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Abstract

We study the unconstrained and the minimax saddle point variants of the convex multi-stage
stochastic programming problem, where consecutive decisions are coupled through the objective
functions, rather than through the constraints. Based on the analysis of deterministic mirror
descent algorithms with inexact gradients, we introduce the idea of stochastic conditional gradi-
ent oracles, a multi-stage analog of the stochastic gradient oracles used in (classical) stochastic
programming. We show one approach to construct such oracles and prove the convergence of
the (accelerated) mirror descent stochastic approximation, both in expectation and with high
probability. To further reduce the oracle complexity, we view the problem from a semi-online
perspective, where the stage t decision variables are constructed s stages in advance, instead of
before stage 1. We show that the delay in decision making allows an asynchronous implementa-
tion of the mirror descent stochastic approximation algorithms. By avoiding computing solutions
for scenarios that are inconsistent with information available during stage t, the complexity is
reduced from exponential to linear in the number of stages.

1 Introduction

Sequential decision making has found applications in a variety of real-life problems: from classical
ones such as power system management [5, 29, 33] and inventory control [22, 40], to more modern
ones such as data center management [9, 27, 28] and online resource allocation [2, 42, 43]. In
this work, we study sequential decision making in stochastic environments under a semi-online
framework.

To model the sequential revelation of information and the underlying stochasticity, we adopt
a multi-stage stochastic programming (MSSP) formulation [40]. Informally, MSSP divides the
decision-making process into stages (t = 1, . . . , T ), and at stage t, the value of the variable xt needs
to be determined based only on the information known by stage t. The goal is to minimize the
costs subject to coupled constraints, both of which are random functions of x1, . . . , xT . Due to
its wide applications, MSSP has been studied in many prior works [12, 33, 40]. However, existing
algorithms either suffer from restrictive assumptions such as stage-wise independent randomness
[12, 22], or have exponential (in T ) complexity [23, 39].

We study the unconstrained and the minimax saddle point variants of the convex multi-stage
stochastic programming problems, where consecutive decisions are coupled through the objective
functions, rather than through the constraints. Motivated by the analysis of (deterministic, inexact)
mirror descent algorithms, we propose the stochastic conditional gradient oracle, a generalization
of the stochastic gradient oracles in the classical stochastic programming literature [21, 31]. We
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provide one sampling approach to construct such oracles, and show that mirror descent stochastic
approximations with these oracles converge in expectation and with high probability.

To further improve the oracle and memory efficiency, we consider a semi-online framework,
where the decision xt only needs to be made at stage max(1, t − s), i.e., s stages in advance.
We propose an online updating mechanism, which delays the updates (i.e., mirror descent steps) of
future decision variables. Taking advantage of the decomposability of mirror descent updates across
stages and scenarios, we show that the delay does not change the outputs of the algorithms, thus
maintaining their convergence properties. Moreover, the information gained during the delay helps
the algorithms avoid computing solutions for scenarios inconsistent with the available information,
thus improving the complexity from exponential to linear in T .

We demonstrate the effectiveness and robustness of our mirror descent stochastic approxima-
tions by applying them to a tracking problem and a revenue management problem.

1.1 Related works

In the classical setup of stochastic programming (SP), the objective function is F (x) = E[f(x,w)],
where w ∈ Ω and (Ω,F ,P) is the underlying probability space. Multi-stage stochastic programming
(with T stages) is a generalization of SP to cases where information about w = (w1, . . . , wT ) is
revealed sequentially. That is, at stage t, wt is revealed and the stage t variable xt ∈ Rnt needs to
be determined based on w1:t. The goal is to minimize

∑T
t=1 ft(xt, w1:t) subject to the constraints

gt(xt−1, xt, w1:t) ≤ 0 for all t.
Treating the stage t decision as a random variable Xt : Ω → Rnt , the information constraint

requires that Xt should be measurable w.r.t. Ft = σ(w1:t), the σ-algebra generated by the first
t components of w. This non-anticipativity constraint can be formulated as the linear constraint
that E[Xt|Ft] = Xt, and algorithms such as the augmented Lagrangian method can be applied
[35, 36, 37]. Alternatively, MSSP can be formulated using scenario trees, where nodes in layer-t
of a scenario tree represent different information available by stage t. These two formulations are
equivalent ways to model MSSP (with finite scenarios) [40], and our mirror descent algorithms
suggest that algorithms designed for the non-anticipativity constraint formulation also admit a
scenario tree interpretation.

Algorithms for MSSP. Mirror descent stochastic approximation has been well studied for
stochastic programming problems where the objective functions are of the (simple) form F (x) =
E[f(x,w)] [17, 18, 21, 31, 40]. In the multi-stage setting, to apply stochastic approximation type
of algorithms, one needs to have access to (potentially stochastic, biased) first order oracles for the
cost-to-go functions. [23] proposes the dynamic stochastic approximation (DSA) algorithm, which
solves backwardly for approximate subgradients of the cost-to-go functions at the query points,
and then applies inexact primal-dual updates. To find a Tϵ suboptimal first stage solution, DSA
has complexity O(ϵ−2T ) for convex objectives and O(ϵ−T ) for strongly convex objectives. Another
well known algorithm for MSSP is the stochastic dual dynamic programming (SDDP) [1, 16, 19,
33], which is a cutting-plane based algorithm designed for MSSP where the randomness in different
stages are independent: ft,gt depend on wt but not w1:(t−1), and w1, . . . , wT are independent. [19,
20] show that to find an O(Tϵ) suboptimal solution for a scenario tree which has at most d children
per node, SDDP needs O(TdT ϵ−maxt=1,...,T nt) forward-backward iterations, where each iteration
involves (approximately) solving T convex optimization problems (of dimension O(maxt=1,...,T nt)).

In addition, [38, 39, 41] show that for sample average approximation type of algorithms for
MSSP, the sample complexity has an upper bound which is exponential in T . In fact, [11, 14]
show that even approximating the solution of 2-stage stochastic programs is #P -hard for a suffi-
ciently high accuracy. In this work, we propose asynchronous versions of mirror descent stochastic
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approximations, which have linear in T complexity in the semi-online setting.
Online optimization. Sequential decision making is also studied through the perspective of

online optimization, where the unknown part (i.e., future) of the objectives could be potentially
chosen by an adversary, and the performance is compared to the optimal offline solution. Well-
known algorithms include online mirror descent [15, 45], online restarted gradient descent [4], and
online primal-dual approach [7], to name a few. In this work, we consider the semi-online case,
where the solution is constructed in an online fashion and is compared against the optimal online
solution. Our efficient online implementation is motivated by a recent line of research on smoothed
online convex optimization [3, 13, 24, 25, 26, 27, 44], where the cost at stage t is the sum of a stage
cost which depends only on xt, and a switching cost ∥xt− xt−1∥ or ∥xt− xt−1∥2. As a comparison,
our algorithms can be applied to (convex or saddle point) problems with general couplings between
consecutive decision variables, and do not require strong convexity (as required in [25, 26]).

1.2 Contributions

We make the following contributions to the multi-stage stochastic programming literature.

• Based on a pathwise analysis of mirror descent algorithms for the multi-stage stochastic
programming problems (MS-Unconstrained) and (MS-Saddle) (Section 3), we propose the
stochastic conditional gradient oracle, a multi-stage analog of the stochastic gradient ora-
cle in stochastic programming literature (Section 4.1). We propose a sampling algorithm that
constructs such conditional oracles robust to distribution misspecification (Section 4.2).

• We propose (accelerated) mirror descent stochastic approximation algorithms for the multi-
stage problems and prove their convergence, both in expectation and with high probability,
with potentially biased stochastic conditional gradient oracles (Section 4.3). Compared with
existing algorithms for multi-stage stochastic programming, our algorithms do not assume
stage-wise independent randomness. In addition, our algorithms do not require knowledge of
T , the total number of stages, when setting the parameters.

• To reduce the oracle and space complexity, we propose an efficient online implementation
of the (accelerated) mirror descent stochastic approximation algorithms (Section 5). The
overall algorithm, when applied to a scenario tree with at most d children per node and
when decisions are made s stages in advance, achieves oracle complexity O(Tds21/ϵ

2
) and

space complexity O((dsϵ−2+ϵ−4)maxt=1,...,T nt) to find an ϵT -suboptimal solution for convex
objectives.

In addition, our results can be applied to more general information constraints: we assume
that the decisions are made based on information in Gt which is a relaxation of the baseline Ft =
σ(w1, . . . , wt) ⊂ Gt.

2 Setup

We consider T -stage stochastic programming problems with and without constraints, on a discrete
probability space (Ω,F ,P) where Ω = [K] is finite, F is the power set of Ω, and pk = P[w = k] > 0
for all k = 1, 2, . . . ,K. For convenience, for a sub-σ-algebra G ⊂ F and a random variable X :
Ω → Rn0 for some n0 ∈ N, by X ∈ G we mean X is measurable w.r.t. G; given a set S ⊂ Rn0 , by
X ∈ G ∩ S we mean X ∈ G and X(w) ∈ S for all w ∈ Ω; for f : Rn0 × Ω → R and X : Ω → Rn0 ,
we use f(X) : Ω→ R to denote f(X)(w) = f(X(w), w).
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In addition, recall that a function f : Ω×Rn0 → R is random lower-semicontinuous (lsc) w.r.t.
G ⊂ F if epif : Ω → Rn0 × R defined as epif (w) = epif(w,·) is closed valued and measurable w.r.t.
G. For its properties, see [34, 40].

2.1 Multi-stage unconstrained programming

By a multi-stage unconstrained programming (MS-Unconstrained) problem, we mean the following:

inf
X1∈G1∩X1

· · · inf
XT∈GT∩XT

E[f(X1:T )], (MS-Unconstrained)

f(x1, . . . , xT , w) := f1(x1, w) +
T∑
t=2

ft(xt−1, xt, w),

where ft : Rnt−1 × Rnt × Ω → R (n0 = 0) and Xt ⊂ Rnt for all t = 1, . . . , T . In addition,
{Ω, ∅} = G1 ⊂ · · · ⊂ GT ⊂ F is a filtration that represents the information available at each stage.
For convenience, n =

∑T
t=1 nt. To ensure that Gt contains all the information necessary to evaluate

ft at stage t, we make the following assumption.

Assumption 2.1. There exists a baseline filtration {Ω, ∅} = F1 ⊂ · · · ⊂ FT ⊂ F such that for all
t, Ft ⊂ Gt, and ft is random lsc w.r.t. Ft.

We also make the following assumption regarding the objective functions and the constraints.

Assumption 2.2. For each t, ft(·, ·, w) is a convex function in (xt−1, xt) and is differentiable for
all w ∈ Ω, and Xt ⊂ Rnt is a nonempty compact convex subset. In addition, X∗

1:T is a solution to
(MS-Unconstrained).

Remark. Our Assumption 2.1 (and Assumption 2.3 below) generalizes the information con-
straints in the classical setups of MSSP, where the sample space Ω consists of w = (w1, . . . , wT ),
and the information available at stage t is Ft = σ(w1:t). As an example, if Gt = F for all t, then
full information is available for all stages. As another example, for l ∈ N, having l-step look-ahead
into the future objectives and constraints can be modeled using Gt = Fmin(t+l,T ).

2.2 Multi-stage saddle point problem

By a multi-stage saddle point problem (MS-Saddle), we mean the following:

inf
X1∈G1∩X1

· · · inf
XT∈GT∩XT

E[ϕ̃(X1:T )] (MS-Saddle)

ϕ̃(x1, . . . , xT , w) := ϕ̃1(x1, w) +
T∑
t=2

ϕ̃t(xt−1, xt, w)

ϕ̃t(xt−1, xt, w) := sup
yt∈Yt

ϕt(xt−1, xt, yt, w), t = 1, . . . , T

where ϕt : Rnt−1 ×Rnt ×Rmt ×Ω→ R (n0 = 0), Xt ∈ Rnt and Yt ∈ Rmt for all t. For convenience,
m =

∑T
t=1mt, and we denote

ϕ(x1, y1, . . . , xT , yT , w) := ϕ1(x1, y1, w) +

T∑
t=2

ϕt(xt−1, xt, yt, w).

Similar to the above setting for the unconstrained problem, we make the following measurability
assumption.
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Assumption 2.3. There exists a baseline filtration {Ω, ∅} = F1 ⊂ · · · ⊂ FT ⊂ F such that for all
t, Ft ⊂ Gt, and ±ϕt and ϕ̃t are random lsc w.r.t. Ft.

We also make the following assumption regarding the objective functions and the constraints.

Assumption 2.4. For each t, ϕt(·, ·, ·, w) is differentiable, convex in (xt−1, xt) and concave in
yt for all w ∈ Ω, and Xt ⊂ Rnt and Yt ⊂ Rmt are nonempty compact convex subsets. In addi-
tion, X∗

1:T is a solution to (MS-Saddle), with a corresponding Y ∗
1:T such that Y ∗

t ∈ Gt ∩ Yt and
ϕ̃t(X

∗
t−1(w), X

∗
t (w), w) = ϕt(X

∗
t−1(w), X

∗
t (w), Y

∗
t (w), w) for all t and all w.

The problem (MS-Saddle) is well defined under Assumptions 2.3, in the sense that ϕ̃t is random
lsc w.r.t. Gt for all t. We provide further discussions of these assumptions in Appendix A.

Recall that in the classical MSSP formulation [40], consecutive decision variables are coupled
through the constraints: for each scenario w ∈ Ω, the problem is

min
x1∈X1,...,xT∈XT

T∑
t=1

ht(xt, w), s.t. g1(x1, w) ≤ 0, gt(xt−1, xt, w) ≤ 0, t = 2, . . . , T (1)

where ht : Rnt × Ω → R and each component of gt : Rnt−1 × Rnt × Ω → Rmt (n0 = 0) are convex
and satisfy similar conditions as Assumption 2.1.

