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Abstract—Traffic forecasting is increasingly taking on an
important role in many intelligent transportation systems (ITS)
applications. However, prediction is typically performed for
individual road segments and prediction horizons. In this study,
we focus on the problem of collective prediction for multiple road
segments and prediction-horizons. To this end, we develop various
matrix and tensor based models by applying partial least squares
(PLS), higher order partial least squares (HO-PLS) and N-way
partial least squares (N-PLS). These models can simultaneously
forecast traffic conditions for multiple road segments and
prediction-horizons. Moreover, they can also perform the task
of feature selection efficiently. We analyze the performance of
these models by performing multi-horizon prediction for an urban
subnetwork in Singapore.

I. INTRODUCTION

Advancements in sensor technologies have helped

intelligent transportation systems (ITS) to improve the

efficiency of existing transportation infrastructure [1]. Traffic

prediction is important for many ITS applications such

as route guidance, urban traffic control and management,

and sustainable mobility [1]–[3]. Consequently, traffic

prediction has garnered considerable attention in the field

of transportation studies [4]–[13]. However, these studies,

mostly focus on the development of separate prediction

models for each road segment and prediction horizon. Traffic

parameters such as speed, flow and travel time tend to be

influenced by traffic conditions on the neighboring roads

[14], [15]. These relationships are sometimes incorporated in

forecasting models to improve the prediction performance [4].

However, it would be highly inefficient to develop individual

prediction models in the presence of such spatial and temporal

dependencies.

Some studies [14], [16], [17] have addressed the problem

of unified models, albeit in a limited manner. The predictors

proposed in [16] and [17] are capable of performing

multi-horizon prediction using a single model. However, these

techniques still require separate models for individual links.

Lippi et. al. proposed Markov logic networks (MLN) to

perform simultaneous prediction of traffic states on multiple

roads and for multiple prediction horizons [14]. They defined

the traffic state of each road as either congested or normal,

based on a certain threshold value. To this end, they

considered the threshold value of 50 mph to classify the

traffic conditions on the roads [14]. The classification based

approach is not suitable for many ITS applications such as

route guidance, which requires continuous values of traffic

parameters. Consequently, we consider traffic prediction as a

regression problem rather than a classification problem.

We propose unified models for multi-horizon prediction

of road networks. To this end, we develop a common

low-dimensional representation for various temporal states

(past, current and future) of the road network. Future traffic

conditions tend to be dependent upon current and past states of

the road network [4]. We employ various partial least squares

(PLS) based methods to extract these temporal and spatial

dependencies. PLS based methods have found applications in

many areas such as chemometrics [18], bioinformatics [19],

[20] and neuroscience [21]. In this study, we apply these

techniques for multi-horizon speed prediction of a subnetwork.

We develop unified models for network-wide traffic prediction

by considering partial least squares (PLS) and its tensor

variants, i.e., higher order partial least squares (HO-PLS) and

N-way partial least squares (N-PLS). For analysis, we consider

a generic road network which comprises of 266 road segments.

This network contains expressway segments as well as arterial

roads.

The rest of the paper is organized as follows. In section II,

we discuss different unified prediction models based on PLS,

N-PLS and HO-PLS. In section III, we explain the data set

for this study. In section IV, we analyze the performance of

different prediction models for a generic road network. Finally,

in section V, we summarize our contributions and suggest

topics for future work.

II. TRAFFIC PREDICTION MODELS

In this section, we discuss different unified models for

collective traffic prediction. We represent the road network,

composed of p road segments, by a directed graph G =

(N,E). The road segment s j is defined as an edge on the

graph such that {s j ∈ E}
p
j=1. We define the weight of each

edge z(s j , ti) as the average speed on that road segment s j

during the time interval (ti − ∆t, ti), where ∆t = 5 minutes.



To perform prediction, traditional forecasting models try to

find the relationship fk between k-step ahead traffic state

z(s j , ti + k∆t) of the road and certain current/past traffic states

of that road s j and the neighboring roads. Let us represent the

road s j and the neighboring roads by a set Θ(s j) = {θu}
q
u=1.

