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Abstract

The Container Relocation Problem (CRP), also called Block Relocation Problem (BRP), is con-

cerned with finding a sequence of moves of containers that minimizes the number of relocations needed

to retrieve all containers, while respecting a given order of retrieval. The restricted CRP enforces that

only containers blocking the target container can be relocated. We improve upon and enhance an

existing binary encoding and using it, formulate the restricted CRP as a binary integer programming

problem in which we exploit structural properties of the optimal solution. This integer programming

formulation reduces significantly the number of variables and constraints compared to existing formu-

lations. Its efficiency is shown through computational results on small and medium sized instances

taken from the literature.

Keywords. Combinatorial optimization; OR in maritime industry; Integer programming; Container
relocation problem; Block relocation problem

1 Introduction

Due to limited space in the storage area in maritime ports, containers are stacked on top of each
other. The resulting stacks create rows of containers as shown in Figure 1. If a container that needs
to be retrieved (target container) is not located at the top and is covered by other containers, blocking
containers must be relocated. As a result, during the retrieval process, one or more relocation moves are
performed by the yard cranes. Such relocations (also called reshuffles) are costly for the port operators
and result in delays in the retrieval process. The Container Relocation Problem (CRP) (also known as
the Block Relocation Problem) addresses this challenge by minimizing the number of relocations. The
CRP applies to a broad range of two-dimensional storage systems involving containers, boxes, pallets or
steel plates.

Mathematical modeling of the CRP usually represents one row with a two dimensional array of size
(T, S), where T is the maximum height and S is the number of stacks. Tiers are numbered from bottom
(1) to top (T ) and stacks from left (1) to right (S). We refer to this array as a configuration. The
initial configuration has C containers. In order for the problem to always be feasible, we suppose that
the triplet (T, S,C) satisfies 0 6 C 6 ST − (T − 1). Indeed, T − 1 empty slots would be needed in order
to relocate a maximum of T − 1 blocking containers above the target container (see Wan et al. (2009)).
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Figure 1: Stacks of containers in a storage yard

Each container is identified by a unique integer indicating its relative retrieval order. At any point in
the retrieval process, the current target container is the container currently in the configuration with the
smallest number. Container c is said to be blocking if there exists container d in a lower tier of the same
stack such that d < c.

During the retrieval process, a container can only be retrieved/relocated if it is at the top of its stack,
i.e., no other container is blocking it. Most importantly, a container can only be relocated if it is blocking
the target container (Assumption A1 in Caserta et al. (2012)). The CRP under these assumptions, referred
to as restricted CRP, involves finding a sequence of moves to retrieve containers 1, 2, . . . , C (respecting
the order) with a minimum number of relocations. Figure 2 provides a simple example of the CRP.
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Figure 2: Configuration for the CRP with 3 tiers, 3 stacks and 6 containers. The optimal solution performs
3 relocations: relocate the container labeled 2 from Stack 3 to Stack 1 on the top of the container labeled
3; relocate 4 from 3 to 2 on the top of 6; retrieve 1; retrieve 2; retrieve 3; retrieve 4; relocate 6 from 2 to
the empty Stack 1; retrieve 5; finally, retrieve 6.

As the problem with and without Assumption A1 is NP-hard (Caserta et al. (2012)), many heuristics
have been developed to solve this problem (see Forster and Bortfeldt (2012) and Jin et al. (2015)). This
paper focuses on finding optimal solutions for the CRP so we restrict the rest of the review to exact
approaches. There are several exact methods worth mentioning such as algorithms based on A∗ (Zhu
et al. (2012), Borjian et al. (2015), Tanaka and Takii (2016)), branch-and-bound (B&B) approaches
(Ünlüyurt and Aydın (2012), Expósito-Izquierdo et al. (2015)) and the abstraction method (Ku and
Arthanari (2016a)).

As the method suggested in this paper is based on solving a binary integer programming (IP) formu-
lation, we review here alternative IP models for the restricted CRP. Wan et al. (2009) formulate one of
the first integer programming models for the CRP and develop an IP-based heuristic capable of obtaining
near-optimal solutions. Caserta et al. (2012) propose another intuitive formulation of the problem, called
BRP-II, as well as an efficient heuristic. Tang et al. (2015) propose a very similar formulation with fewer
variables than in BRP-II, present heuristics and a worst case analysis. Expósito-Izquierdo et al. (2015) cor-
rect BRP-II and rename their new formulation BRP-II*. Eskandari and Azari (2015) also correct BRP-II
and propose an improved formulation called BRP2ci by adding valid inequalities. Zehendner et al. (2015)
correct and improve BRP-II to get formulation BRP-II-A by removing some variables, tightening some
constraints, introducing a new upper bound, and applying a pre-processing step to fix several variables.
The two latter formulations being the most recent ones, we compare our new formulation to these state-
of-the-art solutions. As we mentioned, these are both improved corrections of BRP-II in Caserta et al.
(2012), but they differ in the nature of added cuts as well as the pre-processing step of Zehendner et al.
(2015). In addition, the computational results provided by both studies differ. While Zehendner et al.
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(2015) give results for BRP-II-A on average over set of instances, Eskandari and Azari (2015) only present
results on a small subset of instances for BRP2ci, making their comparison difficult. Consequently, we
show through our experiments that our new formulation outperforms BRP2ci on available instances from
Eskandari and Azari (2015) as well as BRP-II-A on average over sets of instances.

Carlo et al. (2014) and Lehnfeld and Knust (2014) review and survey the existing literature on the
CRP and related problems, some of which are mentioned below. The unrestricted version of the CRP
relaxes Assumption A1. Caserta et al. (2012) and Petering and Hussein (2013) develop formulations
for the unrestricted CRP, but both are unable to solve small-sized instances efficiently. Tricoire et al.
(2018) use an improved B&B to solve the unrestricted problem. Different objective functions have been
considered such as the crane travel time, trucks’ waiting times or weighted relocations. López-Plata et al.
(2017) propose a binary IP to minimize waiting times. Priorities could also be given among groups of
blocks, and Zhu et al. (2012) and Tanaka and Takii (2016) consider B&B approaches for this case. Ku
and Arthanari (2016b) and Galle et al. (2017) study the stochastic version of the CRP, while de Melo da
Silva et al. (2017) introduces another variant of the CRP called the Block Retrieval problem. Borjian
et al. (2013) and Hakan Akyüz and Lee (2014) propose two different MIP formulations for the dynamic
version of the CRP where incoming containers have to be stacked. We also mention that Tang et al.
(2012) solve the BRP using integer programming in the case of steel plates, for which our approach can
also be applied.

In order to evaluate the efficiency of these methods, several sets of instances have been used. The
most common one appears in Caserta et al. (2009) and is used by Caserta et al. (2012), Zhu et al. (2012),
Petering and Hussein (2013), Borjian et al. (2013), Eskandari and Azari (2015), Expósito-Izquierdo et al.
(2015) and Zehendner et al. (2015). In these instances, T and S range from 3 to 10, C is taken to be
(T − 2)S with T − 2 containers per stack resulting in 21 classes of problem. With 40 instances per class,
this set contains a total of 840 instances. We use these instances in Section 4 to test the efficiency of our
new formulation. Instances from Lee and Lee (2010) consider multiple rows and are used to test heuristics.
Instances with distinct priorities from Zhu et al. (2012) could be used, but most integer programs are
tested on the set of Caserta et al. (2009) hence our preference for this set.