Under regularity conditions (such as Proposition 3.6 in [40] for linear constraints), (1) can be
reformulated as a saddle point problem MS-Saddle, with ϕ1(x1, y1, w) = f1(x1, w) + ⟨y1, g1(x1, w)⟩
and for t = 2, . . . , T , ϕt(xt−1, xt, yt, w) = ft(xt, w) + ⟨yt, gt(xt−1, xt, w)⟩, with the caveat that
Yt = Rmt

≥0 is unbounded. Nevertheless, additional structural assumptions on the problem (1) could
lead to (implicit) bounds on the norms of dual solutions [23]. Our revenue management experiment
in Section 6.2 is an example (see Appendix C for additional details).

2.3 Modeling the information constraints

In this work, we use two (equivalent) approaches to model the information constraints that a
variable X is measurable w.r.t. some sub-σ-algebra G ⊂ F .

Pathwise approach. Since K is finite, a random vector X : Ω → Rn0 such that X ∈ F
can be viewed as a vector X = [X(1)| · · · |X(K)] ∈ Rn×K . Thus, given G ⊂ F , the information
constraint that X ∈ G can be equivalently represented as XPG = X, where PG ∈ RΩ×Ω is defined
as PG(i, j) = E[1[w = i]|G](j) for i, j ∈ Ω. PG represents the distribution P conditioned on G, and
useful properties for this matrix are presented in Lemma B.1. With this notation, the constraints
in (MS-Unconstrained) are equivalent to XtPt = Xt and Xt(w) ∈ Xt for all w ∈ Ω, for all t. And
similarly for (MS-Saddle). We abbreviate PGt = Pt for simplicity.

Scenario trees. In the scenario tree formulation, layers correspond to stages, and nodes
correspond to different information that has been revealed. More precisely, for a sub-σ-algebra
G ⊂ F , we use ΩG to denote the associated partition of Ω. Thus, G = 2ΩG is the power set of
ΩG . For convenience, we use [w]G to denote the partition that w lies in in ΩG . For a random
variable X : Ω → Rn0 which is measurable w.r.t. G, we use XG : ΩG → Rn0 to denote the
reduced random variable, where XG([w]G) := X(w) for all w ∈ Ω, and we abbreviate it as X([w]G).
Similarly, if a function f : Rn0 × Ω → R is such that for any x ∈ Rn0 , f(x, ·) is G measurable,
then f(x, [w]G) = f(x,w) for all w ∈ Ω. We abbreviate [w]Gt = [w]t and ΩGt = Ωt for simplicity.
In addition, we denote πt([w]t) as the distribution over Ωt+1([w]t) = {[w′]t+1, w

′ ∈ [w]t}, i.e. the
distribution over the children of [w]t.

Comparing the two approaches. The two approaches are equivalent for the setup we
consider (see Figure 1 for an example). Thus, one might wonder why we adopt two approaches
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instead of one. We would like to point out that when implementing numerical algorithms, trees
might be more memory efficient. Consider a random variable X : Ω→ R which is measurable w.r.t.
G ⊂ F . To store such a variable X, there is no need to store it as a vector in RK . Instead, one
only needs to store the reduced variable XG : ΩG → R, which is a vector in R|ΩG |. For instance,
for G = {∅,Ω} and ΩG = {Ω}, we have |ΩG | = 1 and so only one number in R needs to be stored.
On the other hand, as will be presented in Section 4.3, there are two sources of randomness in
the problem: from the multi-stage problem itself, and from the sampling process to construct the
stochastic (conditional) gradients. Thus, the pathwise perspective allows a more formal treatment
of the randomness, especially the (in)dependence between the samples and the constructed Xt

involved.

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

t = 3

t = 2

t = 1 [1]1 = · · · = [6]1

[1]2 = [2]2 [3]2 = [4]2 [5]2 = [6]2

[1]3 [2]3 [3]3 [4]3 [5]3 [6]3

Figure 1: Example probability space with Ω = {1, . . . , 6}, Ω1 = {{1, . . . , 6}}, Ω2 =
{{1, 2}, {3, 4}, {5, 6}}, and Ω3 = {{1}, {2}, {3}, {4}, {5}, {6}}. Left: pathwise representation where
boxes are partitions based on G1,G2,G3. Right: tree representation.

3 Mirror descent: a deterministic perspective

We first give a brief review of mirror descent [6, 21, 32]. We equip Rn with the Euclidean inner
product ⟨·, ·⟩ and a norm ∥·∥ not necessarily induced by the inner product. Recall that for a convex
compact subset Q ⊂ Rn, v : Q → R is a distance generating function [21, 31] for Q if v is convex
and continuous on Q, and

Qo := {x ∈ Q|∃g ∈ Rn, x ∈ argmin
x′∈Q

v(x′) + ⟨g, x′⟩}

is a convex set, and restricted to Qo, v is continuously differentiable and 1-strongly convex, i.e.:

⟨x′ − x,∇v(x′)−∇v(x)⟩ ≥ ∥x′ − x∥2.

Then, initialized at some x(0) ∈ Qo, mirror descent updates the variables iteratively for l = 0, 1, . . .

x(l+1) = argmin
x′∈Q

γl⟨g(l), x′⟩+Dv(x
′, x(l)), (2)

where Dv(y, x) := v(y)−v(x)−⟨∇v(x), y−x⟩ is the Bregman divergence induced by v and g(l) ∈ Rn

is a subgradient of the objective function, and γl ≥ 0 is usually chosen based on properties of the
objective function f and the set X .

In Section 3.1, we treat (MS-Unconstrained) and (MS-Saddle) as problems in Rn×K and R(n+m)×K

respectively, and show that with suitable inner products, norms, and the distance generating func-
tions, the update (2) is efficient. In Section 3.2, we propose and analyze the (accelerated) mirror
descent updates for problems (MS-Unconstrained) and (MS-Saddle) with inexact gradient informa-
tion. In Section 3.3, we provide a scenario tree perspective.
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3.1 Mirror descent updates for all scenarios

We first reformulate (MS-Unconstrained) as a convex optimization problem in Rn×K with the ob-
jective function

F (X) := E[f(X1:T (w), w)], ∀X = (X1, . . . , XT ) ∈ Rn×K .

For the constraints, we define X t ⊂ Rnt×K as

X t := Gt ∩ Xt = {Xt ∈ Rnt×K , XtPt = Xt, Xt(w) ∈ Xt ∀w ∈ Ω}.

In addition, X :=
∏T

t=1Xt and X =
∏T

t=1X t. Thus, the information constraint in (MS-Unconstrained)
is equivalent to X ∈ X . We make the following assumption about the inner products, norms, and
distance generating functions in Rn.

Assumption 3.1. We equip Rn with the Euclidean inner product ⟨·, ·⟩. For all t, Rnt is equipped
with the norm ∥ · ∥ not necessarily induced by the Euclidean inner product, and vt : Xt → R is a
distance generating function which is 1-strongly convex w.r.t. the norm ∥ · ∥ such that Xt admits
easy projection using Dvt. We equip Rn with the norm ∥x1:T ∥2 =

∑T
t=1 ∥xt∥2 and X with the

distance generating function v(x1:T ) :=
∑T

t=1 vt(xt).

From Rnt to Rnt×K , we use the following induced norm and inner product:

⟨Xt, X
′
t⟩ := E[⟨Xt(w), X

′
t(w)⟩], ∥Xt∥2 = E[∥Xt(w)∥2].

Then the dual norm satisfies that ∥Yt∥2∗ = E[∥Yt(w)∥2∗] (Lemma B.2). Further, we use Vt : XK
t → R

and DVt : XK
t × (X o

t )
K → R to denote

Vt(Xt) = E[vt(Xt)], DVt(Xt, X
′
t) = E[Dvt(Xt(w), X

′
t(w))],

thus Vt is 1-strongly convex. We further extend the above definitions to Rn×K through ∥X∥2 =∑T
t=1 ∥Xt∥2, V (X) =

∑T
t=1 Vt(Xt), and similarly for the norm and DV .

With these decomposable assumptions on the distance generating functions, inner products,
and norms, we have the following Lemma 3.1, which implies that the Bregman projections 1 are
still easy.

Lemma 3.1. Under Assumption 3.1. For X = (X1, . . . , XT ) ∈
∏T

t=1 Gt∩X o
t and G = (G1, . . . , GT ) ∈∏T

t=1F ∩ Rnt, the following is well defined

X+ = argmin
X′∈X

⟨G,X ′⟩+DV (X
′, X).

The following holds for all t:

X+
t = argmin

X′
t∈Gt∩Xt

⟨GtPt, X
′
t⟩+DVt(X

′
t, Xt),

X+
t (w) = argmin

xt∈Xt

⟨GtPt(w), xt⟩+Dvt(xt, Xt(w)), ∀w ∈ Ω.

In addition, for any X ′
t ∈ Gt ∩ Xt,

⟨GtPt, Xt −X ′
t⟩ −

1

2
∥GtPt∥2∗ ≤ DVt(X

′
t, Xt)−DVt(X

′
t, X

+
t ).

1The distance generating functions defined in [21] and [31] are for the standard Euclidean inner product ⟨·, ·⟩,
but over the nt ×K dimensional space, the inner product is the expected inner product. Thus, Vt is not a distance
generating function for X t (in the sense of [21] and [31]). Nevertheless, we still call Vt a distance generating function
and DVt the Bregman divergence.
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Lemma 3.1 suggests that the projection onto X is decomposable, and that only the GtPt =
E[Gt|Gt] component matters. The proof of Lemma 3.1 is deferred to Appendix B.1.

For the saddle problem (MS-Saddle), we denote Zt = Xt×Yt, and set Yt, Zt, Y, Z similarly as
above. In addition, we denote Φ(Z1:T ) = E[ϕ(X1:T , Y1:T )] and

∂̃ϕ

∂zt
(z, w) =

[
∂

∂xt
ϕ(z, w)

− ∂
∂yt
ϕ(z, w)

]
,

∂̃ϕ

∂z
(z, w) =

[ ∂
∂xϕ(z, w)

− ∂
∂yϕ(z, w)

]
.

Assumption 3.2. We equip Rn+m with the Euclidean inner product ⟨·, ·⟩. For all t, Rnt (Rmt) are
equipped with the norm ∥·∥ not necessarily induced by the Euclidean inner product, and vt : Xt → R
(ut : Yt → R) is a distance generating function which is 1-strongly convex w.r.t. the norm ∥ · ∥
such that Xt (Yt) admits easy projecting using Dvt (Dut). We equip Rn+m with the norm ∥z1:T ∥2 =∑T

t=1(∥xt∥2+ ∥yt∥2) and Z with the distance generating function w(z1:T ) :=
∑T

t=1(vt(xt)+ut(yt)).

Results similar to Lemma 3.1 can be shown for Zt ∈ Gt ∩ (X o
t × Yo

t ) and Gt ∈ F ∩ Rmt+nt .

3.2 A deterministic view of mirror descent

In this section, we present the mirror descent algorithms [21, 31] and analyze their non-asymptotic
convergence properties with inexact gradient information – the accumulation of gradient inexactness
allows easy adaptation of the methods and their performance to stochastic approximation type of
methods, which we explore in Section 4.

3.2.1 Mirror descent for (MS-Unconstrained)

Consider the mirror descent algorithm applied to (MS-Unconstrained) with the distance generating

function V (X1:T ) :=
∑T

t=1 Vt(Xt) and initialization X
(0)
1 ∈ G1 ∩ X o

1 , . . . , X
(0)
T ∈ GT ∩ X o

T :

X
(l+1)
1:T = argmin

(X1,...,XT )∈X
⟨γlG

(l)
1:T , X1:T ⟩+DV (X1:T , X

(l)
1:T ), l = 0, 1, . . . (3)

where γl ≥ 0, and G
(l)
t : Ω→ Rnt for t = 1, 2, . . . , T are (approximate) gradients.

Lemma 3.2. Assume that Assumptions 2.1, 2.2, and 3.1 hold. Consider the update in (3), then

for X
(L)
t :=

∑L
l=0 γlX

(l)
t∑L

l=0 γl
, we have

E[f(X(L)
1:T )]− E[f(X∗

1:T )]

≤
DV (X

∗
1:T , X

(0)
1:T ) +

1
2

∑L
l=0 γ

2
l

∑T
t=1 ∥G

(l)
t Pt∥2∗ −

∑L
l=0 γl⟨∆

(l)
1:T , X

(l)
1:T −X∗

1:T ⟩∑L
l=0 γl

,

where ∆
(l)
t =

(
G

(l)
t − ∂

∂xt
f(X

(l)
1:T )

)
Pt.

Proof of Lemma 3.2. By Lemma 3.1, for any X ′
t ∈ Gt ∩ Xt,

⟨γlG
(l)
t Pt, X

(l)
t −X ′

t⟩ ≤ DVt(X
′
t, X

(l)
t )−DVt(X

′
t, X

(l+1)
t ) +

1

2
γ2l ∥GtPt∥2∗.

In addition, since X
(l)
t and X ′

t are both Gt measurable, by definition of ∆
(l)
t , we have

⟨∆(l)
t , X

(l)
t −X ′

t⟩ = ⟨G
(l)
t Pt, X

(l)
t −X ′

t⟩ − ⟨
∂

∂xt
f(X

(l)
1:T ), X

(l)
t −X ′

t⟩.