The goal of the predictor would be to find the suitable

relationship function for k-step ahead prediction:

z(s j , ti + k∆t) = fk

(

z(θ1, ti)...z(θq, ti −mθq
∆t)

)

+ ε, (1)

where ε represents the residual error. We refer to this

forecasting model as the individual model. The choice of

relevant spatial Θ(s j) and temporal mθq
features greatly

influences the performance of a predictor [4]. Various methods

have been proposed to extract relevant temporal features

[17], [22], [23]. However, these methods are computationally

intensive. Moreover, optimal selection of spatial features

remains an open problem even for simple cases such as

expressway networks [4].

In this study, we focus on an alternate approach to tackle

the problem of traffic prediction. Instead of developing models

for individual links and prediction horizons, we develop a

unified model for the entire network and different horizons.

For this purpose, we represent the current traffic conditions at

time ti on the road network by a row vector ac(ti) ∈ R
1×p

where ac(ti) = [z(s1, ti) ... z(sp, ti)]. We represent a certain

past traffic state of the network by al(ti) ∈ R1×p where

{al(ti) = [z(s1, ti − l∆t)...z(sp, ti − l∆t)]}
ml

l=1 and ml represents

the maximum lag value. We combine these current and past

states of the network to obtain the feature vector x(ti) at time ti,

such that x(ti)= [ac(ti) a1(ti)... aml
(ti)]. Let us now consider the

future traffic states of the road network. We represent the k-step

ahead traffic state of the network by the row vector gk(ti) ∈
R

1×p, where {gk(ti) = [z(s1, ti+k∆t) ... z(sp, ti+k∆t)]}
mk

k=1 and

mk represents the maximum prediction horizon. Network-wide

traffic state for multiple future horizons {k}
mk

k=1 will then be

y(ti) = [g1(ti) ... gmk
(ti)]. The unified prediction model at time

ti can then be represented as:

y(ti) = x(ti)B+ e, (2)

where B ∈Rh1×h2 can be considered as the relationship matrix

with dimensions h1 = p(1+ml) and h2 = pmk and the row

vector e ∈ R1×h2 contains the errors. We refer to this model

as the unified model. It may seem that both (1) and (2)

represent similar prediction models. In fact, the individual

model might seem more attractive as it incorporates a richer set

of relationship functions. However, for individual model, we

need to develop separate predictors for each link and prediction

horizon. Moreover, we also need to extract appropriate set of

spatial and temporal features for each predictor. Due to the

inherent difficulty in extraction of optimal spatial feature, most

individual models only utilize temporal features [4].

In the unified model, we learn the network-wide relation

between the input features and future network states. Traffic

states of different roads in a network tend to influence each

other. These relationships can be helpful in the development

of low-dimensional representations even for generic networks

[24]–[26]. In the unified model, we extend the notion of

low-dimensional models to include the state of the network

during different time instances (past, current and future). We

develop a unified low-dimensional model by linking the future

and current/past traffic states of the road network with the

help of relationship matrix B. To this end, we apply PLS to

obtain the these low-dimensional patterns and calculate the

relationship matrix B in (2). For HO-PLS and N-PLS, we

consider the tensor variant of (2) to perform traffic prediction.

We utilize these models to perform network-wide prediction

for multiple horizons. As a result, we do not have to extract

suitable features for each link and prediction horizon. We now

briefly explain different matrix and tensor based unified models

for traffic prediction.

A. Partial least squares

To perform prediction at time ti, we need to learn the

relationship matrix B, between the future traffic conditions

y(ti) and the input features for the network x(ti). We learn

this relationship by considering the historical data. To this end,

we create a feature matrix X ∈Rmd×h1 and the corresponding

prediction matrix Y ∈ Rmd×h2 , where md is the size of

training data, h1 = p(1+ml) and h2 = pmk. We will perform

prediction up to 30 minutes, hence we set mk = 6. Following

the procedure adopted by other related studies, we set the

maximum lag ml = 6 [16]. The feature matrix is obtained

by stacking the feature vectors {x(ti)}
md
i=1 such that XT =

[x(t1)
T ... x(tmd

)T]. Similarly, the prediction matrix is obtained

by stacking the corresponding traffic states for multiple future

horizons, such that YT = [y(t1)
T ... y(tmd

)T]. These matrices

can be represented by the following low-dimensional model

[20]:
X = XSXT

L +Ex,

Y = YSYT
L +Ey,

(3)

where the matrices XS ∈ Rmd×r and XL ∈ Rr×h1 contain the

score vectors and loading vectors of the feature matrix X,

respectively. Similarly, the matrices YS ∈ Rmd×r and YL ∈
R

r×h2 contain the the score vectors and loading vectors of

the prediction matrix Y, respectively. The matrices Ex and Ey

represent the error terms. The factor r represents the number

of latent components used to obtain the low-dimensional

representation, where r < min
(

p(1+ml), pmk

)

.

