general method
tkℓi Time that drone ℓ of type k spends searching node i

tkℓris Time that drone ℓ of type k spends searching node i ∈ N
in round r if it is the sth node visited in the route

tmin
kℓris (tmax

kℓris) Time at which drone ℓ of type k begins (ends) searching node i ∈ N
in round r if it is the sth node visited in the route

tmin
kℓr0 (tmax

kℓr0) Time at which the ℓth drone of type k arrives at (leaves)
the home-base node before round r

Let yi1 and yi0 be the auxiliary decision variables representing the expected utility at node i if the

operator diagnoses there is a survivor or not when drones do not confirm the presence or absence of

1There are some routes in the defined set P that can never be present in the optimal solution to the static problem. We
removed these notes in the computational experiments. However, the process for finding these routes is beyond the scope of
this paper because of the simplifying policies in the next section. Further details can be found in the supplementary materials

10

survivors. Since we assume that U i
TN = U i

FN = 0 for i ∈ N , we can express them as:

yi0 = pizi

(
1− (1− qi1)e

−
∑m

k=1

∑mk
ℓ=1 w

1
kitkℓi

)
U i
TP

yi1 = piU
i
TP + (1− pi)

(
zi(1− qi0)e

−
∑m

k=1

∑mk
ℓ=1 w

0
kitkℓi + (1− zi)

)
U i
FP

Last define the maximum number of rounds that drones can take to be R = maxk∈[K],i∈H,j∈N

⌊
T×sk
2dij

⌋
.

Next, we define constraint sets which are used in multiple MIPs. To limit redundancy, define an index set

I = [K]× [mk]× [R]. Define the set of feasible routes that drones can take:

X1 =


x

∣∣∣∣∣∣∣∣∣∣∣∣∣

xkℓP1 = 0 ∀k ∈ [K], ℓ ∈ [mk], ∀P ∈ P if P1 ̸= hkℓ∑
P∈P1

hkℓ

xkℓP1 = 1∀k ∈ [K], ∀ℓ ∈ [mk]

∑
P∈P1

h

xkℓP (r+1) =
∑

P∈P−1
h

xkℓPr ∀h ∈ H, ∀k ∈ [K], ∀ℓ ∈ [mk], ∀r ∈ [R− 1]


These constraints ensure that each drone begins its first round at its initial home-base node (1), only one

route is taken in the first round (2), and each drone takes exactly one route in other rounds beginning at

the node that the previous round ended at (3). Define the set of feasible time allocations:

X2 =

t

∣∣∣∣∣∣∣
tkℓris ≤ tmax

kℓris − tmin
kℓris ∀(k, ℓ, r) ∈ I, ∀i ∈ N, ∀s ∈ [L] \ {1, L}

tmax
kℓris ≤ tmax

i ∀(k, ℓ, r) ∈ I, ∀i ∈ N, ∀s ∈ [L] \ {1, L}
tmin
kℓris ≥ tmin

i ∀(k, ℓ, r) ∈ I, ∀i ∈ N, ∀s ∈ [L] \ {1, L}


These constraints ensure the time allocated to searching a node equals the time between when it arrives

and leaves (1) and a drone can only search a node while it is available (2-3). Define the set of combinations

of routes and time allocations where a drone can only search a node after it arrives from the previous node:

X3 =

(x, t)

∣∣∣∣∣∣∣∣∣∣

tmin
kℓri2 − tmax

kℓr0 ≥ dji/vk −M(1− xkℓPr) ∀(k, ℓ, r) ∈ I, ∀(i, j) ∈ N ×H, ∀P ∈ P1
ji

tmin
kℓri(s+1) − tmax

kℓrjs ≥ dji/vk −M(1− xkℓPr) ∀(k, ℓ, r) ∈ I, ∀i ∈ N, ∀j ∈ N,

∀s ∈ {2, . . . , |P | − 2}, ∀P ∈ Ps
ji

tmin
kℓ(r+1)0 − tmax

kℓri(|P |−1) ≥ dji/vk −M(1− xkℓPr) ∀(k, ℓ, r) ∈ I, ∀(i, j) ∈ H ×N, ∀P ∈ P−1
ji


Example 1. To assist in visualizing X1, X2, and X3 consider drone 1 of type 1 takes the following plan

with R = 4 (the drone takes the trivial route (H2, H2) in rounds 3 and 4):

11

H1

t=0,5

N1

t=1-2

N2

t=3-4

N3

t=6-7
N4

t=8-9
H2

t=10-11

t=0-1

t=2-3

t=4-5

t=5-6 t=7-8 t=10

Figure 1: Illustration for Example 1

X1 enforces that the drone starts from H1 and starts its next round where the last round finished (H1,

then H2, then H2). X2 bounds t11ris by 1 for all appropriate r, i, s and enforces nodes can only be searched

when they are available (not represented in the example). X3 enforces that the drone cannot search a node

until it travels from the previous node e.g. it takes a unit of time to travel from N1 to N2.

The solution to the following nonlinear mixed-integer optimization problem solves the static problem:

max
∑

i∈N max {yi0, yi1} (1)

yi0 = pizi

(
1− (1− qi1)e

−
∑m

k=1

∑mk
ℓ=1 w1

kitkℓi

)
U i
TP (1a)

yi1 = piU
i
TP + (1− pi)

(
zi(1− qi0)e

−
∑m

k=1

∑mk
ℓ=1 w0

kitkℓi + (1− zi)
)
U i
FP (1b)

zi ≤
∑K

k=1

∑mk

ℓ=1

∑
P∈Pi

∑R
r=1 xkℓPr ∀i ∈ N (2)

tkℓris ≤ Tk

∑
P∈Pis

xkℓPr ∀(k, ℓ, r) ∈ I, ∀i ∈ N, ∀s ∈ [L] \ {1, L} (3)

tkℓi =
∑R

r=1

∑L
s=1 tkℓris ∀k ∈ [K], ∀ℓ ∈ [mk], ∀i ∈ N (4)

tmin
kℓ(r+1)0 − tmax

kℓr0 ≤ Tk ∀(k, ℓ, r) ∈ I (5)

x ∈ X1, t ∈ X2, (x, t) ∈ X3 (6)

0 ≤ tkℓi, t
min
kℓris, t

max
kℓris, t

min
kℓr0, t

max
kℓr0 ≤ T ∀(k, ℓ, r) ∈ I, ∀i ∈ N, ∀s ∈ [L] \ {1, L}

xkℓPr ∈ {0, 1} ∀(k, ℓ, r) ∈ I, ∀P ∈ P
zi ∈ {0, 1} ∀i ∈ N

Here, (1) represents the total utility which is the sum of the utilities of individual nodes. (1a) and (1b)

define the objective variables. (2) ensures that zi can only be 1 if there is a drone that takes a route which

includes that node. (3) ensures that a drone can only allocate time to search node i ∈ N as the sth node in

its route in round r if i is the sth node in the route it takes in round r. (4) defines the total time traveled

by drone k at node i. (5) ensures that the total time spent in a route is not more than the battery life of

a drone. (6) ensures that the routes and time allocations are feasible as defined before.