8



Thus, the above can be rewritten as

⟨γl
∂

∂xt
f(X

(l)
1:T ), X

(l)
t −X ′

t⟩

≤ DVt(X
′
t, X

(l)
t )−DVt(X

′
t, X

(l+1)
t ) +

1

2
γ2l ∥GtPt∥2∗ − γl⟨∆

(l)
t , X

(l)
t −X ′

t⟩.

Summing over l and t, and using DVt ≥ 0, we get

L∑
l=0

γl⟨
∂

∂x
f(X

(l)
1:T ), X

(l)
1:T −X

′
1:T ⟩ ≤DV (X

′
1:T , X

(0)
1:T ) +

1

2

L∑
l=0

γ2l

T∑
t=1

∥GtPt∥2∗ (4)

−
L∑
l=0

γl⟨∆
(l)
1:T , X

(l)
1:T −X

′
1:T ⟩.

By convexity of f(·, w) we have for any w ∈ Ω,

L∑
l=0

γl⟨
∂

∂x
f(X

(l)
1:T (w)), X

(l)
1:T (w)−X

′
1:T (w)⟩ ≥ (

L∑
l=0

γl)(f(X
(L)
1:T (w), w)− f(X ′

1:T (w), w)).

Finally, taking X ′
t = X∗

t , and taking expectation w.r.t. w and dividing by (
∑L

l=0 γl) gives the
result.

3.2.2 Mirror descent for (MS-Saddle)

Consider the mirror descent algorithm applied to (MS-Saddle) with the distance generating func-

tion W (Z1:T ) :=
∑T

t=1 Vt(Xt) + Ut(Yt) for Zt = (Xt, Yt) with initialization Z
(0)
1 ∈ G1 ∩ (X o

1 ×
Yo
1), . . . , Z

(0)
T ∈ GT ∩ (X o

T × Yo
T ):

Z
(l+1)
1:T = argmin

(Z1,...,ZT )∈Z
⟨γlG

(l)
1:T , Z1:T ⟩+DW (Z1:T , Z

(l)
1:T ), l = 0, 1, . . . , (5)

where γl ≥ 0, and G
(l)
t : Ω→ Rnt+mt for t = 1, 2, . . . , T are (approximate) gradients.

Lemma 3.3. Assume that Assumptions 2.3, 2.4, and 3.2 hold. Consider the update in (5), then

for Z
(L)
t :=

∑L
l=0 γlZ

(l)
t∑L

l=0 γl
and any Z ∈ Z,

E[ϕ(X(L)
1:T , Y1:T )− ϕ(X1:T , Y

(L)
1:T )]

≤
2DW (Z1:T , Z

(0)
1:T ) +

∑L
l=0

∑T
t=1

γ2
l
2 (∥G

(l)
t Pt∥2∗ + ∥∆

(l)
t ∥2∗)− γl⟨Z

(l)
t − Z̃

(l)
t ,∆

(l)
t ⟩∑L

l=0 γl
,

where ∆
(l)
t =

(
G

(l)
t − ∂̃

∂zt
ϕ(Z

(l)
1:T )

)
Pt. The sequence Z̃

(0)
t = Z

(0)
t

Z̃
(l+1)
t = argmin

Z′
t∈Zt

⟨−γl∆
(l)
t , Z

′
t⟩+DWt(Z

′
t, Z̃

(l)
t ), l = 0, 1, . . . , L− 1.
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Proof of Lemma 3.3. First, by a similar argument as in the proof of Lemma 3.2 (4), we get for any
Zt ∈ Gt ∩ Zt,

L∑
l=0

γl⟨Z
(l)
t − Zt,

∂̃

∂zt
ϕ(Z

(l)
1:T )⟩ ≤ DWt(Zt, Z

(0)
t ) +

L∑
l=0

γ2l
2
∥G(l)

t Pt∥2∗ − γl⟨Z
(l)
t − Zt,∆

(l)
t ⟩.

Now consider the sequence Z̃
(0)
t = Z

(0)
t for all t, and Z̃

(l+1)
t defined in the statement of the lemma,

then by an argument similar to Lemma 3.1 we have for any Zt ∈ Gt ∩ Zt,

−γl⟨Z̃
(l)
t − Zt,∆

(l)
t ⟩ ≤

γ2l
2
∥∆(l)

t ∥2∗ +DWt(Zt, Z̃
(l)
t )−DWt(Zt, Z̃

(l+1)
t ).

Thus we get

L∑
l=0

γl⟨Z
(l)
t − Zt,

∂̃

∂zt
ϕ(Z

(l)
1:T )⟩

≤ 2DWt(Zt, Z
(0)
t ) +

L∑
l=0

γ2l
2
(∥G(l)

t Pt∥2∗ + ∥∆
(l)
t ∥2∗)− γl⟨Z

(l)
t − Z̃

(l)
t ,∆

(l)
t ⟩. (6)

Since ϕ(x1:T , y1:T , w) is convex in x1:T and concave in y1:T , we have for any Zt : Ω → Rmt+nt

for t = 1, . . . , T ,

E[ϕ(X(L)
1:T , Y1:T )− ϕ(X1:T , Y

(L)
1:T )] ≤

(
L∑
l=0

γl

)−1( L∑
l=0

γl

T∑
t=1

⟨Z(l)
t − Zt,

∂̃

∂z
ϕ(Z

(l)
1:T )⟩

)
. (7)

Finally, summing (6) over t and together with (7) give the result.

3.2.3 Accelerated Mirror Descent for smooth (MS-Unconstrained)

With additional assumptions such as smoothness and/or strong convexity of the objective functions,
classical convex optimization can be accelerated, with rates of convergence better than 1/

√
l. More

precisely, assume that Rn is equipped with the Euclidean inner product ⟨·, ·⟩ and the induced norm
∥ · ∥. For the problem (MS-Unconstrained), consider the following updates.

X
(l)
1:T = argmin

X1:T∈X
⟨G(l)

1:T , X1:T −X(l)
1:T ⟩+

(1 + γ)L2

2
∥X1:T −X(l)

1:T ∥
2

X
(l)
1:T = argmin

X1:T∈X
(1 + γ)L2DV (X1:T , X

(0)
1:T )

+
l∑

l′=0

αl′(⟨G
(l′)
1:T , X1:T −X(l′)

1:T ⟩+
(1− θ)µ

2
∥X1:T −X(l′)

1:T ∥
2)

X
(l+1)
1:T = τlX

(l)
1:T + (1− τl)X

(l)
1:T (8)

where Al =
∑l

l′=0 αl′ and τl =
αl+1

Al+1
, and for some γ ≥ 0 and θ ∈ [0, 1],

α0 = 1, (1 + γ)L2 + (1− θ)µAl =
(1 + γ)L2α

2
l+1

Al+1
.
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Lemma 3.4. Assume that Assumptions 2.2, 3.1, and 2.1 hold, and that f(·, w) satisfies the fol-
lowing condition for all w

µ

2
∥x− x′∥2 ≤ f(x′, w)− f(x,w)− ⟨∇f(x,w), x′ − x⟩ ≤ L2

2
∥x− x′∥2, ∀x, x′ ∈ X , (9)

and that the projection step in (8) can be computed efficiently, then with γ = 1 and θ = 1/2, the
following holds

F (X
(l)
1:T )− F ∗ ≤ A−1

l (2L2DV (X
∗
1:T , X

(0)
1:T ) +

l∑
l′=0

∆
(l′)

),

where for t = 1, . . . , T and l = 0, 1 . . . , L, ∆
(l)
t =

(
G

(l)
t − ∂

∂xt
f(X

(l)
1:T )

)
Pt, and denoting A−1 = 0,

∆
(l′)

=

{
Al′

∥∆(l′)∥2
2L2

+ ⟨∆(l′), αl′(X
∗
1:T −X

(l′)
1:T ) +Al′−1(X

(l′−1)
1:T −X(l′)

1:T )⟩ µ = 0

(
αl′
µ +

Al′
2µ +

Al′
2L2

)∥∆(l′)∥2 µ > 0
.

Notice that for µ = 0, θ does not affect the trajectory of (8), and so the bound in Lemma 3.4
holds under all θ. The proof of Lemma 3.4 is deferred to Appendix B.2.

Remark. [18] proves that the (accelerated) mirror descent stochastic approximation algorithms
achieve the optimal convergence rate. Their algorithms can be applied to objective functions that
also have a non-smooth component, and work for general norms, and their smoothness-strong-
convexity condition is on the function E[f(x,w)]. However, the strong convexity assumption in
[18] is stronger: instead of µ

2∥x − x
′∥2, the LHS of the first ≤ in (9) is replaced by µDv(x

′, x).
Since Dv is 1-strongly convex, µDv(x

′, x) ≥ µ
2∥x

′ − x∥2. In addition, their results hold only for
unbiased gradient oracles, while we allow a bias of bt for stage-t gradient oracles and explicate the
dependency of the suboptimality on the bias.

3.3 Implementation from the scenario tree perspective

As discussed in Section 2.3, multi-stage problems can also be interpreted from the scenario tree
perspective. For instance, suppose Xt : Ω → Rnt is a random variable such that Xt is measurable
w.r.t. Gt, then instead of storing all K vectors Xt(1), . . . , Xt(K), one can store the reduced variable
(Xt)Gt : Gt → Rnt where (Xt)Gt([w]t) = Xt(w) for all w (and we use the abbreviation (Xt)Gt([w]t) =
Xt([w]t)). Thus, the total number of Rnt vectors stored will be |Ωt|, the number of nodes in layer
t of the scenario tree.

As a result, the (accelerated) mirror descent updates can be performed in this reduced space.
Indeed, for (MS-Unconstrained), applying Lemma 3.2to the update in (3), we get that the update
can be decomposed as

X
(l+1)
t ([w]t) = argmin

xt∈Xt

⟨γlG
(l)
t Pt([w]t), xt⟩+Dvt(xt, X

(l)
t ([w]t)). (10)

Similarly, for the saddle point problem (MS-Saddle),

Z
(l+1)
t ([w]t) = argmin

zt∈Zt

⟨γlG
(l)
t Pt([w]t), zt⟩+Dwt(zt, Z

(l)
t ([w]t)). (11)

For the accelerated mirror descent algorithm, first notice that instead of storing the entire

sequence of updates X
(0:l)
1:T and G

(0:l)
1:T , we only need to store the cumulative gradients G

(l)
1:T defined

below

G
(l)
1:T =

l∑
l′=0

αl′(G
(l′)
1:T − (1− θ)µX(l′)

1:T )− (1 + γ)L2∇v(X(0)
1:T ). (12)
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By a similar argument as in Lemma 3.1, the update for X
(l)
1:T can be decomposed stage-wise.

Thus, in the scenario tree interpretation, the updates (8) are equivalent to

X
(l)
t ([w]t) = argmin

xt∈Xt

⟨G(l)
t Pt([w]t), xt⟩+

(1 + γ)L2

2
∥xt −X(l)

t ([w]t)∥2

G
(l)
t ([w]t) = G

(l−1)
t ([w]t) + αl(G

(l)
t Pt([w]t)− (1− θ)µX(l)

t ([w]t))

X
(l)
t ([w]t) = argmin

xt∈Xt

(1 + γ)L2vt(xt) +
Al(1− θ)µ

2
∥xt∥2 + ⟨G

(l)
t ([w]t), xt⟩

X
(l+1)
t ([w]t) = τlX

(l)
t ([w]t) + (1− τl)X

(l)
t ([w]t) (13)

4 Mirror descent stochastic approximation

To implement the mirror descent algorithms, in addition to the updates (10), (11), or (13), one still

needs to decide what G
(l)
t is. Two factors should be taken into consideration. First, Lemmas 3.2,

3.3, and 3.4 suggest that the suboptimalities (in terms of the function values or minimax gaps) of

the outputs depend on ∆
(l)
t , which for (MS-Unconstrained) is

∆
(l)
t = G

(l)
t Pt −

∂

∂xt
f(X

(l)
1:T )Pt.

Thus, one might hope to design G
(l)
t such that ∆

(l)
t = 0. Indeed, simply setting G

(l)
t = ∂

∂xt
f(X

(l)
1:T )

achieves this. However, the second factor is that givenG
(l)
t , during the actual mirror descent updates

(e.g. 10), one needs to compute G
(l)
t Pt, the projection of G

(l)
t to the non-anticipativity subspace

corresponding to Gt. Since this projection using Pt requires taking the conditional expectation

of G
(l)
t , which might be computationally inefficient [31], one might hope to design G

(l)
t which is

measurable w.r.t. Gt, and then the projection using Pt can be omitted.

Taking these two factors into consideration, it appears that G
(l)
t ≈ ∂

∂xt
f(X

(l)
1:T )Pt is a desirable

choice. That is, one needs to estimate the conditional expectation of the gradient E[ ∂
∂xt

f |Gt]. Indeed,
the decision Xt is made based on information contained in Gt, and it makes sense to use the best
approximation of the gradient subject to this information constraint, i.e. the gradient conditioned
on Gt.

In Section 4.1, we formally propose the stochastic conditional gradient oracle, the multi-stage
counter part of stochastic gradient oracle. In Section 4.2, we discuss how to construct these stochas-
tic gradients. In Section 4.3, we analyze mirror descent stochastic approximation algorithms with
these stochastic conditional gradients.