The major contribution of this paper is a new binary IP formulation for the restricted CRP referred
to as CRP-I and presented in Section 3. This formulation is novel in several ways. First, CRP-I takes
a different modeling approach compared to previous mathematical programming formulations; it builds
upon a binary encoding introduced by Caserta et al. (2009) that has never before been used in exact
solution methods. We identify and formulate properties of the encoding as linear equalities or inequalities
(Section 2.1) in CRP-I and use structural properties of the optimal solution to enhance the tractability
of our approach (see Sections 2.2 and 3.1). The simplicity of our formulation and its adaptability to
other related problems could be a key enabler of future advances. Finally, we show through extensive
computational experiments on small and medium instances that CRP-I improves upon existing mathe-
matical programming formulations by decreasing significantly the number of variables and constraints. In
addition, it outperforms most other exact methods on the instances of Caserta et al. (2009) (see Section
4).

This paper is organized as follows. Section 2 introduces some preliminary concepts of the binary
encoding and structural properties of the optimal solution. Section 3 presents formulation CRP-I and
suggests improvements for this new formulation, such as a revisited pre-processing step. Section 4 presents
the results of computational experiments and Section 5 concludes this paper.
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2 Preliminaries

2.1 Binary encoding

Most integer program formulations mentioned in Section 1 use the matrix representation of a config-
uration, i.e., they introduce binary variables of the type ytscn which indicates if container c is in tier t of
stack s before the nth move is performed.

Our binary IP models a configuration using an enhanced version of the binary encoding introduced by
Caserta et al. (2009). First, Caserta et al. (2009) define S artificial containers identified by integers from
C + 1, . . . , C + S, where artificial container c is under all containers in stack c−C (see Figure 3). These
artificial containers are used to keep track of which containers are in which stacks. Using these containers,
they encode the classical matrix representation of the configuration into a binary matrix denoted by A of
size (C + S)×(C + S). We consider the same encoding but decrease its size to (C + S)×C. Rows indexed
from 1, . . . , C and columns of A represent the C real containers, while rows indexed from C+1, . . . , C+S
correspond to the S artificial containers. Formally, the binary encoding A ∈ {0, 1}(C+S)×C is defined such
that such that

∀ c ∈ {1, . . . , C + S}, d ∈ {1, . . . , C}, Ac,d =

{
1 if container c is below container d,

0 otherwise.

Figure 3: Configuration including artificial containers (example from Caserta et al. (2009))

The binary encoding of the configuration in Figure 3 is

A =



0 1 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

1 1 0 0 1 0 0 0 0

0 0 1 1 0 0 0 1 0

0 0 0 0 0 1 1 0 1
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By using the matrix A in this example, we can quickly access valuable information. For instance,
consider container 1. The first row indicates that container 1 is below containers 2 and 5 and the first
column shows that container 1 is above artificial container 10. Because this container represents stack
10− 9 = 1, it indicates that container 1 is in the first stack.

Logical constraints of the CRP We now describe the main logical constraints of any feasible config-
uration the CRP. For each of these constraints, we use the aforementioned binary encoding to formulate
it as a linear equality or inequality to be embedded into our mathematical programming formulation.
Given a target container n ∈ {1, . . . , C}, any feasible configuration for the CRP respects the following
logical constraints:

1. Only containers n, . . . , C remain in the configuration. Thus, we only need to keep track of
rows c ∈ {n, . . . , C + S} and columns d ∈ {n, . . . , C} since:

∀ c ∈ {1, . . . , n− 1},

{
∀ d ∈ {1, . . . , C}, Ac,d = 0,

∀ d ∈ {1, . . . , C + S}, Ad,c = 0.

Therefore, we consider that A ∈ {0, 1}(C+S−n+1)×(C−n+1).

2. A container is in one stack, and so is blocking exactly one artificial container:

∀ c ∈ {n, . . . , C},
S∑

s=1

AC+s,c = 1.

3. A container cannot be blocking itself, so the upper diagonal of A only contains zeros:

∀ c ∈ {n, . . . , C}, Ac,c = 0.

4. Among two distinct containers c and d, only one can be below the other one:

∀c, d ∈ {n, . . . , C}, c 6= d, Ac,d +Ad,c 6 1.

5. If two distinct containers c and d are in the same stack s, then either c is below d or
d is below c (Ac,d +Ad,c > 1). We formulate this as:

∀ s ∈ {1, . . . , S}, c, d ∈ {n, . . . , C}, c 6= d, Ac,d +Ad,c > AC+s,c +AC+s,d − 1.

There are three cases to consider:

• If c and d are in stack s, i.e., AC+s,c = AC+s,d = 1, then this equation implies Ac,d +Ad,c > 1.
Using the previous logical constraint, we have Ac,d + Ad,c = 1, which is the relation we are
looking for.

• If either c or d is not in stack s, then this equation implies Ac,d +Ad,c > 0, which holds in any
case since Ac,d, Ad,c ∈ {0, 1}.
• If c and d are not in stack s, then this equation implies Ac,d + Ad,c > −1, which holds in any

case since Ac,d, Ad,c ∈ {0, 1}.
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6. If two distinct containers c and d are in different stacks then neither c is below d or d
below c (Ac,d = 0 and Ad,c = 0). This constraint can be written as:

∀ s ∈ {1, . . . , S}, c, d ∈ {n, . . . , C}, c 6= d, Ac,d +Ad,c 6 2−AC+s,c −
S∑

r=1
r 6=s

AC+r,d.

Similarly to the previous logical constraint, we consider three cases :

• If c is in stack s but not d, i.e., AC+s,c = 1 and
S∑

r=1
r 6=s

AC+r,d = 0, then this equation implies

Ac,d + Ad,c 6 0. Since Ac,d, Ad,c ∈ {0, 1}, we must have Ac,d = 0 and Ad,c = 0 which is the
constraint we are looking for.

• If both or neither c and d are in stack s, then this equation implies Ac,d + Ad,c 6 1 (which
holds since it is the expression of the fourth logical constraint of the CRP expressed with the
binary encoding).

• If c is not in stack s but d is, then this equation implies Ac,d + Ad,c 6 2 which always holds
since Ac,d, Ad,c ∈ {0, 1}.

7. The number of relocations needed to retrieve the target container is the number of

containers directly blocking it. Since the number of containers blocking c is given by
C∑

d=n+1

Ac,d.

In particular, the number of relocations to retrieve the target container n is
C∑

d=n+1

An,d.

8. The number of containers in each stack is at most T . The height of stack s ∈ {1, . . . , S} is

the number of containers blocking artificial container C + s, i.e.,

C∑
d=n+1

AC+s,d, so

∀ s ∈ {1, . . . , S},
C∑

d=n+1

AC+s,d 6 T.