12

The objective is non-linear and not guaranteed to be concave because it is the sum of maximums of two

terms. This can be challenging for finding a global optimal solution with a solver. We can instead modify

the formulation by moving the nonlinear terms into the constraints as follows. Let yi be an auxiliary

variable representing the unconditional expected utility at node i. Let λi be an auxiliary variable such

that λi = 1 if the operator diagnoses that there is a survivor, i.e., if

pi >
U i
TN − U i

FP

(U i
TN − U i

FP) + (U i
TP − U i

FN)

and λi = 0 otherwise (see Fact 1). The mixed-integer optimization problem can be reformulated with

nonlinear terms moved to the constraints by replacing objective (1) with

max
∑
i∈N

yi

where yi is an auxiliary decision variable for the objective of node i and adding constraints (1c)

yi ≤ yi1λi + yi0(1− λi) ∀i ∈ N

that ensure yi = max{yi0, yi1} for all nodes. The objective is linear, but the feasible region is no longer

guaranteed to be convex, meaning that it can be difficult to determine whether a local optimal is the

global optimal. We find the general method with linear objective to be preferable because while both have

non-linear constraints, this method has a linear objective.

4.3 Simplifying policies

The general method yields optimal solutions to the static problem, but the MIP can be difficult to compute

when there are many nodes and drones. We propose three simplifying policies that reduce the feasible region

to improve the computation time. These policies may reduce the objective of the computed solution, but

due to the time-sensitivity of the problem, the improvement in computational time outweighs this.

4.3.1 Drones can only search a node once per round

Some settings have an optimal route where a drone visits the same node multiple times as seen in the

supplementary materials, but this is uncommon. This motivates our first simplifying policy:

Policy 1: A drone can only visit each node in N once per round.

This policy can be implemented by making the following changes to the MIP in the general method:

13

1. Replace P with P ′ containing only routes where nodes in N appears at most once

2. Replace X2 and X3 with X ′
2 and X ′

3 by replacing tmin
kℓris, t

max
kℓris, and tkℓris with tmin

kℓri , t
max
kℓri , and tkℓri

3. Replace tmin
kℓris, t

max
kℓris, and tkℓris with tmin

kℓri , t
max
kℓri , and tkℓri in constraints (3) and (4)

4. Remove summation over s in constraint (4)

4.3.2 Limit on the number of nodes a drone can visit in a round and number of rounds

Intuitively, increasing the number of nodes a drone visits during a round decreases the time it can allocate

to searching them. This intuition is supported by computational experiments on instances with few nodes

and drones in which drones only visit a few nodes in each round. Additionally, the number of non-trivial

rounds taken by drones will frequently be lower than the theoretical maximum. These motivate our second

simplifying policy:

Policy 2: Each drone can visit at most Nmax nodes in N in a single round and take at most R′ rounds.

We implement this by replacing P ′ with P ′′ containing all routes in P ′ with at most Nmax nodes in N

and replacing R with R′. In our experiments, we choose Nmax = 2 by varying Nmax and comparing the

marginal change in the objective and computational time. However, a higher Nmax may be appropriate if

computation time is less urgent or if the ratio of nodes to “drone-rounds” (mR′) is higher (in which case

the impact on the objective may be larger). If Nmax is not chosen appropriately, this could lead to a model

that does not yield good solutions or is too large to compute solutions quickly.

4.3.3 Only send a rescue team if the drone confirms survivors

In real-world settings, there is a limited supply of rescue teams that can be sent out for survivors so sending

a rescue team to a node where there are no survivors can have devastating consequences. Intuitively, we

expect that most nodes would have sufficiently low pi such that the operator would not send a rescue team

to a node if a drone was not sent there. Additionally, we would expect that the search rate for confirming

a survivor at a node to be higher than the search rate for confirming that there is not a survivor at a node

meaning that if no survivors are found at a node pi can only decrease (see Theorem 3.1). Combining this

intuition motivates our third simplifying policy:

Policy 3: A rescue team is only sent to nodes for which drones confirm there is a survivor

To implement this by replacing U i
FP with U i′

FP = −∞ for all nodes i ∈ N . Under this condition, yi1 = −∞

14

because we assume that 0 < pi < 1. This means

max
∑
i∈N

max{yi0, yi1} = max
∑
i∈N

yi0

This eliminates the need to introduce the yi1 non-linear terms and the constraints (1c) and variable λi in

the general method with linear objective. We can further simplify the formulation by recognizing that

yi0 =

{
0 if zi = 0

pi

(
1− (1− qi1)e

−
∑m

k=1

∑mk
ℓ=1 w

1
kitkℓi

)
U i
TP otherwise

Now, define the set of objective constraints:

X4 =

(x,y, t)

∣∣∣∣∣∣∣∣∣
yi ≤ U i

TP

K∑
k=1

mk∑
ℓ=1

∑
P∈P ′′

i

R∑
r=1

xkℓPr ∀i ∈ N

yi ≤ pi

(
1− (1− qi1)e

−
∑m

k=1

∑mk
ℓ=1 w

1
kitkℓi

)
U i
TP ∀i ∈ N


These constraints enforce that if a node is not visited by any drone, i.e. zi = 0, the objective for that

node must be 0, and the objective must always be bounded by

pi

(
1− (1− qi1)e

−
∑m

k=1

∑mk
ℓ=1 w

1
kitkℓi

)
U i
TP .

This value is strictly positive and less than U i
TP so if zi = 0, the first constraint is binding, and if zi = 1,

the second constraint is binding.

