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1. Overview and motivations 

In Beardwood et al. [3], the authors prove that for any bounded uniform i.i.d. 
random variables {X i : 1 < i < oo} with values in R 2, the length of  the shortest tour 
through {X~ .....  X,} is asymptotic to a constant times ~ with probability one (the 
same being true in expectation). In fact, this result is valid for any uniform i.i.d. 
random variables with compact support of measure one in R a, d > 2, provided 
is replaced by n (d- l)ld, the constant depending only on the dimension of  the space 
and not on the shape of the compact support. 

This theoretical result has become widely recognized to be at the heart of the 
probabilistic evaluation of the performance of  heuristic algorithms for vehicle routing 
problems. It is used as the main argument in the probabilistic analysis of partitioning 
algorithms for the traveling salesman problem (TSP) in Karp [18]. It also plays a 
crucial role in Haimovich and Rinnooy Kan [9] in which a probabilistic analysis 
of a class of  heuristics is performed for the capacitated vehicle routing problems. 
For an overview of these algorithms and related ones, the reader is referred to Karp 
and Steele [19] and Haimovich et al. [10], respectively. Another analysis of  parti- 
tioning algorithms for the Euclidean traveling salesman problem is contained in 
Halton and Terada [11 ]. More recent probabilistic analyses of heuristics for routing 
problems include the works of Bramel et al. [5] and Bramel and Simchi-Levi [4]. 
In the non-routing context, one of the earliest and nicest contributions is contained 
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in Papadimitriou [20] who, through a careful analysis of Beardwood et al.'s paper, 
is able to extract the main ideas and then provide a rigorous probabilistic analysis 
of matching heuristics. 

Because of these algorithmic applications, results of the Beardwood et al. 
type have gained considerable practical interest, and have inspired a growing interest 
in the area of probabilistic analysis of combinatorial optimization problems. In turn, 
this encouraged the development of other results of the same nature. An important 
contribution is contained in Steele [31] in which the author uses the theory of 
independent subadditive processes to obtain strong limit laws for a class of problems 
in geometrical probability which exhibit nonlinear growth. Examples include the 
traveling salesman problem, the Steiner tree problem, and the minimum weight 
matching problem. Among other problems, not in this class, but with a similar 
asymptotical behavior, is the minimum spanning tree problem and some weighted 
versions of it (see Steele [33]). Other problems of interest in transportation include 
probabilistic version of the previous problems as analyzed in Jaillet [14]. In a 
somewhat different flavor, Steele [32] generalized Beardwood et al.'s result in order 
to obtain complete convergence for the traveling salesman functional. Such an 
extension was motivated by a remark in Weide [37] showing that one needs complete 
convergence instead of almost sure convergence for the rigorous justification of 
partitioning algorithms as proposed in [ 18]. Finally, general techniques have recently 
been proposed for getting and/or extending all previous results. For example, the 
use of martingale inequalities as introduced by Rhee and Talagrand [28] is now an 
essential tool. In an effort to generalize and streamline the work of Steele [3 I] even 
further, Rhee [27] and Redmond and Yukich [24] have recently proposed less 
restrictive and more natural conditions for the derivation of limit theorems in 
geometric probability. 

For most of these analyses, the main results concern the almost sure or 
complete convergence of a sequence of normalized random variables, say Le(n)/.x[~, 
to a constant fie, as well as the convergence of the normalized means (here "P" 
is a generic symbol representing any of the problems pre-cited). Questions about 
rates of convergence for these limit laws have been raised many times in the 
literature (see for example [3, 18,31,32]). There are in fact two issues concerning 
information on rates of convergence: 

1. What is the asymptotic size of Le(n) -  ELe(n)? 

2. What can be said about the rate of convergence of the normalized means 
ELp(n)l-~-n to fit,? 

With respect to the first question, Rhee and Talagrand [29] prove that, for the TSP, 
there is a constant k such that IILrst,(n ) -ELrsp(n)ll p <_ k.x[- ~ for each p for all n. 
This interesting result indicates that Lrsp(n) is quite concentrated around its mean. 
With respect to the second question, partial results are obtained in Jaillet [13], 
who proves that IELp(n)/-vrn -f lpl  = O(1/~rn). For geometric problems in higher 
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dimension (n > 3), Alexander [1] and Redmond and Yukich [24] independently 
proved stronger results than those contained in [13]. However, the important question 
remained open: Is 1/~t-n the exact rate of convergence, or does ELe(n)l~f-n go faster 
to/~t,? In Jaillet [16] and Rhee [26], the authors independently prove that 1/-fn is 
indeed the exact rate of convergence for the minimum spanning tree and traveling 
salesman problem, respectively. In [13], an attempt is also made to find the best 
constants for these rates of convergence. 