4.1 Multi-stage equivalent of stochastic gradients

Recall that (Ω,F ,P) is the underlying probability space of the multi-stage problem. To model the
randomness in (one sample of) the stochastic gradient (for stage t variables), we use the probability
space (Ξt,Ht, µt). Thus, the joint space (Ω,F ,P) ⊗ ((Ξt,Ht, µt)

⊗l) represents l i.i.d. stochastic

gradients, independent of (Ω,F ,P). With some abuse of notation, we denote E[·] = E[·|H(⊗l)
t ], i.e.

the expectation w.r.t. (Ω,F ,P), and Ẽ[·] = E[·|F ], i.e. the expectation w.r.t. the randomness in l
independent stochastic gradients. Similarly for P and P̃.
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Definition 4.1. For the problem (MS-Unconstrained) and bt, σt ≥ 0, we say Ot : X×Ξt → Rnt×K is
a (bt, σt)-stochastic conditional gradient oracle for Xt if for any (X1, X2, . . . , XT ) ∈ X and ξt ∈ Ξt,
Ot(X1:T , ξt) is a random vector in Rnt satisfying the following three conditions:

Ot(X1:T , ξt) ∈ Gt, ∀ξt ∈ Ξt (14a)∥∥∥∥Ẽ [Ot(X1:T , ξt)(w)]−
(
∂

∂xt
f(X1:T )Pt

)
(w)

∥∥∥∥
∗
≤ bt, ∀w ∈ Ω, (14b)

Ẽ[∥Ot(X1:T , ξt)(w)− Ẽ[Ot(X1:T , ξ
′
t)(w)]∥2∗] ≤ σ2t , ∀w ∈ Ω. (14c)

In addition, for some σt > 0, we say Ot is σt-concentrated if

Ẽ
[
exp

(∥∥∥Ot(X1:T , ξt)(w)− Ẽ
[
Ot

(
X1:T , ξ

′
t

)
(w)
]∥∥∥2

∗
/σ2t

)]
≤ exp(1), ∀w ∈ Ω. (15)

Stochastic conditional gradient oracles for Zt for the saddle point problem (MS-Saddle) can be
defined similarly, with X replaced by Z, nt replaced by nt+mt, Xt replaced by Zt, and

∂
∂xt

f(X1:T )Pt

replaced by ∂̃
∂zt
ϕ(Z1:T )Pt.

Remark. Due to the measurability conditions (14a), in the scenario tree representation,

Ot(X1:T , ξt)([w]t) = Ot(X1:T , ξt)(w), ∀w ∈ Ω.

Thus, instead of constructing/storing K vectors in Rnt , only |ΩGt | vectors are needed.
Remark. Notice that the same ξt can be used for all scenarios w ∈ Ω. As a result, Ot(X1:T , ξt)(w)

and Ot(X1:T , ξt)(w
′) could be correlated. However, our convergence results in Section 4.3 do not

require that the stochastic conditional gradients are independent across scenarios.

4.2 Constructing conditional stochastic gradients

In classical stochastic programming problems where the objective function is F (x) = E[f(x,w)],
the canonical approach to construct a stochastic gradient is to take the sampling space to be
(Ξ,H, µ) = (Ω,F ,P), the probability space corresponding to the stochastic programming problem
itself. Then, O(x, ξ) := ∇f(x, ξ) for ξ ∈ Ξ = Ω is an unbiased stochastic gradient oracle.

For the multi-stage setting, the stochastic gradient is a random vector living in dimension
Rnt×K which satisfies the measurability condition ((14a)) and the moment conditions ((14b) and
(14c)). Below in Lemma 4.1, we propose one approach to construct the above-mentioned stochastic
conditional gradient.

For the probability space, we set Ξt = [0, 1], Ht = B([0, 1]) the Borel set for [0, 1] and µt is the
uniform distribution on [0, 1]. Thus, ξt is a random variable uniformly distributed in [0, 1]. Next,
for any finite set Ω̃, we define a sampling function RΩ̃ : [0, 1]×∆(Ω̃)→ Ω̃ where ∆(Ω̃) denotes all

probability distributions over Ω̃:

RΩ̃(r, ν) = min{k ∈ Ω̃,
k∑

k′=1

νk′ ≥ r}. (16)

That is, [0, 1] is divided into intervals of length ν1, . . . , ν|Ω̃| and R returns the index of the interval

r lies in. In particular, R(ξt, ν) has distribution ν.
In addition, recall that πt([w]t) is the distribution over the child nodes of [w]t, i.e. Ωt+1([w]t) =

{[w′]t+1, w
′ ∈ [w]t}. For two distributions µ, ν defined over [K0], recall that their total variation

distance is denoted as TV (µ, ν) = 1
2

∑K0
k=1 |µ(k)− ν(k)|.
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Lemma 4.1. For t ≤ T − 1 and ∥ ∂
∂xt

f(x,w)∥∗ ≤ L1,t for all x ∈ X and w ∈ Ω. With the
deterministic function RΩ̃(·, ·) defined in (16) and the space (Ξt,Ht, µt) defined above, for the
objective function (MS-Unconstrained), first, sample a child node of [w]t using distribution π̂t([w]t)

[wc]t+1 = RΩt+1([w]t)(ξt, π̂t([w]t)).

Then the conditional gradient is evaluated along the path [wc]t+1. That is, denoting xt−1 =
Xt−1([w]t−1), xt = Xt([w]t), and xt+1 = Xt+1([wc]t+1)

Ot(X1:T , ξt)([w]t) =
∂

∂xt
ft(xt−1, xt, [w]t) +

∂

∂xt
ft+1(xt, xt+1, [wc]t+1). (17)

The above constructed Ot(X1:T ) is a (bt, σt)-stochastic conditional gradient oracle with

bt = max
[w]t∈Ωt

2L1,t · TV (π̂([w]t, π([w]t)), σ
2
t = sup

X1:T∈X
max

[w]t∈Ωt

σ2t (X1:T , [w]t)

where [wc]t+1 ∼ π̂t([w]t) and

σ2t (X1:T , [w]t) = E
[
∥∂ft+1

∂xt
(Xt([w]t), Xt+1([wc]t+1), [wc]t+1)− g([w]t)∥2∗

]
g([w]t) = E[

∂ft+1

∂xt
(Xt([w]t), Xt+1([wc]t+1), [wc]t+1)].

It’s σt-concentrated for

σ2t = sup
X1:T∈X

max
w∈Ω
∥∂ft+1

∂xt
(Xt([w]t), Xt+1([w]t+1), [w]Ft+1)− g([w]t)∥2∗.

Similar constructions and results hold for (MS-Saddle).

Proof of Lemma 4.1. The measurability assumption holds since for any ξt, the output (17) is the
same for w,w′ ∈ Ω if [w]t = [w′]t. For the bias and variance, notice that for each fixed [w]t, we
have xt−1, xt, [w]t fixed, and so the first term in the RHS of (17) is fixed. The only randomness
comes from the second term. In addition, [wc]t+1 follows the distribution π̂t([w]t). Thus, the bias
condition follows from the assumption that ∥ ∂

∂xt
f∥∗ ≤ L1,t, and the second moment condition (14c)

and the concentration condition (15) hold with the given σt and σt.

Remark. For t = T , ∂f
∂xT

(X1:T (w), w) =
∂fT
∂xT

(XT−1(w), XT (w), w). Since XT−1 ∈ GT−1 ⊂ GT
and fT (xt−1, xt, ·) is Ft measurable for any xt−1, xt, we have

∂fT
∂xT

(XT−1(w), XT (w), w) =
∂fT
∂xT

(XT−1([w]T−1), XT ([w]T ), [w]T ).

Thus, the conditional gradient can be calculated exactly without any sampling.
Remark. Suppose π̂t([w]t) = πt([w]t), and so the child node is sampled according to the true

distribution over the child nodes, then bt = 0. The above Lemma 4.1 implies that the stochastic con-
ditional gradient oracle is robust to model misspecification. Together with the convergence results
for the stochastic approximation type of algorithms below (e.g. Theorem 4.1), where the subop-
timalities depend linearly on bt, we see that the overall mirror descent stochastic approximation
algorithms with the above sampling mechanism are also robust to model misspecification.

Remark. In Definition 4.1, we assume that bt, σt, σt are constants that do not depend on the
query point X1:T . In fact, it’s not hard to generalize the definitions such that bt, σt, σt also depend
on query points. This allows for a more refined control of the suboptimality in Theorems 4.1, 4.2,
and 4.3 presented in the next section.
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4.3 Performance of mirror descent stochastic approximation

In this section, we analyze the convergence properties of the aforementioned mirror descent updates,

where G
(l)
t is the output of Ot, a stochastic conditional gradient oracle not necessarily the one

constructed in Lemma 4.1. Below, we assume that ξ
(0:(L−1))
1:T is sampled from ⊗T

t=1(Ξt,Ht, µt)
⊗L.

Theorem 4.1. Assume that Assumptions 2.1, 2.2 and 3.1 hold. Assume that ∥ ∂
∂xf(x,w)∥∗ ≤ L1

for all x ∈ X and w ∈ Ω, ∥x − x′∥ ≤ D for all x, x′ ∈ X , DV (X
∗
1:T , X

(0)
1:T ) ≤ D̃2, and Ot is a

(bt, σt)-stochastic conditional gradient oracle for some constants bt, σt ≥ 0 for all t, and denote

b2 =
∑T

t=1 b
2
t , σ

2 =
∑T

t=1 σ
2
t . Consider the update (3) with G

(l)
t = Ot(X

(l)
1:T , ξ

(l)
t ).

With γl =

√
D̃2

(L+1)(L2
1+2σ2+2b2)

,

Ẽ[E[f(X(L)
1:T )]]− E[f(X∗

1:T )] ≤ 2

√
D̃2(2σ2 + 2b2 + L2

1)

L+ 1
+ bD.

If Ot is also σt-concentrated for all t, and σ2 =
∑T

t=1 σ
2
t , then with γl = γ =

√
D̃2

(L+1)(2(1+λ)σ2+2b2+L2
1)
,

we get

P̃[E[f(X(L)
1:T )]− E[f(X∗

1:T )] ≥ Λ] ≤ 2 exp(−λ),

where

Λ = 2

√
D̃2(2(1 + λ)σ2 + 2b2 + L2

1)

L+ 1
+ 2γ

√
λ(L+ 1) · σD + bD.

Proof of Theorem 4.1. For convenience, we denote

δ
(l)
t (w) = Ot(X

(l)
1:T , ξ

(l)
t )(w)− Ẽ[Ot(X

(l)
1:T , ξ

(l)
t )(w)].

Since (a+ b)2 ≤ 2(a2 + b2), ∥ ∂
∂xf(x)∥∗ ≤ L1, and (14b),

T∑
t=1

∥G(l)
t Pt(w)∥2∗ ≤ 2

T∑
t=1

∥Ot(X
(l)
1:T , ξ

(l)
t )(w)− ∂

∂xt
f(X

(l)
1:T (w))∥

2
∗ + 2L2

1

≤ 4
T∑
t=1

∥Ot(X
(l)
1:T , ξ

(l)
t )(w)− Ẽ[Ot(X

(l)
1:T , ξt)(w)]∥

2
∗ + 4b2 + 2L2

1

= 4
T∑
t=1

∥δ(l)t (w)∥2∗ + 4b2 + 2L2
1. (18)

For the in expectation result, using condition (14c), we get

T∑
t=1

Ẽ[∥G(l)
t Pt(w)∥2∗] ≤ 4σ2 + 4b2 + 2L2

1.

In addition, using (14b) condition again, we get

|Ẽ[⟨∆(l)
1:T (w), X

(l)
1:T (w)−X

∗
1:T (w)⟩|ξ

(0:(l−1))
1:T ]|

≤ |⟨Ẽ[δ(l)1:T (w)|ξ
(0:(l−1))
1:T ], X

(l)
1:T (w)−X

∗
1:T (w)⟩|+ bD = bD.
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Thus, from Lemma 3.2, we have

Ẽ[E[f(X(L)
1:T )]]− E[f(X∗

1:T )] ≤
D̃2 +

∑L
l=0 γ

2
l (2σ

2 + 2b2 + L2
1)∑L

l=0 γl
+ bD,

which gives the first claim.
For the high-probability result, first, from (18) we have

L∑
l=0

γ2l

T∑
t=1

∥G(l)
t Pt∥2∗ ≤

L∑
l=0

γ2l (4b
2 + 2L2

1) + 4
L∑
l=0

γ2l ∥δ
(l)
1:T ∥

2
∗.

By the condition (15) and together with Jensen’s inequality (applied to exp(·)), we have

exp
(
∥δ(l)t ∥2∗/σ2t

)
= exp

((∑
w∈Ω

pw∥δ(l)t (w)∥2∗

)
/σ2t

)
≤
∑
w∈Ω

pw exp
(
∥δ(l)t (w)∥2∗/σ2t

)
.

Thus, we get

Ẽ
[
exp

(
∥δ(l)1:T ∥

2
∗/σ

2
)
|ξ0:(l−1)
1:T

]
= Ẽ

[
exp

(
T∑
t=1

σ2t
σ2
· ∥δ(l)t ∥2∗/σ2t

)
|ξ0:(l−1)
1:T

]

≤
T∑
t=1

σ2t
σ2
· Ẽ
[
exp

(
∥δ(l)t ∥2∗/σ2t

)
|ξ0:(l−1)
1:T

]
≤ exp(1). (19)

Using Jensen’s inequality (applied to exp(·)) again, we get

Ẽ

[
exp

(∑L
l=0 γ

2
l ∥δ

(l)
1:T ∥2∗

σ2 ·
∑L

l′=0 γ
2
l′

)]
≤ exp(1).