4.4 Simplified method

By combining the simplifying policies, we arrive at the simplified MIP:

max
∑

i∈N yi (1)

s.t. tkℓri ≤ Tk

∑
P∈P′′

i
xkℓPr ∀(k, ℓ, r) ∈ I, ∀i ∈ N (2)

tkℓi =
∑R′

r=1 tkℓri ∀k ∈ [K], ∀ℓ ∈ [mk], ∀i ∈ N (3)

tmin
kℓ(r+1)0 − tmax

kℓr0 ≤ Tk ∀(k, ℓ, r) ∈ I (4)

x ∈ X1, t ∈ X ′
2, (x, t) ∈ X ′

3, (x,y, t) ∈ X4 (5)

0 ≤ tkℓi, t
min
kℓri , t

max
kℓri , t

min
kℓr0, t

max
kℓr0 ≤ T ∀(k, ℓ, r) ∈ I, ∀i ∈ N

xkℓPr ∈ {0, 1} ∀(k, ℓ, r) ∈ I, ∀P ∈ P ′′

The simplified MIP trades off potential feasible solutions to construct a MIP that can be solved faster.

15

4.5 Scaling to larger problems

In this section, we introduce methods to solve larger problems with a target problem size up to 96 nodes and

48 drones. We begin by introducing the randomized divide and conquer method that splits the problem into

smaller problems, each containing a subset of the nodes and drones that can be solved independently. This

is a heuristic method that quickly constructs routes and time allocations for drones. While the obtained

solutions are not the best, using many of them can give an idea of which routes are “high-value”. We

use the results of the randomized divide and conquer method as a pre-processing step to the route-limited

optimization method which limits the routes that drones are allowed to take to only high-value routes.

4.5.1 Randomized divide and conquer method

The idea of the randomized divide and conquer method is to randomly construct groups of nodes and

drones and then solve each group quickly using a heuristic. We start by randomly assigning nodes and

drones to groups. For each group, we assign a route to each drone one drone at a time and one round at a

time in a random order. A major advantage of this method is that computing routes and time allocations

for drones in different groups are independent from each other so all groups can be solved simultaneously.

In the following algorithm, we refer to the single route optimization problem where all routes are fixed

to pre-defined routes or must be chosen from a set of trivial routes except for the route of one drone in one

round. It can be constructed by replacing the decision variables in the simplified MIP corresponding to

the fixed routes with their fixed value and removing the routes and time allocations for drones in rounds

that are constrained to fixed routes. Let g ≥ 1 to be the desired number of groups:

Algorithm 1: Randomized divide and conquer

Data: All network data; g ≥ 1
Result: Feasible solution

1 Randomly partition N into g groups such that the jth has
⌊
|N |+j−1

g

⌋
nodes;

2 Randomly partition the drones into g such that the jth has |Dj | =
⌊
m+j−1

g

⌋
drones;

3 for each group i in 1, . . . , g do
4 Randomly order the drones in the group;
5 fixed routes← ∅;
6 for each drone in the group do
7 for each round in 1, . . . , R′ do
8 Solve the single route optimization problem for the drone and round using fixed routes;
9 Add the route for the drone and round to fixed routes;

10 (x∗, t∗)i ← the solution to the last single route optimization problem;

11 return (x∗, t∗)i for i = 1, . . . , g;

16

4.5.2 Route-limited optimization

The route-limited optimization algorithm uses the solutions generated by the randomized divide and con-

quer method to choose high value routes. The algorithm first constructs heuristic solutions using Algorithm

1. We first choose the heuristic solutions that give the best objective because they are the most indicative

of high value routes. Then, we take the routes that occur most frequently in these solutions. As with

Algorithm 1, each randomized heuristic is independent so they can be computed in parallel. Let g ≥ 1

be the number of groups used in Algorithm 1. Let sims be the number of heuristic solutions to be con-

structed using Algorithm 1. Let X be the number of these solutions used and let Y be the number of

routes considered for each drone type in the final problem in each round.

Algorithm 2: Route selection

Data: All network data; g ≥ 1; sims; X; Y
Result: Set of routes (Pout

11 , . . . ,Pout
KR) that drones of type k can take in round R

1 for each sim in 1, . . . , sims do
2 xsim, objsim ← routes used in random feasible solution and the associated objective;

3 S ← the X solutions with the highest objective;
4 for drone type k in round r do
5 Pout

kr ← the Y routes that are taken most frequently by drones of type k in round r in the
solutions in S and all trivial routes;

6 return (Pout
11 , . . . ,Pout

KR);

The simplified MIP can be updated to construct the route-limited MIP by replacing P ′′
i with Pout

kr ,

replacing P1
h with P1

krh (routes in Pout
kr starting at h), and replacing P−1

h with P−1
krh (routes in Pout

kr ending

at h) in constraints (2) and (5) of the simplified MIP.

4.6 Re-optimization

As drones search nodes, they improve their estimates of whether or not there is a survivor at each node,

and they can use this to improve their routes and/or time allocations at each node. The updates to routes

and time allocations can be solving a modified version of route-limited optimization MIP. This section

describes how the model parameters can be updated. The routes chosen in Algorithm 2 all start from the

a node in H, but drones might not be at a home-base node during re-optimization. The section continues

to show how these routes can be updated without repeating pre-processing.

Updating probabilities, nodes, battery, current node, and round: If a node is visited by a drone

for the first time, and the drone does not immediately detect whether or not there is a survivor, the

17

probability that there is someone in need of rescue at that node is updated using Bayes’ theorem:

pi =
(1− qi1)pi

(1− qi1)pi + (1− qi0)(1− pi)

and the probability that a drone learns immediately upon arrival whether or not there is someone in need

of rescue is updated to 0 i.e. qi1 = qi0 = 0. For every other node i that had been searched since the last

re-optimization, we update the probability using Bayes’ theorem. Let tki be the total time that drones of

type k have searched node i. We update

pi =
exp

(
−
∑m

k=1w
1
kitki

)
pi

exp
(
−
∑m

k=1w
1
kitki

)
pi + exp

(
−
∑m

k=1w
0
kitki

)
(1− pi)

as we see in Theorem 3.1. If a drone confirms whether or not survivors are at a node or not, the node is

removed from the network. The battery for each drone is set to the total charge minus the time elapsed

since the last recharge. The current node of each drone is updated based on the node it is at. Last, we

track how many times each drone returned to a home-base node to know which round it is in. This is

important for knowing which routes should be considered as time-windows imply that make some nodes

are best searched in certain rounds.