Such considerations are extremely important in practice. Indeed, following 
Karp's paper, many results have appeared in the literature about the asymptotical 
optimality (with probability one, in probability, and/or in expectation) of heuristics 
for various problems in the area of routing and location theory. For the practitioner, 
it is important to know whether an asymptotically optimal heuristic is really 
applicable for realistic problem sizes, or whether its asymptotical behavior is only 
of theoretical importance. Obtaining the exact rate of convergence for these limit 
laws is a mandatory first step toward the general program of evaluating the error 
one makes by using an asymptotically valid formula when dealing with a finite size 
problem. Note that this second issue has also practical applications of its own, such 
as in strategic planning. In the context of routing for example, one can approximate 
the cost of serving n customers in an area of measure A by using formulas of the 
type /]~f~-,  where /3 is the appropriate limiting constant mentioned above (see 
Larson and Odoni [21] for a detailed discussion of these applications). One of the 
persistently important open problems in this area is the determination of the exact 
value of the constant for any interesting functional. Progress has been made by 
Avram and Bertsimas [2], who have recently obtained an exact expression (as a 
series expansion) for the MST constant when the points are drawn uniformly from 
the torus. The authors use the torus in order to avoid boundary effects and obtain 
tractable derivations. They also conjecture that their resulting constant is in fact the 
same as for the traditional cube model. A proof of this conjecture is contained in 
Jaillet [15], who shows that the length of the optimal solutions for all previous 
problems in the torus and cube models are almost surely asymptotically equivalent. 

In this paper, we present some of these results as well as the main ideas and 
techniques behind the proofs. Our goal is not to be encyclopedic, but to give an 
overview of the most popular techniques employed in this field. In sections 2 and 
3, we provide the necessary notation and discuss classical results. Then we present 
results on rates of convergence in section 4, and finally on the estimation of constants 
in section 5. In the last section (section 6), we briefly discuss other topics and list 
some open problems. 

2. Notations 

The (geometric) traveling salesman problem and (geometric) minimum 
spanning tree problem consist of finding the shortest tour and shortest spanning tree 
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through a given finite set of  points of the two-dimensional  real space R 2. The  
distance between two points x i and xj is taken to be either the ordinary Euclidean 
(/2) metric I l x i -  x~ll 2 or the right-angle (ll) metric Ilx~ -gil l  1. We are concerned here 
with four stochastic versions of  these problems. 

The first stochastic model  assumes that the posit ions of the points,  X;, 
1 < i <  0% are uniformly and independently distributed in [0, 1] 2 and is referred 
hereafter as the "uniform square" model. This is the most  studied model.  However,  
other models  can be useful for the purpose of analysis. 

The second stochastic model  eliminates the boundary effects of the previous 
one. As we will see later in this paper, this is useful in order to obtain tractable 
analytical derivation for the limiting constant flMsr, or to speed up the est imation 
of  the constant  fie by numerical  simulation. The sequence of  points is considered 
modulo  1 in each component .  Alternatively, one can think of  a sequence on the 
torus T 2 = ([0, 1] mod I)2 (intuitively, the torus is obtained by identifying opposite 
faces of the square). The Euclidean distance between two points xi and xj is now 
taken to be II {xi-x~} (modl)2ll2 (where, for y ~ [ -1 ,  1], y (mod 1) is the min imum 
of l yl and 1 - l Y l ) .  This is the "uniform torus" model. 

Finally, the third and fourth models correspond to a "poissonizat ion" of the 
first and second model,  respectively. More precisely, points correspond to a Poisson 
point  process rrn of  intensity n t imes the Lebesgue measure over [0, 1] 2, or over  the 
toms.  Let N,, be a Poisson random variable with parameter  n representing the 
number  of  points of  this process in [0, 1] 2. 

L (t) :n ~ and L ~ s r ( n )  will denote the length of  the shortest Lrsp(n) ,  LMsr(n), rst,~ :, 
tour and shortest spanning tree through {X1,X2 . . . . .  X~} in the first and second 

L (t) :N ~ model,  respectively. Finally, Lrsp(Nn), LMsr(Nn), rsp~ n:, and L~sr(N,O will denote 
the length of the shortest tour and shortest spanning tree through N n in the third and 
fourth model,  respectively. 

