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Abstract

While invariances naturally arise in almost
any type of real-world data, no efficient and
robust test exists for detecting them in obser-
vational data under arbitrarily given group
actions. We tackle this problem by study-
ing measures of invariance that can capture
even negligible underlying patterns. Our first
contribution is to show that, while detect-
ing subtle asymmetries is computationally in-
tractable, a randomized method can be used
to robustly estimate closeness measures to
invariance within constant factors. This pro-
vides a general framework for robust statisti-
cal tests of invariance. Despite the extensive
and well-established literature, our method-
ology, to the best of our knowledge, is the
first to provide statistical tests for general
group invariances with finite-sample guaran-
tees on Type II errors. In addition, we focus
on kernel methods and propose deterministic
algorithms for robust testing with respect to
both finite and infinite groups, accompanied
by a rigorous analysis of their convergence
rates and sample complexity. Finally, we re-
visit the general framework in the specific
case of kernel methods, showing that recent
closeness measures to invariance, defined via
group averaging, are provably robust, leading
to powerful randomized algorithms.

1 INTRODUCTION

Invariances are ubiquitous. Almost all scientific fields
study data that manifest consistent patterns that re-
main unchanged under various transformations (Bron-
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stein et al., 2017). For example, the laws of physics
exhibit invariances under coordinate changes or changes
in time, promising the universality of underlying princi-
ples (Wigner, 1949, 1964; Smidt, 2021). Traditionally,
machine learning models are designed to be invariant
with respect to the symmetries of the data by construc-
tion, leading to better computational and statistical
properties (Bronstein et al., 2017). However, in general,
prior to introducing invariances into models, either by
design or through post-processing steps, it is essential
to first verify whether the observational data is invari-
ant with respect to a given group or not, which is the
main focus of this work.

Group invariance hypothesis testing methods encom-
pass a broad range of statistical approaches, including
permutation tests and randomization tests (Westfall
and Young, 1993; Tusher et al., 2001; Anderson and
Robinson, 2001; Onghena, 2017; Hemerik and Goeman,
2021; Koning and Hemerik, 2024). These nonparamet-
ric tests examine the null hypothesis that the data
distribution is invariant under the action of a group G
of transformations (Lehmann et al., 1986). In algebraic
terms, the group G is closed under composition, con-
tains an identity element, and has an inverse for each
element g ∈ G. Koning and Hemerik (2024); Koning
(2024) and Hemerik (2024) argue that, by consider-
ing sign-flipping tests, the class of invariance tests can
be traced back to the early works of Fisher (1935);
Fisher et al. (1966) and Efron (1969). They further
extend their argument by suggesting that even stan-
dard methods, such as t-tests (Eden and Yates, 1933;
Lehmann and Stein, 1949), can be interpreted as tests
for group invariances. Testing other classes of invari-
ance, e.g., with respect to rotations that have broader
applications, has also been explored in the literature
(Langsrud, 2005; Perry and Owen, 2010; Solari et al.,
2014; Wu et al., 2010). However, our focus is on devel-
oping general methodologies rather than emphasizing
a specific class of invariance.

In this paper, we study hypothesis testing of invari-
ance, given a general topological compact group G,
which may be finite or infinite, acting on the domain of
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Invariance Type Sample Complexity

Permutation Invariance Pd O
(

d8

ϵ2 log
(
d
δ

))
Sign-Flip Invariance Fd O

(
d4

ϵ2 log
(
d
δ

))
Invariance to Cyclic Groups Z/mZ O

(
log(log(m)) log4(m)+log( 1

δ )
ϵ2

)
Rotational Invariance to SO(d) O

(
d8

ϵ2 log
(
d
δ

))
Table 1: Sample complexity of the proposed deterministic robust invariance tests (Section 7, Section 9). The test
processes d-dimensional samples, ensuring Type I and II errors ≤ δ, with ϵ defined in Equation (1).

datapoints X . We test whether the input distribution
µ ∈ P(X ) is invariant with respect to transformations
induced by G. We define the null hypothesis H0 as
the assumption that µ is the same as gµ for all g ∈ G.
The alternative hypothesis H1 is defined as the exis-
tence of g ∈ G such that D(µ, gµ) ≥ ϵ, where D is a
(pseudo)metric on the probability space P(X ). This
definition of the alternative hypothesis H1 is designed
to robustly demonstrate that µ is not G-invariant. The
threshold ϵ is introduced to ensure the distinguishabil-
ity between hypotheses H0 and H1. We formulate the
problem as follows:

Input: n independent and identically dis-
tributed (i.i.d.) samples from an unknown prob-
ability distribution µ, a group G acting on the
domain of datapoints X , a (pseudo)metric D
over the space of probability measures, and a
threshold ϵ.
Output: Either H0 or H1, where

H0 : µ
d≡ gµ for all g ∈ G.

H1 : sup
g∈G

D(µ, gµ) ≥ ϵ. (1)

The null hypothesis H0 can be equivalently rewritten as

µ
d≡ gµ, where g is drawn uniformly (according to the

left Haar measure) from the group G. The main chal-
lenge in this class of hypothesis tests is that the group
G may be infinite or finite but with a prohibitively large
size |G|. For example, for the group of orthogonal ma-
trices O(d), G is infinite, or for the permutation group

Pd, |G| = d! ∼
√
d
(
d
e

)d
. As another example, for the

group of sign-flipping matrices Fd, which are diagonal
matrices with elements in {±1}, we know that |G| = 2d.
This computational problem is amplified when search-
ing for a certificate ĝ such that D(µ, ĝµ) ≥ ϵ, which
serves as evidence for hypothesis H1. We note that for
almost every uncountable choice of the group G, the
optimization problem in Equation (1) is highly non-
convex, even assuming that the measure µ is readily
accessible and no density estimation is required.

Additionally, there exists a major statistical barrier
given the formulation of Equation (1). Recall that we
do not have access to µ directly; instead, we only have
the empirical measure µ̂ induced by n i.i.d. samples.
Therefore, we cannot directly evaluate the objective of
the optimization problem supg∈G D(µ, gµ). Instead,
we can only estimate it from the observations. The
trivial estimator supg∈G D(µ̂, gµ̂) is highly biased, and
it is not clear how to derive non-asymptotic consistency
guarantees for this estimator for general choices of
distributions µ and the group G.

Our fundamental result resolves these obstacles. We
show that there is no need to exhaustively search the
space G for such a certificate ĝ. We show that, un-
der minimal assumptions on the (pseudo)metric D,
supg∈G D(µ, gµ) is surprisingly sandwiched between
constant factors of Eg[D(µ, gµ)], where the random-
ness is induced by g drawn uniformly (according to
the left Haar measure) from the compact group G. An
informal version of this theorem is provided in the fol-
lowing, with the formal details deferred to subsequent
sections.

Theorem 1.1 (Informal version of Theorem 4.2). Un-
der the minimal assumption that the (pseudo)metric D
is shift-invariant with respect to G,

Eg[D(µ, gµ)] ≤ sup
g∈G

D(µ, gµ) ≤ 4Eg[D(µ, gµ)],

where the expectation is taken with respect to the left
Haar (uniform) measure over the compact group G.

This result is quite surprising, as supg∈G D(µ, gµ) ini-
tially appears to be computationally intractable. In-
deed, this is the case, as we show in subsequent sections.
Even for a finite group G, the exact computation of
arg supg∈G D(µ, gµ) is NP-hard, even in the benign
setting without randomness, such as when µ is a Dirac
delta measure. However, Theorem 1.1 shows that it can
be approximated within a factor of 4 by introducing
randomization, which can be efficiently estimated by
data observations. This theorem is general and holds
for many choices of the metric D (Section 4) and any
compact topological group G (including compact Lie
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groups). Given this flexibility, we propose the general
recipe in the following.

General recipe. We introduce another alternative
hypothesis H̃1, where

H̃1 : Eg[D(µ, gµ)] ≥ ϵ′, (2)

with a new threshold parameter ϵ′ that depends on ϵ.
By Theorem 1.1, non-asymptotic bounds for the Type
I and Type II errors of the newly designed test (Equa-
tion (2)) can be converted to non-asymptotic bounds
for the Type I and Type II errors of the original hy-
pothesis test (Equation (1)). Furthermore, in contrast
to the optimization problem supg∈G D(µ, gµ), the term
Eg[D(µ, gµ)] can be readily estimated from i.i.d. obser-
vations by calculating the empirical mean of D(µ, gµ).
Once again, we recall that it is generally unclear how
to estimate supg∈G D(µ, gµ) from observations while
ensuring non-asymptotic guarantees in an unbiased
manner. Consequently, to the best of our knowledge,
our methodology is the first to provide statistical tests
for general group invariances and probability distance
metrics with finite-sample guarantees on Type II errors.

Next, while our framework is general, we focus on
hypothesis testing described by H0 versus H1 for the
special case of kernel Maximum Mean Discrepancy
(MMD) distances, due to their favorable computational
and statistical properties. We propose solutions to
achieve consistent hypothesis testing for H0 and H1

with finite sample guarantees for the Type I and Type
II errors in the case of finite groups. Furthermore, we
illustrate how similar ideas can extend to infinite groups
G, by elaborating on the case of rotational invariances.
Finally, we revisit the hypothesis testing based on our
general recipe and discuss its implications by analyzing
the hypothesis test of H0 versus H̃1, as opposed to H1.
This way, we illustrate how our general recipe facilitates
testing invariances in general settings, in this case, for
the MMD distance.

The structure of this paper is as follows: we begin with
a discussion of the related work and defer a detailed
review of the preliminaries on invariances, kernels, and
measure embeddings to the appendix. Next, we discuss
robust invariance hypothesis testing for H0 versus H1

and present its computational hardness results. We
then present our constant-factor approximation result
for the general framework in Theorem 1.1 and explain
how it allows us to reformulate the problem. Further-
more, we explore the special case of the Maximum
Mean Discrepancy (MMD) distance for testing H0 ver-
sus H1, providing solutions for both finite and infinite
group settings. Finally, we revisit the MMD setting
in the context of H0 versus H̃1 and discuss its impli-
cations. We provide a rigorous analysis, confidence

intervals, algorithms, and consistency results for each
setting. Finally, we complement our theory in Theo-
rem 1.1 with experiments in Appendix F on rotational
symmetries and sign-flip invariances, demonstrating
that supg∈G D(µ, gµ) is within a constant factor of the
term Eg[D(µ, gµ)].

2 RELATED WORK

As discussed in the previous section, testing invari-
ances is a prolonged fundamental problem in machine
learning and statistics. Here, we review some of the
most recent work on this topic. In a slightly less re-
lated topic, Law et al. (2017) proposed probability
distance measures that inherently encoded invariance
to additive symmetric noise within the embeddings, to
account for measurement and data collection noises.
Bellot and van der Schaar (2021) presented testing on
set-valued data with applications in electronic health
records. Dobriban (2022) discusses the consistency of
randomization tests based on invariances for signal-
plus-noise models. Kashlak (2022) shows that specific
functions of random variables exhibit certain invari-
ances in the limit. Koning and Hemerik (2024) suggest
statistically selective deterministic group transforma-
tion testing as opposed to traditional Monte Carlo
group invariance tests based on a uniformly randomly
selected subset of the elements of the group. In a
follow-up, Koning (2024) introduce a trade-off between
the power of the test and computational complexity by
selecting a coded subgroup, a very tiny subgroup that
is not necessarily easy to find for all types of groups.
Ramdas et al. (2023) observed that, in the special case
of permutations, sampling from any subset (not neces-
sarily a subgroup) of the permutations according to an
arbitrary distribution (not necessarily uniform) suffices
for the test. Chiu and Bloem-Reddy (2023) proposed
measuring the invariance of a distribution by consider-
ing its distance to the orbit-averaged distribution. In
contrast to these works, we focus on robust hypothesis
testing, where a certificate is required for the alterna-
tive hypothesis described in Equation (1). In addition,
we discuss general remedies for invariance testing over
arbitrary compact groups.

For further discussion on related work, particularly
on invariances in machine learning and kernels, please
refer to Appendix A.