9. The total number of blocking containers in A, denoted by b (A), is given by b (A) =
C∑

d=n+1

Bd, where Bd ∈ {0, 1} is a binary indicator that container d is blocking, which

can be computed using the binary encoding simply as follows:

∀ d ∈ {n+ 1, . . . , C}, c ∈ {n, . . . , d− 1}, Bd > Ac,d.

Note that the total number of blocking containers is not

C−1∑
c=n

C∑
d=c+1

Ac,d, as a blocking container can

be blocking several containers but should count only once.

Apart from offering a simple representation of a given configuration, this binary encoding presents an-
other great advantage. Tracking the evolution of the configuration with the classical matrix representation
is fairly intuitive but requires a significant number of constraints and seems to be one of the bottlenecks
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of previous formulations. Our representation allows us to express efficiently the transformation of the
matrix A when performing the necessary relocations in order to retrieve the target container.

Let n ∈ {1, . . . , C−1}, we denoteA ∈ {0, 1}(C+S−n+1)×(C−n+1) (respectively, A′ ∈ {0, 1}(C+S−n)×(C−n))
the binary encoding of the configuration when n is the target container (respectively, when n + 1 is the
target container and relocations to retrieve n have been performed). The logical constraints of the CRP
enforce that A′ and A should verify the three following rules:

A. The restricted assumption states that if container c is not blocking the target container
n then c cannot be relocated. Therefore all containers below c cannot be relocated either, hence
columns c in A and A′ should be identical, i.e., if An,c = 0, then ∀ d ∈ {n + 1, . . . , C}, A′d,c = Ad,c.
This can be formulated by the following two inequalities:

∀ c, d ∈ {n+ 1, . . . , C},

{
A′d,c 6 Ad,c +An,c,

A′d,c > Ad,c −An,c.

If An,c = 0, both inequalities imply the constraint we are looking for. If An,c = 1, the inequalities
imply Ad,c− 1 6 A′d,c 6 Ad,c + 1 which always holds since Ad,c− 1 6 0, Ad,c + 1 > 1 and A′d,c ∈ {0, 1}.

B. Any relocated container cannot stay in the same stack, which can be formulated as:

∀ c ∈ {n+ 1, . . . , C}, s ∈ {1, . . . , S}, An,c +AC+s,c +A′C+s,c 6 2.

We consider two cases to justify this formulation:

• If container c is blocking the target container n (hence relocated) and is in stack s, i.e., An,c =
AC+s,c = 1, then the inequality implies that A′C+s,c = 0 which is the logical constraint we are
aiming for.

• If either container c is not blocking the target container n or is not in stack s, then the inequality
implies that A′C+s,c 6 1 which always holds.

C. If two distinct containers c and d are blocking container n (hence relocated) and d is
above c when n is the target container, then d cannot remain above c (due to the LIFO
policy of stacks), i.e. if An,c = An,d = Ac,d = 1, then A′c,d = 0. This can be expressed as:

∀ c, d ∈ {n+ 1, . . . , C}, c 6= d, An,c +An,d +Ac,d +A′c,d 6 3.

Again, we justify this formulation by considering two cases:

• if An,c = An,d = Ac,d = 1, the inequality clearly implies A′c,d = 0.

• if either An,c = 0, An,d = 0 or Ac,d = 0, then the inequality implies that A′c,d 6 1 which always
holds.

2.2 Minimum number of relocations when C 6 S

We use a result from Galle et al. (2017) which we restate below with our current notations.

Lemma 1 (Galle et al. (2017)). Consider a configuration with T tiers, S stacks, and C containers with
binary representation A ∈ {0, 1}(C+S)×C . Let b (A) be the number of blocking containers in A which can
be computed as

b (A) =

C∑
d=2

Bd with Bd ∈ {0, 1} , Bd > Ac,d,∀ c ∈ {1, . . . , d− 1}.
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If C 6 S, then the minimum number of relocations to retrieve all containers from A is equal to b (A).

Lemma 1 states that when the number of containers is less than the number of stacks (C 6 S), the
minimum total number of relocations is simply the number of blocking containers. From now on, we
suppose that C > S and we define

N = C − S + 1 > 1.

Let us explain the use of Lemma 1. Let A(1) (respectively, A(N)) be the binary encoding of an initial
configuration (respectively, the configuration after N − 1 retrievals). We define r

(
A(1), A(N)

)
to be the

minimum number of relocations to reach A(N) from A(1). By definition, A(N) ∈ {0, 1}(C′+S)×C′ , where
C ′ = C−N + 1 = S 6 S. Hence we can apply Lemma 1 to A(N) and the minimum number of relocations
to retrieve all containers from A(N) is equal to b

(
A(N)

)
. Therefore, the minimum number of relocations

to retrieve all containers from A(1) is r
(
A(1), A(N)

)
+ b

(
A(N)

)
. Usually, methods track all relocations

until there are no containers left in the configuration. Lemma 1 allows us to restrict our focus on the first
N − 1 retrievals as the problem becomes “trivial” when there are only S containers left.

3 New binary IP formulation

Using Section 2, we can now present our novel formulation that we denote by CRP-I. We suppose that
we are given as inputs a feasible triplet (T, S,C) and A(1) the binary encoding of the initial configuration
(which verify all the properties of the binary encoding). CRP-I minimizes the total number of relocations
to retrieve all containers from a given initial configuration while enforcing all the previously mentioned
logical constraints of the CRP. In order to do so, CRP-I uses two kinds of variables,

∀ n ∈ {1, . . . , N}, c ∈ {n, . . . , C + S}, d ∈ {n, . . . , C},

an,c,d =

{
1 if container c is below container d when n is the target container,

0 otherwise,

and

∀ d ∈ {N + 1, . . . , C},

bd =

{
1 if container d is blocking after N − 1 retrievals,

0 otherwise.

Binary variables a are used to keep track of the binary encoding of the configurations and compute the
number of relocations incurred for the first N − 1 retrievals. Note that we use the first logical constraint
of the CRP expressed with the binary encoding to limit the number of variables as n increases. Binary
variables b are used to compute the number of blocking containers in the configuration after the N − 1
retrievals. The number of variables is of the order of C3, where the exact number is

S − 1 +
N−1∑
n=1

(C + S − n+ 1)× (C − n+ 1) =
1

3
C3 +

1 + S

2
C2 +

1 + 3S

6
C − 6− 5S − 6S2 + 5S3

6
.