3. Classical results 

3.1. COMBINATORIAL PROPERTIES 

Let us first present two results, common  to the above, that are fundamental  
in the development  of asymptotic analyses and in the design of heuristics. We use 
the min imum spanning tree problem as a specific example. 

LEMMA 1 

Consider  X = {xi : 1 < i < oo} to be an arbitrary infinite sequence of  points in 
[0, 1] 2, and let x Cn) = {xl, x2 .. . . .  xn} be its first n points. Let {Qi : 1 < i < m 2 } be a 
partition of  [0, 1] 2 into m 2 squares with edges parallel to the axes and of  side length 
1/m. Then there exists a constant k I such that 
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m 2 

Lust  ( x (")) < ~,  LMsr ( x (n) O Qi ) + klm. 
i = !  

(1) 

Proof 
The classical argument  has its origin in [3, l emma 1] and has been used 

subsequently in many papers. Consider  the fol lowing tree construction connect ing 
x (~) (see figure 1 for an illustration): first construct optimal trees connecting x (~) n Oi 
for 1 < i < m 2. Then,  in each square Qi where x (') n Qi is not empty, choose one 
point as a representative and finally construct  an optimal tree connect ing the set S 
of all representatives (at most  m 2 points). The combinat ion of  the small trees 

(n) together  with the large tree gives a spanning tree connect ing x of  length 
Y~-~I LMST (X (n) n Qi ) + LMsr (S). Now it is easy to show (see [7]) that there exists 
a constant  k 1 such that LMsr(S) < kl ~/IsI, and this establishes (1). [ ]  

LEMMA 2 

Consider  x = {xi : 1 < i < ~} to be an arbitrary infinite sequence of points in 
[0, 1] 2, and let x (~) = {xl,x2,...,x~} be its first n points. Let {Qi: 1 < i < m  2} be a 
partition of [0, 1] 2 into m 2 squares with edges parallel to the axes and of  side length 
1/m. Then there exists a constant k 2 such that 

m 2 

LMSr(X (n)) > ~ ,Lgsr ( x (n )n  Qi) -k2m.  
i = 1  

(2) 

Proof 
The argument for proving (2) is also classical and is adapted from [3, l emma 2] 

(see figure 2 for an illustration). Let T* be an optimal tree through x (n) and let us 
suppose that x (n) n Qi is not empty. Let T/* = T* n Qi and let T/j for 1 < j  < #i 
(#i < [ x(n) n Qi[ ) be the connected pieces of T/* which contain at least one e lement  
o f x  (n). Let l i be the total length of  all these connected pieces. By using some portion 
of the perimeter  of Qi, one can connect  endpoints of these pieces (lying on the 
perimeter  of  Qi) in order to form a tree spanning x (~) n Qi. Now, the additional 
points, used for this connection,  lie outside of  the convex hull of  x (n) n Qi. Hence, 
we have LMsr(X (n) n Qi) < li + per(Qi) = li + 41m. By summing  both sides for all i, 
we get the validity of  (2), with k2 = 4. [ ]  

3.2. ASYMPTOTIC ANALYSIS 

The results of  an asymptotic analysis for the geometric  random problems 
discussed in this paper usually concern the derivation of  strong limit laws in the 
fol lowing sense. Again we use "P"  as a generic symbol representing any of  the 
previous problems. 
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(i) Find MST trees in the subsquares 

Ii l /m 

Y 
\ Ii 11m 

(ii) Patch the MS'I" trees together by 
connecting their representatives 

Figure 1. Tree construction on x (hI in [0, 1] 2. 

THEOREM 1 

Let (Xi)i be an infinite sequence of points independently and uniformly 
distributed over [0, 1] 2. Then there exists a positive constant fit" such that: 

lim Lt,(n) n~** ~ =f i t '  (a.s.). (3) 

It is interesting to note that this result remains valid for any general distribution # 
with compact  support in R 2. If d/t,, = f (x)dx is the absolute continuous part of  the 
distribution, ~ would be replaced by ~ f(x) l /2dx.  We will not, however, discuss 
this result here and we refer the interested reader to [3,31,33] for some of  the 
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(i) Find a MST tree spanning all points 

I 

I 
I 
I 

illlilm 

~ m m 

I 
I 1 / m  

I 

(ii) Connect the components in a 
subsquare, using part of the 
perimeter 

Figure 2. Tree construction on x (") N Qt in [0, 1] 2. 