While new information is constantly updated as drones search nodes, we must choose which changes

are substantial enough to warrant re-optimization. There is a tradeoff in how often we re-optimize with

better solutions if we re-optimize more often and faster computation if we re-optimize less often. Two such

instances are when a node is visited for the first time, and when we learn whether there is someone in need

of rescue at a node:

1. When a node is visited for the first time, we simplify re-optimization by only re-optimizing over the

time that drones spend at each node without changing the routes that drones take.

2. In the instance where we learn whether or not there is someone in need of rescue, we expedite

optimization by only allowing drones to change their routes if they are currently visiting or are

scheduled to visit the node for which this information was learned.

In each case, by not doing a full re-optimization, we can benefit from new information while trying to

minimize redundant computations. Finally, if drones are between nodes during re-optimization, we enforce

that drones must arrive at their destination node before changing their route to prevent situations where

drones are constantly changing which node they are going to without ever arriving at one. This assumption

also cleans up route selection so there is no need to create artificial nodes to start routes.

18

4.6.1 Updating Pout
kr

Algorithm 2 can be used to choose routes for the route-limited optimization method. Each of these routes

begins and ends at a home-base node, but this can be problematic when re-optimizing if a drone is not at a

home-base node. Additionally, there may be nodes present at the beginning but are no longer necessary for

drones to search either because it was learned whether or not there is a survivor or time tmax
i has passed.

In this section, we discuss how we can update Pout
kr as we learn new information.

In the optimal solution, a drone would never take a route containing only nodes that are no longer

available. We update Algorithm 2 by updating line 8 to say that P must include at least one node in

N which has not been removed. Additionally, for each node i such that there is a drone at the node

or a drone traveling to that node, we include a truncated copy of each route containing that node. This

truncated route begins with i and includes all nodes that are still available. We use truncated routes so that

the objective of the re-optimization problem can be at least as good as that of the previous optimization

problem, avoiding a situation where re-optimizing makes the solution worse. Let N ′ ⊆ N be the set of

nodes that are still available to search.

Algorithm 3: Update route selection

Data: All network data; g ≥ 1; sims; X; Y ; locs: nodes where a drone is located
Result: Set of routes (Pout

11 , . . . ,Pout
KR) used for optimization

1 for each sim in 1, . . . , sim do
2 xsim, objsim ← routes used in random feasible solution and the associated objective;

3 S ← the X solutions with the highest objective;
4 for each k in 1, . . . ,K and r in 1, . . . , R do
5 Pkr ← the Y routes that are taken most frequently by drones of type k in round r that contain

a node in N ′;

6 for each k in 1, . . . ,K and r in 1, . . . , R do
7 Pout

kr ← ∅;
8 for P ∈ Pkr do
9 Add a truncated copy of P ;

10 for i in 2, . . . , |P | − 1 do
11 if Pi ∈ locs then
12 Add a truncated copy of P starting from node i;

13 return (Pout
11 , . . . ,Pout

KR);

5 Computational experiments

Throughout this section, we run computational experiments on randomized network instances of various

sizes to test the change in computation time and objective. We use network size to refer to the number of

19

nodes and drones in the network. We use small networks (<10 nodes) to test the slower methods that trade

off computation time to improve the objective. We use small networks to test the trade off in the objective

when we use methods that decrease the computation time. We use large networks (≥48 nodes) to test

how computation time and objective change as we increase the number of nodes i.e. do these algorithms

“scale”. The networks in these experiments use two home-base nodes and maintain a ratio of two nodes

for each drone. For each network size, we randomly construct 200 network instances where each network

instance has randomized node and drone parameters. For networks of each size, we construct 200 random

instances and take the average objective. We assume that all nodes, including the home-base nodes are

distributed uniformly at random in a 144km × 144km square. Once, generated, we can construct dij based

one the geometric distance. The remaining parameters can be found in Table 3. These parameters are

based on parameters discussed with our collaborators, and the exponential parameter for w1
ki and w0

ki is

tuned so that the objectives generated by our algorithms would be about half of the maximum objective

if the operator knew precisely whether or not there was someone in need of rescue at each node. For all

networks, we assume that we have half as many drones as there are nodes. Experiments were run using

the MIT Engaging cluster using 8 GB of memory per experiment.

Table 3: Parameters for computational experiments
n, m Vary by problem size

H {1,2}
pi Drawn independently from Unif(.4, .6)

qi1, qi0 Drawn independently from Unif(.1, .2)

Si Drawn independently from Bernoulli(pi)

T 4 hours

tmin
i Drawn independently from Unif(0, 2 hours)

tmax
i Drawn independently from Unif(2 hours, 4 hours)

K 2

mk
m
2

vk 40 m/s

Tk 2 hours

hkℓ 1 for the first mk
2 of each drone type and 2 for the remaining mk

2

w1
ki Drawn independently from Exp(3) (search rate is in hours)

w0
ki Drawn independently from Exp(3) (search rate is in hours)

U i
TP Drawn independently from Unif(70, 130)

U i
FP (For testing general method) −106

20

5.1 Evaluation of simplifying policies

In this section, we evaluate the simplifying policies given in Section 4.3. We test variations where we

include or do not include:

1. Simplifications to the feasible region from limiting the length of routes and imposing that a node can

only be visited by a drone once in a round.

2. Simplification to the objective function.

The four methods we test are summarized in Table 4. In General and Objective, we define the set of

routes P to be all routes beginning at a node in H and ending at a node in H which do not satisfy the

condition in Lemma B.1 in the supplementary material and could be completed by a drone within the time

allocated by its battery life.

Table 4: Simplifying experiments
Feasible region simplifications No feasible region simplifications

Objective function simplifications Simplified Objective

No objective simplifications Route length limited (RLL) General

To test the simplifying policies, we must choose the best R′ and Nmax such that each method can be

solved consistently. We say a method can be solved consistently for networks of a certain size if the method

can be solved for 95% of our randomized instances of that size with MIP gap < 1% within 10 minutes. We

say that we have the best parameters if increasing R′ or Nmax does not improve the objective. We find

that for networks with four or fewer nodes, for each method, the best parameters that we can use to solve

methods consistently have Nmax = 2 and R′ = 2. We cannot solve the problem consistently on networks

with six or more nodes. These parameters make sense intuitively because the total search time is twice as

much as the max charge of drones and there are twice as many nodes as drones. These parameters are used

in all the computational experiments because they perform best on small networks, and the methods used

for solving larger networks are built using solutions to smaller networks i.e. divide and conquer. Table 5

records the average objective Table 6 records the average and standard deviation of computation time.