3 BACKGROUND

In this section, we provide a brief overview of the nec-
essary background for the paper, with a more detailed
discussion deferred to Appendix B.

Throughout this paper, we consider a complete metric



A Robust Kernel Statistical Test of Invariance: Detecting Subtle Asymmetries

space X and study (Borel) probability measures µ ∈
P(X ). Moreover, we consider a compact topological
group G, endowed with the (uniform) left Haar measure
α, acting continuously on X . Specifically, each group
element g corresponds to a continuous bijection on X ,
with the group operation given by function composition.
For any probability measure µ ∈ P(X ), let gµ ∈ P(X )
denote the pushforward measure under the action of
g on X . Similarly, we define µG as the distribution
of gx when x ∼ µ and g ∈ G is drawn independently
according to the left Haar (uniform) measure on G.

A probability (pseudo)metric D : P(X )× P(X ) → R
is a (pseudo)metric on the space of (Borel) probability
measures P(X ). It is called shift-invariant, if and only
if D(gµ, gν) = D(µ, ν) for any probability measures
µ, ν ∈ P(X ).

4 MAIN RESULTS

We start this section by asserting that the exact com-
putation of arg supg∈G D(µ, gµ)—even when the group
G is finite and the distribution µ is a single-point Dirac
delta distribution, meaning there is no randomness and
hence no estimation is required—is computationally
intractable.

Theorem 4.1 (Computational intractability). There
exists a shift-invariant pseudometric D : P(X ) ×
P(X ) → R, a finite group G, and a discrete prob-
ability measure µ such that solving the optimization
problem arg supg∈G D(µ, gµ) is NP-complete.

The proof of Theorem 4.1 is presented in Appendix E.1.
We carefully construct a shift-invariant pseudometric
D(., .), a finite group action G, and a delta measure
µ such that finding arg supg∈G D(µ, gµ) solves a spe-
cial variant of the Travelling Salesman Problem (TSP),
which we prove to be NP-complete. Theorem 4.1 im-
plies that, even in the simplest settings, the optimiza-
tion problem of Equation (1) is computationally in-
tractable, not to mention the statistical challenges in
estimating supg∈G D(µ, gµ) from observations. Next,
we state our main theorem, which enables a randomized
approximation for supg∈G D(µ, gµ) instead.

Theorem 4.2 (Probabilistic approximation (formal
version of Theorem 1.1)). Let X be a complete metric
space and P(X ) denote the space of (Borel) probability
measures on X . Let G be a compact topological group
acting continuously on X . Consider a shift-invariant
probability (pseudo)metric D : P(X ) × P(X ) → R.
Then,

Eg[D(µ, gµ)] ≤ sup
g∈G

D(µ, gµ) ≤ 4Eg[D(µ, gµ)],

where the expectation is taken with respect to the left
Haar (uniform) measure over the compact group G.

The proof idea is to show that, due to the triangle
inequality and the shift-invariance property of the
(pseudo)metric D, the function ∆(g) := D(µ, gµ) is
sublinear, i.e.,

∆(g1g2) ≤ ∆(g1) + ∆(g2), ∀g1, g2 ∈ G. (3)

Now, letting g⋆ be the group element that attains

g⋆ := argmax
g∈G

D(µ, gµ),

by substituting g1 = g⋆g and g2 = g−1 into the sublin-
earity of ∆ in Equation (3), we infer that

∆(g⋆) ≤ ∆(g⋆g) + ∆(g), ∀g ∈ G.

Thus, for any g ∈ G, at least one of ∆(g⋆g) or ∆(g)
is at least half of ∆(g⋆), concluding the proof. The
details of the proof of Theorem 4.2 are formalized in
Appendix E.2.

Remark 4.3. The shift invariance of D with respect
to the group G in Theorem 4.2 is a general assumption
satisfied in many settings, including the Wasserstein
distance with any isometry group G; Sobolev Integral
Probability Metrics (IPMs) with any isometry group
G; Total Variation (TV) distance with any group G;
Maximum Mean Discrepancy (MMD) distance with
shift-invariant kernels; and energy distance with any
isometry group G. The list continues beyond these
examples.

One might argue that the left Haar (uniform) measure
over the compact group G is not accessible in specific
applications. Nevertheless, we can show that our re-
sults still extend to non-uniform distributions with full
support, which we formalize below.

Corollary 4.4 (Probabilistic approximation with a
non-uniform distribution). In light of Theorem 4.2, let
α be the (uniform) left Haar measure on G, assumed to
be inaccessible. Let β be an accessible but not necessar-

ily uniform distribution on G, and suppose
∣∣∣dαdβ ∣∣∣ ≤ B

for some constant B. Then,

Eg∼β [D(µ, gµ)] ≤ sup
g∈G

D(µ, gµ) ≤ 4BEg∼β [D(µ, gµ)],

where the expectation is over β on G.

The proof of this corollary follows directly from a sim-
ple change of measure and Theorem 4.2. This result
ensures that our constant-factor approximation for this
class of intractable problems remains valid even when
the uniform measure over G is inaccessible. Any mea-
sure β satisfying |dβ/dα| ≥ 1/B suffices for the ran-
domized algorithm.
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5 KERNEL MAXIMUM
INVARIANCE CRITERION
(KMAXIC)

In this section, we consider the special case of kernel
Maximum Mean Discrepancy (MMD) distances1 and
focus on proposing algorithms for the hypothesis testing
described by H0 versus H1 in Equation (1).

Let H denote the Reproducing Kernel Hilbert Space
(RKHS) of a given Positive-Definite Symmetric (PDS)
kernel K, and let µH ∈ H denote the embedding of
µ ∈ P(X ) into H. Then, consider the probability
pseudometric D(µ, ν) = MMD(µ, ν) := ∥µH − νH∥H.

The Kernel Maximum Invariance Criterion (KMaxIC)
measures closeness to invariance by uniformly bounding
the MMD distance across all group elements transfor-
mations.

Definition 5.1 (Kernel Maximum Invariance Criterion
(KMaxIC)). For any probability measure µ ∈ P(X ),
the Kernel Maximum Invariance Criterion (KMaxIC)
is defined as

KMaxIC(µ) := sup
g∈G

∥∥(gµ)H − µH
∥∥2
H,

where gµ is the shifted version of µ with respect to the
group element g ∈ G.

First, we note that KMaxIC successfully distinguishes
G-invariant measures from non-invariants:

Theorem 5.2 (Definiteness of KMaxIC). For any
probability measure µ ∈ P(X ), we have KMaxIC(µ) =
0 if and only if µ is G-invariant, assuming the kernel
is universal.

The proof of Theorem 5.2 is provided in Appendix D.6.
This result demonstrates that KMaxIC provides a well-
defined notion of distance to G-invariance for probabil-
ity measures.

In the next section, we propose solutions to achieve con-
sistent hypothesis testing for H0 and H1 (Equation (1))
with finite sample guarantees for the Type I and Type
II errors in the case of finite groups.

6 TESTING INVARIANCES VIA
KMAXIC: FINITE GROUPS

In this section, we present a deterministic hypothesis
testing algorithm for H0 and H1 in Equation (1) based
on KMaxIC. For simplicity, we first focus on finite
groups, and later we generalize to infinite groups.

1A detailed review of the theory of kernel mean embed-
dings is provided in Appendix B.

Note that KMaxIC does not admit a representation as
expectations over kernels. To overcome this challenge
in designing statistical hypothesis tests using KMaxIC,
we leverage group-theoretic properties.

We begin with the following definition:

Definition 6.1 (Generating sets). A set S ⊆ G is
called a generating set for a group G if for every g ∈ G,
there exists k ∈ N and s1, s2, . . . , sk ∈ S, such that
for each i ∈ [k], either si ∈ S or s−1

i ∈ S, and g =
s1s2 . . . sk.

Intuitively, generating sets are subsets of a group that
can generate the entire group when their elements (or
their inverses) are multiplied together. For any (not
necessarily generating) set S ⊆ G, we have the following
inequality:

KMaxIC(µ) ≥ max
g∈S

∥∥(gµ)H − µH
∥∥2
H.

However, with generating sets S ⊆ G, we can establish
a converse to the above inequality.

Theorem 6.2 (Definiteness of KMaxIC via generating
sets). Assuming the underlying kernel used to define
KMaxIC is universal, for any arbitrary generating set
S ⊆ G and any probability measure µ ∈ P(X ), if

max
g∈S

∥(gµ)H − µH∥2H = 0,

then KMaxIC(µ) = 0, which implies that µ is G-
invariant.

The proof of Theorem 6.2 is provided in Appendix D.7.

This result suggests that it is sufficient to test over
a generating set rather than the entire group. Gen-
erating sets typically have much smaller cardinality
compared to G, leading to significant reductions in
sample complexity. In fact, one can show that:

Proposition 6.3 (Size of generating sets). Any finite
group G has a generating set S ⊆ G of size at most
log2(|G|).

The proof of Proposition 6.3 is presented in Ap-
pendix D.8. Therefore, to test whether a probability

measure isG-invariant, we can estimate
∥∥(gµ)H−µH

∥∥2
H

from data for each g ∈ S.

Proposition 6.4. For any g ∈ G and any probability
measure µ ∈ P(X ), we have∥∥(gµ)H−µH

∥∥2
H = 2Ex,x′ [K(x, x′)]− 2Ex,x′ [K(x, gx′)],

where x, x′ ∼ µ are independent random variables.

The proof of Proposition 6.4 is provided in Ap-
pendix D.9. This identity leads to Algorithm 1.



A Robust Kernel Statistical Test of Invariance: Detecting Subtle Asymmetries

Algorithm 1 Testing Invariance via KMaxIC

Input: n i.i.d. samples xi ∼ µ, i ∈ [n], a generating
set S ⊆ G, and a threshold c ∈ (0,∞).

1: For each g ∈ S, compute:

ĉg =
4

n(n− 1)

n∑
i,j=1
i<j

K(xi, xj)

− 4

n(n− 1)

n∑
i,j=1
i<j

K(xi, gxj).

2: if max
g∈S

ĉg ≤ c then

3: return There is not enough evidence to reject
the null hypothesis H0 that µ is G-invariant.

4: else
5: return H1: µ is not G-invariant.
6: end if

The total runtime of Algorithm 1 on n samples is
O(n2|S|), assuming that the kernel function can be com-
puted for each pair of points in constant time. Thanks
to Proposition 6.3, the time complexity is logarithmic
in the group size when an appropriate generating set
is used, without the need to sample from G. The time
complexity can be further reduced to O(n|S|) by re-
placing the U-statistics above with empirical estimates
over disjoint pairs of independent samples.

6.1 Confidence Intervals for KMaxIC

In this section, we provide confidence intervals for Al-
gorithm 1. To begin, we introduce the following defi-
nition. For any generating set S ⊆ G, let ℓ(S) denote
the maximum length of the minimal representations
of group elements g ∈ G as products of elements (or
inverses of elements) from S. This quantity is crucial
in the confidence intervals derived for the parameter c
in Algorithm 1.

Theorem 6.5. Consider Algorithm 1 ran on n samples
from a G-invariant probability measure µ. Then, the
probability of the Type I error (i.e., incorrectly rejecting
the invariance to G) is bounded as

P
(
H1|H0

)
= P

(
max
g∈S

ĉg > c
∣∣∣ µ is G-invariant

)
≤ |S| exp

(
− nc2

128c21

)
,

where c1 := supx∈X K(x, x). Moreover, the Type II
error, which is the probability of incorrectly accept-
ing a non-invariant measure using Algorithm 1, ap-
proaches zero as the sample size increases. Quantita-
tively, for any probability measure µ ∈ P(X ), such that

KMaxIC(µ) ≥ 2c′ > cℓ(S)2, we have

P
(
H0|H1

)
= P

(
max
g∈S

ĉg ≤ c
∣∣∣ µ is not G-invariant

)
≤ exp

(
−

n
(

2c′

ℓ(S)2 − c
)2

128c21

)
.

