
A DECOMPOSITION ALGORITHM FOR NESTED RESOURCE
ALLOCATION PROBLEMS

THIBAUT VIDAL∗, PATRICK JAILLET† , AND NELSON MACULAN‡

Abstract. We propose an exact polynomial algorithm for a resource allocation problem with
convex costs and constraints on partial sums of resource consumptions, in the presence of either
continuous or integer variables. No assumption of strict convexity or differentiability is needed.
The method solves a hierarchy of resource allocation subproblems, whose solutions are used to
convert constraints on sums of resources into new bounds for variables at higher levels. The resulting
time complexity for the integer problem is O(n logm log(B/n)), and the complexity of obtaining
an ε-approximate solution for the continuous case is O(n logm log(B/ε)), n being the number of
variables, m the number of ascending constraints (such that m ≤ n), ε a desired precision, and B
the total resource. This algorithm matches the best-known complexity when m = n, and improves it
when logm = o(logn). Extensive experimental analyses are presented with four recent algorithms on
various continuous problems issued from theory and practice. The proposed method achieves a better
performance than previous algorithms, solving all problems with up to one million variables in less
than one minute on a modern computer.

Key words. Separable convex optimization, resource allocation, nested constraints, project
crashing, speed optimization, lot sizing

AMS subject classifications. 90C25, 52A41, 90B06, 90B35

1. Problem statement. Consider the minimization problem (1.1–1.4), with
either integer or continuous variables, where the functions fi : [0, di] → R, i ∈
{1, . . . , n} are proper convex (but not necessarily strictly convex or differentiable);
(s[1], . . . , s[m]) is an increasing sequence of m ≥ 1 integers in {1, . . . , n} such that
s[m] = n; and the parameters ai, di and B are positive integers:

min f(x) =

n∑
i=1

fi(xi)(1.1)

s.t.

s[i]∑
k=1

xk ≤ ai i ∈ {1, . . . ,m− 1}(1.2)

n∑
i=1

xi = B(1.3)

0 ≤ xi ≤ di i ∈ {1, . . . , n}.(1.4)

To ease the presentation, we define a0 = 0, am = B, s[0] = 0, αi = ai − ai−1
and yi =

∑s[i]
k=1 xk for i ∈ {1, . . . ,m}. Without loss of generality, we can assume

that ai ≤ ai+1 ≤ ai +
∑s[i]
k=s[i−1]+1 dk for i ∈ {1, . . . ,m− 1}, since a simple lifting of

the constraints enables to reformulate the problem in O(n) to fulfill these conditions
(see Appendix).
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The problem (1.1–1.4) appears prominently in a variety of applications related
to project crashing [41], production and resource planning [4, 5, 44], lot sizing [42],
assortment with downward substitution [16, 36, 39], departure-time optimization in
vehicle routing [17], vessel speed optimization [32], and telecommunications [33], among
many others. When m = n, and thus s[i] = i for i ∈ {1, . . . , n} this problem is known
as the resource allocation problem with nested constraints (NESTED). In the remainder
of this paper, we maintain the same name for any m ≥ 2. Without the constraints (1.2),
the problem becomes a resource allocation problem (RAP), surveyed in [22, 35], which
is the focus of numerous papers related to search-effort allocation, portfolio selection,
energy optimization, sample allocation in stratified sampling, capital budgeting, mass
advertising, and matrix balancing, among many others. The RAP can also be solved
by cooperating agents under some mild assumption on functions fi [24].

In this paper, we propose efficient polynomial algorithms for both the integer
and continuous version of the problem. Computational complexity concepts are well-
defined for linear problems. In contrast, with the exception of seminal works such
as [18, 20, 29, 31], the complexity of algorithms for general non-linear optimization
problems is less discussed in the literature, mostly due to the fact that an infinite output
size may be needed due to real optimal solutions. To circumvent this issue, we assume
the existence of an oracle which returns the value of fi(x) for any x in a constant
number of operations, and rely on an approximate notion of optimality for non-linear
optimization problems [20]. A solution x(ε) of a continuous problem is ε-accurate if
and only if there exists an optimal solution x∗ such that ||(x(ε) − x∗)||∞ ≤ ε. This
accuracy is defined in the solution space, in contrast with some other approximation
approaches which considered the objective space [31].

Two main classes of methods can be found for NESTED, when m = n. The
algorithms of Padakandla and Sundaresan [33] and Wang [45] can be qualified as dual :
they solve a succession of RAP subproblems via Lagrange-multiplier optimizations
and iteratively re-introduce active nested constraints (1.2). These methods attain
a complexity of O(n2ΦRap(n,B)) and O(n2 log n + nΦRap(n,B)) for the continuous
case, ΦRap(n,B) being the complexity of solving one RAP with n tasks. It should
be noted that the performance of the algorithm in [33] can be improved for some
continuous problems in which the Lagrangian equation admits a closed and additive
form. Otherwise, the RAP are solved by a combination of Newton-Raphson and
bisection search on the Lagrangian dual. A more precise computational complexity
statement for these algorithms would require a description of the complexity of these
sub-procedures and the approximation allowed at each step. Similar methods have
also been discussed, albeit with a different terminology, in early production scheduling
and lot sizing literature [28].

Another class of methods, that we classify as primal, was initially designed for the
integer version of the problem, but also applies to the continuous case. These methods
take inspiration from greedy algorithms, which consider all feasible increments of one
resource, and select the least-cost one. The greedy method is known to converge [11]
to the optimum of the integer problem when the constraints determine a polymatroid.
Dyer and Walker [10] thus combine the greedy approach with divide-and-conquer using
median search, achieving a complexity of O(n log n log2 B

n ) in the integer case. More
recently, Hochbaum [18] combines the greedy algorithm with a scaling approach. An
initial problem is solved with large increments, and the increment size is iteratively
divided by two to achieve higher accuracy. At each iteration, and for each variable,
only one increment from the previous iteration may require an update. Using efficient



NESTED RESOURCE ALLOCATION PROBLEMS 3

feasibility checking methods, NESTED can then be solved in O(n log n log B
n ). The

method can also be applied to the general allocation problem as long as the constraints
determine a polymatroid [18].

Finally, without constraints (1.2), the RAP can be solved in O(n log B
n ) [13, 18].

This complexity is the best possible [18] in the comparison model and the algebraic
tree model with operations +,−,×,÷.