Table 5: Average objectives of computed optimal solution
Nodes General RLL Objective Simplified

2 32.21 32.18 32.24 32.21

4 n/a 82.80 n/a 82.80

6 n/a n/a n/a n/a

21

Table 6: Average time (st. dev) in seconds to compute optimal solution
Nodes General RLL Objective Simplified

2 7.99 (9.53) 7.11 (9.52) 2.30 (1.98) 2.75 (2.16)

4 n/a 187.95 (156.81) n/a 182.89 (127.83)

6 n/a n/a n/a n/a

All four methods give objective within 1% of each other with two nodes, and with four nodes RLL and

Simplified give the same results. We interpret this to mean the simplifying policies do not cut out the best

feasible solutions. Adding in the route length limiting and objective simplifications allow for significant

increase in computation power. We conclude that the simplified method is the best of our simplification

methods due to its fast speed and comparable objective.

5.2 Evaluation of randomized divide and conquer methods

In this section, we test Algorithm 1 on the same small networks used for Tables 5 and 6 to see how it

compares in small networks. The random nature of this method leads to variation in the computation

time and objective so we run Algorithm 1 200 times for each of the 200 network instance. Table 7 records

the average computation time, average objective, and maximum objective for a total of 40,000 runs of

Algorithm 1. Computation time refers to the average time across all 40,000 runs to compute the route

and time allocation for the divide and conquer group that takes longest to compute. Since each group in

Algorithm 1 is independent, this represents the average computation time to run Algorithm 1 if the routes

and time allocation for each each group is computed in parallel. The average objective refers to the average

objective across all 40,000 runs of the randomized divide and conquer method. The maximum objective

refers to the average across all 200 network instances of the maximum objective across the 200 times the

randomized divide and conquer method was run on this instance. This represents the average objective if

we run the divide and conquer method 200 times and take the best solution.

Table 7: Randomized divide and conquer method on small networks

Nodes Groups
Average computation

time (s)
St. dev

computation time (s)
Average objective Maximum objective

2 1 .29 .16 29.31 29.31

4 1 .92 .29 74.88 76.65

4 2 .55 .17 61.94 75.62

6 1 1.95 .39 113.83 117.37

The maximum objective attained from Algorithm 1 is lower than that given by the general and simplified

22

methods even with two nodes and one group which may seem counter-intuitive. This results from Algorithm

1 calculating the route a drone takes in each round independently from what route is taken in future rounds.

The simplified method, on the other hand, computes the route taken and time allocation in the same MIP.

With two and four nodes, we see that Algorithm 1 greatly improves the computation time at a small loss

to the objective, and it can be solved on network instances of a size that the simplified method cannot be

solved on. We conclude that Algorithm 1 serves its purpose as a means of choose high value routes.

5.2.1 Comparing similar randomized divide and conquer methods

In this section, we evaluate variations on Algorithm 1 when we alter:

1. Whether the route that a drone takes in each round is computed one round at a time (sequential) or

if all rounds are computed in the same MIP (concurrent).

2. Whether multiple drones can visit the same node in a single round (unrestricted) or not (restricted).

By combining these two elements, we create four randomized divide and conquer methods. Algorithm 1

refers to the sequential-unrestricted method. We test these four methods on large networks with 48 nodes.

This is large enough that the results should be representative of networks with 96 nodes, but is small

enough that we can test the methods that take longer. In each of these methods, we divide the network

into 6 groups. Since there are only 8 nodes in each group, this is still in a similar size to the results that

we observe in 5.1. As in the previous section, we compute 200 randomized feasible solutions using these

four methods and compare the results. Table 8 records the computation time and objective for the various

divide and conquer methods.

Table 8: Comparing variations of Algorithm 1

Method
Average computation

time (s)
St. dev

computation time (s)
Average objective Max objective

sequential-unrestricted 23 2 1006 1070

sequential-restricted 14 2 668 785

concurrent-unrestricted 2542 142 1032 1095

concurrent-restricted 730 71 945 1009

The concurrent-restricted method is strictly dominated by the sequential-unrestricted method which

has faster computation time and higher average and max objective. The sequential-restricted method has

faster computation time for much lower average and max objective compared to the sequential-unrestricted

23

method. The concurrent-unrestricted method has higher average and max objective for much higher com-

putation time compared to the sequential-unrestricted method method. We conclude that the sequential-

unrestricted method, i.e. Algorithm 1 gives the best balance between computation time and objective.

5.2.2 Computational impact of modifying the number of groups

In this section, we test Algorithm 1 as we vary the number of groups used to determine the number of

groups that should be used by Algorithm 1 when pre-processing for the route-limited optimization method.

We compare the average time and objective for each number of groups, g. Algorithm 1 is only run on each

network interest once as with fewer groups this computation can take a long time. This method is tested

on network instances with 48 nodes. Table 9 records the computation time and objective as the number

of groups is varied.

Table 9: Computational impact of modifying the number of groups

Number of groups (g) Nodes per group
Average computation

time (s)
Average objective

6 8 20.51 924.48

4 12 34.53 967.01

3 16 93.47 993.10

2 24 544.96 1023.34

1 48 6161.72 1058.78

There is a trade-off between the computation time and average objective. As the number of groups

increases, the size of each group decreases and vice versa. As the size of groups increases, the effect of

randomness in the random partitioning has a bigger impact on the solution leading to a lower average

objective. We conclude that the best number of nodes per group is 12 because it gives the best balance

between computation time and solution quality. We use 12 nodes per group when testing the route-limited

optimization method in the following section. We keep as a constant the number of nodes per group

instead of the number of groups as this leads to the most consistent computation time. With a different

set of input parameters, a similar process can be repeated by testing the average computation time and

objective and choosing the number of nodes per group at which the marginal increase in the computation

time outweighs the marginal increase in the utility. Generally, with fewer drones, it is preferable to have

more nodes in each group and vice versa.

24

5.3 Evaluation of route-limited optimization method

In this section, we test the route-limited optimization method on network instances with 48 nodes and

96 nodes. We use Nmax = 2 and R′ = 2 as they were optimal for Algorithm 1. In each experiment, we

compute 200 randomized divide and conquer solutions which we use to choose the best routes in route-

limited optimization method. We begin testing the route-limited optimization method on network instances

with 48 nodes. First, we test the objective of solutions as we modify the number of solutions (X) and the

number of routes (Y). In these experiments, the network instances are too large to compute the optimal

solution to the route-limited optimization method. We limit the route-limited optimization method to two

minutes of computation time to fairly compare the objective that can be achieved using any combination

of these parameters and to get a better understanding of the computational power of this method in a

real-world setting. There are 12 drones of each type so at most 12X routes can be used for each drone

type.