Thus, we have for any λ > 0,

P̃[
L∑
l=0

γ2l ∥δ
(l)
1:T ∥

2
∗ ≥ (1 + λ)(

L∑
l′=0

γ2l′) · σ2] ≤ exp(−λ). (20)

In addition, by condition 14b, we have

L∑
l=0

γl⟨∆
(l)
1:T , X

(l)
1:T −X

∗
1:T ⟩ ≥ −

L∑
l=0

γl · bD +

L∑
l=0

γl · ⟨δ
(l)
1:T , X

(l)
1:T −X

∗
1:T ⟩.

Since ∥X(l)
1:T −X∗

1:T ∥2 ≤ D2, by Cauchy-Schwarz inequality, we get

|⟨δ(l)1:T , X
(l)
1:T −X

∗
1:T ⟩| ≤

T∑
t=1

∥δ(l)t ∥∗ · ∥X
(l)
t −X∗

t ∥ ≤ ∥δ
(l)
1:T ∥∗ ·D.

Using (19), we get

Ẽ
[
exp

(
⟨δ(l)1:T , X

(l)
1:T −X

∗
1:T ⟩2/(σD)2

)
|ξ0:(l−1)
1:T

]
≤ Ẽ

[
exp

(
∥δ(l)1:T ∥

2
∗/σ

2
)
|ξ0:(l−1)
1:T

]
≤ 1.
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A similar argument as in the proof of Proposition 3.2 in [31] gives that for any λ > 0,

Ẽ[exp(−λ
L∑
l=0

γl · ⟨δ
(l)
1:T , X

(l)
1:T −X

∗
1:T ⟩)] ≤ exp(λ2(

L∑
l=0

γ2l ) · σ2 ·D2).

Thus for we have

P̃[−
L∑
l=0

γl⟨δ
(l)
1:T , X

(l)
1:T −X

∗
1:T ⟩ ≥ λσD

√√√√ L∑
l=0

γ2l ] ≤ exp(−λ2/4). (21)

Combining (20) and (21) with Lemma 3.2, we have

P̃[E[f(X(L)
1:T )]− E[f(X∗

1:T )] ≥ Λ0] ≤ exp(−λ1) + exp(−λ22/4),

where

Λ0 =
D̃2 +

∑L
l=0 γ

2
l (2(1 + λ1)σ

2 + 2b2 + L2
1) + λ2σD

√∑L
l=0 γ

2
l∑L

l=0 γl
+ bD.

The result follows from taking λ = λ1 = λ22/4.

Remark. As a special case, suppose D̃ = D̃0

√
T , D = D0

√
T , L1 = L1,0

√
T , σt = σ0 and

bt = b0 for all t, then the suggested γl =

√
D̃2

0

(L+1)(L2
1,0+2σ2

0+2b20)
,

Ẽ[E[f(X(L)
1:T )]]− E[f(X∗

1:T )] ≤ 2T

√
D̃2

0(2σ
2
0 + 2b20 + L2

1,0)

L+ 1
+ b0D0T.

Thus, to get Tϵ suboptimality (in expectation), one needs to ensure that b0D0 = O(ϵ) and set
L = O(1/ϵ2), which is independent of the number of stages T . In particular, γl does not depend
on T , the total number of stages.

Theorem 4.2. Assume that Assumptions 2.3, 2.4 and 3.2 hold. Assume that ∥ ∂̃
∂zϕ(z, w)∥∗ ≤ L1

for all z ∈ Z and w ∈ Ω, ∥z − z′∥ ≤ D for all z, z′ ∈ Z, DW (Z1:T , Z
(0)
1:T ) ≤ D̃2 for all Z1:T ∈ Z,

and Ot is a (bt, σt)-stochastic conditional gradient oracle for some constants bt, σt ≥ 0 for all t, and

denote b2 =
∑T

t=1 b
2
t , σ

2 =
∑T

t=1 σ
2
t . Consider the update (3) with G

(l)
t = Ot(Z

(l)
1:T , ξ

(l)
t ).

With γl =

√
2D̃2

(L+1)(3σ2+3b2+L2
1)
, for any Z1:T ∈ Z,

Ẽ[E[ϕ(X(L)
1:T , Y1:T )− ϕ(X1:T , Y

(L)
1:T )]] ≤ 2

√
D̃2(6σ2 + 6b2 + 2L2

1)

L+ 1
+ bD.

If Ot is also σt-concentrated for all t, and σ2 =
∑T

t=1 σ
2
t , then with γl = γ =

√
2D̃2

(L+1)(3(1+λ)σ2+3b2+L2
1)
,

we get

P̃[E[ϕ(X(L)
1:T , Y1:T )− ϕ(X1:T , Y

(L)
1:T )] < Λ, ∀Z ∈ Z] ≥ 1− 2 exp(−λ),

where

Λ = 2

√
D̃2(6(1 + λ)σ2 + 6b2 + 2L2

1)

L+ 1
+ 2γ

√
λ(L+ 1) · σD + bD.
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The proof of Theorem 4.2 is similar to the proof of Theorem 4.1 and uses Lemma 3.3. We omit
it due to space constraints.

For the accelerated mirror descent (8), a similar argument as above applied to Lemma 3.4 gives
the following results.

Theorem 4.3. Assume that Assumptions 2.1, 2.2, and 3.1 hold, that f(·, w) satisfies (9) for
all w, and that the projection step in (8) can be computed efficiently. Further assume that for

all t, DV (X
∗
1:T , X

(0)
1:T ) ≤ D̃2, and Ot is a (bt, σt)-stochastic conditional gradient oracle for some

constants bt, σt ≥ 0, and denote b2 =
∑T

t=1 b
2
t , σ

2 =
∑T

t=1 σ
2
t . Consider the update (8) with

G
(l)
t = Ot(X

(l)
1:T , ξ

(l)
t ) and γ = 1, θ = 1/2.

If µ = 0, ∥ ∂
∂xf(x,w)∥∗ ≤ L1 for all x ∈ X and w ∈ Ω, ∥x− x′∥ ≤ D for all x, x′ ∈ X . Then we

have

Ẽ[E[f(X(l)
1:T )]]− E[f(X∗

1:T )] ≤
8L2D̃

2

(l + 1)(l + 2)
+

2

3
(l + 3)(

b2 + σ2

2L2
+ bD).

If µ > 0, then for ρ = (1 + 1
4

√
µ
L2

)−2 ≤ 1− 3
16

√
µ
L2

,

Ẽ[E[f(X(l)
1:T )]]− E[f(X∗

1:T )] ≤ ρl · 2L2D̃
2 + (b2 + σ2) · ( 3

2µ
+

1

2L2
) · 1

1− ρ
.

Proof of Theorem 4.3. For the first claim, recall that by Lemma 3.4

∆
(l′)

= Al′
∥∆(l′)∥2

2L2
+ ⟨∆(l′), αl′(X

∗
1:T −X

(l′)
1:T ) +Al′−1(X

(l′−1)
1:T −X(l′)

1:T )⟩.

Thus, since Ot is a (bt, σt)-stochastic conditional gradient oracle,

Ẽ[∆(l′)|ξ0:(l
′−1)

1:T ] ≤ Al′

2L2

T∑
t=1

(b2t + σ2t ) +Al′bD.

The result follows from (l+1)(l+2)
4 ≤ Al ≤ (l+1)(l+2)

2 for all l (Lemma B.5) and Lemma 3.4.
For the second claim, by Lemma 3.4, with γ = 1, µ > 0, θ = 1/2,

(
αl′

µ
+
Al′

2µ
+
Al′

2L2
)−1Ẽ[∆(l′)|ξ(0:(l

′−1)
1:T ] = Ẽ[∥∆(l′)∥2|ξ(0:(l

′−1))
1:T ] ≤

T∑
t=1

(b2t + σ2t ).

By convexity of s → (1 + s)−2 on [0,∞), we have (1 + s)−2 ≤ 1 − 3s/4 for all 0 ≤ s ≤ 1, and so

ρ = (1 + 1
4

√
µ
L2

)−2 ≤ 1 − 3
16

√
µ
L2

. The result follows from Lemma 3.4 and Lemma B.5: we have

Al ≥ (1 + 1
4

√
µ
L2

)2l = ρ−l and

l∑
l′=0

Al′

Al
≤

l∑
l′=0

ρl−l′ ≤
∞∑
l′=0

ρl
′ ≤ 1

1− ρ
.

Following a similar argument as the proof in Theorem 4.1, it’s easy to show that the updates
(8) also converge with high probability.
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5 Efficient online implementation

The mirror descent stochastic approximation algorithms presented in Section 4.3 converge to opti-
mal solutions under mild assumptions on the problems and the stochastic conditional gradient ora-
cles. The output, after running L iterations, is a set of T random variables (for (MS-Unconstrained)):
X1, X2, . . . , XT where Xt ∈ Gt satisfies the information constraint for all t. However, even for sce-
nario trees where each non-leaf node has only 2 children, the “effective” number of variables in the
last stage Xt is 2

T−1, and so even for constant L, the oracle complexity (the total number of calls
of Ot) is exponential in T .

This difficulty motivates us to consider a semi-online setting, where both the input and output
are sequential. That is, suppose that the (true) scenario is w∗ ∈ Ω, then at stage t = 1, . . . , T ,

• sequential input: the decision maker is given [w∗]t, the node in the t-th layer of the scenario
tree where w∗ ∈ [w∗]t;

• sequential output: the decision maker needs to decide Xt+s([w]t+s) for all [w]t+s consistent
with [w∗]t, i.e., for nodes in layer t + s that are in the subtree rooted at [w∗]t. (If t = 1,
{Xt′([w]t′), [w]t′ ⊂ [w∗]1} for t′ = 1, . . . , s+ 1 are needed.)

Above, s ∈ {0, 1, . . . , T} represents the number of stages that Xt needs to be made in advance. As
special cases, s = T is the classical offline setting where all Xt’s have to be made at the beginning,
while s = 0 is the online setting, where Xt only needs to be made at stage t. s ∈ {0, 1, . . . , T}
interpolates between these two cases.

With this semi-online setup, the sequentially revealed information narrows down the probability
space and helps reduce the number of (effective) decision variables. However, even if s = 0 and one
only wants an approximately optimal first stage decision X1, Dynamic Stochastic Approximation
([23]), the best known stochastic approximation algorithm for multi-stage stochastic programming
problems, has complexity which is exponential in T . This is due to the nested iterations when
computing approximate subgradients of the cost-to-go functions.

In fact, the naive implementation of our (accelerated) gradient descents, which computes all of

X
(L)
1:T before stage 1, also suffers from this inefficiency. In the following, we propose an approach

which can take advantage of the sequentially revealed information to reduce the complexity. On
a high level, due to the decomposability of the updates across stages and scenarios, these updates
can be implemented asynchronously. Importantly, updates can be delayed. It is the information
gained during the delay that allows us to early stop updating Xt(w) for w that is inconsistent with
the current available information.

5.1 A state perspective

Before presenting our asynchronous updates, we first make the following reformulation. For each
node [w]t in the scenario tree, we associate it with a state vector St ∈ St ⊂ Rñt , consisting of the
decision variables and any auxiliary information such as momentum and/or ergodic mean. We use
ψquery(St) and ψoutput(St) to denote the next query point and the output based on the state St.

In addition, we associate each node with an update function A(l)
t : St × Rnt → St. Assuming

that the mirror descent algorithm is initialized with the states S
(0)
t ([w]t) for all t and all [w]t, then

during the l-th iteration, the update is the following: for all t and all nodes [w]t, the updated state

for [w]t depends on its previous state, as well as the (stochastic) first-order information G
(l)
t :

S
(l+1)
t ([w]t) = A(l)

t (S
(l)
t ([w]t), G

(l)
t ([w]t)), (22)
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Suppose the stochastic oracle in Lemma 4.1 is used, then for t ≤ T −1, G
(l)
t ([w]t) is constructed

by sampling a child node [wc]t+1 based on the distribution over the children of [w]t, and for t = T ,
there is no sampling:

G
(l)
t ([w]t) =

{
∂

∂xt
ft(Q1, Q2, [w]t) +

∂
∂xt

ft+1(Q2, Q3, [wc]t+1) t ≤ T − 1
∂

∂xT
fT (Q1, Q2, [w]t) t = T

. (23)

Above, Q1, Q2, Q3 are defined as below:

Q1 = ψquery(S
(l)
t−1([w]t−1)), Q2 = ψquery(S

(l)
t ([w]t)), Q3 = ψquery(S

(l)
t+1([wc]t+1)).

Importantly, during the l-th update for the state variable St([w]t), all needed is the l-th iteration
state of the following nodes: its parent node [w]t−1, itself [w]t, and the sampled child node [wc]t+1.
Thus, information such as the l-th iteration state of [w]t+2, i.e. its grandchild nodes, is not needed.
Figure 2 gives an example of updating the root node for 3 iterations.
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Figure 2: Denoting the nodes as w1,1 for layer 1, w2,1:3 for layer 2, and w3,1:6 for layer 3 where
w2,1 and w3,1 are the top ones. Solid arrows are immediate updates and dashed arrows are planned
updates. The numbers represent the number of updates that has been applied to each node. Only

nodes with bold boundaries are visited. In this example, the update order is S
(1)
1 (w1,1), S

(1)
2 (w2,1),

S
(2)
1 (w1,1), S

(1)
3 (w3,1), S

(2)
2 (w2,1), S

(3)
1 (w1,1).

For the three mirror descent updates as presented in Section 4.3, we can choose the states and
updates as follows.

• Mirror descent update (10). We can take St = Xt × Xt and St([w]t) = (Xt([w]t), Xt([w]t))
where Xt is the weighted average as defined in Lemma 3.2. Then ψquery(St([w]t)) = Xt([w]t)

and ψoutput(St([w]t)) = Xt([w]t), and A(l)
t updates the states according to (10).