additional techniques necessary to obtain such a result. One way to prove theorem 1 
is to use, if possible, the general framework defined by Steele [31 ] about subadditive 
functionals. Before stating this result, let us give some definitions. By a functional 
• , we mean a real-valued function of the finite subsets of R z. We say that (a) 
is Euclidean if it is linear and invariant under translation; (b) • is monotone if 
~ ( y  t.I A) >_ O(A) for any y in R 2 and finite subsets A of R2; (c) • is bounded 
if var[O(X(n))] < ~* whenever  the points of  X Cn) are independent and uniformly 
distributed in [0, 112; (d) • is subadditive if whenever (Qi)l~i~m 2 is a partition of  
the square [0, t] 2 into squares with edges parallel to the axes and of length t/m, and 
whenever (xi) is an arbitrary sequence of  ~oints in R 2, then there exists a positive 
constant B such that O(x Cn) N [0, t] 2) -< E?=l I~(X(n) 0 Qi ) "1" BDI~. In [31], the author 
proves the following result: 
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THEOREM (STEELE) 

Let • be a subadditive, Euclidean, monotone and bounded functional. If (X i )  i 
is a sequence of  points independently and uniformly distributed over [0, 1] 2, then 
there exists a constant ¢p such that O(X<n)/~rn goes to q~ almost surely when n goes 
to infinity. 

It is not difficult to verify that the traveling salesman functional is Euclidean, 
monotone and bounded. The most demanding is to show that it is subadditive and 
this is a consequence of the type of results described in lemma 1. Indeed, using 
similar arguments, lemma I can be shown to hold when MST is replaced by TSP. 
Other functionals such as the Steiner tree and the minimum weight matching can 
be treated as well using this general framework. 

For functionals like the minimum spanning tree however, this general tech- 
nique does not work anymore due to the lack of monotononicity. Let us give an 
overview of some of the main techniques involved in proving such theorems when 
the functional departs from the main conditions stated above. Let us again use the 
minimum spanning tree as an example. 

The first step is to obtain the behavior of the expected value ELMsr(n). And 
this is usually done (see [3,31, 14]) by a technique of Poisson smoothing followed 
by a Tauberian argument. 

POISSON SMOOTHING 

From (1) of lemma 1, we have, starting with a Poisson point process ~Zm2 n 
on [0, 1] 2 and using an obvious scaling property, the following subadditive in- 
equality: 

ELMsT(Nm2n ) < mELMsT(N n ) + klm. (4) 

Dividing both sides of (4) by ~ ,  and using the continuity of the functional 
LMs r, one can then prove (see, for example, [31, 14]) that there exists a positive 
constant flMsr such that: 

EL Msr ( N n ) 
lim = flMSr. (5) 

TAUBERIAN ARGUMENT 

By definition of ELMsr(Nn) and the fact that Nn is a Poisson random variable 
with parameter n, we have 

e_nrtk 
ELMST (Nn) = n- I/2 LMS T (k) k! (6) 

k=O 

and thus we have 
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ELMsT(Nn ) n-l/2 ~ e-nnk 
lim = lim LMST(k) k! 

n --> ** ~ n --~ ** k = O 
- -  = f l M s ' r  • ( 7 )  

We can now use a Tauberian theorem such as the one due to Schmidt [30] (see [8]): 

THEOREM (SCHMIDT) 

If we have 

then 

if and only if 

~_~ e -  n rt k 
lim ak k---  = s, (8) 

n--~** k = O  

lim a n = s 
n . -~  oo 

lim lim inf min { a m  -- an } > 0. (9) 
e ---> O + n - h * *  n ~ m < n + e qrn 

In order to use this theorem, one first has to show that from (7) we have 

~.~ LMsr(k) e-nn k 
'~-->** k--01im ~ k! = flMSr, (10) 

and this is done using the well known fact that LMsr(n) < c~r~, where c is a 
constant (see, for example, [7]). Finally, it remains to prove that LMsr(k)l~fk verifies 
condition (9), and this can be worked out from combinatorial properties of the 
functional. 

The second step is to go from the asymptotics of the expected value to the 
asymptotics of the random variable itself. For most functionals, one of the easiest 
ways to do that is to use the technique of martingale inequalities as described in 
Rhee and Talagrand [28]. The nice feature of this technique is to usually provide 
a complete convergence result, stronger than the classical almost sure convergence. 
We refer the reader to reference [28] for a detailed and clear presentation of the 
technique. 

4. Rates of  convergence 

In this section, we present techniques contained in [13,16] for dealing with 
the following question: What can be said about the rate of  convergence of  the 
normalized means ELe(n)/~-n to fie? 