The proof of Theorem 6.5 is presented in Appendix E.3.
The theorem allows us to conclude:

Corollary 6.6. For any ϵ, δ > 0 and any finite group
G, Algorithm 1 can distinguish G-invariant probabil-
ity measures from non-invariant probability measures
with KMaxIC(µ) ≥ 2ϵ, with probability at least 1 − δ,

given n ≥ 128c21ℓ(S)
4

ϵ2
log

(
|S|
δ

)
i.i.d. samples, via

the threshold c =
ϵ

ℓ(S)2
. In other words, the sample

complexity of Algorithm 1 is O
(
ℓ(S)4

ϵ2
log

(
|S|
δ

))
.

In the next section, we provide detailed explanations
about how to achieve appropriate generating sets for
different finite groups to evaluate the results. Note
that the runtime of Algorithm 1 scales linearly with
|S|, which requires small generating sets, while the
sample complexity depends on ℓ(G), which must also
be small.

Remark 6.7. Algorithm 1 provides a hypothesis test
with the confidence level (i.e., the Type I error) δ
for the null hypothesis that µ is G-invariant with the

acceptance threshold c =

√
−128c21

n
log

(
δ

|S|

)
, where

c1 := supx∈X K(x, x). Moreover, the Type II error (i.e.,
the probability of incorrectly accepting a non-invariant
measure using Algorithm 1) vanishes as the sample size
increases, as shown in Theorem 6.5. Hence, the test in
Algorithm 1 is consistent, in the statistical sense.

7 EXAMPLES AND APPLICATIONS
TO FINITE GROUPS

In this section, we evaluate the performance of Algo-
rithm 1 across several well-known finite groups from
the literature by computing their generating sets and
analyzing their sample complexity.

7.1 Permutation Invariance Testing

To apply Algorithm 1 to the permutation group Pd, we
need to find generating sets S ⊆ Pd that minimize both
|S| and ℓ(S). To this end, we define σi := (i i + 1)
for each i ∈ [d− 1], meaning that σi swaps element i
with i+ 1 while leaving the other elements unchanged.
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We then consider the following generating set:

S⋆ :=

{
σi ∈ Pd : i ∈ [d− 1]

}
. (4)

Proposition 7.1. The set S⋆ ⊆ Pd, defined by Equa-
tion (4), is a generating set for Pd and satisfies

ℓ(S⋆) ≤ d(d− 1)

2
.

The proof of Proposition 7.1 is presented in Ap-
pendix D.10. This shows that one can use Algorithm 1
to test permutation invariance with sample complexity

n = O
(
d8

ϵ2
log

(
d

δ

))
.

7.2 Sign-Flips Invariance Testing

The group of d-dimensional sign-flips Fd consists of 2d

diagonal matrices:

Fd :=

{
A = diag(v) ∈ Rd×d : v ∈ {±1}d

}
.

Although Fd is a large group, it can be generated using
the following set:

S⋆ :=

{
A = diag

(
1d − 2ei

)
∈ Rd×d : i ∈ [d]

}
,

where ei ∈ Rd denotes the unit vector in coordinate i ∈
[d] and 1d ∈ Rd denotes the all-one vector. Moreover, it
is evident that ℓ(S⋆) = d. Therefore, using Algorithm 1,
one can test invariance to sign-flipping with sample

complexity n = O
(
d4

ϵ2
log

(
d

δ

))
.

7.3 Testing Invariances to Cyclic Groups

As a final application of testing invariance via KMaxIC,
we study the cyclic group G = Z/mZ with size m. Note
that cyclic groups are generated by only one element,
1 ∈ Z/mZ, but this is not an appropriate generating
set since it has ℓ(S) = m. To construct a generating
set with smaller ℓ(G), consider the following set:

S⋆ := [m] ∩
{
2k : k = 0, 1, . . .

}
. (5)

Proposition 7.2. The set S⋆ ⊆ G, defined by Equa-
tion (5), is a generating set for G and satisfies

ℓ(S⋆) ≤ ⌈log2(m)⌉.

The proof of Proposition 7.2 is presented in Ap-
pendix D.11. Note that this gives a much better bound

compared to the one-element generating set. Indeed,
using Algorithm 1 with S⋆ defined above provides a sta-
tistical test of invariance to cyclic groups with sample
complexity:

n = O

(
log(log(m)) log4(m) + log

(
1
δ

)
ϵ2

)
.

8 TESTING INVARIANCES VIA
KMAXIC: INFINITE GROUPS

To apply Algorithm 1 to infinite groups, we need to
find generating sets with small ℓ(G). However, unlike
finite groups, infinite groups can only have generating
sets S with ℓ(S) < ∞ when |S| = ∞. Therefore, if we
naively use a generating set S to apply Algorithm 1 to
an infinite group, we would need to test over infinitely
many group elements, which is impossible.

To resolve this issue, we fix a generating set S ⊆ G
with ℓ(S) < ∞, and then refine it to a smaller finite

set Ŝ ⊆ S that provides an appropriate covering of the
original set S. For simplicity, in this section, we focus
on matrix groups consisting of orthogonal matrices
G ⊆ O(d) acting on X ⊆ Rd. The general case follows
using a similar approach.

Definition 8.1 (Covering sets). Given S ⊆ O(d), we

say that a finite set Ŝ ⊆ S provides a γ-covering of S
if and only if

sup
s∈S

min
ŝ∈Ŝ

∥s− ŝ∥op < γ,

where ∥ · ∥op denotes the operator norm of matrices.

Using the concept of covering sets, we can apply Al-
gorithm 1 to Ŝ with provable guarantees on both the
Type I and Type II errors:

Theorem 8.2. Consider a PDS kernel K : X×X → R,
where X ⊆ Rd is a closed subset, and let G ⊆ O(d)
be an orthogonal subgroup acting on X . Assume that
K(x, ·) : X → R is an r-Lipschitz function with respect
to the norm ∥ · ∥2 on Rd, for each x ∈ X . Let S ⊆ G

be a generating set for G with ℓ(G) < ∞, and let Ŝ be
a γ-covering of S.

Then, when applying Algorithm 1 via Ŝ to test invari-
ance to G, the probability of the Type I error (i.e.,
incorrectly rejecting the invariance to G) is bounded as

P
(
H1|H0

)
= P

(
max
g∈Ŝ

ĉg > c
∣∣∣ µ is G-invariant

)
≤ |Ŝ| exp

(
− nc2

128c21

)
,

where c1 := supx∈X K(x, x). Moreover, the Type II
error, which is the probability of incorrectly accepting a
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non-invariant measure using Algorithm 1, approaches
zero as the sample size increases. Specifically, for any
probability measure µ ∈ P(X ) with Ex∼µ[∥x∥2] ≤ b
such that KMaxIC(µ) ≥ 3c′ > cℓ(S)2 + 2rbγ, we have

P
(
H0|H1

)
= P

(
max
g∈Ŝ

ĉg ≤ c
∣∣∣ µ is not G-invariant

)
≤ exp

−
n
(

3c′

ℓ(S)2 − 2rγb− c
)2

128c21

 .

The proof of Theorem 8.2 is presented in Appendix E.4.

Similarly to the case with finite groups, the test via
Algorithm 1 is statistically consistent for infinite groups.
Moreover, we conclude the following important result:

Corollary 8.3. Let G ⊆ O(d) denote an infinite group
with a generating set S ⊆ G such that ℓ(S) < ∞, and

let Ŝ ⊆ S be a γ-covering of S with γ =
ϵ

2rbℓ(S)2
.

Then, for any ϵ, δ > 0, Algorithm 1 can distinguish G-
invariant probability measures from non-invariant mea-
sures with KMaxIC(µ) ≥ 3ϵ, with probability at least

1− δ, given n ≥ 128c21ℓ(S)
4

ϵ2
log

(
|Ŝ|
δ

)
i.i.d. samples,

via the threshold c =
ϵ

ℓ(S)2
. In other words, the sample

complexity of Algorithm 1 is O

(
ℓ(S)4

ϵ2
log

(
|Ŝ|
δ

))
.

We conclude this section by noting that the method
we used here to obtain upper bounds differs from tradi-
tional methods that focus on covering the entire group
(e.g., group codes Koning (2024)). Here, we focused
on covering the generating set, which, as we will see,
allows for exact constructions for rotational symmetries
SO(d) in the next section.

9 EXAMPLES AND APPLICATIONS
TO INFINITE GROUPS

In this section, we apply the theory from the previous
section to an important infinite group testing problem:
rotational symmetries, denoted by SO(d) on X = Rd,
assuming that Ex∼µ[∥x∥2] ≤ 1. This group is formally
defined as:

SO(d) :=
{
A ∈ Rd×d : AAT = Id, det(A) = 1

}
.

To apply Algorithm 1, we need to find a generating
set S ⊆ SO(d) with small ℓ(S) and a good γ-covering

Ŝ ⊆ S. Define Rij(θij) ∈ Rd×d to be the ordinary
rotation matrix rotating in the ij-plane in Rd by an
angle θij , while keeping all other coordinates fixed. We

use the following generating set:

S :=

{
Rij(θij) : θij ∈ [0, 2π), i, j ∈ [d], i < j

}
.

It is well known that this set generates SO(d). Specif-
ically, for any A ∈ SO(d), there exist angles θij for
i, j ∈ [d], i < j, such that A =

∏
i<j Rij(θij). Thus, S

is a generating set for SO(d) with ℓ(S) ≤ d(d− 1)

2
.

Moreover, we can construct a finite γ-covering set
Ŝ ⊆ S as follows. Fix a parameter k ∈ N, and for
each i < j, define

Ŝij :=

{
Rij(θij) : θij =

2πt

k
, t = 0, 1, . . . , k − 1

}
,

and let Ŝ :=
⋃

i<j Ŝij . Note that the set Ŝ contains

kd(d− 1)

2
elements. Moreover, there exists a constant

c′ such that

sup
θ

min
t

∥∥∥∥Rij(θ)−Rij

(
2πt

k

)∥∥∥∥
op

<
c′

k
.

Thus, to obtain a γ-covering, we set k =
c′

γ
.

To compute the sample complexity of Algorithm 1 using
the proposed set Ŝ, we follow Corollary 8.3 and set

γ =
ϵ

2rℓ(S)2
, which gives k =

2c′rℓ(S)2

ϵ
= O

(
d4

ϵ

)
.

This implies that |Ŝ| = kd(d− 1)

2
= O

(
d6

ϵ

)
. We can

now run Algorithm 1 with the threshold c =
ϵ

ℓ(S)2
to

test invariance to SO(d) with n i.i.d. samples.

Therefore, for any ϵ, δ > 0, Algorithm 1 can distin-
guish SO(d)-invariant probability measures from non-
invariant ones with KMaxIC(µ) ≥ 3ϵ, with probability

at least 1− δ, given n = O
(
d8

ϵ2
log

(
d

δ

))
, i.i.d. sam-

ples.

Remark 9.1. The method proposed in this section for
precisely constructing coverings for SO(d) also applies
to many other matrix groups (such as O(d) or Stiefel
manifold), as we have explicit small generating sets for
them. Here, we focused on rotational symmetries as
an important application of our method, but it can be
generalized to other well-known infinite groups as well.

10 KERNEL MEAN INVARIANCE
CRITERION (KMIC)

In this section, we revisit the general recipe for testing
invariances via the new alternative hypothesis H̃1:

H̃1 : Eg[D(µ, gµ)] ≥ ϵ′.
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In other words, we focus on proposing algorithms for
the hypothesis testing described by H0 versus H̃1 in
Equation (2). Similar to KMaxIC, here we focus on
the special case of kernel Maximum Mean Discrepancy
(MMD) distances D ≡ MMD. Observe that according
to Proposition 6.4,

MMD2(µ, gµ) =
∥∥(gµ)H − µH

∥∥2
H

= 2Ex,x′ [K(x, x′)]− 2Ex,x′ [K(x, gx′)],

where x, x′ ∼ µ independently, and g ∈ G is chosen
uniformly at random and independently of x and x′.
This means that

Eg[MMD2(µ, gµ)]

= 2Ex,x′ [K(x, x′)]− 2Eg,x,x′ [K(x, gx′)].