• Mirror descent update (11). Similarly, we can take St = Zt × Zt for the update (11) for the
problem (MS-Saddle).

• Accelerated mirror descent update (13). The state can be St = Xt × Rnt and St([w]t) =
(Xt([w]t), Gt([w]t)) whereGt is the cumulative gradient defined in (12). Then ψquery(St([w]t)) =

Xt([w]t) and ψoutput(St([w]t)) = Xt([w]t) computed using Xt([w]t) and (13), and A(l)
t updates

the states according to (13).

5.2 Lazy update, efficient update

In this section, we state the updating mechanism to compute S
(l)
t ([w]t) for some t = 1, . . . , T ,

l ∈ {1, . . .}, and the node [w]t in layer t. To formalize the discussion on the memory requirement
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during the update, we assume that all processes during an algorithm have access to a shared memory
space denoted as Memory, which admits the following operations: read(x), write(x), del(x), which
reads, writes, and deletes the value of x from Memory. When some information x or some set S is
in Memory, we abbreviate it as x ∈ Memory and S ⊂ Memory.

We assume that all the initializations and the ξ
(l)
t used in constructing the conditional stochastic

gradients are stored in the shared memory. That is, Memory(init) ⊂ Memory throughout the algo-

rithm, where Memory(init) := {S(0)
1:T ([w]t), w ∈ Ω} ∪ {ξ(0:L)1:T }. Then, to compute S

(l)
t , we consider

the following Pt,l (Algorithm 1). We show its validity, and oracle and space complexity in Lemma
5.1.

Algorithm 1 Procedure Pt,l

Require: [w]t is given, Memory(init) ⊂ Memory, and if t ≥ 2, S
(0:(l−1))
t−1 ([w]t−1) ∈ Memory.

Ensure: S
(0:l)
t ([w]t) ∈ Memory.

if t = T then
for l′ = 1, . . . , l do

read(S
(l′−1)
T ([w]t), S

(l′−1)
T−1 ([w]t−1)), compute G

(l′−1)
T ([w]t) using (23)

S
(l′)
T ([w]t)← A(l′−1)

T (S
(l′−1)
T ([w]t), G

(l′−1)
T ([w]t)), write(S

(l′)
T ([w]t))

end for
else

for l′ = 1, . . . , l do

read(ξ
(l′−1)
t ), sample [wc]t+1, apply Pt+1,l′−1 to the node [wc]t+1

read(S
(l′−1)
t ([w]t), S

(l′−1)
t+1 ([wc]t+1)), and if t ≥ 2, read(S

(l′−1)
t−1 ([w]t−1))

Compute G
(l′−1)
t ([w]t) using (23)

S
(l′)
t ([w]t)← A(l′−1)

t (S
(l′−1)
t ([w]t), G

(l′−1)
t ([w]t))

del(S
(1:(l′−1)
t+1 ([wc]t+1)), write(S

(l′)
t ([w]t))

end for
end if

Lemma 5.1. The updates in Algorithm 1 are valid: when Pt+1,l′−1 is applied, Memory contains all
the required information.

The oracle complexity for the stochastic conditional gradient and the proximal update is no more
than 2l.

Denoting the shared memory space at the start and the end of the procedure Pt,l as Memory0
and Memory1 respectively, then Memory1 = Memory0∪{S

(1:l)
t [w]t}. Further assuming that all states

St can be stored with B bits, then Memory \Memory0 requires no more than O(l2B) bits of space
throughout the procedure Pt,l.

Proof of Lemma 5.1. For the first claim, if t = T , Pt,l iteratively computes S
(1)
T ([w]t), . . . , S

(l)
T ([w]t),

and indeed, for l′ = 1, . . . , l, since by assumption, Memory contains S
(l′−1)
T−1 ([w]T−1), and S

(l′−1)
T ([w]t)

has been computed and stored in Memory in the previous iteration, S
(l′)
T ([w]t) can be computed. If

l > 0 and t < T , then Pt+1,l′−1 is applied, and indeed, S
(0:(l′−2))
t ([w]t) has been computed in the pre-

vious iterations and are stored inMemory. For l′ = 1, . . . , l, when computing S
(l′)
t ([w]t), S

(l′−1)
t ([w]t)

has been computed in previous iteration, S
(l′−1)
t+1 ([wc]t+1) has been computed by Pt+1,l′−1, and if

t ≥ 2, S
(l′−1)
t−1 ([w]t−1) is in Memory by assumption.
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For the second claim, first, notice that for procedure Pt,l, the oracle calls involved are the
following: l calls to Ot, and if l > 0, t < T , then all oracle calls during Pt+1,l′ for l

′ = 0, . . . , l − 1.
Denoting an upper bound on the number of oracle calls by Pt′,l for all t′ by al. Then we can take
a0 = 0 and a1 = 1. In addition, we have

al ≤ l +
l−1∑
l′=0

al′ , l = 2, 3, . . . .

Simple induction then shows that al ≤ 2l − 1 for all l = 0, 1, . . ..
For the third claim, the first part can be proven by induction on (l, t) where the base case is

l = 0 and t = T : if l = 0 then Memory0 = Memory; if t = T , then only lB bits of information (i.e.

S
(1:l)
t ([w]t)) is written to Memory. If l > 0, t < T , since by inductive hypothesis, Pt+1,l′−1 only adds

S
(1:(l′−1))
t+1 ([w]t) to Memory, which is deleted by end of iteration l′, and so after the l′-th iteration

only S
(l′)
t ([w]t) is added to Memory. For the second part, the statement is true for l = 0 and t = T .

For l > 0, t < T , notice that Pt+1,0, Pt+1,1, . . . ,Pt+1,l−1 are run in series, and at the end of iteration
l′, all intermediate results are deleted. Denoting the maximum (over all t′) additional space needed
by Pt′,l′ as bl′ : we can take b0 = 0, b1 = B, then we have

bl ≤ lB + max
l′=0,...,l−1

bl′ .

Then induction gives bl ≤ Bl(l + 1)/2 = O(l2B).

Remark. In the space requirement above, we focus on the size of Memory, the shared memory

space, and omit the working memory needed to apply A(l)
t (e.g., computing the partial derivatives

for a child node or computing the Bregman projection). We justify this by pointing out that usually
these operations are also memory efficient: the extra space for the computation is on the same order
as the space needed to store the states.

Remark. In procedure Pt,l, it is possible that the samples [wc]t+1 are the same for two different
l′1, l

′
2, but we don’t store the updates during Pt+1,l′1

and Pt+1,l′2
. This is justified if d >> L since

it’s unlikely that the two samples are the same. However, if d is comparable with L, then storing
the intermediate updates could potentially make the updates more gradient-oracle efficient.

5.3 Efficient online updating mechanism

To compute the sequence S
(L)
t in an online fashion, the overall updates become Algorithm 2, where

at time t, we apply Pt+s,L to the node [w′]t+s for all [w
′]t+s ⊂ [w∗]t. Its correctness and complexity

is stated in Theorem 5.1.

Theorem 5.1. The updates in Algorithm 2 are valid: when Pt′,L is applied, all the needed infor-
mation is available. Denoting the shared memory space at the start of Algorithm 2 as Memory0 and
at the end of stge t as Memoryt, then

Memoryt = Memory0 ∪ {S
(1:L)
t′ ([w′]t′), [w′]t′ ⊂ [w∗]t, t

′ = t, . . . , t+ s}. (24)

That is, Memoryt \Memory0 contains L states for nodes in the subtree rooted at [w∗]t of depth s+1.
Assuming that all nodes have at most d child nodes, then the oracle complexity for the stochastic

conditional gradient and the proximal update is O(T2Lds).
Further assuming that all states St can be stored with B bits, then Memory\Memory0 is no more

than O(dsL2B) throughout the algorithm.
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Algorithm 2 Lazy update

Require: At t = 1, . . . , T − s, [w∗]t is given. At t = 1, Memory(init) ⊂ Memory. s, the number of
stages decision variables are needed in advance. L, the number of updates required.

Ensure: At (the end of) t = 1, . . . , T − s, S
(L)
t′ ([w′]t′) ∈ Memory for [w′]t′ ⊂ [w∗]Gt and t′ =

t, . . . , t+ s.
for t = 1, . . . , T − s do

if t = 1 then
for t′ = 1, . . . , s+ 1 do

Apply Pt′,L to [w′]t′ for all [w
′]t′ ⊂ [w∗]1

end for
else

del(S
(1:L)
t′ ([w′]t′) for all [w

′]t′ ⊂ [w∗]t−1 \ [w∗]t, t
′ = t, . . . , t+ s− 1

Apply Pt+s,L to [w′]t+s for all [w′]t+s ⊂ [w∗]t

del(S
(1:L)
t−1 ([w∗]t−1))

end if
end for

Proof of Theorem 5.1. For the first claim, when t = 1, P1,L can be called since Memory(init) ⊂
Memory. If s > 0, P2,L can be called since by Lemma 5.1, after P1,L is applied, Memory contains

all S
(0:L)
1 ([w∗]1). Similarly can show that Pt′,L can be applied for t′ = 1, . . . , s + 1. By the end of

stage 1, (24) follows from Lemma 5.1. Now suppose the first claim is true for stage 1, . . . , t − 1,
then at the beginning of stage t, the memory space is Memoryt−1. Notice that applying Pt+s,L to

the node [w′]t+s where [w′]t+s ⊂ [w∗]t requires S
(0:L)
t+s−1([w

′]t+s−1), which is in Memoryt−1 and has
not been deleted. Thus, Pt+s,L can be applied, and adds the L states of nodes in layer s + 1 of
the subtree rooted at [w∗]t (Lemma 5.1). The delete operation removes those states inconsistent
with [w∗]t and the states for t− 1. Thus, the first claim holds for t. By induction, it holds for all
t = 1, . . . , T − s.

For the second claim, notice that the number of nodes that need the L-th updates is upper
bounded by

d0 + · · ·+ ds + (T − s− 1)ds ≤ Tds.

For each L-th update, Algorithm 2 applies P·,L, which requires at most 2L oracles by Lemma
5.1. Thus, the total number of oracles is upper bounded by O(Tds2L). Since each gradient oracle
is used in one proximal update, the number of updates is also O(T2Lds).

For the third claim, By (24), Memoryt \Memory0 contains L states for at most
∑s+1

t′=1 d
t′−1 =

O(ds) nodes, and so Memoryt \ Memory0 requires at most O(LB · ds) bits. Notice that at stage
t, Pt′,L is applied for at most O(ds) nodes in series, and each application adds at most O(LB)
bits to Memory, and requires at most O(L2B) bits of additional memory by Lemma 5.1, we have
Memory \Memoryt is no more than O(LBds + L2B) throughout stage t. Thus, Memory \Memory0
requires no more than O(LBds + L2B) bits.

Remark. Due to the asynchronous updates in our Algorithm 2, the initialization S
(0)
t′ and the

sampling distribution for [w]t′ are needed at stage ≥ t′ − s − L, and so they can be given in an
online fashion.

Finally, combining the in-expectation guarantees from Theorem 4.1 with the Algorithm 2, we
have the following convergence guarantee.
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Corollary 5.1. Assume that the assumptions in Theorem 4.1 hold, that the updates (3) are applied
with the stochastic conditional oracle in Lemma 4.1. Then the implementation in Algorithm 2

achieves the following for X
(L)
t (w) = ψoutput(S

(L)
t (w))

Ẽ[E[f(X(L)
1:T )]]− E[f(X∗

1:T )] ≤ 2

√
D̃2(2σ2 + 2b2 + L2

1)

L+ 1
+ bD.

In addition, with L = ϵ−2, the oracle complexity is O(Tds21/ϵ
2
) while the space complexity is

O(ϵ−2Bds + ϵ−4B). Further assuming B = O(maxt=1,...,T nt) and taking s = 0, the oracle and the

proximal step complexity is O(T21/ϵ
2
) and the space complexity is O(ϵ−4maxt=1,...,T nt).

Similar in expectation results hold for (5) and (8). Note that the high probability guarantee
in Theorems 4.1 and 4.2 is high probability w.r.t. the randomness in the stochastic conditional
gradients, not w.r.t. the randomness in (Ω,F ,P). To obtain high probability bounds on the
suboptimality

f(ψoutput(S
(L)
1 (w)), ψoutput(S

(L)
2 (w)), . . . , ψoutput(S

(L)
T (w)), w)− f(X∗

1:T (w), w),

one needs to bound the deviations in Lemma 3.2 in a “pathwise” manner, not in expectation, which
we leave to future work.

6 Numerical experiments

We apply our mirror descent stochastic approximation (3) and (8) to a smoothed online convex
optimization problem, and (5) to a revenue management problem.

Our experiment results demonstrate that the proposed mirror descent stochastic approximation
algorithms converge in a variety of settings: convex optimization with and without strong convexity,
and saddle point problems. In addition, they admit the following advantages: applicable even when
the randomness across stages is correlated, robustness against misspecified sampling distribution in
constructing the gradients, efficiency for large T .

All experiments are implemented using Python and run on MacBook Air with the M3 chip.

6.1 Smoothed online convex optimization

We consider a smoothed online convex optimization problem, modeled as (MS-Unconstrained) with

ft(xt−1, xt, w) := h(∥xt − (θt + ϵt(w))∥2) +
1

2
∥xt − xt−1∥22. (25)

The objective function (25) appears in tracking problems [25], where the goal is to decide the
positions x1, . . . , xT in order to minimize the distance from the moving target (θt + ϵt(w) at stage
t) and the moving cost (functions of ∥xt − xt−1∥2).