Table 10: Route-limited optimization method objective as # of solutions and # of routes vary (48 nodes)

X
Y

60 72 84 96 108 120 132 144 156

5 1024.59

6 1026.76 1029.14

7 1021.47 1025.34 1024.78

8 1026.02 1025.51 1022.13 1023.83

9 1031.76 1025.40 1020.41 1021.50 1022.23

10 1029.80 1026.91 1019.30 1018.91 1019.11 1016.21

11 1034.72 1028.80 1020.84 1016.12 1015.05 1016.15 1015.42

12 1030.86 1024.88 1017.58 1010.33 1009.88 1009.28 1009.52 1009.61

13 1033.55 1026.21 1015.99 1011.72 1010.09 1009.72 1009.53 1009.55 1009.63

By combining solutions of the randomized divide and conquer method, the route-limited optimization

method can improve upon even the best solution obtained from Algorithm 1. Using the 11 best solutions

and choosing to use 60 routes for each drone type in each round yields the best results, and these are the

inputs that we use when testing re-optimization. The parameters that work best are dependent on the

network parameters and the computational time so these will not be the best parameters in general.

In real-world settings, as discussed in Section 4.6, the operator can update the routes and time alloca-

tions of drones as they learn new information. The next experiments test the results of a simulated search

process of networks. For each of the 200 network instances, we run 200 randomized simulations. In each

simulation, we randomly assign whether or not a survivor is at each node and how long a drone has to

25

search a node to detect whether or not there is a survivor. We run two re-optimization experiments. We

first run Algorithm 1 200 times to construct the set of candidate routes Pout
kr to be used for both exper-

iments. The initial choice of routes and time allocation is determined by the route-limited optimization

method using the 11 best solutions and choosing to use 60 routes for each drone type in each round. In the

first experiment, which we call Fixed routes, drones can adjust the time allocated to searching nodes when

new information is found. However, they must remain on the route assigned by route-limited optimization

at the beginning. In the second experiment, which we call Non-fixed routes, drones are allowed to change

their route using route-limited optimization when a drone arrives at a node for the first time or when a

drone learns that there is a survivor at a node. If a drone arrives at a node for the first time, we update

our solution in the same way as Fixed routes since this occurs often and the nodes in the network are the

same. If a drone learns whether or not a survivor is at a node, we allow all drones to update their time

allocations at each node and allow drones that were searching that node or planned to search that node to

update their routes using route-limited optimization. However, the 200 pre-processing solutions are

not re-calculated. Instead the candidate routes are updated by using Algorithm 3. If the previous route

that a drone was taking is no longer a candidate route after the algorithm is run, the route is added to the

set of candidate routes to ensure that re-optimization always leads to a solution that is at least as good.

Table 11 compares the average objective of the two re-optimization approaches and compares them to the

objective when no re-optimization is performed.

Table 11: Route-limited optimization with updates (48 nodes)
Static route-limited optimization Fixed routes Non-fixed routes

1031.66 1046.39 1060.82

Updating the routes and time-allocations of drones, the operator can improve the objective by ≈ 30

which translates to ≈ 30% of a new node where drones learn that there is a survivor because the average

UTP for a node in these experiments is 100. This can represent an important benefit that can be gained by

re-optimizing when new information is learned. Seeing that re-optimization does not have a bigger change

in terms of the objective could imply that a method that optimizes the objective in the static problem is

a smart way to approach the non-static, real-world version of this problem. We additionally repeat these

experiment on networks with 96 nodes in Tables 12 and 13.

26

Table 12: Route-limited optimization method objective as # of solutions and # of routes vary (96 nodes)

X
Y

12 24 36 48 60 72

1 1581.31 2005.75

2 1521.90 1818.18 1978.75 1991.76

3 1584.91 1802.35 1921.63 1975.33 1947.22 1891.12

Table 13: Route-limited optimization with updates (96 nodes)
Baseline Fixed routes Non-fixed routes

2004.02 2016.56 2037.59

Using just the routes used in the best solution, we obtain the best solution using route-limited optimiza-

tion. This could be due to the size of the problem making the impact of adding in more candidate routes

increase the size of the feasible region more than when running the route-limited optimization method on

networks with 48 nodes. As we would expect, the operator can improve the objective by re-optimizing

corresponding to ≈ 33% of a new node where drones learn that there is someone in need of rescue. Last,

we see that the objective found using the route-limited optimization method on networks with 96 nodes

is roughly double that of the objective when running this method on networks with 48 nodes. This can

represent the ability of this method to scale to larger problems which is what we expect.

5.4 Sensitivity to the number of drones

In this section, we test the route-limited optimization method when we vary the number of drones. To test

this, we take a network with 48 nodes and alter the number of drones. We repeat the same methodology

used throughout this section to compute the number of groups, the number of solutions used (X), and

the number of routes used (Y). Table 14 indicates the change in the objective as we vary the number of

drones.

Table 14: Route-limited optimization with updates varying number of drones (48 nodes)
Drones Baseline Fixed routes Non-fixed routes

12 740.90 737.68 746.59

24 1031.66 1046.39 1060.82

48 1321.55 1350.65 1373.30

Table 14 shows that as the number of drones is increased, the objective increases as well, but there are

27

diminishing returns. This makes sense intuitively because as more drones are used to search, they will be

searching nodes that are already being searched by other drones.

6 Conclusion

In this paper, we introduce several optimization methods to route drones to find survivors in the event of a

natural disaster. We start by discretizing the areas that drones can search. Under this discretized model,

we introduce two general methods that maximize the expected number of survivors. This is not sufficient

because we need to be able to make decisions in real-time. We introduce simplifying policies preventing

drones from visiting nodes multiple times in a round, visiting too many nodes in a round, and diagnosing a

survivor if it cannot be confirmed. These policies restrict the feasible region to expedite the rate at which

a solution is found with the simplified method. This allows us to quickly find solutions, but not at the level

of real-time which is necessary when we look at re-optimization. We introduce the randomized divide and

conquer method which takes advantage of parallel processing to partition the network into smaller networks

on which it is faster to solve the simplified method. We use the best solutions obtained by the randomized

divide and conquer method and use them to select candidate routes that are most likely to yield good

solutions in the route-limited optimization method. After using this as a pre-processing at the beginning

of the search, this allows us to perform re-optimizations in real-time. In our computational experiments,

we conclude that the route-limited optimization method with non-fixed routes in re-optimization works

best. Natural disasters can have a devastating impact on human lives’, and our work should help assist in

efficiently providing relief to those most in need.