Let µG denote the distribution of gx, where x ∼ µ
and g ∈ G in uniformly distributed over the group.
Surprisingly, for shift-invariant kernels, we also have
the following identity:

2
∥∥µG

H − µH
∥∥2
H = 2Ex,x′ [K(x, x′)]− 2Eg,x,x′ [K(x, gx′)],

See Proposition C.4 for a proof. This means that

Eg[MMD2(µ, gµ)] = 2
∥∥µG

H − µH
∥∥2
H.

The right hand side of the above identity, termed as the
Kernel Mean Invariance Criterion (KMIC) in this paper,
is also introduced recently as a measure of closeness to
invariance.

Definition 10.1 (Chiu and Bloem-Reddy (2023)). Let
µ ∈ P(X ). The Kernel Mean Invariance Criterion
(KMIC) is defined as

KMIC(µ) :=
1

2
Eg[MMD2(µ, gµ)] =

∥∥µG
H − µH

∥∥2
H,

where µG
H, µH ∈ H are the kernel mean embeddings of

µG and µ, respectively.

KMIC also quantifies the distance to G-invariance:
KMIC(µ) = 0 if and only if µ is G-invariant, assuming
the kernel is universal (Appendix C). Moreover,

KMaxIC(µ) = sup
g∈G

MMD2(µ, gµ)

≤ 2 sup
g∈G

(
MMD2(µ, µG) +MMD2(µG, gµ)

)
= 4MMD2(µ, µG)

≤ 4Eg[MMD2(µ, gµ)] = 8KMIC(µ).

Furthermore, we have

KMaxIC(µ) = sup
g∈G

MMD2(µ, gµ)

≥ Eg[MMD2(µ, gµ)] = 2KMIC(µ).

Therefore, we conclude that the optimal convergence
rates and the Type I and Type II error for both tests
according to KMIC and KMaxIC are equivalent to each
other, up to constant factors. In other words, while
KMIC only provides an averaged measure of being
invariance, it also provides an algorithm, robust to all
group transformations.

We provide a detailed review of testing invariance via
KMIC and study its convergence rate and the Type I
and Type II errors in Appendix C. The corresponding
testing algorithm is also presented in Algorithm 2.

11 KMIC VS. KMAXIC

In this paper, we proposed and analyzed two distinct
methods for deriving testing algorithms: KMaxIC (Al-
gorithm 1) and KMIC (Algorithm 2). Thanks to The-
orem 4.2, the two measures of distance to invariance
are equivalent up to a constant factor. Here, we pro-
vide a brief discussion on the differences between their
corresponding algorithms.

First, note that testing via KMIC is a randomized
algorithm, as it involves generating n i.i.d. uniform
samples from the group to achieve µG. But KMaxIC
offers a deterministic testing algorithm, with no need to
sample from G, unlike KMIC. While the KMIC testing
algorithm requires n i.i.d. samples from G, KMaxIC
evaluates invariance over a fixed subset of the group,
which remains independent of the number of samples.

Note that to propose a testing algorithm according
to the KMaxIC formulation, one needs to specifically
construct generating sets and coverings, which requires
problem-specific designs. However, KMIC allows one
to achieve a universal testing algorithm, which needs
no design other than being able to uniformly sample
from the group.

12 CONCLUSION

This paper explores robust methods for testing invari-
ance to group transformations. We show that the
robust distance to invariance, defined through proba-
bility metrics, can be approximated within constant
factors using randomization. A general framework
for robust invariance testing is then proposed using a
new hypothesis testing approach. We focus on kernel-
based distances, particularly Maximum Mean Discrep-
ancies (MMDs), and present deterministic algorithms
for robust testing with both finite and infinite groups.
Finally, we prove that a group-averaged metric is equiv-
alent to the robust metric up to constants, leading to
randomized testing algorithms with promising perfor-
mance.
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A ADDITIONAL RELATED WORK

Learning and Symmetries. Designing invariant machine learning models by construction has a rich and
long-standing history. To name a few, Convolutional Neural Networks (CNNs) were introduced to exploit local
shift-invariance structures in images (Krizhevsky et al., 2012; Mallat, 2012). Deep Sets were developed to handle
set-structured data (Zaheer et al., 2017), and PointNets were proposed for point cloud data that are invariant
to permutations (Qi et al., 2017). Graph Neural Networks (GNNs) (Scarselli et al., 2008) were designed for
graph-structured data.

Recent efforts have explored alternative approaches, such as automatically discovering the underlying symmetries
in data (Zhou et al., 2021; Dehmamy et al., 2021; Moskalev et al., 2022; Yang et al., 2023b,a). Another line
of work focuses on learning equivariant representations given known symmetries (Hinton et al., 2011; Yu et al.,
2022), particularly targeting symmetric disentangled representations (Caselles-Dupré et al., 2019; Quessard et al.,
2020; Marchetti et al., 2023). Despite this extensive body of work, the problem of testing invariances—central to
our work—remains relatively underexplored in the machine learning literature.

Kernels and Embedding of Distributions. The relationship between kernels and distributions has been
extensively studied over the past decades. Müller (1997) introduced the notion of the Integral Probability Metric
(IPM) over a function class. Gretton et al. (2006, 2012) coined the term Maximum Mean Discrepancy (MMD)
when the function class is restricted to a Reproducing Kernel Hilbert Space (RKHS). They showed that under
the universality assumption of the RKHS, the MMD distance is definite, meaning MMD(p, q) = 0 if and only if
p = q. This led to the development of two-sample testing using empirical MMD estimates.

Gretton et al. (2005, 2007) introduced the Hilbert-Schmidt Independence Criterion (HSIC) as a measure of
independence between random variables, defined as the Hilbert-Schmidt norm of the cross-covariance operator.
They demonstrated that independence could be tested using observations in the form of universal kernels. Mroueh
et al. (2019) extended these ideas to gradient-regularized IPM and explored its applications in feature selection.

Sriperumbudur et al. (2011) characterized the relationship between characteristic and universal kernels, providing
necessary and sufficient conditions for the bijectivity of the kernel mean embedding of distributions. Doran et al.
(2014) reduced kernel-based conditional independence testing to kernel two-sample tests through permutations.

This area of research has seen continuous development. We conclude related work by highlighting a subset of
recent works contributing to this line (Tolstikhin et al., 2017; Muandet et al., 2017; Schuster et al., 2020; Park
and Muandet, 2020; Muandet et al., 2021; Muzellec et al., 2021; Salvi et al., 2021; Kübler et al., 2022a,b; Chatalic
et al., 2022).

B BACKGROUND

In this section, we provide the necessary background on group actions and kernels used in the paper.

B.1 Group Actions and Invariant Measures

The continuous action of a compact topological group G on a complete metric space X is defined by a continuous
function θ : G×X → X , such that for each g ∈ G, the mapping θ(g, ·) is a homeomorphism on X . Additionally,
it satisfies the property θ(g2, θ(g1, x)) = θ(g2g1, x) for any g1, g2 ∈ G and any x ∈ X . For brevity, we denote
the action of g ∈ G on x ∈ X as gx := θ(g, x). We endow the group G with its associated unique (left) Haar
probability measure, which provides the uniform distribution over the group elements.
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Examples of groups acting on spaces include the permutation group Pd, which acts on Rd via permutation
matrices, and the orthogonal group O(d), which acts on Rd via orthogonal matrices.

Let P(X ) denote the space of all Borel probability measures on X . For each µ ∈ P(X ), let gµ ∈ P(X ) be a Borel
probability measure defined by (gµ)(A) = µ(g−1A) for any Borel-measurable set A ⊆ X and any group element
g ∈ G, where gA := {ga : a ∈ A}. We say that µ ∈ P(X ) is G-invariant if and only if µ = gµ for all g ∈ G.

In particular, a probability measure is invariant with respect to the action of a group G if and only if it assigns the
same probabilities to each event and its “shifted version” according to the group action. For example, isotropic
Gaussian random variables define G-invariant probability measures on Rd with respect to the group of orthogonal
matrices G = O(d).

B.2 Positive-Definite Symmetric Kernels

Let X be a complete metric space. A Positive-Definite Symmetric (PDS) kernel K : X × X → R is a continuous
symmetric function with the following property: for any positive integer n and any points x1, x2, . . . , xn ∈ X , the
Gram matrix [K(xi, xj)]

n
i,j=1 ∈ Rn×n is positive semi-definite.

Kernels serve as measures of similarity. Notable examples of PDS kernels include the Gaussian kernel, defined as
K(x1, x2) = exp

(
− 1

2σ2 ∥x1 − x2∥22
)
, where the kernel is defined over the space X = Rd.

Let L2(X ) denote the space of square-integrable real-valued functions on X . For each PSD kernel K, there is
an associated Reproducing Kernel Hilbert Space (RKHS) H ⊆ L2(X ) with an inner product denoted by ⟨·, ·⟩H,
which satisfies the following properties:

• For each point x ∈ X , the feature function Φ(x) = K(·, x) belongs to the RKHS H.

• For any f ∈ H and any x ∈ X , we have the reproducing property: f(x) = ⟨f,K(·, x)⟩H.

Combining these two properties, we find that K(x1, x2) = ⟨Φ(x1),Φ(x2)⟩H for all x1, x2 ∈ X .

Note. For technical reasons, we consider uniformly bounded kernels: sup
x∈X

K(x, x) < ∞.

B.3 Shift-Invariant Kernels

As mentioned earlier, kernels introduce similarity measures on metric spaces. The concept of a shift-invariant
kernel refers to those kernels that measure similarity regardless of how the pair of points is shifted according to a
given group action.

Definition B.1. Given a compact topological group G acting continuously on a complete metric space X , and a
PSD kernel K : X × X → R, we say that K is shift-invariant if and only if

K(x1, x2) = K(gx1, gx2),

for any g ∈ G and any x1, x2 ∈ X .

For example, the Gaussian kernel is shift-invariant with respect to G = O(d).

B.4 Kernel Mean Embeddings of Measures

For any probability measure µ ∈ P(X ) and any PSD kernel K, the kernel mean embedding of µ, denoted as µH,
is a unique element of the RKHS H that satisfies the following identity:

⟨f, µH⟩H = Ex∼µ[f(x)] = Ex∼µ[⟨f, ϕ(x)⟩],

for each f ∈ H. The existence and uniqueness of such a µH ∈ H are guaranteed by the Riesz representation theorem
for Hilbert spaces (see, for instance, Gretton et al. (2012)), therefore it can be inferred that µH = Ex∼µ[ϕ(x)].

It is well known that one can also uniquely recover the original probability measure µ from its kernel mean
embedding, provided that the PSD kernel K is universal. A PSD kernel K : X × X → R with an associated
RKHS H is said to be universal if, for any continuous function f : X → R and any positive ϵ, there exists a
function f̂ ∈ H such that supx∈X |f(x)− f̂(x)| < ϵ. The ability to uniquely recover probability measures from
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their kernel mean embeddings leads to the following definition of the Maximum Mean Discrepancy (MMD) as a
metric for comparing probability measures:

MMD(µ, ν) := ∥µH − νH∥H,

for any µ, ν ∈ P(X ).

C KERNEL MEAN INVARIANCE CRITERION (KMIC)

In this section, we provide a detailed review of the properties of KMIC (Chiu and Bloem-Reddy, 2023).

The idea of KMIC is to construct a canonical G-invariant probability measure via group averaging, and then to
compare it to the original measure using the Maximum Mean Discrepancy (MMD) metric to quantify how far the
measure is from being G-invariant.

Proposition C.1 (Invariant measure). Let µ ∈ P(X ) be a probability measure defined on a complete metric space
X , and let G be a compact topological group acting continuously on X . For each measurable set A ⊆ X , define

µG(A) := Eg[(gµ)(A)] = Eg[µ(gA)],

where the expectation is over uniformly sampled g ∈ G, according to its unique (left) Haar probability measure.
Then, µG ∈ P(X ) defines a G-invariant (Borel) probability measure on X .

The proof of Proposition C.1 is presented in Appendix D.1.