In the experiment, we take x0 = 0 and h : [0,∞) → R is either the strongly convex quadratic

cost hquad(s) = s2/2, or the huber cost hhuber(s) =

{
s2/2 |s| ≤ 1

|s| − 1/2 |s| > 1
, which is convex but not

strongly convex. nt = 10 and Xt = {xt ∈ Rnt , ∥xt∥2 ≤ 10} is the ball with radius 10 for all t. For
i = 1, . . . , 10, θt,i = 7.5 sin(2π · (1 + i−1

100 )t) is a known sequence.
For the randomness, w = (w1, . . . , wT ) and the information at stage t is Gt = σ(w1:t). Thus,

a node in the t-layer of the tree can be specified by (w1, . . . , wt). We take πt([w]t), the true
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distribution of the child nodes, to be uniform. The actual noise sequence (ϵ1, . . . , ϵT ) follows an
auto-regressive process with the discount factor ρ = 0.8: ϵ1(w) = w1, and ϵt(w) = ρϵt−1(w) + wt

for t ≥ 2.
Misspecified distributions. We sample using π̂t([w]t) = (1 − δ)πt([w]t) + δdt([w]t) where

dt([w]t) is a probability distribution and δ ∈ [0, 1]. Thus, dt represents the misspecification of the

children distribution. We consider 2 types of perturbation dt: for d
(0)
t , each coordinate is sampled

uniformly in [0, 1] then normalized such that the sum is 1. For d
(1)
t , one coordinate is picked

uniformly at random and set to 1, and all rests are set to 0. Thus, type d
(1)
t can be viewed as a

more adversarial perturbation. We generate one dt for each node independently.
Algorithms setup. We use vt(xt) =

1
2∥xt∥

2
2 as the distance generating functions. The stochas-

tic gradients are constructed using Lemma 4.1, under the misspecified distribution π̂t. For the
accelerated updates (8), we use the αl, Al as defined in (8) with γ = 1 and θ = 1/2. For h = hquad,
we take µ = 1 and L2 = 3. For h = hhuber, we take µ = 0 and L2 = 3.

Additional experiments show that the performance of (A-)MD(SA) algorithms is similar to
that presented below, under a variety of parameter settings for δ, ρ, and α when h = αhquad and
h = αhhuber. We omit these results due to space constraints.

6.1.1 T = 5 and each non-leaf node has 10 child nodes

We generate Ω in the following manner: we first sample one w1 ∼i.i.d. N (0, 16I), then we generate
10 w2 ∼i.i.d. N (0, 16I) independent of w1, then for each (w1, w2), we generate 10 w3 ∼i.i.d. N (0, 16I)
independent of (w1, w2) and so on.

For the updates (3), we take the step size γl = 1/
√
L. We test two types of initialization:

X
(0)
t = 0 and X

(0)
t = θt. In Figures 3, we present the 5-run average with X

(0)
t = 0 (MDSA (mean))

and X
(0)
t = θt (MDSA (mean), init), with the mean ± 1 standard deviation in a lighter color2. In

addition, we also run (3) with the exact gradient computed under π̂t ((MD) and (MD, init)) and
under πt ((MD (true dist)) and (MD (true dist), init)). We present the results for the accelerated
updates, with the same setup. We point out that the first output of the accelerated updates is

given by (8), and so is not necessarily X
(0)
t .
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Figure 3: Parameters: (δ, dt), h. Objective values for smooth online convex optimization.

Effects of stochastic gradients. As expected, with the stochastic gradient oracle (MDSA and
A-MDSA), the total running time is approximately 80 ∼ 90 seconds, while with the exact gradient
((A-)MD, (A-)MD (true dist)), the total running time is approximately 140 ∼ 150 seconds. Thus,
the running time is significantly reduced if the stochastic gradient is used, without compromising
the convergence by too much. In terms of the convergence of objective values, notice that one
key difference between stochastic gradients and full gradients is the noise term σt, which is 0 for

2The variation is very small, and so the region is almost invisible.
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full gradients, and which depends on the variance of the gradient for stochastic gradients. This
is reflected by Figure 3 (c) and (d), where A-MDSA is converging to a slightly larger value than
A-MD and A-MD (true dist) for both initialization.

Correlation between randomness. For both the quadratic loss and the huber loss, we test
our algorithms for ρ = 0.8. With this correlated sequence ϵt, as shown by all setups in Figure 3, all
of our algorithms converge within 30 iterations, or show a trend of convergence (MD(SA) for huber
loss). Indeed, our theoretical results do not assume independence between randomness in different
stages.

Robustness against misspecification. Comparing the results for A-MD and A-MD (true
dist) for both initializations in Figure 3 (d), we see that A-MD is converging to a slightly larger
value than A-MD (true dist). However, in all other settings, the bias in the sampling distribution
does not have a noticeable effect on the convergence.

Strong convexity. Comparing the results for hquad and hhuber, we see that for both the
accelerated and the non-accelerated updates, strongly convex objectives converge faster for all our
algorithms. For the update (8), this agrees with our theoretical results; for the update (3), this
suggests that the suboptimality in Theorem 4.1 could be loose, and tighter bounds could be attained
with strong convexity.

Acceleration. As expected, in all our settings, when the initializations are the same, A-
MD(SA) converges faster than MD(SA): for hquad, A-MD(SA) converges in ∼ 5 iterations, MD(SA)
converges in ∼ 15 iterations; for hhuber, A-MD(SA) converges in ∼ 20 iterations, MD(SA) does not
reach convergence in 30 iterations.

6.1.2 T = 30, 50 and each non-leaf node has 50 child nodes

We test our updates (3) and (8) using the lazy updates in Algorithm 2 for the smoothed online
convex optimization problem with T = 30, 50, where each non-leaf node has d = 50 child nodes,

and s = 0. We take δ = 0.2 and δ
(0)
t as the perturbation to the sampling distribution. In addition, if

the procedures Pt,l and Pt,l′ are applied to the same node, the sampling distributions are perturbed

by two independent random d
(0)
t ’s.

For (3), we use γ = 3/
√
L, and we use X

(0)
t = 0 as initialization. To generate all (w1, . . . , wT ),

we first sample d vectors w̃0, . . . , w̃d−1 ∼i.i.d. N (0, 16I). Then we number nodes using the path
from the root: a node numbered as (0, k1, . . . , kt−1) means it’s the (kt−1 + 1)-th child of the node
(0, k1, . . . , kt−2). Here (0) is the root, kt′ ∈ {0, . . . , d− 1}, and t = 1, . . . , T . Then, we associate the
node (0, k1, . . . , kt−1) with the randomness where wt′ = w̃kt′ (k0 = 0). Notice that w1, . . . , wT are
independent, but the sequence (ϵ1, . . . , ϵT ) is still correlated.
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Figure 4: δ = 0.2, δ
(0)
t , and T = 30, 50.

Our experiments show that even when T and the number of child nodes are large, our algorithms
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are very efficient: the running time for the entire T stages is approximately 20 seconds for T = 30
, and approximately 45 seconds for T = 50.

In Figure 4, we present f(X
(l)
1 (w(i)), X

(l)
2 (w(i)), . . . , X

(l)
T (w(i)), w(i)) and their averages, where

w(1), . . . , w(20) are i.i.d. sampled scenarios. As revealed in Figure 4, the quadratic loss converges
within 5 iterations, while the huber loss does not reach convergence within 10 iterations, but the
objective values show a decreasing trend. These agree with our theoretical results in Corollary 5.1.

6.2 Revenue management

We consider the following revenue management problem:

max
x1∈[0,1]

· · · max
xT∈[0,1]

T∑
t=1

ctxt, s.t.

T∑
t=1

atxt ≤ b0.

Here b0 ∈ (0,∞)M denotes the budget, and ct ≥ 0, at ≥ 0 denote the revenue and the resource
consumed when xt = 1. If all pairs (ct,at) are known, then the problem is a linear programming
problem. However, when (ct,at) are random variables which are revealed at stage t, the prob-
lem becomes a sequential decision making process with stochasticity, which we model using the
framework of (MS-Saddle).

Precisely, let b0(w) = b0 ∈ (0,∞)M denote the initial budget (which is the same for all scenarios
w) and Xt = [0, 1]× {b̃ ∈ RM , 0 ≤ b̃ ≤ b}, then we consider the following problem:

max
(X1,b1)∈G1∩X1

· · · max
(XT ,bT )∈GT∩XT

T∑
t=1

E[ct([w]t)Xt([w]t)] (26)

s.t. at([w]t)Xt([w]t) + bt([w]t) ≤ bt−1([w]t−1), ∀ w, t,

where w = (w1, . . . , wT ) with wt := (at, ct) and Gt := σ(w1, . . . , wt).
Thus, the above problem is a linear programming problem, with decision variables (Xt,bt)([w]t)

for all [w]t ∈ ΩGt and all t. In particular, strong duality holds, and (26) is equivalent to the saddle
point problem for Yt = [0,∞)M with

ϕt(xt−1,bt−1, xt,bt,yt, w) := −ct([w]t)xt + ⟨yt,at([w]t)xt + bt − bt−1⟩. (27)

In the above problem, Yt is unbounded. Nevertheless, under additional assumptions, it’s possible
to show that there exists an optimal dual solution whose norm has a known upper bound (Appendix
C).

Tree setup. We takeM = 10 and B = 2T ·1 ∈ RM , and for each non-leaf node, the distribution
over of its child nodes are the same, i.e. πt is the uniform distribution.

Algorithms setup. The sampling distributions by MDSA are perturbed by d
(0)
t , with δ = 0.2.

For the feasibility set of the dual yt, instead of using [0,∞)M , we use Y ′
t = [0, 5]M . All xt,yt are

initialized to be 0 and 0, while for bt, we consider two types: b
(0)
t = 0, and b

(0)
t = B(1− t/T ). To

differentiate them, we add ”init” in the legends of the second type.
We consider problems where T = 5 and each non-leaf node has 10 child nodes. We randomly

generate an instance of the problem, where the at and ct are sampled uniformly in [1, 5]M and [0, 2]
respectively, and the sampling is independent for all nodes.

Evaluation. We use Z
∗
1:T , the 500 iteration output of MD (with γl = γ/

√
500), as an approx-

imation to the solution to the saddle point problem. The algorithms are evaluated through the
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(approximate) gaps3, objective function values, and the total budgets spent.
We test MDSA and (MDSA, init) for 5 runs.For MDSA, the running time is ∼ 220 seconds,

while for MD, the running time is ∼ 390 seconds. We present the results with γ = 5 in Figure 5.
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Figure 5: Revenue management, γ = 5. Gap: E[ϕ(X(l)
1:T , Y

∗
1:T )] − E[ϕ(X∗

1:T , Y
(l)
1:T )], objective:

E[
∑T

t=1 ctX
(l)
t ], constraint: ∥E[

∑T
t=1 atX

(l)
t ]∥∞.

Convergence of the (approximate) gap E[ϕ(X(l)
1:T , Y

∗
1:T )] − E[ϕ(X∗

1:T , Y
(l)
1:T )]. In Figure

5(a), for both initializations, the term E[ϕ(X(l)
1:T , Y

∗
1:T )]−E[ϕ(X∗

1:T , Y
(l)
1:T )] converges to 0 when the

exact gradients are used (MD and MD( true dist)), and to a slightly negative value when stochastic

gradients are used (MDSA). This agrees with the upper bound for maxY1:T∈Y E[ϕ(X(l)
1:T , Y1:T )] −

minX1:T∈X E[ϕ(X1:T , Y
(l)
1:T )] in Theorem 4.2. To understand why the (approximate) gap can be

negative, notice that

E[ϕ(X(l)
, Y

∗
)]− E[ϕ(X∗

, Y
(l)
)] = A1 −A2,

A1 = E[ϕ(X(l)
, Y

∗
)]− min

X∈X
E[ϕ(X,Y ∗

)] + max
Y1:T∈Y

E[ϕ(X∗
, Y )]− E[ϕ(X∗

, Y
(l)
)],

A2 = max
Y1:T∈Y

E[ϕ(X∗
, Y )]− min

X∈X
E[ϕ(X1:T , Y

∗
)].

where we omit all subscripts 1 : T (e.g. X
(l)
1:T = X

(l)
). Thus, although A1 ≥ 0, due to the

suboptimality of (X
∗
1:T , Y

∗
1:T ), the term A2 could be negative. In fact, by Lemma 3.3 and Theorem

4.2, with γl = γ/
√
500, Ẽ[A2] = O(D

2

γ + γL2
1)/
√
500.

Objective values E[
∑T

t=1 ctX
(l)
t ] and constraints ∥E[

∑T
t=1 atX

(l)
t ]∥∞. From Figure 5 (b)

and (c), we see that for all settings, during the first 2 iterations, the objective values are increasing,
and at iteration 2 the constraints are violated4. After that, objective values and the constraints are
converging to values that do not depend on the initialization or the bias in the gradient sampling
distribution. However, the values depend on whether the stochastic gradients are used. This
suggests that with this γ, the terms O(γσ2) and O(D2/γ) are relatively balanced, with the latter
having a slightly larger effect on the performance.

3The approximate optimal solution Z
∗
1:T used is the one corresponding to the same initialization. That is, the blue

curves in Figure 5(a) are evaluated using the 500-th iteration output initialized at b
(0)
t = 0, and the green curves are

evaluated using that but initialized at b
(0)
t = B(1− t/T ).