PLS decomposes the feature and prediction matrices with

the constraint that the resultant components maximize the

covariance between these two matrices i.e. X and Y [20], [27].

The commonly used methods to perform PLS regression are

statistically inspired modification of the PLS (SIMPLS) and

nonlinear iterative PLS (NIPALS). We chose SIMPLS as it is

faster than NIPLS [28]. By applying SIMPLS, the relationship

matrix will be Bpls = RYT
L , where R is the so called weight

matrix for X [28].

B. N-way partial least squares

The feature matrix X contains the information about the

current state ac(ti) as well as certain past states {al(ti)}
ml

l=1 of

the network. Let us represent the feature matrix X in terms of



Fig. 1: Formation of 3-way feature tensor X from the feature

matrix X.

these different temporal states such that X = [Ac A1... Aml
],

where the current matrix is AT
c = [ac(t1)

T...ac(tmd
)T] and

the different lag matrices are {AT
l = [al(t1)

T ... al(tmd
)T]}

ml

l=1.

Naturally, certain degree of correlation exists between these

temporal states. Therefore, a tensor representation might be

more suitable to extract correlations between different temporal

features. To this end, we modify the feature matrix X∈Rmd×h1

to obtain a 3-way feature tensor X ∈ Rmd×p×ht , where ht =
1 + ml or h1 = pht . The feature tensor X is obtained by

stacking together these temporal matrices {Ac,A1, ...Aml
} to

form a 3-way array (see Fig. 1). Traditional PLS methods

cannot handle multi-way arrays. Therefore, we consider N-way

PLS (N-PLS) to perform prediction with tensor based network

states. To this end, we apply a commonly used algorithm for

N-PLS modeling, which is called trilinear-PLS2 (tri-PLS2)

[21], [29], [30]. In tri-PLS2, the independent variables are

represented in the form of 3-way array, where as the dependent

variables are represented by a matrix [29]. In this study, we

apply tri-PLS2 to obtain the common patterns between the

feature tensor X and the prediction matrix Y. These patterns are

then used to learn the regression coefficients [31]. During the

rest of the paper, we will refer to this particular implementation

(tri-PLS2) as N-PLS. The low-dimensional model for N-PLS

can be written as:

X =

r

∑
i=1

λi v
(1)
i ◦ v

(2)
i ◦ v

(3)
i +E,

Y = YSYT
L +Ey,

(4)

where v
(n)
i are the column-i vectors of n-mode factor matrix

V(n), λi are scalers [27], [32] and the tensor E contains the

residuals. The matrices YS = [yS1...ySr] and YL = [yL1...yLr]
contain the score vectors and loading vectors of Y, respectively.

The symbol ◦ denotes the vector outer product. Similar to PLS,

N-PLS will decompose the feature tensor X and the prediction

matrix Y by finding a suitable common latent subspace

[27]. To this end, the algorithm performs successive rank-one

decompositions such that covariance between the scores

vectors v
(1)
i and ySi is maximized. For tensor decomposition,

Fig. 2: Formation of 3-way prediction tensor Y from the

prediction matrix Y.

N-PLS uses canonical decomposition (CP)/ parallel factor

analysis (PARAFAC). Tucker model is sometimes considered

superior to PARAFAC model for tensor decomposition [27],

[32]. In the next section, we discuss a variant of PLS which

employs Tucker decomposition to find the common subspace

between the independent and the response variables.

C. Higher-order partial least squares

Similar to N-PLS, in higher-order partial least squares

(HO-PLS) we try to find the common latent space between the

current/past network states and the future traffic conditions.

However, instead of applying PARAFAC decomposition, we

consider Tucker decomposition to obtain the low-dimensional

models for tensors. We create the feature tensor X ∈
R

md×p×ht by stacking together the temporal feature matrices

{Ac,A1...Aml
} (see Fig. 1). The prediction matrix Y is

composed of multiple future states of the road network.