Let us again use the minimum spanning tree as an illustration. In [13], the 
results were presented for the uniform square model, but they are also valid for the 
Poisson square model. On the other hand, the exact rate of convergence of [16] has 
been proved for the Poisson model only. Hence, for reasons of homogeneity, we will 
consider the Poisson square model throughout this section. 
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4.1. UPPER BOUND 

If one follows the usual subadditivity argument as presented in the previous 
section, one can go one step further and show that ELusr(Nn) > flMsr~/-n - kl for a 
positive constant kl. Also, adapting a classical argument given in [3] for the TSP, 
one can show that ELusr (N  ~) < flusr~r~ + k2 for a positive constant k2. More 
precisely, the arguments go as follows. 

LEMMA 3 

Let Nn be the number of points of a Poisson point process ~n of intensity n 
times the Lebesgue measure over [0, 1] 2, and let L~sr(Nn) be the length of  the 
minimum spanning tree connecting these N,, points. Then we have 

I ELMsT (Nn)l~Fn - flusrl = 0(l/~r~) • (11) 

Proof  
Let us first prove that there exists a constant k~ such that 

ELMsT (Nn) > flMST ~ -- kl. 

We have seen in section (3.2) that the following inequality holds: 

ELMsT(Nm~n ) < mELMsT(Nn )+ klm. 

(12) 

Dividing both sides of (13) by m~/-m-~n, letting m go to infinity, and using the fact 
that 

lim ELMs r (Nm2 n )l m.~-m-~n = flMST, 
m... .)oo 

we obtain (12). 

Now from lemma 2, it is easy to prove, using the same kind of  arguments, 
that there exists a constant k: such that 

ELMsT(Nn ) < flMST~-ff + k 2. (14) 
[] 

In an attempt to find the best upper bound, we have obtained in [13] the 
following numerical results for the traveling salesman and minimum spanning tree 
problems in the uniform square model: 

1 E L r s e  ( n ) / 4 - n  - #rsel  <- 71~ t-~ + 21-,/-n- 1, 

I ELMsr(n)/ J-n - f lMsrl  -< 6.4/- Fn + 4.8/ t-n - 1. 

(15) 

(13) 
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4.2. EXACT RATE 

The main result of this section is the following theorem: 

THEOREM 2 

Let Nn be the number of points of a Poisson point process ~n of intensity n 
times the Lebesgue measure over [0, I] 2, and let LMsr(Nn) be the length of the 
optimal spanning tree connecting these Nn points. Then 

I ELMsr (Nn)l'v/-~ - flMSrl = e(1/4-n). (16) 

From lemma 3, it suffices to prove that there exists a positive constant c such that 

ELMST ( N n ) / ' ~  > flMST + C/afn. (17) 

Let us first replace the traditional {partitioning and patching} way of getting the 
subadditivity inequality (as in figure 1) by a recursive way. We divide [0, 1] 2 into 
four squares with edges parallel to the axes and of side length 1/2 and we solve the 
MSTP in each of them. Then we select in each (not empty) quadrant the point 
closest to the center of [0, 1] 2, and finally we construct a tree connecting these 
points (see figure 3, parts (i) and (ii)). Starting with the Poisson point process n:~ 
in [0, 1] 2, we obtain 

ELMsT(N4n ) < 2ELMsT(Nn) + k/afn, (18) 

where k is a positive constant. 
However, one needs to go one step further in order to get the desired result. 

The main idea is to improve the feasible solution, obtained from the connection of 
the four trees, by considering potential savings along the borderline of two given 
adjacent subsquares. Figure 3, part (iii), illustrates such savings. Note that there will 
be savings each time there exists a point in one of the subsquares which has its 
closest point (among ~ran) that is located in another subsquare. In order to evaluate 
the size and likelihood of these savings, let us refer to figure 4, where we show two 
concentrated balls centered on the borderline of two subsquares, of radius r and 4r, 
respectively. Now consider the following event 9/:  

There is exactly one point in region A, no point in region B, and at least 
one point in region C. 

If such an event is true, then, by connecting the point of A to one of the points of 
C, one gets savings of at least 3r - 2r = r (see figure 4(ii)). For r = a/-~-n, where 
a is any positive constant, one can always find n large enough, so that the probability 
of this event, when one considers a Poisson point process ~4n in [0, 1] 2, is greater 
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9 
(I) The four optima trees (li) Connection of the four optimal tn~es 

,3: 
,¢ 

(iii} The circles indicate areas where 
savings have been possible. 