This proposition motivates the following definition of the Kernel Mean Invariance Criterion (KMIC).

Definition C.2 (Kernel Mean Invariance Criterion (KMIC)). Let X be a complete metric space and let G be a
compact topological group acting continuously on X . For any probability measure µ ∈ P(X ), the Kernel Mean
Invariance Criterion (KMIC) is defined as

KMIC(µ) :=
∥∥µG

H − µH
∥∥2
H,

where µG
H, µH ∈ H denote the kernel mean embeddings of the probability measures µG and µ, respectively.

Note that KMIC(µ) ≥ 0 for all µ ∈ P(X ). Moreover, KMIC provides a notion of distance to being G-invariant:
KMIC(µ) = 0 if and only if µ is G-invariant.

Theorem C.3 (Definiteness of KMIC). Let K be a universal PDS kernel defined on a complete metric space X .
Let µ ∈ P(X ) be a probability measure. Then, KMIC(µ) = 0 if and only if µ is G-invariant.

The proof of Theorem C.3 is presented in Appendix D.2.

The above theorem demonstrates how KMIC is capable of distinguishing probability measures from their canonical
G-invariant probability measures. However, to propose statistical tests using KMIC, an efficient representation is
necessary to compute it using i.i.d. samples. The following proposition facilitates this representation.

Proposition C.4. Consider a shift-invariant PDS kernel K defined on the complete metric space X . Then,
KMIC can be alternatively represented as

KMIC(µ) = Ex,x′ [K(x, x′)]− Eg,x,x′ [K(x, gx′)],

where x, x′ ∼ µ independently, and g ∈ G is chosen uniformly at random and independently of x and x′.

The proof of Proposition C.4 is presented in Appendix D.3. While we focused on shift-invariant kernels in the
above proposition, a general formula for arbitrary kernels is derived in the proof.

C.1 Testing Invariance via KMIC

Given n i.i.d. samples xi ∼ µ, i ∈ [n], how can one provide estimates of KMIC(µ)? Proposition C.4 allows us to
provide empirical estimates from data:

K̂MIC(µ) =
2

n(n− 1)

n∑
i,j=1
i̸=j

K(xi, xj)−
2

n(n− 1)

n∑
i,j=1
i ̸=j

K(xi, gjxj).
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Here, we utilize n i.i.d. samples gj , j ∈ [n], each uniformly distributed over the group G. Note that K̂MIC(µ), as
a sum of two U-statistics, provides an unbiased estimator for KMIC(µ).

The above estimator gives rise to Algorithm 2, a hypothesis testing algorithm with a threshold c ∈ (0,∞).

Algorithm 2 Testing Invariance via KMIC

Input: n i.i.d. samples xi ∼ µ, i ∈ [n], and a threshold c ∈ (0,∞).
1: Generate n i.i.d. samples gj ∈ G, j ∈ [n], each uniformly distributed over G.
2: Compute the following:

K̂MIC(µ) =
2

n(n− 1)

n∑
i,j=1
i<j

K(xi, xj)−
2

n(n− 1)

n∑
i,j=1
i<j

K(xi, gjxj).

3: if K̂MIC(µ) ≤ c then
4: return There is not enough evidence to reject the null hypothesis H0 that µ is G-invariant.
5: else
6: return H̃1: µ is not G-invariant.
7: end if

It is worth mentioning that the total runtime of Algorithm 2 is O(n2), provided that we can sample from G
and compute the kernel function for each pair of points in constant time. Moreover, the time complexity can be
further improved to O(n) by modifying the algorithm and replacing the U-statistics with empirical estimates over
disjoint pairs of independent samples.

C.2 Convergence Rates and Confidence Intervals for KMIC

In this section, we analyze Algorithm 2. First, we derive the convergence rate of the empirical estimator for
KMIC(µ), and then we focus on obtaining confidence intervals to design the parameter c ∈ (0,∞) appropriately.

Theorem C.5 (Convergence rate for K̂MIC(µ)). For the estimator K̂MIC(µ), defined in Algorithm 2, we have

E

[∣∣∣K̂MIC(µ)−KMIC(µ)
∣∣∣2] ≲

c21
n
, (6)

where c1 := sup
x∈X

K(x, x).

The proof of Theorem C.5 is presented in Appendix D.4.

The above result shows that the estimator provided in Algorithm 2 converges in mean. However, to design
statistical hypothesis tests, it is desirable to obtain confidence intervals based on the threshold c ∈ (0,∞). The
following theorem provides such bounds.

Theorem C.6. For the estimator K̂MIC(µ), defined in Algorithm 2, we have

P

(∣∣∣∣∣K̂MIC(µ)−KMIC(µ)

∣∣∣∣∣ ≥ t

)
≤ 4 exp

(
− nt2

32c21

)
,

where c1 := sup
x∈X

K(x, x).

The proof of Theorem C.6 is presented in Appendix D.5. We note that the result above provides confidence
intervals for estimating KMIC(µ) from data. Specifically, for any δ ∈ (0, 1), with probability at least 1− δ, we
have

K̂MIC(µ) ∈

[
KMIC(µ)−

√
32c21
n

log

(
4

δ

)
, KMIC(µ) +

√
32c21
n

log

(
4

δ

) ]
.
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In other words, we have

P
(
K̂MIC(µ) > c

∣∣∣ µ is G-invariant
)
≤ δ,

whenever n ≥
32c21 log

(
4
δ

)
c2

. This result shows that with an appropriate choice of the threshold c, the Type I error

of the proposed statistical test (i.e., the probability of failing to detect invariances in data generated according to
a G-invariant probability measure) is at most δ.

Corollary C.7. Algorithm 2 provides a hypothesis test with the confidence level δ for the null hypothesis that µ

is G-invariant, with the acceptance threshold given by c =

√
32c21
n log

(
4
δ

)
, where c1 := supx∈X K(x, x).

Moreover, the Type II error, which is the probability of incorrectly accepting a non-invariant measure using
Algorithm 2, approaches zero as the sample size increases (Theorem C.6). This demonstrates that the test in
Algorithm 2 is consistent in the statistical sense. Quantitatively, for any probability measure µ ∈ P(X ) such that
KMIC(µ) ≥ 2c, we have

P
(
K̂MIC(µ) ≤ c

∣∣∣ µ is not G-invariant
)
≤ δ,

whenever n ≥
32c21 log

(
4
δ

)
c2

. This shows that Algorithm 2 with the threshold c can distinguish G-invariant

probability measures from non-invariant ones with KMIC(µ) ≥ 2c, with sample complexity n =
32c21 log

(
4
δ

)
c2

,

with probability at least 1− δ.

D PROOFS

D.1 Proof of Proposition C.1

Proposition C.1 (Invariant measure). Let µ ∈ P(X ) be a probability measure defined on a complete metric space
X , and let G be a compact topological group acting continuously on X . For each measurable set A ⊆ X , define

µG(A) := Eg[(gµ)(A)] = Eg[µ(gA)],

where the expectation is over uniformly sampled g ∈ G, according to its unique (left) Haar probability measure.
Then, µG ∈ P(X ) defines a G-invariant (Borel) probability measure on X .

Proof. We start the proof by showing that µG is a valid (Borel) probability measure, and, we show that it satisfies
the following conditions, and hence it is a valid Borel measure.

• µG(∅) = Eg[µ(g∅)] = Eg[µ(∅)] = 0.

• Countable additivity: if Ai, i ∈ N, is a sequence of disjoint sets belonging to the Borel σ-field, then

µG

( ∞⋃
i=1

Ai

)
= Eg[µ(g

∞⋃
i=1

Ai)]

= Eg[µ(

∞⋃
i=1

gAi)] (7)

= Eg[

∞∑
i=1

µ(gAi)] (8)

=

∞∑
i=1

Eg[µ(gAi)] (9)

=

∞∑
i=1

µG(Ai),
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where Equation (7) follows from the exchangeability of group actions and the union operation, Equation (8)
follows from the σ-additivity of µ, and Equation (9) is a direct consequence of Fubini’s theorem. We also
note that µG(X ) = Eg[µ(gX )] = Eg[µ(X )] = 1 since g introduces a bijection, thereby µG is a probability
measure. We conclude the proof by showing that µG is G-invariant,

∀g1 ∈ G : µG(g1A) = Eg[µ(g
−1g1A)] = Eg′ [µ(g′A)] = µG(A),

where we used the fact that the (left) Haar measure on the group G is invariant with respect to any left
action by g1 ∈ G, and thus g′ = g−1g1 is again distributed according to the Haar measure on the group G.

D.2 Proof of Theorem C.3

Theorem C.3 (Definiteness of KMIC). Let K be a universal PDS kernel defined on a complete metric space X .
Let µ ∈ P(X ) be a probability measure. Then, KMIC(µ) = 0 if and only if µ is G-invariant.

Proof. We notice that, by definition, KMIC(µ) = ∥µG
H − µH∥2H = MMD2(µ, µG). Hence, by Gretton et al. (2012,

Theorem 5), KMIC(µ) = 0 if and only if µ = µG, implying that µ is G-invariant.

D.3 Proof of Proposition C.4

Proposition C.4. Consider a shift-invariant PDS kernel K defined on the complete metric space X . Then,
KMIC can be alternatively represented as

KMIC(µ) = Ex,x′ [K(x, x′)]− Eg,x,x′ [K(x, gx′)],

where x, x′ ∼ µ independently, and g ∈ G is chosen uniformly at random and independently of x and x′.

Proof. First, note that, by definition of µG, µG
H = Ex∼µG [ϕ(x)] = Eg[µH(gx)] = Ex∼µ,g[ϕ(gx)]. Moreover,

KMIC(µ) = ∥µH − µG
H∥2H

= ⟨µH, µH⟩H + ⟨µG
H, µG

H⟩H − 2⟨µG
H, µH⟩H

= Ex∼µ[µH(x)] + Ex∼µG [µHG(x)]− 2Ex∼µ[µHG(x)]

= ⟨µH(x),Ex∼µ[ϕ(x)]⟩+ ⟨µG
H(x),Ex∼µG [ϕ(x)]⟩ − 2⟨µG

H(x),Ex∼µ[ϕ(x)]⟩
= ⟨µH(x),Ex∼µ[ϕ(x)]⟩+ ⟨Eg[µH(gx)],Ex∼µG [ϕ(x)]⟩ − 2⟨Eg[µH(gx)],Ex∼µ[ϕ(x)]⟩
= ⟨Ex∼µ[ϕ(x)],Ex∼µ[ϕ(x)]⟩+ ⟨Ex∼µ,g[ϕ(gx)],Ex∼µ,g[ϕ(gx)]⟩ − 2⟨Ex∼µ,g[ϕ(gx)],Ex∼µ[ϕ(x)]⟩
= Ex,x′∼µ[K(x, x′)] + Ex,x′∼µ,g,g′ [K(gx, g′x′)]− 2Ex,x′∼µ,g[K(gx, x′)]

= Ex,x′∼µ[K(x, x′)] + Ex,x′∼µ,g,g′ [K(g−1gx, g−1g′x′)]− 2Ex,x′∼µ,g[K(gx, x′)] (10)

= Ex,x′∼µ[K(x, x′)] + Ex,x′∼µ,g′′ [K(x, g′′x′)]− 2Ex,x′∼µ,g[K(gx, x′)] (11)

= Ex,x′∼µ[K(x, x′)]− Ex,x′∼µ,g[K(x, gx′)],

where Equation (10) follows from the shift-invariance property of the kernel, and Equation (11) follows from the
properties of Haar measures.

Remark D.1. In the proof of Proposition C.4, we leveraged the shift-invariance property in Equation (10).
However, for general kernels, it is immediate to show that similarly,

KMIC(µ) = Ex,x′ [K(x, x′)] + Ex,x′,g,g′ [K(gx, g′x′)]− 2Ex,x′,g[K(x, gx′)].

D.4 Proof of Theorem C.5

Theorem C.5 (Convergence rate for K̂MIC(µ)). For the estimator K̂MIC(µ), defined in Algorithm 2, we have

E

[∣∣∣K̂MIC(µ)−KMIC(µ)
∣∣∣2] ≲

c21
n
, (6)
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where c1 := sup
x∈X

K(x, x).