2. Contributions. This paper introduces a new algorithm for NESTED, with
a complexity of O(n logm log B

n ) in the integer case, and O(n logm log B
ε ) in the

continuous case. This is a dual -inspired approach, which solves NESTED as a succession
of RAP subproblems as in [33, 45]. It is the first method of this kind to attain the
same best known complexity as [18] when m = n. In addition, the complexity of the
proposed method contains a factor logm instead of log n as in [18], making it the
fastest known method for problems with sparse constraints, for which logm = o(log n).
In the presence of a quadratic objective, the proposed algorithm attains a complexity
of O(n logm), smaller than the previous complexity of O(n log n) [19].

Extensive experimental analyses are conducted to compare our method with
previous algorithms, using the same testing environment, on eight problem families
with n and m ranging from 10 to 1,000,000. In practice, the proposed method
demonstrates a better performance than [18] even when m = n, possibly due to the
use of very simple data structures. The CPU time is much smaller than [33, 45] and
the interior point method of MOSEK. All problems with up to one million variables
are solved in less than one minute on a modern computer. The method is suitable for
large scale problems, e.g. in image processing and telecommunications, or for repeated
use when solving combinatorial optimization problems with a resource allocation
sub-structure.

Our experiments also show that few nested constraints (1.2) are usually active in
optimal solutions for the considered benchmark instances. In fact, we show that the
expected number of active constraints grows logarithmically with m for some classes of
randomly-generated problems. As a corollary, we also highlight a strongly polynomial
algorithm for a significant subset of problems.

3. The proposed algorithm. We propose a recursive decomposition algorithm,
which optimally solves a hierarchy of NESTED subproblems by using information
obtained at deeper recursions. Any Nested(v, w) subproblem solved in this process
(Equations 3.1–3.4) corresponds to a range of variables (xs[v−1]+1, . . . , xs[w]) in the
original problem, setting yv−1 = av−1 and yw = aw. At the end of the recursion,
Nested(1,m) returns the desired optimal solution for the complete problem.

Nested(v, w)



min

s[w]∑
i=s[v−1]+1

fi(xi)(3.1)

s.t.

s[i]∑
k=s[v−1]+1

xk ≤ ai − av−1 i ∈ {v, . . . , w − 1}(3.2)

s[w]∑
i=s[v−1]+1

xi = aw − av−1(3.3)

0 ≤ xi ≤ di i ∈ {s[v − 1] + 1, . . . , s[w]}(3.4)
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The solution process is illustrated in Figure 3.1 for a problem with n = 8 variables
and m = 4 nested constraints, such that (s[1], . . . , s[4]) = (2, 3, 6, 8).
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Fig. 3.1. Main principles of the proposed decomposition algorithm

At the deepest level of the recursion (depth= 3 on Figure 3.1), each value yv is
fixed to av for v ∈ {1, . . . ,m}. Equivalently, all nested constraints (symbolized by “]”
on the figure) are active. The resulting Nested(v, v) subproblems, for v ∈ {1, . . . ,m},
do not contain any constraints of (3.2), and thus can be solved via classical techniques
for RAP (e.g., optimization of the Lagrange multiplier, or the algorithm of [13]).

Higher in the recursion, the ranges of indices corresponding to the NESTED
subproblems are iteratively combined, and the nested constraints (3.2) are considered.
When solving a Nested(v, w) subproblem for v < w, there exists t such that the
optimal solutions of Nested(v, t) and Nested(t+ 1, w) are known. The efficiency of
the decomposition algorithm depends on our ability to use that information in order
to simplify Nested(v, w). To this extent, we introduce an important property of
monotonicity on the values of the variables xi in Theorems 3.1 and 3.2. The proofs
are given in the next section.

Theorem 3.1. Consider (v, t, w) such that 1 ≤ v ≤ t < w ≤ m.

Let (x↓∗s[v−1]+1, . . . , x
↓∗
s[t]) and (x↑∗s[t]+1, . . . , x

↑∗
s[w]) be optimal solutions of Nested(v, t)

and Nested(t+ 1, w) with integer variables, respectively. Then, Nested(v, w) with

integer variables admits an optimal solution (x∗∗s[v−1]+1, . . . , x
∗∗
s[w]) such that x∗∗i ≤ x

↓∗
i

for i ∈ {s[v − 1] + 1, . . . , s[t]} and x∗∗i ≥ x
↑∗
i for i ∈ {s[t] + 1, . . . , s[w]}.

Theorem 3.2. The statement of Theorem 3.1 is also valid for the problem with
continuous variables.

These two theorems guarantee that an optimal solution exists for Nested(v, w)
even in the presence of some additional restrictions on the range of the variables
xi: the values of the variables (xs[v−1]+1, . . . , xs[t]) should not be greater than in the
subproblem (in white on Figure 3.1), and the values of the variables (xs[t]+1, . . . , xs[w])
should not be smaller than in the subproblem (in dark gray on Figure 3.1). These
valid bounds for the variables xi can be added to the formulation of Nested(v, w).
Moreover, as stated in Corollary 3.3, these constraints alone guarantee that the nested
constraints (3.2) are satisfied:
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Corollary 3.3. Let (x↓∗s[v−1]+1, . . . , x
↓∗
s[t]) and (x↑∗s[t]+1, . . . , x

↑∗
s[w]) be two optimal

solutions of Nested(v, t) and Nested(t+ 1, w), respectively. Then, Rap(v, w) with
the coefficients c̄ and d̄ given below admits at least one optimal solution, and any such
optimal solution is also an optimal solution of Nested(v, w). This proposition is
valid for continuous and integer variables.

(c̄i, d̄i) =

{
(0, x↓∗i ) i ∈ {s[v − 1] + 1, . . . , s[t]}
(x↑∗i , di) i ∈ {s[t] + 1, . . . , s[w]}

As a consequence, the range of each variable xi can be updated and the nested
constraints can be eliminated. Each Nested(v, w) subproblem can then be reduced
to a RAP subproblem, as formulated in Equations (3.5–3.7):

Rap(v, w)



min

s[w]∑
i=s[v−1]+1

fi(xi)(3.5)

s.t.

s[w]∑
i=s[v−1]+1

xi = aw − av−1(3.6)

c̄i ≤ xi ≤ d̄i i ∈ {s[v − 1] + 1, . . . , s[w]}(3.7)

This leads to a remarkably simple algorithm for NESTED, described in Algo-
rithm 1. The variable ranges are initially set to c̄ = (0, . . . , 0) and d̄ = (d1, . . . , dn),
and Nested(1,m) is called. At each level of the recursion, an optimal solution
to Nested(v, w) is obtained by solving the two subproblems Nested(v, t) and
Nested(t + 1, w) (Algorithm 1, Lines 5 and 6), along with a modified Rap(v, w)
with an updated range for (xs[v−1]+1, . . . , xs[w]) (Algorithm 1, Lines 7 to 11).