Figure 3. Construction of a feasible solution and "post-savings". 

than or equal to a positive constant, say a. Along the side of  two adjacent squares 
(of length 1/2), one can pack at least [-vt-ff/(8a)/ non-overlapping, and thus inde- 
pendent, such combinations of  two concentric balls. The expected total savings will 
then be bounded from below by 

a(al.vt-n) ( [-vt-n/(8a)J ) > c l ,  (19) 

where cl is a positive constant. Instead of [18], we now have 

ELMsT( N4n ) <. 2ELMsT( Nn ) + kl'vt-n - c] , (20) 

which implies that, for any positive constant c < ci, there exists n(c) large enough 
such that for all n > n(c), 
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Subsquare t 

~ A  
INtB 
~ c  

Subsquare I1 

4 r  

(i) Two concentric squares centered 
on the border of t~o subsquares 

Sutrsquare 1 

D c  

Subsquare I1 

4r  

(i) Exchange of t~o edges with 
savings of at least r 

Figure 4. Conditions for savings. 

ELMsT(N4n ) < 2 E L M s T ( N n ) -  c. (21) 

By using this inequality recursively, we get 

ELMsT(N4- .  ) < 2 m ELMsr(Nn ) - c(2 m - 1). (22) 

Dividing each side by 4a~"~n, and letting m go to infinity, we finally get the desired 
result. [] 

5. Estimation of constants 

As discussed in the introduction, an important open problem is the deter- 
mination of the exact value of the limiting constant for any interesting functional. 
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For example, the TSP constant is not known, and has only been estimated 
numerically by simulation. The value for first, is currently believed to be around 
0.72 (Johnson [17]). 

In this section, we first present some results for the Euclidean metric and then 
give bounds between constants under Euclidean and right-angle metrics. 

5.I. THE MST CONSTANT 

From geometrical arguments, Gilbert [7] has proved that 0.5 < flMsr < ~/212. 
The numerical estimation of flMsr has given successively 0.68, 0.656, 0.62 . . . . .  As 
mentioned in the introduction, Avram and Bertsimas [2] have recently obtained an 
exact expression (as a series expansion) for the MST constant in the toms model. 
The result goes as follows: 

THEOREM 3 

Let {Xi: I < i < oo} be a sequence of points independently and uniformly 
distributed over the toms. Then the limiting constant for the minimum spanning tree 
problem is given by: o o  

1"4 tOrus l k ~ l l f f k ( Y )  dy ' 
= 2 = - i  

0 
where fl (Y) = e-Y, and for k > 2, 

yk-I g 
fk(Y) = / r k ~  L 1)! } e(-Ylu)lg~(u° ..... uk-t)dUl ...dUlc-1, (23) 

~k 

where the integration is performed on the set ~k of all points { 0 ..... Uk-l } of 
the toms (u 0 being the "center" of the toms) such that the spheres S(uj, 112), 
0 < j  < k -  1, form a connected set and gk(uO ..... Uk-l) is the volume of UjS(uy, 1). 

In order to prove this theorem, Avram and Bertsimas directly analyze the 
greedy algorithm, which solves the MST exactly. Their approach is general and is 
based on a set of conditions to be satisfied. We however refer the reader to [2] for 
details. The authors conjectured that their resulting constant is the same as for the 
traditional square model. 

In [15], we prove this conjecture by showing that the lengths of the optimal 
solutions in the toms and square models are almost surely asymptotically equivalent. 
More precisely, the following theorem is obtained: 

THEOREM 4 

Let {Xi: 1 < i < oo} be a sequence of points independently and uniformly 
distributed over [0, 1] 2. Then for the MST we have 
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(t) 
lim EMST(n) lim LMsr(n)= flMSr (a.s.). (24) 

The idea behind the proof is first to show that in an optimal spanning tree 
(in the square and/or toms), the length of the largest edge cannot be too large. This 
can then be used to show that the solutions in the square and in the torus can differ 
only in the vicinity of the boundary of the square, and in a quantity small enough 
compared to a/-ff for large n. Let us present some of these steps in more detail, and 
in a general format. 

Let us consider a problem (generically labeled "P"), defined on an undirected 
graph G = (V, E) with positive weighted edges, which requires finding, among all 
feasible subsets of edges, a subset of minimum length (the length of a subset of 
edges being the sum of the length of the edges belonging to this subset). Consider 
the problem defined in the plane, and let Le(n) be the length of an optimal solution 
through n random points in the square. For an arbitrary sequence (xi) in the toms, 
let :E~t)(x (n)) be the set of edges belonging to the optimal solution. Suppose we are 
interested in comparing Lp(n)ln c and L~,)(n)/n c for a given positive constant c. 