The objective and constraints of CRP-I are presented below

Min

(
N−1∑
n=1

C∑
d=n+1

an,n,d +

C∑
d=N+1

bd

)
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s.t.

a1,c,d = A
(1)
c,d , ∀ c ∈ {1, . . . , C + S}, d ∈ {1, . . . , C} (1)

S∑
s=1

an,C+s,c = 1, ∀ n ∈ {2, . . . , N}, c ∈ {n, . . . , C} (2)

an,c,c = 0, ∀ n ∈ {2, . . . , N}, c ∈ {n, . . . , C} (3)

an,c,d + an,d,c 6 1, ∀ n ∈ {2, . . . , N}, c ∈ {n, . . . , C}, d ∈ {n, . . . , C} \ {c} (4)

an,c,d + an,d,c > an,C+s,c + an,C+s,d − 1,

∀ n ∈ {2, . . . , N}, s ∈ {1, . . . , S}, c ∈ {n, . . . , C}, d ∈ {n, . . . , C} \ {c}
(5)

an,c,d + an,d,c 6 2− an,C+s,c −
S∑

r=1
r 6=s

an,C+r,d,

∀ n ∈ {2, . . . , N}, s ∈ {1, . . . , S}, c ∈ {n, . . . , C}, d ∈ {n, . . . , C} \ {c}

(6)

C∑
d=n

an,C+s,d 6 T, ∀ n ∈ {2, . . . , N}, s ∈ {1, . . . , S} (7)

bd > aN,c,d, ∀ d ∈ {N + 1, . . . , C}, c ∈ {N, . . . , d− 1} (8)

an+1,d,c 6 an,d,c + an,n,c,

∀ n ∈ {1, . . . , N − 1}, c ∈ {n+ 1, . . . , C}, d ∈ {n+ 1, . . . , C + S} \ {c}
(9)

an+1,d,c > an,d,c − an,n,c,
∀ n ∈ {1, . . . , N − 1}, c ∈ {n+ 1, . . . , C}, d ∈ {n+ 1, . . . , C + S} \ {c}

(10)

an,n,c + an,C+s,c + an+1,C+s,c 6 2,

∀ n ∈ {1, . . . , N − 1}, c ∈ {n+ 1, . . . , C}, s ∈ {1, . . . , S}
(11)
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an,n,c + an,n,d + an,c,d + an+1,c,d 6 3,

∀ n ∈ {1, . . . , N − 1}, c ∈ {n+ 1, . . . , C}, d ∈ {n+ 1, . . . , C} \ {c}.
(12)

an,c,d ∈ {0, 1}, ∀ n ∈ {1, . . . , N}, c ∈ {n, . . . , C + S}, d ∈ {n, . . . , C} (13)

bd ∈ {0, 1}, ∀ d ∈ {N + 1, . . . , C} (14)

The objective function of CRP-I minimizes the total number of relocations. As suggested in Section 2,
the objective function has two main components. The first term counts the number of relocations incurred
for the first N − 1 retrievals, i.e., r

(
A(1), A(N)

)
. When the target container is n ∈ {1, . . . , N − 1}, the

seventh logical constraint of the CRP states how to compute the number of containers blocking the target
container n using the binary encoding, hence the number of relocations to retrieve n. The second term
counts the number of blocking containers in the configuration after the first N−1 retrievals, i.e., b

(
A(N)

)
,

as suggested by Lemma 1.
Constraint (1) initializes the variable a for n = 1 with the input binary encoding A(1). Constraints (2),

(3), (4), (5), (6) and (7) correspond to the second, third, fourth, fifth, sixth and eighth logical constraints
of the CRP formulated using the binary encoding. Constraint (8) enforces the relation between variables
b and a, which is explained in the ninth logical constraint of the CRP. The four next constraints enforce
the rules to update the binary encoding between retrievals. Constraints (9) and (10) correspond to rule
A, Constraint (11) corresponds to rule B and Constraint (12) corresponds to rule C. Finally, constraints
(13) and (14) ensure that variables are binary variables.

We point out that variables of CRP-I only keep track of the configuration states through the binary
encoding, and it could seem that no decisions are made. Actually, decisions are implicitly taken when
a state of configuration is chosen after each retrieval and the cost of these decisions (i.e., the number of
relocations) can easily be induced. Let n ∈ {1, . . . , N} and c ∈ {n, . . . , C}, then we define:

sn(c) =

S∑
s=1

san,C+s,c and tn(c) =

C+S∑
d=n

an,d,c, (15)

such that sn(c) (respectively tn(c)) is the stack (respectively tier) at which container c is when container
n is the target container. Using these notations, any feasible a for CRP-I defines a feasible sequence
of configurations starting with A(1) and ending with a configuration with S containers. Conversely, we
have derived the constraints of CRP-I from logical constraints of the CRP, then the binary encoding of a
feasible sequence of configurations starting with A(1) and ending with a configuration with S containers
is feasible for CRP-I.

Finally, we believe that this modeling approach can be easily generalized to different objective func-
tions. We provide three extensions in the Appendix.

3.1 Minor improvements

We suggest here some features that we use together with CRP-I when calling commercial solvers.
First, since the optimal objective value is an integer, we can set the absolute gap of the optimization
solver to 1 − ε for ε > 0. Indeed, if we can guarantee that the best feasible solution found so far with
objective zbest is such that zbest − zopt 6 1 − ε, then by integrality of zbest and zopt, this ensures that
zbest = zopt. Second, (Caserta et al., 2012) suggest a Minmax heuristic which is commonly used as a good
upper bound. We include this solution as a first incumbent to the solver.

The flexibility of CRP-I allows us to take into account some existing improvements suggested in the
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literature to enhance the efficiency of integer programs for the CRP. For instance, we can simply adapt
one of the pre-processing steps suggested by Zehendner et al. (2015). For each container c ∈ {1, . . . , C},
one can easily compute the first target container πc ∈ {1, . . . , c} for which c is moved. Therefore, all
containers below c, including c, stay in their initial position until container πc is the target container.
Thus the cth column of the binary encoding does not change until πc is the current target container, i.e.,

an,d,c = A
(1)
d,c ∀ n ∈ {1, . . . ,min{πc − 1, N}}, c ∈ {n, . . . , C}, d ∈ {n, . . . , C + S}.

Although we do not use it in our experiments, we mention here that we can also easily adapt constraint
(B) from Zehendner et al. (2015) as

C∑
d=n+1

an,n,d 6 UBn, ∀ n ∈ {1, . . . , N − 1},

where the computation of UBn is detailed in Zehendner et al. (2015).

4 Computational Experiments

As mentioned in Section 1, we test our binary model on the instances introduced by Caserta et al.
(2009). These instances are defined by two values (T ′, S), where S is the number of stacks and T ′ the
initial number of containers per stack (identical for all stacks). It is assumed that the maximum number
of tiers T is taken to be T = T ′ + 2. Each class associated with a pair (T ′, S) contains 40 instances, each
representing different initial configurations with C = S × T ′ containers.

Experiments are carried out on a Dell C6300 with an Intel E5-2690 v4 2.6 GHz processor, 4 CPUs,
8.00 GB of RAM and the programming language is Julia 0.5.0. We use Gurobi 7.0.1. to solve the binary
programming model CRP-I enhanced by the gap (with ε = 0.01), and the incumbent and pre-processing
improvements described in the previous section. We set a time limit of 3600 seconds per instance for
the solver. We also define the memory limit to be when the product of the number of variables with the
number of constraints is greater than 8×1010. This definition is different than in Zehendner et al. (2015),
but it has the merit of not depending on the computer system, allowing for an easier comparison with
future studies. All instances and scripts are available at https://github.com/vgalle/binaryIP_CRP.
We present our results similarly to Zehendner et al. (2015) in order to ease the comparison with this state-
of-the art integer programming solution. Finally, we also compare our results with the integer program
and the branch and bound algorithm presented by Expósito-Izquierdo et al. (2015) and Eskandari and
Azari (2015) on the first 5 instances of several classes, as these are the only instances for which they
provide results in their papers.