Proof. Define T1 = 2
n(n−1)

∑n
i,j=1
i<j

K(xi, xj) and T2 = 2
n(n−1)

∑n
i,j=1
i<j

K(xi, gjxj). Note that

E

[∣∣∣K̂MIC(µ)−KMIC(µ)
∣∣∣2] ≤ 2E

[
|T1 − E[T1]|2

]
+ 2E

[
|T2 − E[T2]|2

]
.

Let us focus on the first term. Define aij = K(xi, xj)− E[K(xi, xj)]. Note that

E
[
|T1 − E[T1]|2

]
= E

[∣∣∣ 2

n(n− 1)

n∑
i,j=1
i<j

aij

∣∣∣2] = 4

n2(n− 1)2

n∑
i,j=1
i<j

n∑
k,ℓ=1
k<ℓ

E[aijakℓ].

However, note that if i ̸= k and j ̸= ℓ, then E[aijakℓ] = 0. Therefore, there exist at most O(n3) nonzero elements

in the above sum, and each of which is at most E[aijakℓ] ≤ c21. Therefore, E
[
|T1−E[T1]|2

]
≲ n3 c21

n4 =
c21
n . Similarly,

one can conclude that E
[
|T2 − E[T2]|2

]
≲ c21

n , and this completes the proof.

D.5 Proof of Theorem C.6

Theorem C.6. For the estimator K̂MIC(µ), defined in Algorithm 2, we have

P

(∣∣∣∣∣K̂MIC(µ)−KMIC(µ)

∣∣∣∣∣ ≥ t

)
≤ 4 exp

(
− nt2

32c21

)
,

where c1 := sup
x∈X

K(x, x).

Proof. Similar to the proof of Theorem C.5, let us define T1 = 2
n(n−1)

∑n
i,j=1
i<j

K(xi, xj) and T2 =

2
n(n−1)

∑n
i,j=1
i<j

K(xi, gjxj). Note that

P
(
K̂MIC(µ)−KMIC(µ) ≥ t

)
= P(T1 + T2 ≥ t)

= P
(
T1 + T2 ≥ t

∣∣T1 > t/2
)
P(T1 > t/2)

+ P
(
T1 + T2 ≥ t

∣∣T1 ≤ t/2
)
P(T1 ≤ t/2)

≤ P(T1 > t/2) + P
(
T1 + T2 ≥ t

∣∣T1 ≤ t/2
)

≤ P(T1 > t/2) + P(T2 > t/2).

Therefore, we conclude that

P

(∣∣∣∣∣K̂MIC(µ)−KMIC(µ)

∣∣∣∣∣ ≥ t

)
≤ P(|T1| > t/2) + P(|T2| > t/2).

Using standard tail bounds on U-statistics (Wainwright, 2019, Example 2.23), we know that P(|T1| > t/2) ≤
2 exp

(
− nt2

32c21

)
. A similar upper bound also holds for T2. The proof is thus complete.

D.6 Proof of Theorem 5.2

Theorem 5.2 (Definiteness of KMaxIC). For any probability measure µ ∈ P(X ), we have KMaxIC(µ) = 0 if
and only if µ is G-invariant, assuming the kernel is universal.

Proof. If the measure µ is G-invariant, then for all g ∈ G, gµ = µ, hence ∥(gµ)H − µH∥2H = 0, and thereby
KMaxIC(µ) = 0. Next, assume that KMaxIC(µ) = 0, then ∥(gµ)H − µH∥2H = 0 for all g ∈ G. Thus, by Gretton
et al. (2012, Theorem 5), gµ = µ, and µ is G-invariant.
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D.7 Proof of Theorem 6.2

Theorem 6.2 (Definiteness of KMaxIC via generating sets). Assuming the underlying kernel used to define
KMaxIC is universal, for any arbitrary generating set S ⊆ G and any probability measure µ ∈ P(X ), if

max
g∈S

∥(gµ)H − µH∥2H = 0,

then KMaxIC(µ) = 0, which implies that µ is G-invariant.

Proof. Let S = {g1, g2, . . . , g|S|} be a generating set, and let g′ be a maximal element that attains KMaxIC:

g′ = argmax
g∈G

∥(gµ)H − µH∥2H.

By the definition of the generating set, there exists a sequence g′i ∈ S, i ∈ [ℓ], such that g′ =
ℓ∏

i=1

g′i. Thus,

√
KMaxIC(µ) = ∥(g′µ)H − µH∥H

= ∥(
ℓ∏

i=1

g′iµ)H − µH∥H

≤ ∥(
ℓ∏

i=1

g′iµ)H − (

ℓ−1∏
i=1

g′iµ)H∥H + ∥(
ℓ−1∏
i=1

g′iµ)H − µH∥H,

where we used the triangle inequality for the ∥ · ∥H-norm. By iterative application of the triangle inequality

√
KMaxIC(µ) ≤

ℓ∑
l=1

∥(
l∏

i=0

g′iµ)H − (

l−1∏
i=0

g′iµ)H∥H,

where we overload the notation by setting g′0 = e, the identity element of the group G. Now, by induction, we

prove that for all l ∈ [ℓ], the term ∥(
∏l

i=0 g
′
iµ)H − (

∏l−1
i=0 g

′
iµ)H∥H = 0. We know that ∥(g′1µ)H − µH∥H = 0, thus

µ = eµ = g′1µ. Now, assume that by induction hypothesis for l,

∥(
l∏

i=0

g′iµ)H − (

l−1∏
i=0

g′iµ)H∥H = 0.

Therefore,
∏l

i=0 g
′
iµ =

∏l−1
i=0 g

′
iµ = · · · = g′1µ = µ. Hence,

∥(
l+1∏
i=0

g′iµ)H − (

l∏
i=0

g′iµ)H∥H = ∥(g′l+1µ)H − µH∥H = 0,

and thus the induction step follows immediately. Putting everything together,

√
KMaxIC(µ) ≤

ℓ∑
l=1

∥(
l∏

i=0

g′iµ)H − (

l−1∏
i=0

g′iµ)H∥H = 0.

Therefore, KMaxIC(µ) = 0, and the proof is complete.

D.8 Proof of Proposition 6.3

Proposition 6.3 (Size of generating sets). Any finite group G has a generating set S ⊆ G of size at most
log2(|G|).
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Proof. Let S = {g1, g2, . . . , g|S|} be a minimal generating set for the finite group G. For each k ∈ {1, 2, . . . , |S|},
define the subgroup Gk = ⟨g1, g2, . . . , gk⟩, which is generated by the first k elements of S.

For each k ∈ {1, 2, . . . , |S|}, the element gk+1 must lie outside Gk. If this is not the case, then the group G is
generated by the set {g1, g2, . . . , gk, gk+2, . . . , g|S|}, which contradicts the assumption that S is minimal.

As a result, the coset gk+1Gk is disjoint from Gk. By definition, we have gk+1Gk ∪Gk ⊆ Gk+1, which implies

|Gk+1| ≥ |gk+1Gk|+ |Gk| = 2|Gk|.

Therefore, it follows that

|G| = |G|S|| ≥ 2|S||G1|.

Since |G1| ≥ 1, we conclude that |G| ≥ 2|S|, thus proving the result.

D.9 Proof of Proposition 6.4

Proposition 6.4. For any g ∈ G and any probability measure µ ∈ P(X ), we have∥∥(gµ)H−µH
∥∥2
H = 2Ex,x′ [K(x, x′)]− 2Ex,x′ [K(x, gx′)],

where x, x′ ∼ µ are independent random variables.

Proof. Note that (gµ)H = Ex∼gµ[ϕ(x)] = Ex∼µ[ϕ(gx)] where ϕ(x) = K(., x) for each x ∈ X . Therefore,∥∥(gµ)H − µH
∥∥2
H = ⟨µH, µH⟩H + ⟨(gµ)H, (gµ)H⟩H − 2⟨µH, (gµ)H⟩H

= Ex∼µ[µH(x)] + Ex∼gµ[(gµ)H]− 2Ex∼µ[(gµ)H]

= Ex,x′∼µ[K(x, x′)] + Ex,x′∼µ[K(gx, gx′)]− 2Ex,x′∼µ[K(x, gx′)]

= Ex,x′∼µ[K(x, x′)] + Ex,x′∼µ[K(x, x′)]− 2Ex,x′∼µ[K(x, gx′)] (12)

= 2Ex,x′∼µ[K(x, x′)]− 2Ex,x′∼µ[K(x, gx′)],

where x, x′ ∼ µ are independent, and in Equation (12), we used the shift-invariance of the kernel. Thus, the proof
is complete.

D.10 Proof of Proposition 7.1

Proposition 7.1. The set S⋆ ⊆ Pd, defined by Equation (4), is a generating set for Pd and satisfies

ℓ(S⋆) ≤ d(d− 1)

2
.

Proof. Let σ ∈ Pd be an arbitrary permutation. We need to show that there exists a sequence i1, i2, . . . , ik ∈ [d]

of length k ≤ d(d−1)
2 such that σ = σi1 ◦ σi2 ◦ . . . ◦ σik . We prove this by induction on d.

First note that the case d = 2 is trivial. Fix d > 2 and let σ ∈ Pd be an arbitrary permutation. Assume
that σ(d) = ℓ, for some ℓ ∈ [d]. Consider the following permutation: σ̃ = σℓ ◦ σℓ+1 ◦ . . . σd−1 ∈ Pd. Note that
σ̃(d) = ℓ. Let σ′ = σ̃−1 ◦ σ ∈ Pd. Note that σ′(d) = σ̃−1(ℓ) = d. This means that σ′ ∈ Pd can be considered as a

permutation of [d− 1]. Using induction hypothesis, one can represent σ′ as composition of at most (d−1)(d−2)
2

transpositions. Moreover, since σ = σ̃ ◦ σ′, one can represent σ as compositions of at most

(d− 1)(d− 2)

2
+ (d− 1) =

d(d− 1)

2

transpositions, and this completes the proof.
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D.11 Proof of Proposition 7.2

Proposition 7.2. The set S⋆ ⊆ G, defined by Equation (5), is a generating set for G and satisfies

ℓ(S⋆) ≤ ⌈log2(m)⌉.

Proof. Let t ∈ G = Z/mZ be an arbitrary group element. Our goal is to find ti ∈ S⋆, for i ∈ [k] with

k ≤ ⌈log2(m)⌉, such that t =
∑k

i=1 ti. Note that the elements of S⋆ are of the form 2ℓ for some ℓ. Now, consider

the binary representation of t as t =
∑k

i=1 ai−12
i−1, where ai ∈ {0, 1} and k ≤ ⌈log2(m)⌉ since t ∈ [m]. This

representation provides the necessary decomposition of t ∈ [m], thus completing the proof.

E PROOFS OF THE MAIN RESULTS

E.1 Proof of Theorem 4.1

Theorem 4.1 (Computational intractability). There exists a shift-invariant pseudometric D : P(X )×P(X ) → R,
a finite group G, and a discrete probability measure µ such that solving the optimization problem arg supg∈G D(µ, gµ)
is NP-complete.

Proof. We demonstrate the computational hardness result by reducing it to a special variant of the metric
traveling salesperson problem (Metric TSP), which we refer to as the reward maximization metric traveling
salesperson problem (Reward Metric TSP). In this variant, instead of finding the minimum tour that starts and
ends at the same node, the objective is to find the maximum (most profitable) tour. In Reward Metric TSP,
the edges between nodes are characterized by a reward function, rather than distances, that satisfies the metric
property. In Proposition E.1, we show that this special variant is also NP-complete.

Given a complete graph G with d nodes denoted by the set V , for all nodes u, v ∈ V , we denote the positive
reward function between them by ρ(u, v). By the definition, ρ(., .) is a metric and it satisfies triangle inequality.
We want to find the maximum tour Cmax, i.e., Cmax = argmaxC is a tour

∑
(u,v)∈C ρ(u, v). We scale the reward

function ρ to design the new reward function d(., .) by d(u, v) := ρ(u, v)/M + 1, where M is an upper bound on
the reward function ρ, i.e, M = supu,v∈V ρ(u, v). By definition, 1 ≤ d(u, v) ≤ 2 and clearly d(., .) is also a metric.
Additionally, Cmax = argmaxC is a tour

∑
(u,v)∈C d(c, v).