Algorithm 1: Nested(v, w)

1 if v = w then
2 (xs[v−1]+1, . . . , xs[v])← Rap(v, v)
3 else
4 t← bv+w2 c
5 (xs[v−1]+1, . . . , xs[t])← Nested(v, t)
6 (xs[t]+1, . . . , xs[w])← Nested(t+ 1, w)
7 for i = s[v − 1] + 1 to s[t] do
8 (c̄i, d̄i)← (0, xi)
9 for i = s[t] + 1 to s[w] do

10 (c̄i, d̄i)← (xi, di)
11 (xs[v−1]+1, . . . , xs[w])← Rap(v, w)

4. Proof of optimality. We first show that the Rap(v, v) subproblems solved at
the deepest level of the recursion admit a feasible solution. We then prove Theorems 3.1
and 3.2 as well as Corollary 3.3. The proof of Theorem 3.1 is based on the optimality
properties of a greedy algorithm for resource allocation problems in the presence of
constraints forming a polymatroid. The proof of Theorem 3.2 relies on the proximality
arguments of [18]. Overall, this demonstrates that the recursive algorithm returns an
optimal solution, even for continuous or quadratic problems.
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• RAP(v,v) admits a feasible solution: A feasible solution can be generated as
follows:

for i = s[v − 1] + 1 to s[v], xi = min{di, av − av−1 −
∑i−1
k=s[v−1]+1 xk}.

• Proof of Theorem 3.1. This proof relies on the optimality of the greedy algorithm
for general RAP in the presence of polymatroidal constraints [11, 22]. This greedy
algorithm is applied to Nested(v, w) in Algorithm 2. It iteratively considers all
variables xi which can be feasibly incremented by one unit, and increments the least-
cost one. There is one degree of freedom in case of tie (Line 4). In the proof, we add a
marginal component in the objective function to break these ties in favor of increments
that are part of desired optimal solutions.

Algorithm 2: Greedy

1 x = (x1, . . . , xn)← (0, . . . , 0)
2 E ← (1, . . . , n) ; I ← aw − av−1
3 while I > 0 and E 6= ∅ do
4 Find i ∈ E such that fi(xi+1)− fi(xi) = mink∈E{fk(xk+1)− fk(xk)}
5 x′ ← x ; x′i ← xi + 1
6 if x′ is feasible then
7 x← x′ ; I ← I − 1
8 else
9 E ← E\{i}

10 if I > 0 then
11 return Infeasible
12 else
13 return x

First, (x↓∗s[v−1]+1, . . . , x
↓∗
s[t], x

↑∗
s[t]+1, . . . , x

↑∗
s[w]) is a feasible solution of Nested(v, w),

and thus at least one optimal solution x̃ of Nested(v, w) exists. Define ãt = av−1 +∑s[t]
k=s[v−1]+1 x̃k. The feasibility of x̃ leads to

0 ≤ ãt ≤ at,(4.1)

ãt +

s[w]∑
k=s[t]+1

dk ≥ aw.(4.2)

The problem Nested(v, t) has a discrete and finite set of solutions, and the
associated set of objective values is discrete and finite. If all feasible solutions are
optimal, then set ξ = 1, otherwise let ξ > 0 be the gap between the best and the
second best objective value. Consider Nested(v, t) with a modified separable objective
function f̄ such that for i ∈ {s[v − 1] + 1, . . . , s[t]},

(4.3) f̄i(x) = fi(x) +
ξ

B + 1
max{x− x↓∗i , 0}.

Any solution x of the modified Nested(v, t) with f̄ is an optimal solution of the
original problem with f if and only if f̄(x) < f(x↓∗) + ξ, and the new problem admits
the unique optimal solution x↓∗. Thus, Greedy returns x↓∗ after at−av−1 increments.
Let x∗∗ = (x∗∗s[v−1]+1, . . . , x

∗∗
s[t]) be the solution obtained at increment ãt − av−1. By

the properties of Greedy, x∗∗ is an optimal solution of Nested(v, t) when replacing
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at by ãt, such that x∗∗i ≤ x
↓∗
i for i ∈ {s[v − 1] + 1, . . . , s[t]}.

The same process can be used for the subproblem Nested(t+ 1, w). With the
change of variables x̂i = di − xi, and gi(x) = fi(di − x), the problem becomes

Nested-bis(t+ 1, w)



min

s[w]∑
i=s[t]+1

gi(x̂i)

s.t.

s[w]∑
k=s[i]+1

x̂k ≤ ai − aw +

s[w]∑
k=s[i]+1

dk i ∈ {t+ 1, . . . , w − 1}

s[w]∑
k=s[t]+1

x̂k = at − aw +

s[w]∑
k=s[t]+1

dk

0 ≤ x̂i ≤ di i ∈ {s[t] + 1, . . . , s[w]}.

(4.4)

If all feasible solutions of Nested-bis(t + 1, w) are optimal, then set ξ̂ = 1,

otherwise let ξ̂ > 0 be the gap between the best and second best solution of
Nested-bis(t + 1, w). For i ∈ {s[t] + 1, . . . , s[w]}, define x̂↑∗i = di − x↑∗i and ḡ
such that

(4.5) ḡi(x) = gi(x) +
ξ̂

B + 1
max{x− x̂↑∗i , 0}.

Greedy returns x̂↑∗, the unique optimal solution of Nested-bis(t+1, w) with the
modified objective ḡ. Let x̂∗∗ be the solution obtained at step ãt − aw +

∑s[w]
k=s[t]+1 dk.

This step is non-negative according to Equation (4.2). Greedy guarantees that x̂∗∗ is
an optimal solution of Nested-bis(t+ 1, w) with the alternative equality constraint

(4.6)

s[w]∑
k=s[t]+1

x̂k = ãt − aw +

s[w]∑
k=s[t]+1

dk.