4.1 Difficulty of instances

Table 1 shows several key values indicating the difficulty of the instances. It displays the problem
class (T ′, S), the number of containers in each class C, the average lower bound from Zhu et al. (2012)
(Avg. LB), the average upper bound from Caserta et al. (2012) (Avg. UB) and the average gap between
these two values (Avg. gap). Most importantly, it gives how many instances can be considered as trivial
(Nb. trivial), i.e., when the upper bound is equal to the lower bound, hence the integer program is not
required to solve these instances. We mention that Table 1 confirms exactly the results of Zehendner
et al. (2015). We mainly provide this table for the sake of clarity associated with the next results.
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(T ′, S) C Avg. LB Avg. UB Avg. gap Nb. trivial
(3, 3) 9 4.725 5.075 0.35 27
(3, 4) 12 5.85 6.30 0.45 26
(3, 5) 15 6.75 7.05 0.30 28
(3, 6) 18 8.275 8.45 0.175 36
(3, 7) 21 9.10 9.325 0.225 33
(3, 8) 24 10.45 10.725 0.275 32

(4, 4) 16 9.40 10.975 1.575 8
(4, 5) 20 12.15 13.55 1.40 11
(4, 6) 24 13.225 14.675 1.45 11
(4, 7) 28 15.20 16.90 1.70 9

(5, 4) 20 13.575 16.75 3.175 4
(5, 5) 25 17.00 21.225 4.225 1
(5, 6) 30 20.05 24.25 4.20 2
(5, 7) 35 22.425 26.325 3.90 5
(5, 8) 40 25.60 29.60 4.00 4
(5, 9) 45 28.525 32.35 3.825 3
(5, 10) 50 31.35 35.50 4.15 2

(6, 6) 36 26.95 35.90 8.95 0
(6, 10) 60 41.525 49.85 8.325 2
(10, 6) 60 56.60 101.25 44.65 0
(10, 10) 100 84.125 139.275 55.15 0

Table 1: Difficulty of instances of Caserta et al. (2009)

4.2 Results of CRP-I and comparison with BRP-II-A

We provide the results of CRP-I aggregated by class of instances in Table 2. This table recalls the
number of trivial instances per class (Nb. trivial) and displays the number of instances that were solved
to optimality (Nb. solved non-trivial), the average and standard deviation of CPU times in seconds (Avg.
CPU time and Std. CPU time). Finally, it differentiates instances not solved optimally either due to time
or memory limit. We provide in parenthesis the results of Zehendner et al. (2015) to make a comparison
both in terms of the number of instances solved optimally as well as CPU times.

Our experiment shows that we can now solve almost all instances with sizes lower than (5, 7) within
minutes on average. We can also solve a majority of instances for classes (5, 8 to 10) and some in (6, 6).
However, all the other classes reach the memory limit threshold. In terms of number of instances solved
optimally, our method clearly outperforms BRP-II-A, specially for the classes (5, 7 to 10) and (6, 6). The
average CPU time and its variability are also dramatically improved by CRP-I compared to BRP-II-A.
Note that there are much less instances solved by BRP-II-A than CRP-I for classes (5, 8) and (5, 9), hence
explaining the lower variability of CPU time of BRP-II-A for these classes.

Table 3 presents alternative indicators which only depend on the binary formulation properties and
not on the computer features. Compared to those in Table 2, these indicators provide a more unbiased
estimation of the performance of CRP-I. We provide the number of binary variables (Nb. binary variables),
the average number of constraints (Avg. nb. constraints) over all 40 instances of each class. Note that
the number of binary variables is constant in a given class of instances. In addition, we show the average
number of node iterations done by the solver (Avg. node iterations) for instances solved optimally. We
can observe that the number of variables is very reasonable for all classes (expect (10, 10)) and that
CRP-I decreases this number substantially compared to BRP-II-A (by a factor varying from 1.34 to
22), even with their proposed pre-processing step. This can partly explain the performances reported
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(T ′, S)
Nb. Nb. solved Avg. CPU Std. CPU Nb. time Nb. memory

trivial non-trivial time (sec.) time (sec.) limit limit
(3, 3) 27 13 (13) 0.1 (0.1) 0.1 (0.0) 0 (0) 0 (0)
(3, 4) 26 14 (14) 0.1 (0.3) 0.1 (0.3) 0 (0) 0 (0)
(3, 5) 28 12 (12) 0.1 (0.8) 0.1 (0.7) 0 (0) 0 (0)
(3, 6) 36 4 (4) 0.4 (4.2) 0.2 (3.0) 0 (0) 0 (0)
(3, 7) 33 7 (7) 0.6 (5.8) 0.4 (3.4) 0 (0) 0 (0)
(3, 8) 32 8 (8) 1.3 (11.2) 0.7 (6.0) 0 (0) 0 (0)

(4, 4) 8 32 (32) 0.1 (1.2) 0.1 (0.7) 0 (0) 0 (0)
(4, 5) 11 29 (29) 0.5 (5.8) 0.3 (3.7) 0 (0) 0 (0)
(4, 6) 11 29 (29) 2.3 (16.1) 5.4 (28.3) 0 (0) 0 (0)
(4, 7) 9 31 (31) 6.4 (90.1) 12 (197.8) 0 (0) 0 (0)

(5, 4) 4 36 (36) 1.8 (19.9) 4.5 (38.3) 0 (0) 0 (0)
(5, 5) 1 39 (38) 41.9 (369.3) 177.6 (798.9) 0 (1) 0 (0)
(5, 6) 2 37 (31) 68.0 (524.3) 166.2 (719.4) 1 (6) 0 (0)
(5, 7) 5 31 (19) 170.9 (487.7) 367.4 (609.8) 4 (2) 0 (14)
(5, 8) 4 29 (5) 590.2 (749.4) 820.6 (535.0) 7 (0) 0 (31)
(5, 9) 3 23 (2) 658.2 (126.1) 799.1 (79.5) 14 (0) 0 (35)
(5, 10) 2 20 (0) 1111.0 (n.a.) 1056.7 (n.a.) 18 (0) 0 (38)

(6, 6) 0 19 (7) 441.7 (1466.5) 723.8 (1092.9) 21 (10) 0 (23)
(6, 10) 2 0 (0) n.a. (n.a.) n.a. (n.a.) 0 (0) 38 (38)
(10, 6) 0 0 (0) n.a. (n.a.) n.a. (n.a.) 0 (0) 40 (40)
(10, 10) 0 0 (0) n.a. (n.a.) n.a. (n.a.) 0 (0) 40 (40)

Table 2: Computational results of CRP-I on non-trivial instances (in parenthesis the results from Zehend-
ner et al. (2015)). In bold, the classes for which CRP-I solves more instances optimally than BRP-II-A.

in Table 2. However, the bottleneck of our model seems to be the substantial growth of the number
of constraints as instance size grows. Future work could be to study a row-generation approach for the
CRP-I model. Finally, the last two columns of Table 3 provide the difference between the LP relaxation
objective function and two other lower bounds (the number of blocking containers and the lower bound
from Zhu et al. (2012)). We notice that the LP relaxation is on average always between these two lower
bounds, which leads to say that the LP relaxation is quite good but may be further improved by adding
efficient cuts which could be using lower bounds properties.