One potential new research direction is using reinforcement learning techniques to improve choosing

routes and time allocations. Our setting is too time-sensitive to implement this, but this may be beneficial

in another setting. Another direction would be using a continuous 3-D model of the world, rather than

representing it using a network. Further research could combine the search stage of finding survivors with

the rescue stage of sending rescue teams to their locations or add in new nodes during the search process.

Acknowledgement: This work was partially supported by a DSTA-MIT grant DST000ECI20300823

References

[1] Booth, K. E., Piacentini, C., Bernardini, S., & Beck, J. C. (2020). Target search on road networks with
range-constrained UAVs and ground-based mobile recharging vehicles. IEEE Robotics and Automation

28

Letters, 5 (4), 6702-6709.

[2] Bourgault, F., Furukawa, T., & Durrant-Whyte, H. F. (2003, October). Coordinated decentralized
search for a lost target in a Bayesian world. In Proceedings 2003 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453) (Vol. 1, pp. 48-53). IEEE.

[3] Bourgault, F., Furukawa, T., & Durrant-Whyte, H. F. (2006). Optimal search for a lost target in a
bayesian world. Field and Service Robotics: Recent Advances in Research and Applications, 209-222.

[4] Brown, S. S. (1980). Optimal search for a moving target in discrete time and space. Operations Research,
28 (6), 1275-1289.

[5] Das, D. N., Sewani, R., Wang, J., & Tiwari, M. K. (2020). Synchronized truck and drone routing in
package delivery logistics. IEEE Transactions on Intelligent Transportation Systems, 22 (9), 5772-5782.

[6] Delavernhe, F., Jaillet, P., Rossi, A., & Sevaux, M. (2021). Planning a multi-sensors search for a moving
target considering traveling costs. European Journal of Operational Research, 292 (2), 469-482.

[7] Eagle, J. N., & Yee, J. R. (1990). An optimal branch-and-bound procedure for the constrained path,
moving target search problem. Operations Research, 38 (1), 110-114.

[8] Furukawa, T., Bourgault, F., Lavis, B., & Durrant-Whyte, H. F. (2006, May). Recursive Bayesian
search-and-tracking using coordinated UAVs for lost targets. In Proceedings 2006 IEEE International
Conference on Robotics and Automation, 2006. ICRA 2006. (pp. 2521-2526). IEEE.

[9] Ghelichi, Z., Gentili, M., & Mirchandani, P. B. (2021). Logistics for a fleet of drones for medical item
delivery: A case study for Louisville, KY. Computers & Operations Research, 135, 105443.

[10] Haidari, L. A., Brown, S. T., Ferguson, M., Bancroft, E., Spiker, M., Wilcox, A., . . . & Lee, B. Y.
(2016). The economic and operational value of using drones to transport vaccines. Vaccine, 34 (34),
4062-4067.

[11] Hollinger, G., Singh, S., Djugash, J., & Kehagias, A. (2009). Efficient multi-robot search for a moving
target. The International Journal of Robotics Research, 28 (2), 201-219.

[12] Hou, Y., Zhao, J., Zhang, R., Cheng, X., & Yang, L. (2023). UAV swarm cooperative target search:
A multi-agent reinforcement learning approach. IEEE Transactions on Intelligent Vehicles.

[13] Lau, H., Huang, S., & Dissanayake, G. (2005, August). Optimal search for multiple targets in a built
environment. In 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp.
3740-3745). IEEE.

[14] Lin, L., & Goodrich, M. A. (2009, October). UAV intelligent path planning for wilderness search and
rescue. In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 709-714).
IEEE.

[15] Lin, L., & Goodrich, M. A. (2014). Hierarchical heuristic search using a Gaussian mixture model for
UAV coverage planning. IEEE Transactions on Cybernetics, 44 (12), 2532-2544.

[16] Morin, M., Abi-Zeid, I., & Quimper, C. G. (2023). Ant colony optimization for path planning in search
and rescue operations. European Journal of Operational Research, 305 (1), 53-63.

[17] Phung, M. D., & Ha, Q. P. (2020). Motion-encoded particle swarm optimization for moving target
search using UAVs. Applied Soft Computing, 97, 106705.

29

[18] Pillac, V., Van Hentenryck, P., & Even, C. (2016). A conflict-based path-generation heuristic for
evacuation planning. Transportation Research Part B: Methodological, 83, 136-150.

[19] Reyes-Rubiano, L., Voegl, J., Rest, K. D., Faulin, J., & Hirsch, P. (2021). Exploration of a disrupted
road network after a disaster with an online routing algorithm. OR Spectrum, 43 (1), 289-326.

[20] Simonin, C., Le Cadre, J. P., & Dambreville, F. (2008, June). A common framework for multitarget
search and cross-cueing optimization. In 2008 11th International Conference on Information Fusion
(pp. 1-8). IEEE.

[21] Simonin, C., Le Cadre, J. P., & Dambreville, F. (2009). A hierarchical approach for planning a
multisensor multizone search for a moving target. Computers & Operations Research, 36 (7), 2179-
2192.

[22] Stewart, T. J. (1979). Search for a moving target when searcher motion is restricted. Computers &
Operations Research, 6 (3), 129-140.

[23] Troudi, A., Addouche, S. A., Dellagi, S., & Mhamedi, A. E. (2018). Sizing of the drone delivery fleet
considering energy autonomy. Sustainability, 10 (9), 3344.

[24] Van Hentenryck, P., Bent, R., & Coffrin, C. (2010, June). Strategic planning for disaster recovery with
stochastic last mile distribution. In International Conference on Integration of Artificial Intelligence
(AI) and Operations Research (OR) Techniques in Constraint Programming (pp. 318-333). Berlin,
Heidelberg: Springer Berlin Heidelberg.

[25] Wang, Z., & Sheu, J. B. (2019). Vehicle routing problem with drones. Transportation Research Part
B: Methodological, 122, 350-364.