The following properties are sufficient for showing that, for a sequence of 
points independently and uniformly distributed over [0, 1] 2, these quantities are 
almost surely asymptotically equivalent. 

1. (Bounded degree.) For any x ~n) = {xl, x2 ..... x,,}, the degree of each point in 
E~/)(x ~n)) is bounded by a constant D. 

2. (Bounded passage from torus to square.) Among :E~t)(xC")), let k be the number 
of edges (xi, xj) such that II {xi- x j} (mod 1)all 2 < Ilxi- gill 2. Then there exists 
a feasible solution to the problem in the square, of length bounded from 
above by Lg)(x (n)) + O(kC). 

3. (Probabilistically small largest edge.) For {Xi: 1 < i < oo}, a sequence of 
points independently and uniformly distributed in the torus, the largest edge 
is such that, for all e > 0 ,  Y~*__lP(eg)(x on)) > e) < ~. 

As an application, one can show that the traveling salesman problem and the 
minimum spanning tree problem verify these conditions with c = 1/2. Conditions 
1 and 2 are easily checked. Condition 3 is the most demanding. As an illustration, 
let us take the minimum spanning tree problem. In [15], we have shown that the 
asymptotic growth of the largest edge in an optimal spanning tree is given by the 
following result: 

LEMMA 4 

Let {Xi: 1 < i<**}  be a sequence of points independently and uniformly 
distributed over [0, 1] 2. Then for the corresponding MST in the toms, the length 
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of the largest edge, g~sr(n), is, for n sufficiently large, 

(25) 

In order to prove such a result, we need two intermediate results. First, let m be 
a positive, integer, and (Qj)l~j~m~ be a partition of the square [0, 1] 2 into squares 
with edges parallel to the axes and of length l lm. If for a sequence of points 
{xi" 1 < i < ~} ,  x (~) rl Qi is not empty for all j, then the MST in the toms is such 
that 

g(t) ix(n)) < t ~  (26) 
MST~ m 

Second, assume now that {Xi : 1 < i < o,,} is a sequence of points independently and 
uniformly distributed over [0, 1] 2. If Nj denotes the cardinality of X (~) N Qj, then 
we have, f o r h > 1 2 a n d n > 3 ,  

m 2 
P('v'j, Nj > ntm 2 - 4hn logn(m 2) ) > 1  2nhl 4 . (27) 

The result (25) can then be obtained from (26) and (27). We refer the reader to the 
paper [15] for a detailed presentation of the proofs. 

5.2. THE R I G H T - A N G L E  M E T R I C  

All the results developed in this paper would remain valid under the Ii 
metric, but the limiting constants would be different. Nevertheless, there is a close 
relationship between the two metrics for all the problems mentioned in this paper. 
Let us take the traveling salesman problem as an example. Let flrrs P be the limiting 
constant under the right-angle. Let us derive bounds between these two quantities. 
First, consider a sequence of random points in a ball, and consider an optimal 
solution under the Euclidean metric. Renumber the points so that the optimal tour 
is given by {X1 ..... Xn}. We then have 

n - 1  

L e(n) <_ II X j -  Xj+ II + II Xzll] 
j = l  

n - 1  

 (cos j+sin j)llXj- Xj+lll 2 +cos . +sin n)llxn-- Xlll2, (28) 
j = l  

where ~j is the angle between the edge (X j -Xj+O and the horizontal axis. 
By symmetry of the domain, the choice of the direction of the axes does not 

influence the optimal tour under the Euclidean metric. So it is easy to argue that 



P. Jaillet, Properties of geometric random problems 17 

for all j ,  ¢Dj and Itxj-xj+11t~ are independent, and that ¢j is uniform on [0, tt/2]. 
Hence, we have 

/r/2 

~rTSP_< first" f (cos ~ + sin 0) d¢ = 4/zrflrst, ~ 1.27first,. (29) 

0 

If one reverses the previous argument, one gets 

n - I  

Lrse(n)  <- ~ Ilxy - X j÷ l l l2+l lX ,  - Xll12 
j = l  

n - I  

= ~ II x j  - x j + l  II t/(cos ¢j + sin ¢j)  + II Xn -- Xt I1 ~/(COS 0.  + sin On ). (30) 
j = !  