4.3 Efficiency of the upper bound and hardness of the CRP

Table 4 provides the number of non-trivial instances solved optimally by CRP-I and for these in-
stances,the average optimal number of relocations (Avg. Opt.), the average gap between the upper
bound and the optimal solution (Avg. Gap UB-Opt) and the number of instances for which the upper
bound is optimal (Nb. UB optimal). These key factors can help estimate the impact of using an upper
bound as first incumbent. It can also help to get insight whether the hard part of the CRP is to find
an optimal solution or to prove optimality of a given optimal solution. We can see that for instances
with T ′ 6 4, a majority of instances are solved optimally by the upper bound and the average gap is
always less than 1. Table 2 shows CRP-I solves all these instances optimally within a few seconds. This
suggests that providing the upper bound as an incumbent is beneficial for the integer program and the
proof of optimality of this incumbent seems to be relatively fast. For larger classes, there are many fewer
instances for which the upper bound is optimal, and hence, the solution time for these instances increases
dramatically. This suggests that the hard part for larger problems is to be find an optimal solution. Once
found, CRP-I seems to be quite efficient in proving the optimality of the solution.

13



(T ′, S)
Nb. binary Avg. nb. Avg. node Difference of LP relax.
variables constraints iterations nb. blocking LB

(3, 3) 408 (546.8) 2,326.4 0 1.10 -0.14
(3, 4) 927 (2,140.1) 6,730.7 0 0.86 -0.42
(3, 5) 1,764 (5,236.0) 15,389.8 0 0.74 -0.68
(3, 6) 2,995 (16,170.8) 30,303.2 0 0.70 -0.80
(3, 7) 4,696 (25,576.0) 54,364.3 0 0.79 -0.93
(3, 8) 6,943 (37,248.0) 90,340.4 0 0.50 -0.63

(4, 4) 2,005 (5,755.5) 16,383.5 0 1.36 -0.83
(4, 5) 3,844 (19,380.2) 37,413.0 0 1.06 -0.94
(4, 6) 6,560 (32,718.8) 74,130.1 3.5 1.03 -1.32
(4, 7) 10,324 (72,055.6) 132,182.1 0 0.82 -1.06

(5, 4) 3,675 (15,161.6) 32,361.9 22.8 1.87 -1.00
(5, 5) 7,074 (42,530.7) 73,823.8 420.7 2.09 -1.70
(5, 6) 12,105 (112,706.7) 145421.6 77.5 1.67 -1.70
(5, 7) 19,088 (198,902.1) 260,202.2 25.6 1.72 -2.08
(5, 8) 28,343 (352,122.7) 431,277.6 18.2 1.73 -2.34
(5, 9) 40,190 (583,790.6) 675,140.5 10.7 1.95 -3.65
(5, 10) 54,949 (884,834.6) 1,009,631.0 12.2 2.19 -4.86

(6, 6) 20,062 (243,620.9) 253,368.7 466.4 5.62 -5.96
(6, 10) 91,384 (2,058,673.2) 1,750,000.0 n.a. n.a. n.a.

(10, 6) 84,650 (-) 1,170,272.8 n.a. n.a. n.a.
(10, 10) 388,124 (-) 8,090,000.0 n.a. n.a. n.a.

Table 3: Efficiency indicators of CRP-I on non-trivial instances (in paranthesis the number of variables
from Zehendner et al. (2015) with pre-processing).

4.4 Comparison of CRP-I with solutions from Expósito-Izquierdo et al. (2015),Es-

kandari and Azari (2015), Ku and Arthanari (2016a) and Tanaka and Takii

(2016)

We present Table 5 in a manner similar to Expósito-Izquierdo et al. (2015) and Eskandari and Azari
(2015) in order to ease the comparison between our solution and theirs. First, the optimal values are
all identical, confirming the accuracy of our model. Secondly, CRP-I clearly outperforms the corrected
integer programs BRP-II* and BRP2ci in terms of computation time. In Table 6, we compare BRP2ci
and CRP-I on three other problem classes provided by Eskandari and Azari (2015).

Most importantly, we compare CRP-I with the branch-and-bound approach. For all instances in classes
other than (4, 6), even though the branch-and-bound approach is faster, CRP-I still solves instances in
less than a second, hence we claim that the difference between these two solution times is minor. However
for the hardest problem class in this table, i.e., (4, 6), CRP-I solves all instances in less than 10 seconds,
while branch-and-bound requires more than 17 seconds to solve one instance. Expósito-Izquierdo et al.
(2015) mention that the exact branch-and-bound approach could start to be intractable for this problem
size and propose faster heuristic solutions by varying a parameter in their approach.

We also tested the B&B solution from Tanaka and Takii (2016) on instances of Tables 5 and 6, using
the code in C provided on the author’s website. The bounds used in Tanaka and Takii (2016) seem to be
tighter, allowing their algorithm to solve all instances in less than 0.1 seconds. A good future direction
for our work could be the incorporation of these bounds into our approach. While the B&B approach in
Tanaka and Takii (2016) is faster, our approach is sufficiently fast for all cases tested in Tables 5 and 6
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(T ′, S) Nb. solved non-trivial Avg. Opt. Avg. Gap UB-Opt. Nb. UB optimal
(3, 3) 13 6.77 0.23 10
(3, 4) 14 7.5 0.36 10
(3, 5) 12 8.75 0.08 11
(3, 6) 4 11.5 0.50 2
(3, 7) 7 11.71 0.29 5
(3, 8) 8 12.25 0.38 5

(4, 4) 32 10.69 0.97 12
(4, 5) 29 13.59 0.83 14
(4, 6) 29 14.55 0.90 15
(4, 7) 31 16.9 1.00 12

(5, 4) 36 15.61 1.47 9
(5, 5) 39 18.79 2.44 7
(5, 6) 37 22.24 2.22 5
(5, 7) 31 24.23 2.13 4
(5, 8) 29 27.48 1.86 9
(5, 9) 23 29.52 2.09 5
(5, 10) 20 32.00 1.8 5

(6, 6) 19 28.05 3.58 1

Table 4: Efficiency of the upper bound and hardness of the CRP on non-trivial instances

(required less than .5 minutes) to allow for real-time decision making. Moreover, one advantage of integer
programs (including our method) is that its efficiency relies significantly on the performance of integer
programming solvers. Thus, in light of their recent dramatic improvement, if solvers continue to rapidly
improve in the coming years, our method will also improve its computational tractability with no change
required.

5 Conclusion

This paper deals with the restricted CRP (Assumption A1). We present a new binary integer program
(CRP-I) using an enhanced binary encoding of the problem. The major contribution of this work are the
novelty, the efficiency (in terms of variables and constraints), and the adaptability of our mathematical
formulation. All these features provide a strong basis for future research using this approach. Finally, our
formulation outperforms in terms of computation time all previous mathematical formulation and most
other exact methods, except the B&B approach from Tanaka and Takii (2016).