Number the nodes of the graph G arbitrarily from 1 to d and call this numbering e : [d] → [d], e(i) = i for all
i ∈ [d]. For any other numbering g : [d] → [d] of the nodes of G, let Gg denote the resulting renumbered copy of G.
The set of all such numberings corresponds to the permutation group Pd. By definition, for the identity element
e ∈ Pd, we have Ge = G. Next, we choose the group action set G = Pd and define the set X := {Gg | g ∈ Pd}, so
that G ∈ X . Let µ be the Dirac delta measure on the element G, i.e., µ = δG .

In sequel, we define the pseudometric D for any g ∈ G,

D(µ, gµ) :=

d∑
i=1

d
(
e−1g(i), e−1g(i+ 1 mod d)

)
+

d∑
i=1

d
(
g−1e(i), g−1e(i+ 1 mod d)

)
=

d∑
i=1

d
(
g(i), g(i+ 1 mod d)

)
+

d∑
i=1

d
(
g−1(i), g−1(i+ 1 mod d)

)
= 2

d∑
i=1

d
(
g(i), g(i+ 1 mod d)

)
, (13)

where Equation (13) follows by the double counting argument on the direction of calculating the value of the
resulting tour and the symmetry property of reward function d(., .). Intuitively, 1

2D(µ, gµ) is calculating reward
of the tour resulted by traversing the graph G according to the numbering g (or equivalently permutation g of the
nodes).
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Similarly, for any g, g′ ∈ G we define

D(g′µ, gµ) :=

d∑
i=1

d
(
g′

−1
g(i), g′

−1
g(i+ 1 mod d)

)
+

d∑
i=1

d
(
g−1g′(i), g−1g′(i+ 1 mod d)

)
,

where we are overloading g, g′ and e by using them as the elements of the permutation group and also the
mapping induced by the corresponding permutations. Now, we need to show that D(., .) is indeed a shift invariant
pseudometric. We start by showing that D(., .) is symmetric.

D(g′µ, gµ) =

d∑
i=1

d
(
g′

−1
g(i), g′

−1
g(i+ 1 mod d)

)
+

d∑
i=1

d
(
g−1g′(i), g−1g′(i+ 1 mod d)

)
=

d∑
i=1

d
(
g−1g′(i), g−1g′(i+ 1 mod d)

)
+

d∑
i=1

d
(
g′

−1
g(i), g′

−1
g(i+ 1 mod d)

)
= D(gµ, g′µ).

Next, we show that D(., .) is shift-invariant,

D(g′′g′µ, g′′gµ) =

d∑
i=1

d
(
(g′′g′)−1g′′g(i), (g′′g′)−1g′′g(i+ 1 mod d)

)
+

d∑
i=1

d
(
(g′′g)−1g′′g′(i), (g′′g)−1g′′g′(i+ 1 mod d)

)
=

d∑
i=1

d
(
g′

−1
g′′

−1
g′′g(i), g′

−1
g′′

−1
g′′g(i+ 1 mod d)

)
+

d∑
i=1

d
(
g−1g′′

−1
g′′g′(i), g−1g′′

−1
g′′g′(i+ 1 mod d)

)
=

d∑
i=1

d
(
g′

−1
g(i), g′

−1
g(i+ 1 mod d)

)
+

d∑
i=1

d
(
g−1g′(i), g−1g′(i+ 1 mod d)

))
= D(g′µ, gµ).

In the end, we prove the Triangle inequality for D(., .). In order to do so, we recall that 1
2D(g′′µ, gµ) is the

length of a tour C in the graph G endowed with metric d. Additionally, we designed the metric d(., .) such that
1 ≤ d(u, v) ≤ 2.. Hence,

∑
(u,v)∈Cmax

d(u, v) ≤ 2|V | and |V | ≤
∑

(u,v)∈Cmax
d(u, v) Therefore, by terminology and

multiple usage of this fact,

D(g′′µ, gµ) = 2
∑

(u,v)∈C

d(u, v)

≤ 2
∑

(u,v)∈Cmax

d(u, v)

≤ 4|V |

≤ 4
∑

(u,v)∈Cmin

d(u, v)

≤ D(g′′µ, g′µ) +D(g′µ, gµ),

where in the last line, we again exploited the fact that 1
2D(g′′µ, g′µ) and 1

2D(g′′µ, g′µ) are the length of arbitrary
tours in G, therefore their length is more than

∑
(u,v)∈Cmin

d(u, v). Putting all of these pieces together, we showed

that D(., .) is a shift invariant pseudometric.

To conclude the proof, given an instance of the Reward Metric TSP G equipped with a metric ρ(., .), we form
the scaled metric d(., .), the shift invariant pseudometric D(., .), finite group G, the set X , and the distribution
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µ = δG as above. By our construction, solution to the optimization problem,

sup
g∈G

D(µ, gµ)

is the maximum tour for the problem of Reward Metric TSP. Therefore, this optimization problem for a specific
choice of parameters is NP-complete.

Proposition E.1 (Hardness Result for Reward Metric TSP). Given a complete graph G, equipped with a metric
d, finding the maximum tour of the graph is NP-complete.

Proof. We prove this result by reduction to the problem of finding a Hamiltonian cycle problem. Formally
speaking, given a complete weighted graph G = (V,E), the question is whether this graph has a Hamiltonian
cycle or not. In order to build the reduction, we create a complete weighted graph G′ = (V,E′), with the exact
set of nodes as G but we assign weights d(., .) as follows.

• If an edge (u, v) ∈ E exists in the original graph G, we assign the weight d(u, v) = 2.

• If an edge (u, v) /∈ E doesn’t exist in the original graph G, we assign the weight d(u, v) = 1.

All the edges are positive and they satisfy the triangle inequality trivially. This G′ is a metric graph. If the
original graph G has a Hamiltonian cycle, then the Maximum Tour of the metric graph G′ has the size 2|V |,
otherwise the Maximum Tour of the metric graph G′ has a size strictly lower than 2|V |. Therefore, the reduction
is complete and since the problem of checking existence of a Hamiltonian cycle is NP-complete, the Reward
Metric TSP is also NP-complete.

E.2 Proof of Theorem 4.2

Theorem 4.2 (Probabilistic approximation (formal version of Theorem 1.1)). Let X be a complete metric space
and P(X ) denote the space of (Borel) probability measures on X . Let G be a compact topological group acting
continuously on X . Consider a shift-invariant probability (pseudo)metric D : P(X )× P(X ) → R. Then,

Eg[D(µ, gµ)] ≤ sup
g∈G

D(µ, gµ) ≤ 4Eg[D(µ, gµ)],

where the expectation is taken with respect to the left Haar (uniform) measure over the compact group G.

Proof. First, note that

Eg[D(µ, gµ)] ≤ sup
g∈G

D(µ, gµ),

for each g ∈ G. Therefore, we focus of the proof of the other inequality. Fix a probability measure µ ∈ P(X ). Let

g⋆ := argmax
g∈G

D(µ, gµ).

Note that such g⋆ ∈ G exists according to the compactness of G. Define the following function

∆(g) := D(µ, gµ), ∀g ∈ G.

Note that for any g1, g2 ∈ G, we have

∆(g1g2) = D(µ, (g1g2)µ)

≤ D(µ, g1µ) +D(g1µ, (g1g2)µ)

= ∆(g1) +D(g1µ, (g1g2)µ),

using the triangle inequality for the pseudometric D. Now, note that D is shift-invariant, meaning that we have

D(g1µ, (g1g2)µ) = D(µ, g2µ) = ∆(g2).
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Therefore, we conclude that

∆(g1g2) ≤ ∆(g1) + ∆(g2), ∀g1, g2 ∈ G.

In other words, the function ∆ is sub-linear. Now specify the above inequality to g1 = g⋆g and g2 = g−1 for an
arbitrary g ∈ G to get

∆(g⋆) ≤ ∆(g⋆g) + ∆(g−1)

= ∆(g⋆g) + ∆(g), ∀g ∈ G. (14)

In above, we used ∆(g) = ∆(g−1) which holds from the shift-invariance of D. Now define the following set:

A :=

{
g ∈ G : ∆(g) ≥ 1

2
∆(g⋆)

}
⊆ G.

Define

g⋆A :=

{
g⋆g ∈ G : g ∈ A

}
.

Note that according to Equation (14), for each g ∈ G, either g ∈ A or g ∈ g⋆A. In other words, G = A ∪ g⋆A.
Let α denote the left Haar measure on G. Then, we conclude that

α(A) + α(g⋆A) ≥ α(A ∪ g⋆A) = α(G) = 1.

However, α(A) = α(g⋆A) since α is the Haar measure. This means that α(A) ≥ 1

2
. Therefore, we conclude

Eg∼α[D(µ, gµ)] = Eg∼α[∆(g)]

≥ α(A)
∆(g⋆)

2

≥ ∆(g⋆)

4

=
1

4
sup
g∈G

D(µ, gµ),

which completes the proof.

Remark E.2. The proof we presented here works for pseudometric, i.e., even if D is not definite, as we only
used the triangle inequality and the symmetry of D.

E.3 Proof of Theorem 6.5

Theorem 6.5. Consider Algorithm 1 ran on n samples from a G-invariant probability measure µ. Then, the
probability of the Type I error (i.e., incorrectly rejecting the invariance to G) is bounded as

P
(
H1|H0

)
= P

(
max
g∈S

ĉg > c
∣∣∣ µ is G-invariant

)
≤ |S| exp

(
− nc2

128c21

)
,

where c1 := supx∈X K(x, x). Moreover, the Type II error, which is the probability of incorrectly accepting a
non-invariant measure using Algorithm 1, approaches zero as the sample size increases. Quantitatively, for any
probability measure µ ∈ P(X ), such that KMaxIC(µ) ≥ 2c′ > cℓ(S)2, we have

P
(
H0|H1

)
= P

(
max
g∈S

ĉg ≤ c
∣∣∣ µ is not G-invariant

)
≤ exp

(
−

n
(

2c′

ℓ(S)2 − c
)2

128c21

)
.
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Proof. First, we focus on the first inequality. By applying the union bound, we obtain

P
(
H1|H0

)
≤ |S|max

g∈S
P
(
ĉg > c

∣∣∣ µ is G-invariant
)
.

Fix a group element g ∈ G. Let aij = 2K(xi, xj)−2K(xi, gxj) for each i, j ∈ [n]. Note that ĉg = 2
n(n−1)

∑n
i,j=1
i<j

aij .

Assuming that µ is G-invariant, one has E[aij ] = 0 for any i ̸= j. Therefore

P
(
ĉg > c

∣∣∣ µ is G-invariant
)
= P

(
2

n(n− 1)

n∑
i,j=1
i<j

aij > c

)
.

Using standard tail bounds on U-statistics (Wainwright, 2019, Example 2.23), we know that the right-hand side of

the above is upper bounded by exp
(
− nc2

128c21

)
, since |aij | ≤ 4c1. This completes the proof of the first inequality.

Now, we prove the second inequality. Assume that KMaxIC(µ) ≥ 2c′. Define cg = E[ĉg] for each g ∈ G. Let
g⋆ ∈ argmaxg∈G ∥(gµ)H − µH∥2H. According to the assumption, there exists a sequence gi ∈ S, i ∈ [k], with
k ≤ ℓ(S), such that g⋆ = g1g2 . . . gk. Then, we have√

KMaxIC(µ) = ∥(g⋆µ)H − µH∥H
= ∥(g1g2 . . . gkµ)H − µH∥H
≤ ∥(g1µ)H − µH∥H + ∥(g1g2 . . . gkµ)H − (g1µ)H∥H
=

√
cg1 + ∥(g2 . . . gkµ)H − µH∥H,

where the last step follows from the shift-invariance of the chosen kernel. Therefore, by induction, we conclude
that

KMaxIC(µ) = ∥(g⋆µ)H − µH∥2H ≤ ℓ(S)2 max
g∈S

cg.