The problem now is that there is no reason to think that ¢j and IlXj-Xj+lll  l __ __ are 
independent, nor that ~j is uniform on [0, ~:/2], for the optimal tour under the Ii 
metric. Nevertheless, we conjecture that 

~rse ~- ,6~sp f d~/(cos ~ - sin 9) = 2 - ~  log(1 + . ~ ) l~ ,6~s  p. (31) 

0 

From (29) and assuming that (31) is true, we would finally obtain 

(1.26first, -- ) (~r/2a/2 log(1 + a/2 ))flrs~, < fl~sp < ( 4Dr)flrse (~  1.27 flrst, ). (32) 

Such relationships between constants would also be valid for other geometric 
random problems discussed in this paper. 

6. Concluding remarks 

6.1. ON RATES OF CONVERGENCE 

The techniques and results surveyed in section 4 remain valid for other 
functionals of geometric probability. For the Steiner tree problem and the minimum 
weight matching problem, the arguments are in fact almost identical. Also, Rhee [26] 
has recently and independently proved this result for the traveling salesman problem. 
The basic idea of her proof is identical to ours, although it involves solving a 
number of significant technical problems in order to ensure that the techniques go 
through. 

For all these problems, it is natural to expect that I E L e ( n ) / f - f f - ~ e l  = 
O(l/4-ff) remains true under the uniform fixed sample size model. However, as 
pointed out in [26], this does not seem to be an easy consequence of the corresponding 
result stated under the Poisson model. The usual way to link the two models (see 
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[13] for details) is to prove that IELe(k + I) - ELe(k)l = O(1/a/-k-), which then 
implies that IELe(N, , ) -ELt , (n) l  = O(1). This last relationship is not, however, 
sufficient here and a deeper understanding of how I ELe(k + m) - ELt,(k) l behaves 
as a function of  m and k seems to be necessary for closing the gap. 

Also, if one follows carefully the proofs of section 4, one remarks that the 
exact rate of convergence is obtained on savings done along boundaries of the small 
squares. This proof would not work for the torus for obvious reasons. In fact, we 
conjecture that in the torus, the rate of convergence is faster than 1t4-~. More 
precisely, we conjecture that limn_.. ELt, (n) - fit, afff = 0. A faster convergence in 
the torus was observed empirically by Johnson [17], who has been using the toms 
model for his recent estimations of the traveling salesman problem constant. 

Finally, a persistently open question related to the issues of rates of convergence 
is the possible existence of central limit theorems for the combinatorial optimization 
problems listed in this paper. 

6.2. ON SOME REFINEMENTS 

In the course of proving the main theorem of section 5, we obtained in [14] 
several results of independent interest. For example, for n points i.i.d, uniform on 
[0, 1] 2, the length of the largest edge of the optimal MST solutions (in the square 
or torus) is almost surely asymptotically bounded from above by A(logn/n) 1/2. In 
fact, it is not difficult to show (see for example [6]) that, for a Poisson point process 
zr n with intensity n times the Lebesgue measure on [0, 1] 2, the growth of the largest 
edge is O((logn/n) 1/2 almost surely. Let us mention an interesting algorithmic 
application. For constructing an optimal minimum spanning tree through n random 
points, one does not need to consider edges with length greater than t.t(lognln) 1/2, 
for a carefully chosen constant/.t. Out of the n(n - 1)/2 edges, one needs to consider 
only O(nlog n), and thus develop faster versions of well-known algorithms such as 
Kruskal's. This scheme defines an asymptotically optimal algorithm with excellent 
theoretical convergence properties coupled with very fast practical convergence 
(with I00 points, the probability that the heuristic does not give the optimal solution 
is below 0.001). 

Also, in [36], the authors prove that for any independent and uniform random 
variables {Xi • 1 < i < oo} in [0, 1] 2, the number of vertices of degree k in the MST 
through {X~ ..... X,}, is asymptotic to a constant ak times n with probability one. 
In the case k = 1 (i.e., for the number of leaves of the MST in the square), the 
authors have shown that the constant a = tzt, 2 is positive and that Monte Carlo 
simulation results suggest that a = 2/9 is a reasonable approximation. If one attempts 
to get any more information on this constant, one rapidly finds that the boundary 
effects of the square are a serious limitation on any analytical approach. From [15], 
any attempts on characterizing these constants could be made within the torus 
model, with no boundary problems. For example, it is clear, from the symmetry 
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induced  by  the torus model ,  that ak is equal to limn~®P(/-~'°= k), where H ('0 is 

the degree  o f  any point ,  say Xl, in a minimal  spanning t ree  through {XI . . . . .  Xn} in 

the toms .  
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