Future research could include the use of combinatorial lower bounds (from Zhu et al. (2012) or Tanaka
and Takii (2016)) to increase the efficiency of this formulation. Another direction could be the applica-
tion of other typical techniques such as branch-and-cut or branch-and-price to this formulation. An
important study could investigate the application of ideas provided in this paper to related problems
(pre-marshalling, dynamic CRP, etc.). From a broader perspective, the development of models with more
realistic assumptions (for example, the limited amount of information, the third dimension of the block,
etc.) would be of critical interest for optimization solutions to be applied in real operations.
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(T ′, S) Instance Optimal
time (sec.)

CRP-I BRP-II* B&B BRP2ci CC15&PDB0

(3, 3) 1 6 ∗ 1.18 0.007 0.11
2 5 ∗ 1.39 0.007 0.11
3 2 ∗ 1.00 0.006 0.08
4 4 ∗ 1.09 0.007 0.09
5 1 ∗ 1.06 0.007 0.06

Avg 3.6 ∗ 3.6 0.007 0.09

(3, 4) 1 5 0.014 4.76 0.008 0.28
2 3 ∗ 18.39 0.007 0.22
3 7 ∗ 11.71 0.006 0.34
4 5 ∗ 16.06 0.007 0.26
5 6 ∗ 18.04 0.007 0.27

Avg 5.2 0.014 13.79 0.008 0.274

(3, 5) 1 6 ∗ 83.09 0.010 0.72
2 7 ∗ 75.95 0.007 1.2
3 8 ∗ 100.71 0.013 0.91
4 6 ∗ 95.31 0.008 0.8
5 9 0.097 65.32 0.026 1.59

Avg 7.2 0.097 84.11 0.013 1.044

(3, 6) 1 11 0.397 124.11 0.086 5.35 5.26
2 7 ∗ 113.29 0.008 1.59 0
3 11 ∗ 89.06 0.019 3.09 2.01
4 7 ∗ 93.12 0.016 1.78 0.03
5 4 ∗ 96.50 0.007 1.23 0

Avg 8.0 0.397 103.22 0.027 2.608 1.46

(3, 7) 1 7 ∗ 182.14 0.009 2.89 0.08
2 10 ∗ 284.29 0.011 3.29 0.6
3 9 ∗ 119.20 0.011 3.34 1.98
4 8 ∗ 472.32 0.010 3.35 0.3
5 12 ∗ 277.97 0.038 7.97 191.6

Avg 9.2 ∗ 267.26 0.016 4.168 38.91

(3, 8) 1 8 0.508 84.66 0.021 7.25 0.75
2 10 ∗ 14403.33 0.055 9.31 8.65
3 9 ∗ 8298.85 0.012 6.57 0.66
4 10 ∗ 250.33 0.013 11.03 7.24
5 13 ∗ 6384.65 0.022 11.06 13.53

Avg 10.0 0.508 5884.36 0.025 9.044 6.166

(4, 4) 1 10 ∗ 71.96 0.017 1.25 0.08
2 10 0.036 228.91 0.025 0.95 0
3 10 0.077 71.99 0.009 1.56 0.03
4 7 ∗ 65.25 0.008 0.78 0
5 9 0.081 89.36 0.013 1.15 0.04

Avg 9.2 0.065 105.49 0.014 1.138 0.03

(4, 5) 1 16 0.543 3544.86 0.540 61.62 21.08
2 10 0.229 326.54 0.043 5.27 0.15
3 13 0.261 1023.98 0.018 8.28 2.6
4 8 ∗ 119.86 0.014 2.96 0.02
5 16 0.763 2656.67 0.579 81.26 93.4

Avg 12.6 0.449 1534.38 0.239 31.878 23.45

(4, 6) 1 17 8.679 4077.08 17.476 n.a. 64.73
2 8 0.541 18985.03 0.030 5.23 0.02
3 13 ∗ 1706.75 0.069 12.86 31.9
4 14 0.828 2376.86 0.315 23.4 59.53
5 15 0.641 8564.20 0.076 45.22 107.15

Avg 13.4 2.672 7141.98 3.593 n.a. 31.24

Table 5: Comparison between our formulation CRP-I, BRP-II* and branch-and-bound (B&B) algorithm both
proposed by Expósito-Izquierdo et al. (2015), BRP2ci introduced by Eskandari and Azari (2015) and CC15&PDB0

proposed by Ku and Arthanari (2016a) on a subset of instances from Caserta et al. (2009). Time limit is one day
for BRP-II* and 900 seconds for BRP2ci (instances not solved optimally are noted by n.a.). Times are given in
seconds as provided in respective studies. ∗ indicates that the instance is trivial as defined in Section 4 and there
is no need to run CRP-I
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(T ′, S) Instance Optimal
time (sec.)

CRP-I BRP2ci
(4, 7) 1 17 2.995 44.1

2 18 1.245 20.47
3 13 ∗ 18.95
4 16 2.31 49.78
5 16 2.16 85.75

Avg 16 2.178 43.81

(5, 4) 1 15 0.295 118.2
2 19 1.06 185.36
3 15 0.32 5.9
4 12 0.17 5.01
5 17 0.652 118.16

Avg 15.6 0.499 86.526

(5, 5) 1 22 6.079 n.a.
2 16 0.422 22.06
3 22 25.542 n.a.
4 21 5.538 n.a.
5 16 0.837 46.3

Avg 19.4 7.684 n.a.

Table 6: Further comparison between our formulation CRP-I and BRP2ci introduced by Eskandari and Azari
(2015) on an extended subset of instances from Caserta et al. (2009). Time limit is 900 seconds for BRP2ci
(instances not solved optimally are noted by n.a.). Times are given in seconds. ∗ indicates that the instance is
trivial as defined in Section 4 and there is no need to run CRP-I
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Ünlüyurt, T. and Aydın, C. (2012). Improved rehandling strategies for the container retrieval process.
Journal of Advanced Transportation, 46(4):378–393.

Wan, Y.-w., Liu, J., and Tsai, P.-C. (2009). The Assignment of Storage Locations to Containers for a
Container Stack. Naval Research Logistics (NRL), 56(8):699–713.

Zehendner, E., Casserta, M., Feillet, D., Schwarze, S., and Voß, S. (2015). An improved mathematical
formulation for the blocks relocation problem. European Journal of Operational Research, 245:415 –
422.

Zhu, W., Qin, H., Lim, A., and Zhang, H. (2012). Iterative Deepening A* Algorithms for the Container
Relocation Problem. IEEE Transactions on Automation Science and Engineering, 9(4):710–722.