Therefore, we can represent the prediction matrix as Y =
[G1 ...Gmk

], where the matrices {GT
k = [gk(t1)

T
...gk(tmd

)T]}
mk

k=1

contain the k-step ahead states of the road network during

different time instances {ti}
md
i=1. We now stack these matrices

{Gi}
mk
i=1 to obtain the feature tensor Y ∈ Rmd×p×mk (see Fig.

2). In higher order PLS (HO-PLS), we represent the feature

tensor X as the sum of rank-(1,L2,L3) tucker blocks and

the prediction tensor Y as the sum of rank-(1,M2,M3) tucker

blocks [27]. This can be expressed as:

X =

r

∑
i=1

Ci ×1 ti ×2 V
(2)
i ×1 V

(3)
i +Ex,

Y =

r

∑
i=1

Di ×1 ti ×2 W
(2)
i ×1 W

(3)
i +Ey,

(5)

where ti ∈R
md×1 is the ith latent vector, {V

(2)
i ,∈Rp×L2 , V

(3)
i ∈

R
ht×L3 ,W

(2)
i ∈ Rp×M2 ,W

(3)
i ∈ Rmk×M3}r

i=1 are the loading

matrices for their respective modes and {Ci ∈ R
1×L2×L3}r

i=1,

{Di ∈ R
1×M2×M3}r

i=1 are the core tensors. The tensors Ex

and Ey represent the residuals. In (5), ×n represents n-mode

product between a tensor and a matrix [32].



Fig. 3: Test network for performance analysis.

The block-tucker decomposition model employed in (5)

is slightly different than the standard tucker decomposition.

Nonetheless, the block-tucker decomposition can also be

represented in the standard tucker decomposition form as

follows:

X = C×1 T×2 V
(2)

×3 V
(3)

+Ex,

Y = D×1 T×2 W
(2)

×3 W
(3)

+Ey,

(6)

where T = [t1...tr], and the n-mode loading matrices

are {V
(n)

= [V
(n)
1 ...V

(n)
r ]}n∈{2,3} and {W

(n)
=

[W
(n)
1 ...W

(n)
r ]}n∈{2,3}. The core tensors C ∈ R

r×rL2×rL3

and D ∈ Rr×rM2×rM3 have block diagonal structure such that

C = blockdiag(C1, ...Cr) and D = blockdiag(D1, ...Dr) [27].

Similar to N-PLS and PLS, we will train the HO-PLS model

using historical data. We then employ the trained HO-PLS

model to perform network wide prediction for multiple future

horizons.

In this section, we have discussed various unified models

to perform network wide prediction for multiple horizons. For

comparison, we will consider support vector regression (SVR),

which is commonly used for traffic forecasting [5], [8], [10],

[11], [13], [33], [34]. We will train individual SVR models for

each link and prediction horizon. To avoid the computation cost

associated with spatial feature selection, we will only consider

temporal features for SVR [4]. In the next section, we explain

the data set used for performance analysis.

III. DATA SET

In this section, we explain the data set used in this study.

The test network consists of p = 266 road segments from the

Bedok area in southeastern part of Singapore. The network

contains sections of pan island expressway (PIE) as well as

arterial roads in the vicinity of Bedok mass rapid transit

(MRT) station (see Fig. 3). The speed data was obtained

courtesy of Land Transport Authority (LTA) of Singapore. For

analysis, we use speed data from the months of August and

TABLE I: Number of latent factors (r) used for each prediction

algorithm.

Algorithm PLS N-PLS HO-PLS

Latent Factors (r) 50 75 63

TABLE II: Time taken (in sec) to perform multi-horizon

prediction at one time instance. The network consists of 266

road segments and prediction was performed for six horizons

(5 min, ... 30 min). The time for SVR was computed by

running the SVR predictors in series.

Algorithm PLS N-PLS HO-PLS SVR

Time (sec) 0.1 0.4 0.1 7.9

September, 2011. The data represents the average speed on

each road segment with the averaging interval of 5 minutes.