In addition, x̂∗∗i ≤ x̂
↑∗
i for i ∈ {s[t] + 1, . . . , s[w]}. Reverting the change of variables,

this leads to an optimal solution x∗∗ of Nested(t+ 1, w) where at has been replaced

by ãt, and such that x∗∗i ≥ x
↑∗
i for i ∈ {s[t] + 1, . . . , s[w]}.

Overall, since x∗∗ is such that
∑s[t]
k=s[v−1]+1 x

∗∗
k =

∑s[t]
k=s[v−1]+1 x̃k = ãt − av−1,

since it is also optimal for the two subproblems obtained when fixing ãt = av−1 +∑s[t]
k=s[v−1]+1 x

∗∗
k , then x∗∗ is an optimal solution of Nested(v, w) which satisfies the

requirements of Theorem 3.1.

• Proof of Theorem 3.2. The proof relies on the proximity theorem of Hochbaum
[18] for general resource allocation problem with polymatroidal constraints. This
theorem states that for any optimal continuous solution x there exists an optimal
solution z of the same problem with integer variables, such that z− e < x < z + ne,
and thus ||z− x||∞ ≤ n. Reversely, for any integer optimal solution z, there exists an
optimal continuous solution such that ||z− x||∞ ≤ n.

Let (x↓∗s[v−1]+1, . . . , x
↓∗
s[t]) and (x↑∗s[t]+1, . . . , x

↑∗
s[w]) be two optimal solutions of

Nested(v, t) and Nested(t + 1, w) with continuous variables, and suppose that
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the statement of Theorem 3.1 is false for the continuous case. Hence, there exists
∆ > 0 such that for any optimal solution x∗∗ of the continuous Nested(v, w) there ex-

ists either i ∈ {s[v−1] + 1, . . . , s[t]} such that x∗∗i ≥ ∆ +x↓∗i , or i ∈ {s[t] + 1, . . . , s[w]}
such that x∗∗i ≤ x

↑∗
i −∆. We will prove that this statement is impossible.

Define the scaled problem Nested-β(v, t) below. This problem admits at least
one feasible integer solution as a consequence of the feasibility of Nested(v, t).

(4.7)

Nested-β(v, t)



min

s[t]∑
i=s[v−1]+1

fi

(
xi
β

)

s.t.

s[i]∑
k=s[v−1]+1

xk ≤ βai − βav−1 i ∈ {v, . . . , t− 1}

s[t]∑
i=s[v−1]+1

xi = βat − βav−1

0 ≤ xi ≤ βdi i ∈ {s[v − 1] + 1, . . . , s[t]}

The proximity theorem of [18] guarantees the existence of a serie of integer
solutions x̂↓∗[β] of Nested-β(v, t) such that limβ→∞ ‖x̂↓∗[β]/β − x↓∗‖ = 0. With the
same arguments, the existence of a serie of integer solutions x̂↑∗[β] of Nested-β(t+1, w)
such that limβ→∞ ‖x̂↑∗[β]/β − x↑∗‖ = 0 is also demonstrated.

As a consequence of Theorem 3.1, for any β there exists an integer optimal solution

x̂∗∗[β] of Nested-β(v, w), such that x̂
∗∗[β]
i ≤ x̂↓∗[β]i for i ∈ {s[v − 1] + 1, . . . , s[t]} and

x̂
∗∗[β]
i ≥ x̂↑∗[β]i for i ∈ {s[t] + 1, . . . , s[w]}.

Finally, the proximity theorem of [18] guarantees the existence of continuous
solutions x∗∗[β] of Nested-β(v, w), such that limβ→∞ ‖x∗∗[β] − x̂∗∗[β]/β‖ = 0. Hence,
there exist β, x̂↓∗[β], x̂↑∗[β], x̂∗∗[β] and x∗∗[β] such that ‖x̂↓∗[β]/β − x↓∗‖ ≤ ∆/3,
‖x̂↑∗[β]/β − x↑∗‖ ≤ ∆/3, and ‖x̂∗∗[β]/β − x∗∗[β]‖ ≤ ∆/3.

For i ∈ {s[v − 1] + 1, . . . , s[t]}, we thus have:

x
∗∗[β]
i ≤ x̂

∗∗[β]
i

β
+

∆

3
≤ x̂

↓∗[β]
i

β
+

∆

3
≤ x↓∗i +

2∆

3
.

As a consequence, the statement x
∗∗[β]
i ≥ ∆ + x↓∗i is false.

For i ∈ {s[t] + 1, . . . , s[w]}, we thus have:

x
∗∗[β]
i ≥ x̂

∗∗[β]
i

β
− ∆

3
≥ x̄

↑∗[β]
i

β
− ∆

3
≥ x↑∗i −

2∆

3
.

As a consequence, the statement x
∗∗[β]
i ≤ x↑∗i −∆ is false, and the solution x∗∗[β]

leads to the announced contradiction.
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4.1. Proof of Corollary 3.3. As demonstrated in Theorems 3.1 and 3.2, there
exists an optimal solution x∗∗ of Nested(v, w), such that x∗∗k ≤ x

↓∗
k for k ∈ {s[v−1] +

1, . . . , s[t]} and x∗∗k ≥ x
↑∗
k for k ∈ {s[t] + 1, . . . , s[w]}. These two sets of constraints can

be introduced in the formulation (3.1–3.4). Any optimal solution of this strengthened
formulation is an optimal solution of Nested(v, w), and the strengthened formulation
admits at least one feasible solution. The following relations hold for any solution
x = (xs[v−1]+1, . . . , xs[w]):

(4.8)

xk ≤ x↓∗k for k ∈ {s[v − 1] + 1, . . . , s[t]}

⇒
s[i]∑

k=s[v−1]+1

xk ≤
s[i]∑

k=s[v−1]+1

x↓∗k

⇒
s[i]∑

k=s[v−1]+1

xk ≤ ai − av−1 for i ∈ {v, . . . , t}

(4.9)

xk ≥ x↑∗k for k ∈ {s[t] + 1, . . . , s[w]}

⇒
s[w]∑

k=s[i]+1

xk ≥
s[w]∑

k=s[i]+1

x↑∗k

⇒
s[i]∑

k=s[v−1]+1

xk ≤
s[i]∑

k=s[v−1]+1

x↑∗k

⇒
s[i]∑

k=s[v−1]+1

xk ≤ ai − av−1 for i ∈ {t, . . . , w − 1}

Hence, any solution satisfying the constraints xi ≤ d̄i for i ∈ {s[v−1] + 1, . . . , s[t]}
and xi ≥ c̄i for i ∈ {s[t] + 1, . . . , s[w]} also satisfies the constraints of Equation (3.2).
These constraints can thus be removed, leading to the formulation Rap(v, w).