18

http://dx.doi.org/10.1002/nav.21569
http://dx.doi.org/10.1002/nav.21569
http://www.sciencedirect.com/science/article/pii/S0377221714006043
http://www.sciencedirect.com/science/article/pii/S0377221714006043
http://www.sciencedirect.com/science/article/pii/S030505481500266X
http://www.sciencedirect.com/science/article/pii/S0377221716001016
http://www.sciencedirect.com/science/article/pii/S0377221716001016
https://doi.org/10.1016/j.cor.2009.10.005
https://doi.org/10.1016/j.ejor.2014.03.011
https://doi.org/10.1016/j.ejor.2014.03.011
https://doi.org/10.1016/j.cie.2016.11.015
https://doi.org/10.1016/j.ejor.2013.05.037
https://doi.org/10.1016/j.ejor.2013.05.037
https://doi.org/10.1109/TASE.2015.2434417
http://doi.org/10.1080/0740817X.2014.971201
http://doi.org/10.1080/0740817X.2014.971201
https://doi.org/10.1002/nav.21503
http://www.sciencedirect.com/science/article/pii/S0305054817302174
http://doi.org/10.1002/atr.1193
http://doi.org/10.1002/nav.20373
http://doi.org/10.1002/nav.20373
https://doi.org/10.1016/j.ejor.2015.03.032
https://doi.org/10.1016/j.ejor.2015.03.032
https://doi.org/10.1109/TASE.2012.2198642
https://doi.org/10.1109/TASE.2012.2198642


A First extension: non uniform relocations

Suppose that moving some containers has a higher cost than other containers, i.e. let Rd be the cost
of relocating container d. Then CRP-I can be used to solve this problem just by considering the same
constraints and the modified objective function:

Min

(
N−1∑
n=1

C∑
d=n+1

Rd × an,n,d +

C∑
d=N+1

Rd × bd

)
.

B Second extension: minimizing crane travel time

In this version of the CRP, the goal is to minimize the travel time of the crane (still in the restricted
setting). This extension requires that we are given:

• the initial position of the crane. We suppose here that the crane starts at the position where it
delivers containers to trucks (also called the I/O-point). This can easily be extended to any starting
position.

• t(1)s,r (respectively, t
(2)
s ), the time to relocate a container from stack s to stack r (respectively, the

time to retrieve a container from stack s).

In order to extend CRP-I to this case (same as in Ünlüyurt and Aydın (2012)), we need to withdraw
variable b and Constraint (8), take N = C and introduce the binary variable:

∀ n ∈ {1, . . . , N − 1}, c ∈ {n+ 1, C}, s ∈ {1, . . . , S}, r ∈ {1, . . . , S},

zn,c,s,r =

{
1 if container c “goes” from stack s to stack r when n is the target container,

0 otherwise.

Note that zn,c,s,s = 1 means that container c is not relocated when container n is the target container,

hence for the sake of clarity, we define t
(1)
s,s = 0. CRP-I can be adapted for minimizing crane travel time

as follows:

Min

(
N−1∑
n=1

C∑
c=n+1

S∑
s=1

S∑
r=1

2× t(1)s,rzn,c,s,r +
N∑

n=1

S∑
s=1

2× t(2)s an,C+s,n

)

s.t.

(1)− (7), (9)− (13)

S∑
r=1

zn,c,s,r = an,C+s,c, ∀ n ∈ {1, . . . , N − 1}, c ∈ {n+ 1, . . . , C}, s ∈ {1, . . . , S} (16)

S∑
r=1

zn,c,r,s = an+1,C+s,c, ∀ n ∈ {1, . . . , N − 1}, c ∈ {n+ 1, . . . , C}, s ∈ {1, . . . , S} (17)

zn,c,s,r ∈ {0, 1} ∀ n ∈ {1, . . . , N − 1}, c ∈ {n+ 1, C}, s ∈ {1, . . . , S}, r ∈ {1, . . . , S} (18)
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The objective function is the total travel time of the crane, the first term accounts for relocations and
the second term for retrievals. Moreover, we only have to add three types of constraints. Constraint (16)
ensures that container c starts at stack s only if it is stack in s when n is the target container. Similarly,
Constraint (17) enforces that container c ends at stack s only if it is in stack s when n + 1 is the target
container. Finally, variable z is binary given Constraint (18).

C Third extension: the “relaxed restricted” CRP

Inspired from the unrestricted CRP which allows for relocations from a stack not containing the
target container, also called cleaning moves (see Caserta et al. (2012), Petering and Hussein (2013)), we
propose here a simpler variant called the “relaxed restricted” CRP, where one cleaning move is allowed
per container and per retrieval. In this version, CRP-I uses an extra type of variable defined as

∀ n ∈ {1, . . . , N − 1}, c ∈ {n+ 1, C},

xn,c =

{
1 if container c is relocated when n is the target container,

0 otherwise.

CRP-I can be adapted to the relaxed restricted case as follows:

Min

(
N−1∑
n=1

C∑
c=n+1

xn,c +
C∑

d=N+1

bd

)

s.t.

(1)− (8), (13)− (14)

an+1,d,c 6 an,d,c + xn,c,

∀ n ∈ {1, . . . , N − 1}, c ∈ {n+ 1, . . . , C}, d ∈ {n+ 1, . . . , C + S} \ {c}
(9’)

an+1,d,c > an,d,c − xn,c,
∀ n ∈ {1, . . . , N − 1}, c ∈ {n+ 1, . . . , C}, d ∈ {n+ 1, . . . , C + S} \ {c}

(10’)

xn,c + an,C+s,c + an+1,C+s,c 6 2,

∀ n ∈ {1, . . . , N − 1}, c ∈ {n+ 1, . . . , C}, s ∈ {1, . . . , S}
(11’)

xn,c + xn,d + an,c,d + an+1,c,d 6 3,

∀ n ∈ {1, . . . , N − 1}, c ∈ {n+ 1, . . . , C}, d ∈ {n+ 1, . . . , C} \ {c}.
(12’)

xn,c > an,n,c, ∀ n ∈ {1, . . . , N − 1}, c ∈ {n+ 1, . . . , C} (19)
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an,c,d + an,e,f + an+1,e,d + an+1,c,f 6 3 + an,e,d,

∀ n ∈ {1, . . . , N − 1}, c, e ∈ {n+ 1, . . . , C + S}, d, f ∈ {n+ 1, . . . , C}, c 6= d 6= e 6= f,
(20)

xn,c ∈ {0, 1} ∀ n ∈ {1, . . . , N − 1}, c ∈ {n+ 1, C} (21)

First, an,n,c has to be replaced by xn,c. Moreover, we only have to add three types of constraints. Con-
straint (19) enforces that containers that are blocking the target container must be relocated. Constraint
(20) ensures the LIFO policy holds for two different stacks. Consider two distinct stacks with at least
one container in each (hence, two containers in each with the artificial container). Let c, d (respectively,
e, f) be the containers in the first (respectively, second) stack with c (respectively, e) being below d (re-
spectively, f). If these containers are indeed in two different stacks (i.e. ae,d = 0), then Constraint (20)
enforces that both c below f and e below d are not compatible after n has been retrieved. Finally, Con-
straint (21) ensures that variable x is binary. As a final remark, the relaxed restricted CRP is of interest
for practice as it is very hard for port operators to perform several cleaning moves of one containers during
busy periods. Even though, if theoretically in the unrestricted CRP, a container may be relocated more
than once when n is the target container, we have noticed by comparing results with Petering and Hussein
(2013), on small instances of Caserta et al. (2009) for S = 4, 5 and T = 3, 4, that the optimal solutions
of the relaxed restricted CRP were also optimal for the unrestricted CRP. Future research questions in-
clude finding theoretical conditions under which the relaxed restricted optimal solution is also optimal for
the unrestricted CRP. Another interesting question would be to adapt the binary encoding to the fully
unrestricted setting.
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