By assumption, KMaxIC(µ) ≥ 2c′, which means that there exists ĝ ∈ S such that cĝ ≥ 2c′/ℓ(S)2. Thus, by
specifying to ĝ ∈ S we have

P
(
H0|H1

)
= P

(
max
g∈S

ĉg ≤ c
∣∣∣ µ is not G-invariant

)
≤ P

(
ĉĝ ≤ c

∣∣∣ µ is not G-invariant
)

= P
(

2

n(n− 1)

n∑
i,j=1
i<j

aij ≤ c

)
,

where E[aij ] = cĝ ≥ 2c′/ℓ(S)2. Thus, similar to the proof of the previous part and using standard tail bound on
U-statistics, we conclude the desired result.

E.4 Proof of Theorem 8.2

Theorem 8.2. Consider a PDS kernel K : X × X → R, where X ⊆ Rd is a closed subset, and let G ⊆ O(d) be
an orthogonal subgroup acting on X . Assume that K(x, ·) : X → R is an r-Lipschitz function with respect to the

norm ∥ · ∥2 on Rd, for each x ∈ X . Let S ⊆ G be a generating set for G with ℓ(G) < ∞, and let Ŝ be a γ-covering
of S.

Then, when applying Algorithm 1 via Ŝ to test invariance to G, the probability of the Type I error (i.e., incorrectly
rejecting the invariance to G) is bounded as

P
(
H1|H0

)
= P

(
max
g∈Ŝ

ĉg > c
∣∣∣ µ is G-invariant

)
≤ |Ŝ| exp

(
− nc2

128c21

)
,
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where c1 := supx∈X K(x, x). Moreover, the Type II error, which is the probability of incorrectly accepting a
non-invariant measure using Algorithm 1, approaches zero as the sample size increases. Specifically, for any
probability measure µ ∈ P(X ) with Ex∼µ[∥x∥2] ≤ b such that KMaxIC(µ) ≥ 3c′ > cℓ(S)2 + 2rbγ, we have

P
(
H0|H1

)
= P

(
max
g∈Ŝ

ĉg ≤ c
∣∣∣ µ is not G-invariant

)
≤ exp

−
n
(

3c′

ℓ(S)2 − 2rγb− c
)2

128c21

 .

Proof. We note that the first inequality follows similarly to the proof of Theorem 6.5. Thus, we focus on the
proof of the second inequality.

We follow the same notation and arguments as in the proof of Theorem 6.5 to conclude that there exists ĝ ∈ S
such that cĝ ≥ 3c′/ℓ(S)2. Now, note that we have

|cg − cĝ| = 2|E[(K(x′, gx)−K(x′, ĝx))]|
≤ 2rE[∥(gx− ĝx)∥2]
≤ 2r∥g − ĝ∥opE[∥x∥2]
= 2rb∥g − ĝ∥op.

Therefore, using that ĝ ∈ S and Ŝ is a γ-covering of S, we conclude that there exists g′ ∈ Ŝ such that
cg′ ≥ 3c′/ℓ(S)2 − 2rγb. The rest of the proof follows similarly to the proof of Theorem 6.5. We are done.

F EXPERIMENTS

F.1 Constant-Factor Approximation: SO(2) with Gaussians

In this subsection, we conduct experiments on synthetic data to validate the constant-factor approximation.
Since the problem is intractable for large groups (Theorem 4.1), we focus on small-sized groups of rotational
symmetries.

We consider two-dimensional data x ∈ R2 generated independently according to a zero-mean multivariate Gaussian

distribution µ = N (0,Σ), where Σ =

[
1 0
0 2

]
. Moreover, we work with a group of rotational symmetries of size

k ∈ N:

G =

{
R
(2πt

k

)
: t = 0, 1, . . . , k − 1

}
,

where R(θ) :=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
∈ R2×2. Let µ̂ denote the empirical measure obtained from the data.

In our experiments, we use n = 2000 data points and consider a rotational group of size k = 100. We adopt the
2-Wasserstein distance as the metric on probability measures, formulated through the optimal transport problem
(i.e., we instantiate Theorem 4.2 with D ≡ W2). In Figure 1, we plot the optimal transport distance W 2

2 (µ̂, gµ̂) for
all g ∈ G and its average over g ∈ G. The parameter θ = 2πt

k runs from 0 to 2π, representing all group elements.

As observed in Figure 1, the function W2(µ̂, gµ̂) is not concave over [0, 2π], aligning with Theorem 4.1, which
states that the overall maximization problem supg∈G W2(µ̂, gµ̂) is generally intractable. Furthermore, by plotting
the ratio between W2(µ̂, gµ̂) and supg∈G W2(µ̂, gµ̂), we observe that it is uniformly bounded above over the group
by a constant (approximately 1.85). This is consistent with Theorem 4.2, which proves a constant factor of four
approximation through randomization.

Moreover, to demonstrate that the constant-factor approximation remains universal across different probability
metrics, we consider the same setup for two additional metrics:
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• The Maximum Mean Discrepancy (MMD) distance with the Radial Basis Function (RBF) kernel:

KRBF(x1, x2) = exp

(
−∥x1 − x2∥22

2σ2

)
,

where we set σ = 1.

• The energy distance, defined as

D2
E(µ, ν) := 2EX∼µ,Y∼ν [∥X − Y ∥2]− EX,X′∼µ[∥X −X ′∥2]− EY,Y ′∼ν [∥Y − Y ′∥2].

The corresponding results are shown in Figure 2 and Figure 3, both of which align with the observations presented
in this paper.

Figure 1: A constant-factor approximation of the worst-case optimal transport distance, supg∈G W2(µ̂, gµ̂) where
G is the group of rotational symmetries in two dimensions, and µ̂ is the empirical measure obtained from n
samples of a non-isotropic multivariate Gaussian distribution.

F.2 Constant-Factor Approximation: SO(3) with Gaussians

We consider 3D Gaussian random vectors with zero mean and covariance matrix Σ = diag(1, 2, 3). The goal of
this experiment is to validate the constant-factor approximation for groups and probability divergences beyond
those already tested in the previous subsection.

We conduct tests for invariance to rotational symmetries SO(3) using KMaxIC and KMIC (Algorithm 1 and
Algorithm 2). We consider n = 500 i.i.d. samples and use the proposed algorithm to compute the thresholds for

KMaxIC and KMIC (i.e., ̂KMaxIC := max
g∈S

ĉg and K̂MIC, both are used in Algorithm 1 and Algorithm 2) for the

group of rotations SO(3). To approximate KMaxIC, we maximize a function over the group by discretizing it
into 400 group elements and applying a brute-force search.

The following probability divergences were considered:

• MMD with the Radial Basis Function (RBF) kernel: KRBF(x1, x2) = exp
(
−∥x1−x2∥2

2

2σ2

)
, with σ = 1.

• Optimal transport distance W 2
2 with respect to the ℓ2-distance in Rd, where d = 3.
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Figure 2: Constant-factor approximation of the worst-case Maximum Mean Discrepancy (MMD) distance with
the Radial Basis Function (RBF) kernel.

Figure 3: Constant-factor approximation of the worst-case energy distance.

• The energy distance, defined as

D2
E(µ, ν) := 2EX∼µ,Y∼ν [∥X − Y ∥2]− EX,X′∼µ[∥X −X ′∥2]− EY,Y ′∼ν [∥Y − Y ′∥2].

The experiment is repeated for ten random seeds, and the average results along with standard deviations are
provided in Table 2. The experiments confirm that the constant-factor approximation holds consistently across
various metrics for 3D rotational symmetries.



Ashkan Soleymani∗, Behrooz Tahmasebi∗, Stefanie Jegelka, Patrick Jaillet

Metric MMD Optimal Transport Energy Distance

K̂MIC 0.0777±0.0102 0.6300±0.0928 0.1366±0.0173

̂KMaxIC 0.0987±0.0134 0.8523±0.1684 0.1725±0.0238

Ratio 1.2698 1.3528 1.263

Table 2: Comparison of different metrics for testing SO(3) symmetries of Gaussians.

F.3 Constant-Factor Approximation: Bernoulli Sequences and Sign-Flip Invariances

In this experiment, we consider the constant-factor approximation for binary sequences to validate the result
for discrete random variables as well. We consider a sequence x ∈ {±1}d generated according to i.i.d. Bernoulli
random variables with P(xi = 1) = p and P(xi = −1) = 1 − p, where p ∈ [0, 1] is a parameter. Note that the
law of x is sign-flip invariant if and only if p = 0.5. We compute the KMIC and KMaxIC thresholds (given
in Algorithm 2 and Algorithm 1) for the empirical probability measure (from n i.i.d. samples) under sign-flip
invariance.

For this experiment, we consider n = 500, d = 3, and p = 0.6, iterating over ten random seeds. To compute
KMaxIC, we perform a brute-force search over the space of all 2d group elements.

Metric MMD Optimal Transport Energy Distance Total Variation

K̂MIC 0.1686±0.0176 1.1544±0.1204 0.3235±0.0334 0.1927±0.0194

̂KMaxIC 0.2539±0.0248 2.3056±0.2443 0.4959±0.0493 0.2908±0.0404

Ratio 1.5058 1.9972 1.5327 1.5091

Table 3: Comparison of different metrics for testing sign-flip invariances of Bernoulli vectors.

As observed here, the constant-factor approximation is also validated for Bernoulli sequences, as an instance of
discrete random variables, using various probability divergences.

F.4 Convergence Plots for KMIC and KMaxIC

We analyze the convergence of Algorithm 1 and Algorithm 2 for computing the KMaxIC and KMIC thresholds as
a function of sample size. The experimental setup is as follows. We generate n i.i.d. samples from a zero-mean
Gaussian random vector in Rd with two covariance matrices:

• Invariant data: identity covariance matrix Σ = I,

• Non-invariant data: Σ = diag(1, 10, 20).

The data is analyzed under 3D rotational symmetries (i.e., SO(3)). The experiment is repeated over ten random
seeds, with results computed for 100 evenly distributed values of n ranging from 20 to 500. To estimate KMaxIC,
we use the method proposed in the paper, where each set S in Section 9 is divided into k = 20 subsets. The
results are shown in Figure 4 and Figure 5. The plots display the mean along with one standard deviation.

In these plots, we observe the following:

• Both the KMIC and the KMaxIC thresholds computed using Algorithm 2 and Algorithm 1 converge
competitively to a strictly positive quantity for non-invariant data and to zero for invariant data.

• These observations align with the theoretical results presented in the paper, confirming consistency in both
Type I and Type II error analyses.
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Figure 4: Convergence plot for ̂KMaxIC := max
g∈S

ĉg.

F.5 Randomness in KMIC

We conduct an experiment to examine the role of the number of random group elements used in approximating
KMIC. In the original KMIC algorithm (Algorithm 2), the number of random group elements m was set equal
to the sample size n. However, one might consider significantly reducing m to approximate KMIC using the
following modified empirical formula:

2

n(n− 1)

∑
i<j

K(xi, xj)−
2

mn(n− 1)

m∑
ℓ=1

∑
i<j

K(xi, gℓxj),

where gℓ ∈ G are independently and uniformly sampled group elements. For this experiment, we generated
n = 200 random samples from a zero-mean Gaussian vector with covariance Σ = diag(1, 10, 20).

The experiment is repeated across ten different random seeds, and the mean along with one standard deviation is
reported. We evaluated 1 ≤ m ≤ 20 for 20 different values of m. The results are visualized in Figure 6.

From the plot, we observe:

• As m increases, the variance in the KMIC approximation decreases, as expected.

• By m ≈ 15, the approximation becomes reliable, achieving a plausible estimation of KMIC compared to
the case of fully incorporating all random elements (m = n = 200). This reduced computation still achieves
KMIC within a ±5% accuracy margin.
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Figure 5: Convergence plot for K̂MIC.

Figure 6: Estimated KMIC as a function of the number of random group elements m.
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