5. Computational complexity. This section investigates the computational
complexity of the proposed method for integer and continuous problems, as well as for
the specific case of quadratic objective functions.

Theorem 5.1. The proposed algorithm for NESTED with integer variables works
with a complexity of O(n logm log B

n ).

Proof. The integer NESTED problem is solved as a hierarchy of RAP, with h =
1 + dlog2me levels of recursion (Algorithm 1, Lines 4–6). At each level i ∈ {1, . . . , h},
2h−i RAP subproblems are solved (Algorithm 1, Lines 2 and 11). Furthermore, O(n)
operations per level are needed to update c̄ and d̄ (Algorithm 1, Lines 7–10). The
method of Frederickson and Johnson [13] for RAP works in O(n log B

n ). Hence, each
Rap(v, w) can be solved in O((s[w] − s[v]) log aw−av

s[w]−s[v] ) operations. Overall, there

exist positive constants K, K ′ and K ′′ such that the number of operations Φ(n,m) of
the proposed method is:
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Φ(n,m,B) ≤ Kn+

h∑
i=1

K′n+

2h−i∑
j=1

K′′
(
s[2ij]− s[2i(j − 1)]

)
log

(
a2i×j − a2i×(j−1)

s[2ij]− s[2i(j − 1)]

)
= Kn+K′nh+K′′n

h∑
i=1

2h−i∑
j=1

s[2ij]− s[2i(j − 1)]

n
log

(
a2i×j − a2i×(j−1)

s[2ij]− s[2i(j − 1)]

)

≤ Kn+K′nh+K′′n

h∑
i=1

log

∑2h−i

j=1 (a2i×j − a2i×(j−1))

n


≤ Kn+K′nh+K′′nh log

B

n

= Kn+K′n(1 + dlogme) +K′′n(1 + dlogme) log
B

n
.

This leads to the announced complexity of O(n logm log B
n ).

For the continuous case, two situations can be considered. When there exists an
“exact” solution method independent of ε to solve the RAP subproblems, e.g. when
the objective function is quadratic, the convergence is guaranteed by Theorem 3.2. As
such, the algorithm of Brucker [7] or Maculan et al. [25] can be used to solve each
quadratic RAP subproblem in O(n), leading to an overall complexity of O(n logm) to
solve the quadratic NESTED resource allocation problem.

In the more general continuous case without any other assumption on the ob-
jective functions, all problem parameters can be scaled by a factor n

ε [18], and the
integer problem with B′ = Bn

ε can be be solved with complexity O(n logm log B′

nε )
= O(n logm log B

ε ). The proximity theorem guarantees that an ε-accurate solution of
the continuous problem is obtained after the reverse change of variables.

Finally, we have assumed in this paper integer values for ai, B, and di. Now,
consider fractional parameter values with z significant figures and x decimal places.
All problem coefficients as well as ε can be scaled by a factor 10x to obtain integer
parameters, and the number of elementary operations of the method remains the same.
We assume in this process that operations are still elementary for numbers of z + x
digits. This is a common assumption when dealing with continuous parameters.

6. Experimental analyses. Few detailed computational studies on nested re-
source allocation problems can be found in previous works. The theoretical complexity
of the algorithm of Hochbaum [18] was investigated, but not its experimental per-
formance. The algorithms of [33] and [45] were originally implemented in Matlab,
possibly leading to higher CPU times. So, in order to assess the practical performance
of all algorithms on a fair common basis, we implemented all of the most recent
ones using the same language (C++). These algorithms are very simple, concise,
and require similar array data structures and elementary arithmetics, hence limiting
possible bias related to programming style or implementation skills. In particular, we
have compared:

• PS09 : the dual algorithm of Padakandla and Sundaresan [34];
• W14 : the dual algorithm of Wang [45];
• H94 : the scaled greedy algorithm of Hochbaum [18];
• MOSEK : the interior point method of MOSEK [1, for conic quadratic opt.];
• THIS : our proposed method.
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Note that the new implementations of PS09 and W14 become (10 to 100 times) faster
than their original Matlab implementations.

Each algorithm is tested on NESTED instances with three types of objective
functions. The first objective function profile comes from [34, 45]. We also consider
two other objectives related to project and production scheduling applications. The
size of instances ranges from n = 10 to 1, 000, 000. To further investigate the impact of
the number of nested constraints, additional instances with a fixed number of tasks and
a variable number of nested constraints are also considered. An accuracy of ε = 10−8

is sought, and all tests are conducted on a single Xeon 3.07 GHz CPU, with a single
thread. To obtain accurate time measurements, any algorithm with a run time smaller
than one second has been executed multiple times in a loop. In this case, we report
the total CPU time divided by the number of runs.

The instances proposed in [34, 45] are continuous with non-integer parameters ai
and B. We generated these parameters with nine decimals. Following the last remark
of Section 5, all problem parameters and ε can be multiplied by 109 to obtain a problem
with integer coefficients. For a fair comparison with previous authors, we rely on a
similar RAP method as [34, 40, 45], using bisection search on the Lagrangian equation
to solve the subproblems. The derivative f ′i of fi is well-defined for all test instances.
This Lagrangian method does not have the same complexity guarantees as [13], but
performs reasonably well in practice. The initial bisection-search interval for each
Rap(v, w) is set to [mini∈{s[v−1]+1,...,s[w]} f

′
i(c̄i),maxi∈{s[v−1]+1,...,s[w]} f

′
i(d̄i)].

Implementing previous algorithm from the literature led to a few other questions
and implementation choices. As mentioned in [18], the Union-Find structure of [15]
achieves a O(1) amortized complexity for feasibility checks. Yet, its implementation
is intricate, and we privileged a more standard Union-Find with balancing and path
compression [43], attaining a complexity of αack(n) where αack is the inverse of the
Ackermann function. For all practical purposes, this complexity is nearly constant
and the practical performance of the simpler implementation is very similar [15]. The
algorithm of [18] also requires a correction, which is well-documented in [30].