We perform training on the speed data of August and analyze

the performance of the proposed algorithms by using the data

from September. We calculate percentage root mean square

distortion (PRD) to compare the performance of different

prediction methods. For matrices, we define PRD as:

PRD(%) =
‖ Y− Ŷ ‖F

‖ Y ‖F
× 100%, (7)

where Y and Ŷ are the actual and predicted matrices,

respectively. The Frobenius norm of a matrix Y ∈ RI1×I2 is

defined as:

‖ Y ‖F=

√

√

√

√

√

I1

∑
i1=1

I2

∑
i2=1

y2
i1i2

. (8)

For tensors, we define PRD as:

PRD(%) =
‖ Y− Ŷ ‖F

‖ Y ‖F
× 100%, (9)

where Y and Ŷ are the actual and predicted tensors,

respectively. The Frobenius norm of a tensor Y ∈ RI1×I2×I3

is defined as:

‖ Y ‖F=

√

√

√

√

√

I1

∑
i1=1

I2

∑
i2=1

I3

∑
i3=1

y2
i1i2i3

. (10)

In the next section, we compare the performance of the

proposed prediction algorithms.

IV. RESULTS AND DISCUSSION

In this section, we analyze the prediction performance of

the proposed algorithms for a generic road network. For PLS,

N-PLS and HO-PLS, we trained a unified prediction model for

the entire network and various horizons. For comparison, we

trained individual SVR predictors for each road segment and

prediction horizon. As discussed earlier, we only used temporal

features for SVR.
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Fig. 4: Prediction performance of different algorithms in terms of PRD for various prediction horizons.

Fig. 4 summarizes the performance of the proposed

algorithms for different prediction horizons. Table I shows

the optimal number of latent factors used for each algorithm.

PLS, N-PLS and HO-PLS perform slightly better than SVR

for longer prediction horizons (see Fig. 4b, 4c and 4d). For

the prediction horizon of 5 minutes, SVR has lower prediction

error as compared to PLS based methods (see Fig. 4a).

Amongst the PLS based methods, N-PLS achieves slightly

higher accuracy as compared to PLS and HO-PLS.

Table II shows the time required for each method to

perform multi-horizon prediction at one time instance for

the entire network. The simulations were performed on a

24 core 2.64GHz CPU with 32 GB RAM. However, for

standardized comparison, only one core was used. Moreover,

no parallelization was done for SVR based predictors.

As we trained individual SVR models for each link and

prediction horizon, hence the processing time for SVR can be

substantially improved by running multiple parallel threads.

Interestingly, the processing times for PLS based methods are

similar to those reported for models presented in [16], [35].

However, these studies developed customized models which

are not readily available. Therefore, a direct comparison is not

possible.

Let us now briefly discuss the problem of scalability of

unified models for large road networks. The processing times

seems to indicate that PLS, N-PLS and HO-PLS can also be

used to perform real-time prediction for large-scale networks

(see Table II). However, computational complexity of all three

methods increases quadratically i.e. O(p2) with the network

size p. Similarly the memory requirement also increase by

O(p2). On the other hand, complexity of SVR (with temporal

features) increases linearly i.e. O(p) with the network size p.

Hence, the unified models based on PLS, N-PLS and HO-PLS

may not be feasible for large-scale networks.

In summary, we can state that the unified models achieve

similar prediction accuracy as compared to the individual

models (see Fig. 4). Moreover, for moderately sized networks,

unified models based on PLS, N-PLS and HO-PLS can predict

faster than traditional SVR based models (see Table II).

However, the quadratic complexity in terms of both processing

time and memory may limit their scalability for large networks.

In such scenarios, network partition methods such as proposed

in [35] might help to improve the scalability of PLS based

prediction models.

V. CONCLUSIONS AND FUTURE WORK

Traffic prediction is increasingly becoming an important

part of many ITS applications such as route guidance and

traffic management. In this study, we considered the problem

of network-wide prediction for multiple horizons. To this

end, we developed different forecasting models based on

PLS, HO-PLS and N-PLS. We applied PLS and its tensor

variants in the context of time series prediction. We employed



these techniques to obtain a common low-dimensional model

between the current/past conditions of the network and the

future network states. We then used the low-dimensional model

to perform multi-horizon prediction for the entire subnetwork.

We analyzed the performance of the proposed methods by

performing speed prediction on a generic road network, which

consisted of expressways as well as arterial roads.

In the future, we will incorporate the effect of abnormal

traffic conditions arising due to accidents and road works in

the unified models. Another aspect of this work involves the

development of optimal network partition strategies to improve

the scalability of these models for large road networks.
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