[26] Wong, E. M., Bourgault, F., & Furukawa, T. (2005, April). Multi-vehicle Bayesian search for multiple
lost targets. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation
(pp. 3169-3174). IEEE.

[27] Xu, A., Viriyasuthee, C., & Rekleitis, I. (2011, May). Optimal complete terrain coverage using an
unmanned aerial vehicle. In 2011 IEEE International Conference on Robotics and Automation (pp.
2513-2519). IEEE.

[28] Yao, P., Zhu, Q., & Zhao, R. (2020). Gaussian mixture model and self-organizing map neural-network-
based coverage for target search in curve-shape area. IEEE Transactions on Cybernetics, 52 (5), 3971-
3983.

[29] Zheng, Y. J., & Ling, H. F. (2013). Emergency transportation planning in disaster relief supply chain
management: a cooperative fuzzy optimization approach. Soft Computing, 17, 1301-1314.

[30] Zheng, Y. J., Ling, H. F., & Xue, J. Y. (2014). Disaster rescue task scheduling: An evolutionary
multiobjective optimization approach. IEEE Transactions on Emerging Topics in Computing, 6 (2),
288-300.

[31] Zhu, K., Han, B., & Zhang, T. (2021). Multi-UAV distributed collaborative coverage for target search
using heuristic strategy. Guidance, Navigation and Control, 1 (01), 2150002.

30

A Model terminology

Table 15: Terms to define the model
N Nodes where survivors might be

H Home-base nodes

dij Distance between i and j

Si Whether or not a survivor is at node i

pi Prior belief that a survivor is at node i

qi1 (qi0)
Probability that a drone immediately learns

there is (not) a survivor at node i
T Time at which drones must be at a home-base

tmin
i (tmax

i) Time before (after) which node i cannot be searched

m Number of drones

K Number of drone types

mk Number of drones of type k

vk Travel speed of drone k

Tk Battery life of drone k

hkℓ Starting home-base of drone ℓ of type k

w1
ki (w

0
ki) Search rate of drones of type k at node i if there is (not) a survivor

U i
TP , U

i
FN , U i

TN , U i
FP Utility for true positive, false negative, true negative, false positive

31

B Pruning the routes in P

When considering P, some routes may never be included in an optimal solution. In this section, we develop

a sufficient condition for a route to be absent in an optimal solution, and so to be safely removed from P.

Lemma B.1. Suppose that we have a route H1, . . . , x, . . . , y, . . . , x, . . . , y, . . . , H2 where

• H1, H2 ∈ H

• H1 may or may not be the same node as H2

• x, y ∈ N

• Each “. . . ” refers to a, potentially empty, set of nodes between the two nodes on either side

• We define z1, z2, z3, z4, z5 to be these five sets (in the same order that they appear)

Then, a sufficient condition for a route to be a sub-optimal solution is

(z2 ⊆ z3 ∪ z4 ∪ z5 ∧ z4 ⊆ z1 ∪ z2 ∪ z3)∨

(z2 ∪ z3 ⊆ z4 ∪ z5) ∨ (z3 ∪ z4 ⊆ z1 ∪ z2)

Proof. Define tx1, ty1, tx2, ty2 to be the time the drone spends at x and y the first and second time. Suppose

that a route satisfies this condition. We can split this into three cases

Case 1: z2 ⊆ z3 ∪ z4 ∪ z5 ∧ z4 ⊆ z1 ∪ z2 ∪ z3. This implies that every node visited in z2 could be visited

later, as long as they are searched before the time the drone reaches y the first time. Similarly, every node

in z4 could be visited earlier as long as they are searched before the time the drone reaches x the second

time. If ty1 > tx2, we can construct the route H1, z1, x, z2, y, z3, z4, y, z5, H2 where zi represents the drone

visiting each node in between the two nodes in the original route. Let z1i and z−1
i be the first and last

nodes in zi respectively. For simplicity, let s with no subscript refer to the speed of the drone. Here the

drone spends tx1 + tx2 at x, ty1 − tx2 at y the first time, tx2 + ty2 + ε1 at y the second time, and the same

time at all other nodes where

0 < ε1 <
dz−1

3 x + dxz14 − dz−1
3 z14

s

Note here that drone leaves y the first time at the same time in both of these routes. If ty1 < tx2, we can

construct the route H1, z1, x, z2, z3, x, z4, y, z5, H2. Here the drone spends tx1 + ty1 + ε2 at x the first time,

tx2 − ty1 at x the second time, and ty1 + ty2 at y, and the same time at all other nodes where

0 < ε2 <
dz−1

2 y + dyz13 − dz−1
2 z13

s

32

If ty1 = tx2, we can construct the route H1, z1, x, z2, z3, z4, y, z5, H2. Here the drone spends tx1 + tx2 + ε2

at x, ty1 + ty2 + ε1 at y, and the same time at all other nodes.

Case 2:z2 ∪ z3 ⊆ z4 ∪ z5. We can construct the route H1, z1, x, z2, y, z3, z4, y, z5, H2 where the drone

spend tx1 + tx2 + ε2 at node x and the same time at all other nodes.

Case 3:z3 ∪ z4 ⊆ z1 ∪ z2. We can construct the route H1, z1, x, z2, z3, x, z4, y, z5, H2 where the drone

spends ty1 + ty2 + ε1 at y, and the same time at all other nodes.

33

C Optimal solution in which a drone visits the same node multiple

times

Example 2. As illustrated in Figure 2, consider a network with N = {1, 2} and H = {0} with d01 = d12 = 1

and d02 = 2. Let tmin
1 = 1, tmax

1 = 6, tmin
2 = 3, tmax

2 = 4 and let pi = .5, qi1 = qi0 = 0, U i
TP = 1,

U i
FN = U i

TN = 0, and U i
FP = −∞ for i ∈ N . Further let there be one drone with 7 units of time for battery

and 1 unit of speed. Let w0
11 = w0

12 = 0, w1
11 << w1

12. For w1
12 sufficiently larger than w1

11, the optimal

strategy includes the drone spending time at node 2. Suppose that the drone searches node 2 between times

t1 and t2 such that 3 ≤ t1 ≤ t2 ≤ 4. For any of these strategies, we can maximize the time that the drone

searches node 1 by having the drone search in times [1, t1 − 1] ∪ [t2 + 1, 6].

0 t=1-2
t=5-6 t=3-4

t=0-1 t=2-3

t=4-5t=6-7

Figure 2: Illustration for Example 2

34