Finally, as discussed in Section 6.1, the distributions and ordering of the parameters,
in previous benchmark instances, led to optimal solutions with few active nested
constraints. To investigate the performance of all methods on a larger range of settings,
we completed the benchmark with other parameter distributions, leading to five sets
of instances:

6.1. Problem instances – previous literature. We first consider the test
function (6.1) from [34]. The problem was originally formulated with nested constraints

of the type
∑s[i]
k=1 xk ≥ ai for i ∈ {1, . . . ,m− 1}. The change of variables x̂i = 1− xi

can be used to obtain (1.1–1.4).

[F] fi(x) =
x4

4
+ pix, x ∈ [0, 1](6.1)

The benchmark instances of [34] have been generated with uniformly distributed
pi and αi in [0,1] (recall that αi = ai − ai−1). The parameters pi are then ordered
by increasing value. As observed in our experiments, this ordering of parameters
leads to very few active nested constraints. We thus introduce two additional instance
sets called [F-Uniform] and [F-Active]. In [F-Uniform], the parameters pi and αi
are generated with uniform distribution, between [0,1] and [0,0.5], respectively, and
non-ordered. [F-Active] is generated in the same way, and αi are sorted in decreasing
order. As a consequence, these latter instances have many active constraints. In [34],
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some other test functions were considered, for which the solutions of the Lagrangian
equations admit a closed additive form. As such, each Lagrangian equation can be
solved in amortized O(1) instead of O(n log B

n ). This technique is specific to such
functions and cannot be applied with arbitrary bounds di. We thus selected the
functions [F] for our experiments as they represent a more general case.

6.2. Problem instances – Project crashing. A seminal problem in project
management [23, 27] relates to the optimization of a critical path of tasks in the presence
of non-linear cost/time trade-off functions fi(x), expressing the cost of processing a
task i in xi time units. Different types of trade-off functions have been investigated
in the literature [6, 8, 12, 14, 37]. The algorithm of this paper can provide the best
compression of a critical path to finish a project at time B, while imposing additional

deadline constraints
∑s[i]
k=1 xk ≤ ai for i ∈ {1, . . . ,m− 1} on some steps of the project.

Lower and upper bounds on task durations ci ≤ xi ≤ di are also commonly imposed.
The change of variables x̂i = xi + ci leads to the formulation (1.1–1.4). Computational
experiments are performed on these problems with the cost/time trade-off functions
of Equation (6.2), proposed in [12], in which the cost supplement related to crashing
grows as the inverse of task duration.

[Crashing] fi(x) = ki +
pi
x
, x ∈ [ci, di](6.2)

Parameters pi, di and αi are generated by exponential distributions of mean E(pi) =

E(di) = 1 and E(αi) = 0.75. Finally, ai =
∑i
k=1 αk and ci = min(αi,

di
2 ) to ensure

feasibility.

6.3. Problem instances – Vessel speed optimization. Some applications
require solving multiple NESTED problems. One such case relates to an emergent
class of vehicle routing and scheduling problems aiming at jointly optimizing vehicle
speeds and routes to reach delivery locations within specified time intervals [3, 21,
32]. Heuristic and exact methods for such problems consider a very large number
of alternative routes (permutations of visits) during the search. For each route,
determining the optimal travel times (x1, . . . , xn) on n trip segments to satisfy m
deadlines (a1, . . . , am) on some locations is the same subproblem as in formulation
(1.1–1.4). We generate a set of benchmark instances for this problem, assuming as
in [38] that fuel consumption is approximately a cubic function of speed on relevant
intervals. In Equation (6.3), pi is the fuel consumption on the way to location i per
time unit at maximum speed, and ci is the minimum travel time.

[FuelOpt] fi(x) = pi × ci ×
(ci
x

)3
, x ∈ [ci, di](6.3)

Previous works on the topic [21, 32] assumed identical pi on all edges. Our work
allows to raise this simplifying assumption, allowing to take into consideration edge-
dependent factors such as currents, water depth, or wind which have a strong impact
on fuel consumption. We generate uniform pi values in the interval [0.8, 1.2]. Base
travel times ci are generated with uniform distribution in [0.7, 1], di = ci ∗ 1.5, and αi
are generated in [1, 1.2].

6.4. Experiments with m = n. The first set of experiments involves as many
nested constraints as variables (n = m). We tested the five methods for n ∈ {10, 20, 50,
100, 200, . . . , 106}, with 100 different problem instances for each size n ≤ 10, 000, and
10 different problem instances when n > 10, 000. A time limit of 10 minutes per run
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Table 6.1
CPU time(s) of five different algorithms for NESTED, with increasing n and m = n

Instances n nb Active
Time (s)

PS09 W14 H94 MOSEK THIS

[F] 10 1.15 8.86×10=5 8.06×10=5 6.18×10=5 8.73×10=3 1.85×10=5

102 1.04 7.96×10=3 7.03×10=3 6.74×10=4 2.03×10=2 1.69×10=4

103 1.08 9.17×10=1 7.87×10=1 8.74×10=3 9.63 1.98×10=3

104 1.15 1.06×102 8.72×101 1.46×10=1 – 2.23×10=2

105 1.20 – – 2.93 – 3.67×10=1

106 1.10 – – 4.42×101 – 4.36

[F-Uniform] 10 2.92 1.03×10=4 4.57×10=5 5.86×10=5 8.76×10=3 2.62×10=5

102 5.06 1.37×10=2 1.61×10=3 7.42×10=4 2.14×10=2 4.97×10=4

103 7.65 2.28 8.35×10=2 9.83×10=3 8.63 8.41×10=3

104 9.99 – 6.08 1.67×10=1 – 1.31×10=1

105 12.00 – – 3.99 – 2.74
106 14.50 – – 7.06×101 – 4.62×101

[F-Active] 10 3.67 1.19×10=4 3.94×10=5 5.76×10=5 8.71×10=3 2.88×10=5

102 10.00 2.28×10=2 9.65×10=4 7.50×10=4 2.18×10=2 4.69×10=4

103 22.58 4.88 3.82×10=2 9.93×10=3 1.01×101 6.81×10=3

104 50.75 – 2.31 1.62×10=1 – 9.95×10=2

105 114.50 – 2.62×102 3.18 – 1.47
106 280.30 – – 5.65×101 – 2.21×101

[Crashing] 10 6.44 4.49×10=5 1.81×10=5 5.02×10=5 9.46×10=3 8×10=6

102 24.61 6.03×10=3 7.05×10=4 6.80×10=4 5.95×10=2 1.25×10=4

103 34.14 1.10 4.84×10=2 8.86×10=3 1.43×101 2.48×10=3

104 46.90 2.50×102 2.85 1.50×10=1 – 4.93×10=2

105 50.30 – 2.98×102 3.44 – 1.13
106 88.30 – – 6.02×101 – 2.35×101

[FuelOpt] 10 2.93 8.46×10=5 3.17×10=5 6.62×10=5 8.74×10=3 2.20×10=5

102 5.31 1.22×10=2 1.28×10=3 7.98×10=4 1.99×10=2 4.21×10=4

103 6.86 1.74 7.10×10=2 1.07×10=2 7.02 6.83×10=3

104 9.53 2.43×102 4.81 1.95×10=1 – 1.02×10=1

105 14.90 – 4.34×102 4.88 – 1.72
106 12.80 – – 8.54×101 – 2.99×101

was imposed. The CPU time of each method for a subset of size values is reported in
Table 6.1. The first two columns report the instance set identifier, the next column
displays the average number of active constraints in the optimal solutions, and the
five next columns report the average run time of each method on each set. The
smallest CPU time is highlighted in boldface. A sign “–” means that the time limit is
attained without returning a solution. The complete results, for all values of n, are
also represented on a logarithmic scale in Figure 6.1.

First, it is remarkable that the number of active nested constraints strongly varies
from one set of benchmark instances to another. One drawback of the previously-used
[F] instances [34] is that they lead to a low number of active nested constraints, in such
a way that in many cases an optimal RAP solution obtained by relaxing all nested
constraints is also the optimal NESTED solution. Some algorithms can benefit from
such problem characteristics.

The five considered methods require very different CPU time to reach the optimal
solution with the same precision. In all cases, the smallest time was achieved by our
decomposition method. The time taken by PS09, W14, H94 and our decomposition
algorithm, as a function of n, is in most most cases in accordance with the theoretical
complexity, cubic for PS09, quadratic for W14, and log-linear for H94 and the proposed
method (Figure 6.1). The only notable exception is problem type [F], for which the
reduced number of active constraints leads to a general quadratic behavior of PS09
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Fig. 6.1. CPU Time(s) as a function of n ∈ {10, . . . , 106}. m = n. Logarithmic representation

(instead of cubic). The CPU time of MOSEK does not exhibit a polynomial behavior
on the considered problem-size range, possibly because of the preprocessing phase.
The proposed method and H94 have a similar growth when m = n. Our dual-inspired
decomposition algorithm appears to be slightly faster in practice, by a constant factor
×1 to ×10. This may be explained by the use of simpler array data structures (hidden
constants related to the use of priority lists or Union-Find data structures are avoided).
The bottleneck of our method, measured by means of a time profiler, is the call
to the oracle for the objective function. In our implementation of H94, the call to
the oracle and the management of the priority list for finding the minimum cost
increment contribute equally to the largest part of the CPU time. The time taken by
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Fig. 6.2. CPU Time(s) as a function of m. n ∈ {5000, 1000000}. Logarithmic representation

the Union-Find structures is not significant.

6.5. Experiments with m < n. In a second set of experiments, the number
of variables is fixed and the impact of the number of nested constraints is evaluated,
with m ∈ {1, 2, 5, 10, 50, . . . , n}, on [F-Uniform], [Crashing] and [FuelOpt]. Two values
n = 5000 and n = 1, 000, 000 were considered, to allow experiments with H94, PS09,
W14 and the proposed method on medium size problems in reasonable CPU time, as
well as further tests with H94 and the proposed method on large-scale instances. The
CPU time as a function of m is displayed in Figure 6.2.

The CPU time of H94 appears to be independent of m, while significant time



16 THIBAUT VIDAL, PATRICK JAILLET AND NELSON MACULAN

gains can be observed for the proposed method, which is ×5 to ×20 faster than H94
on large-scale instances (n = 1, 000, 000) with few nested constraints (m = 10 or 100).
It also appears that PS09 benefits from sparser constraints. Surprisingly, sparser
constraints are detrimental to W14 in practice, possibly because Equation (21) of [45]
is called on larger sets of variables.

7. A note on the number of active nested constraints. The previous
experiments have shown that the number of active nested constraints in the optimal
solutions tends to grow sub-linearly for the considered problems. In Table 6.1 for
example, even when m = 106 the number of active nested constraints is located
between 12.8 and 88.3 for instances with randomly generated coefficients (no ordering
as in [F] or [F-Active]). To complement this observation, we show in the following
that the expected number of active nested constraints in a random optimal solution
grows logarithmically with m when :

1. di = +∞;
2. parameters αi are outcomes of i.i.d. random variables;
3. functions fi are strictly convex and differentiable;
4. and there exists a function h and γi ∈ R+∗ for i ∈ {1, . . . , n} satisfying
fi(x) = γih(x/γi). γi are i.i.d. random variables independent from the αi’s,
and the vectors (γi, αi) are non-collinear.

Function shapes satisfying condition 4. are frequently encountered, e.g. in
• crashing: fi(x) = pi/x ⇒ h(x) = 1/x and γi =

√
pi;

• fuel optimization: fi(x) = pici(ci/x)3 ⇒ h(x) = 1/x3 and γi = ci 4
√
pi;

• any function fi(x) = pix
k s.t. k 6= 1 ⇒ h(x) = xk and γi = 1/p

1/(k−1)
i .

The first order necessary and sufficient optimality conditions of problem (1.1–1.3)
with xi ∈ R+ for i ∈ {1, . . . , n} can be written as:

x = (x1, . . . , xn) ≥ 0 satisfy constraints (1.2) and (1.3)(7.1)

for i ∈ {1, . . . ,m} and j ∈ {s[i− 1] + 1, . . . , s[i]− 1}, f ′j(xj) = f ′j+1(xj+1)(7.2)

for i ∈ {1, . . . ,m− 1} and j = s[i],

{
either f ′j(xj) = f ′j+1(xj+1)

or f ′j(xj) < f ′j+1(xj+1) and
∑j
k=1 xk = ai

(7.3)

If fi(x) = γih( xγi ), then f ′i(x) = h′( xγi ), and with the strict convexity the necessary

and sufficient conditions (7.2) and (7.3) become:

for i ∈ {1, . . . ,m} and j ∈ {s[i− 1] + 1, . . . , s[i]− 1}, xj
γj

=
xj+1

γj+1
(7.2b)

for i ∈ {1, . . . ,m− 1} and j = s[i],

{
either

xj
γj

=
xj+1

γj+1

or
xj
γj
<

xj+1

γj+1
and

∑j
k=1 xk = ai

(7.3b)

Define Γi =
∑i
k=1 γk for i ∈ {0, . . . , n}. As illustrated on Figure 7.1, searching for

a solution satisfying (1.2), (1.3), (7.2b) and (7.3b) reduces to computing the convex
hull of the set of points P such that

P = {(Γs[j], aj) | j ∈ {0, . . . ,m}}.(7.4)

Let Φ : [0,Γn]→ [0, B] be the curve associated with the lower part of the convex hull,
in boldface on Figure 7.1. Then, the solution defined as xi = Φ(Γi) − Φ(Γi−1) for
i ∈ {1, . . . , n} satisfies all previously-mentioned conditions since
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Fig. 7.1. Reduction of NESTED to a convex hull computation. Example with n = 10, m = 8
and s = (1, 3, 4, 5, 7, 8, 9).

• Φ is below the points pj , hence satisfying (1.2);
• pm is part of the convex hull, thus satisfying (1.3);
• Φ(z) ≥ 0 for z ∈ [0,Γn] since all pj coordinates are non-negative, hence x ≥ 0;
• the slope of Φ is constant between vertices of the convex hull (7.2b);
• and the slope of Φ only increases when meeting a vertex (7.3b).

The expected number of vertices of a convex hull with random points is at the core
of an extensive literature. We refer to [9] for early studies, and [26] for a recent review.
Consider a randomly-generated NESTED problem, such that γj for j ∈ {1, . . . ,m}
and αj for j ∈ {1, . . . , n} are i.i.d. random variables. If the distribution is such that
all vectors (γj , αj) for j ∈ {1, . . . ,m} are non-collinear, then the expected number
of points on the convex hull grows as O(logm) [2]. Equivalently, there are O(logm)
expected active nested constraints in the solution.

Note that a generalization of the previous reasoning is necessary to fully explain
the results of our experiments since we considered di 6=∞. Assuming that the same
result holds in this more general case, then the amortized complexity of some methods
such as [34] on randomly generated instances may be significantly better than the
worst case. Indeed, this method iterates on the number of active constraints in an
outer loop. The number of active constraints has no impact on the complexity and
CPU time of the proposed method, but further pruning techniques may be investigated
to eliminate constraints on the fly. Finally, the graphical approach used in this analysis
leads to a strongly polynomial algorithm in O(n+m logm) for an interesting class of
problems, and is worth further investigation on its own.

8. Conclusions. A dual-inspired approach has been introduced for NESTED
resource allocation problems. The method solves NESTED as a hierarchy of simple
resource allocation problems. The best known complexity ofO(n log n log B

n ) is attained
for problems with as many nested constraints as variables, and a new best-known
complexity of O(n logm log B

n ) is achieved for problems with n variables and logm =
o(log n) nested constraints. Our computational experiments highlight significant CPU
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time gains in comparison to other state-of-the-art methods on a wide range of problem
instances with up to one million tasks.

The proposed algorithm relies on different principles than the previous state-of-
the-art scaled greedy method. As such, it is not bound to the same methodological
limitations and may be generalized to some problem settings with non-polymatroidal
constraints, e.g., allocation problems with nested upper and lower constraints, which
are also related to various key applications. Further pruning techniques exploiting
the reduced number of active nested constraints can be designed and the geometric
approach of Section 7 can be further investigated, aiming for generalization and
an increased understanding of its scope of application. Finally, promising research
perspectives relate to the extension of these techniques for various application fields,
such as telecommunications and image processing, which can require to solve huge
problems with similar formulations.

Appendix. To simplify the exposition, we assumed that ai ≤ ai+1 ≤ ai +∑s[i]
k=s[i−1]+1 dk for i ∈ {1, . . . ,m}. If these conditions are not satisfied, then either the

parameters ai can be decreased to obtain an equivalent problem which fulfills them,
or the problem can be declared to be infeasible. This transformation, described in
Algorithm 3, takes O(n) elementary operations.

Algorithm 3: Problem transformation and feasibility check

1 a0 ← 0 ; am ← B
2 for i = m− 1 down to 1 do
3 ai ← min{ai+1, ai}
4 for i = 1 to m− 1 do

5 ai ← min{ai−1 +
∑s[i]
k=s[i−1]+1 dk, ai}

6 if am−1 + dm−1 < B then
7 return Infeasible

References.
[1] E.D. Andersen, C. Roos, and T. Terlaky, On implementing a primal-dual

interior-point method for conic quadratic optimization, Mathematical Program-
ming, 95 (2003), pp. 249–277.

[2] G. Baxter, A Combinatorial Lemma for Complex Numbers, The Annals of
Mathematical Statistics, 32 (1961), pp. 901–904.

[3] T. Bektas and G. Laporte, The pollution-routing problem, Transportation
Research Part B: Methodological, 45 (2011), pp. 1232–1250.

[4] R.E. Bellman and S.E. Dreyfus, Applied dynamic programming, Princeton
University Press, Princeton, NJ, 1962.

[5] R. Bellman, I. Glicksberg, and O. Gross, The theory of dynamic program-
ming as applied to a smoothing problem, Journal of the Society for Industrial and
Applied Mathematics, 2 (1954), pp. 82–88.

[6] E.B. Berman, Resource allocation in a PERT network under continuous activity
time-cost functions, Management Science, 10 (1964), pp. 734–745.

[7] P. Brucker, An O(n) algorithm for quadratic knapsack problems, Operations
Research Letters, 3 (1984), pp. 163–166.

[8] T.C.E. Cheng, A. Janiak, and M.Y. Kovalyov, Bicriterion single ma-
chine scheduling with resource dependent processing times, SIAM Journal on
Optimization, 8 (1998), pp. 617–630.
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