4The violation of the constraints in expectation implies that there exists at least one scenario such that the
constraints are violated.
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7 Conclusion

In this work, we study the unconstrained (MS-Unconstrained) and the saddle point (MS-Saddle)
variant of the multi-stage stochastic programming problems. We show the convergence of the (ac-
celerated) mirror descent stochastic approximation with stochastic conditional gradient oracles. To
further reduce the complexity, we consider a semi-online framework where the updates of mirror
descent stochastic approximation are made in an asynchronous fashion and are based on the se-
quentially revealed information about the underlying scenario, which reduces the complexity from
exponential to linear in T .

Below, we point out three directions of future works. First, our Corollary 5.1 is an in expectation
guarantee for the suboptimality, where the expectation is taken over w and the randomness in the
gradient oracles. It would be interesting to have guarantees along each sample path under w,
i.e., where the expectation is taken over the randomness in the gradient oracles only. Second, the
suggested step sizes γl for (3) and (5) and the sequence αl for (8) depend on prior information
about the objective functions, the sets Xt,Yt, and the oracles. It would be interesting to develop
adaptive algorithms which do not require such prior information. Third, our algorithms are closely
related to the classical (accelerated) mirror descent algorithms [31, 10]. It would be interesting to
explore the multi-stage analog of alternative assumptions and algorithms that can be applied to
other families of problems, e.g. problems where the constraint sets are unbounded [8, 30].

Acknowledgements

This work was funded by the Office of Naval Research grant N00014-24-1-2470.

References

[1] Shabbir Ahmed, Lingquan Ding, and Alexander Shapiro. A Python package for multi-stage
stochastic programming.

[2] Santiago R. Balseiro, Haihao Lu, and Vahab Mirrokni. “The Best of Many Worlds: Dual Mir-
ror Descent for Online Allocation Problems”. In: Operations Research 71.1 (2023), pp. 101–
119.

[3] Nikhil Bansal, Anupam Gupta, Ravishankar Krishnaswamy, Kirk Pruhs, Kevin Schewior,
and Cliff Stein. “A 2-Competitive Algorithm For Online Convex Optimization With Switching
Costs”. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques (APPROX/RANDOM 2015). Ed. by Naveen Garg, Klaus Jansen, Anup Rao, and
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erations Research and Econometrics (CORE), May 2013.

[11] Martin Dyer and Leen Stougie. “Computational complexity of stochastic programming prob-
lems”. In: Mathematical Programming 106.3 (May 2006), pp. 423–432.

[12] Christian Füllner and Steffen Rebennack. Stochastic dual dynamic programming and its vari-
ants – a review.

[13] Gautam Goel and Adam Wierman. “An Online Algorithm for Smoothed Regression and LQR
Control”. In: Proceedings of the Twenty-Second International Conference on Artificial Intelli-
gence and Statistics. Ed. by Kamalika Chaudhuri and Masashi Sugiyama. Vol. 89. Proceedings
of Machine Learning Research. New York: PMLR, 16–18 Apr 2019, pp. 2504–2513.

[14] Grani A. Hanasusanto, Daniel Kuhn, and Wolfram Wiesemann. “A comment on “compu-
tational complexity of stochastic programming problems””. In: Mathematical Programming
159.1 (Sept. 2016), pp. 557–569.

[15] Elad Hazan. “Introduction to Online Convex Optimization”. In: Found. Trends Optim. 2.3–4
(Aug. 2016), pp. 157–325.

[16] Caleb Ju and Guanghui Lan. Dual dynamic programming for stochastic programs over an
infinite horizon. 2023.

[17] Anatoli Juditsky, Arkadi Nemirovski, and Claire Tauvel. “Solving Variational Inequalities
with Stochastic Mirror-Prox Algorithm”. In: Stochastic Systems 1.1 (2011), pp. 17–58.

[18] Guanghui Lan. “An optimal method for stochastic composite optimization”. In: Mathematical
Programming 133.1 (June 2012), pp. 365–397.

[19] Guanghui Lan. “Complexity of stochastic dual dynamic programming”. In: Mathematical
Programming 191.2 (Feb. 2022), pp. 717–754.

[20] Guanghui Lan. “Correction to: Complexity of stochastic dual dynamic programming”. In:
Mathematical Programming 194.1 (July 2022), pp. 1187–1189.

[21] Guanghui Lan. First-order and Stochastic Optimization Methods for Machine Learning. Cham,
Switzerland: Springer Cham, 2020.

[22] Guanghui Lan and Alexander Shapiro. “Numerical Methods for Convex Multistage Stochastic
Optimization”. In: Foundations and Trends® in Optimization 6.2 (2024), pp. 63–144.

[23] Guanghui Lan and Zhiqiang Zhou. “Dynamic stochastic approximation for multi-stage stochas-
tic optimization”. In: Mathematical Programming 187.1 (May 2021), pp. 487–532.

30



[24] Yingying Li, Xin Chen, and Na Li. “Online optimal control with linear dynamics and predic-
tions: algorithms and regret analysis”. In: Proceedings of the 33rd International Conference
on Neural Information Processing Systems. Red Hook, NY, USA: Curran Associates Inc.,
2019.

[25] Yingying Li and Na Li. “Leveraging predictions in smoothed online convex optimization via
gradient-based algorithms”. In: Proceedings of the 34th International Conference on Neural
Information Processing Systems. NIPS ’20. Red Hook, NY, USA: Curran Associates Inc.,
2020.

[26] Yingying Li, Guannan Qu, and Na Li. “Online Optimization With Predictions and Switching
Costs: Fast Algorithms and the Fundamental Limit”. In: IEEE Transactions on Automatic
Control 66.10 (2021), pp. 4761–4768.

[27] Minghong Lin, Zhenhua Liu, Adam Wierman, and Lachlan L. H. Andrew. “Online algo-
rithms for geographical load balancing”. In: 2012 International Green Computing Conference
(IGCC). 2012, pp. 1–10.

[28] Minghong Lin, Adam Wierman, Lachlan L. H. Andrew, and Eno Thereska. “Dynamic right-
sizing for power-proportional data centers”. In: 2011 Proceedings IEEE INFOCOM. 2011,
pp. 1098–1106.

[29] Runzhao Lu, Tao Ding, Boyu Qin, Jin Ma, Xin Fang, and Zhaoyang Dong. “Multi-Stage
Stochastic Programming to Joint Economic Dispatch for Energy and Reserve With Uncertain
Renewable Energy”. In: IEEE Transactions on Sustainable Energy 11.3 (2020), pp. 1140–
1151.

[30] Renato D. C. Monteiro and B. F. Svaiter. “On the Complexity of the Hybrid Proximal Extra-
gradient Method for the Iterates and the Ergodic Mean”. In: SIAM Journal on Optimization
20.6 (2010), pp. 2755–2787.

[31] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. “Robust Stochastic Approximation
Approach to Stochastic Programming”. In: SIAM Journal on Optimization 19.4 (2009),
pp. 1574–1609.

[32] Arkadi Nemirovski. “Prox-Method with Rate of Convergence O(1/t) for Variational Inequal-
ities with Lipschitz Continuous Monotone Operators and Smooth Convex-Concave Saddle
Point Problems”. In: SIAM Journal on Optimization 15.1 (2004), pp. 229–251.

[33] M. V. F. Pereira and L. M. V. G. Pinto. “Multi-stage stochastic optimization applied to
energy planning”. In: Mathematical Programming 52.1 (May 1991), pp. 359–375.

[34] Roger J. B. Wets R. Tyrrell Rockafellar. Variational Analysis. Berlin, Germany: Springer
Science & Business Media, 2009.

[35] R. T. Rockafellar and R. J.-B. Wets. “Nonanticipativity and L1-martingales in stochastic
optimization problems”. In: Stochastic Systems: Modeling, Identification and Optimization,
II. Ed. by Roger J.- B. Wets. Berlin, Heidelberg: Springer Berlin Heidelberg, 1976, pp. 170–
187.

[36] R. T. Rockafellar and Roger J.-B. Wets. “Scenarios and Policy Aggregation in Optimization
Under Uncertainty”. In: Mathematics of Operations Research 16.1 (1991), pp. 119–147.

[37] R. Tyrrell Rockafellar and Roger J-B Wets. “Stochastic variational inequalities: single-stage
to multistage”. In: Math. Program. 165.1 (Sept. 2017), pp. 331–360.

31



[38] Alexander Shapiro. “Inference of statistical bounds for multistage stochastic programming
problems”. English. In: Mathematical Methods of Operations Research 58.1 (Sept. 2003).
Place: Heidelberg Publisher: Springer Nature B.V., pp. 57–68.

[39] Alexander Shapiro. “On complexity of multistage stochastic programs”. In: Operations Re-
search Letters 34.1 (2006), pp. 1–8.

[40] Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczynski. Lectures on Stochastic
Programming: Modeling and Theory, Third Edition. Philadelphia, PA: Society for Industrial
and Applied Mathematics, 2021.

[41] Alexander Shapiro and Arkadi Nemirovski. “On Complexity of Stochastic Programming
Problems”. In: Continuous Optimization: Current Trends and Modern Applications. Ed. by
Vaithilingam Jeyakumar and Alexander Rubinov. Boston, MA: Springer US, 2005, pp. 111–
146.

[42] Alberto Vera and Siddhartha Banerjee. “The Bayesian Prophet: A Low-Regret Framework
for Online Decision Making”. In: Management Science 67.3 (2021), pp. 1368–1391.

[43] Yaqi Xie, Will Ma, and Linwei Xin. “The Benefits of Delay to Online Decision-Making”. In:
SSRN Electronic Journal (Nov. 2024).

[44] Runyu Zhang, Yingying Li, and Na Li. “On the Regret Analysis of Online LQR Control with
Predictions”. In: 2021 American Control Conference (ACC). 2021, pp. 697–703.

[45] Martin Zinkevich. “Online convex programming and generalized infinitesimal gradient as-
cent”. In: Proceedings of the Twentieth International Conference on International Conference
on Machine Learning. ICML’03. Washington, DC, USA: AAAI Press, 2003, pp. 928–935.

32



A Discussion on the assumptions

In Assumption 2.3, it’s explicitly assumed that ϕ̃t is random lsc w.r.t. Ft. In fact, this is implied
by the assumption that ±ϕt are random lsc w.r.t. Ft. Indeed, let Ŷt ⊂ Yt be a countable dense
subset of Yt. By Proposition 14.44 in [34], we have ϕ̂t(xt−1, xt, w) := sup

yt∈Ŷt
ϕt(xt−1, xt, yt, w) is

random lsc w.r.t. Gt. Since −ϕt is convex and thus continuous (Theorem 2.35 [34]) in yt, and Ŷt is
dense in Yt, we have ϕ̂t(xt−1, xt, w) = ϕ̃t(xt−1, xt, w) and thus ϕ̃t is random lsc w.r.t. Gt.

In Assumption 2.4, the assumption that Y ∗
t ∈ Gt ∩ Yt can be relaxed to Y ∗

t ∈ F ∩ Yt. Indeed,
suppose there exists Ỹt ∈ F ∩ Yt such that ϕ̃t(X

∗
t−1(w), X

∗
t (w), w) = ϕt(X

∗
t−1(w), X

∗
t (w), Ỹt(w), w)

for all w. Since −ϕt is random lsc w.r.t. Gt, and since X∗
t−1, X

∗
t ∈ Gt, by Proposition 14.45 in [34],

(w, yt)→ −ϕt(X∗
t−1(w), X

∗
t (w), yt, w) is random lsc w.r.t. Gt. Then by Theorem 14.37 in [34], there

exists Y ∗
t ∈ Gt satisfying the requirement in the Assumption 2.4.

B Appendix for Section 3

Lemma B.1. For any random variables X : Ω→ Rn0 and G ⊂ F , we have XPG = E[X|G].

Proof of Lemma B.1. Notice that X(w) =
∑

i∈ΩX(i)1[w = i], then for all j ∈ Ω,

(XPG)(j) =
∑
i∈Ω

X(i)PG(i, j) =
∑
i∈Ω

X(i)E[1[w = i]|G](j)

= E[
∑
i∈Ω

X(i)1[w = i]|G](j) = E[X(w)|G](j).

Lemma B.2. The dual norm satisfies ∥Yt∥2∗ =
∑

w∈Ω pw∥Yt(w)∥2∗.

Proof of Lemma B.2. Notice that for any Yt : Ω→ Rnt ,

sup
Xt:Ω→Rnt , ∥Xt∥≤1

⟨Yt, Xt⟩ = sup
Xt:Ω→Rnt ,

∑
w∈Ω pw∥Xt(w)∥2≤1

∑
w∈Ω

pw⟨Yt(w), Xt(w)⟩

= sup
s(w)≥0,

∑
w∈Ω pws(w)2≤1

∑
w∈Ω

pw sup
∥Xt(w)∥=s(w)

⟨Yt(w), Xt(w)⟩

= sup
s(w)≥0,

∑
w∈Ω pws(w)2≤1

∑
w∈Ω

pws(w)∥Yt(w)∥∗

= (
∑
w∈Ω

pw∥Yt(w)∥2∗)1/2

where we make the change of variable s(w) = ∥Xt(w)∥, and the last step is by Cauchy-Schwarz.

B.1 Lemmas regarding the Bregman projection

Proof of Lemma 3.1. Notice thatX ′ → ⟨G,X ′⟩+DV (X
′, X) can be viewed as a continuous function

over XK , and since each Xt is convex compact, the set X t is a convex compact subset in Rnt×K ,
and so X =

∏T
t=1X t is a convex compact subset. Thus, the argmin is attained. It’s also unique

since DV is strongly convex. Thus, X+ is well defined.
Since V =

∑T
t=1 Vt and X =

∏T
t=1 Gt ∩ Xt are decomposable w.r.t t, for X+ = (X+

1 , . . . , X
+
T ),

we have
X+

t = argmin
X′

t∈Gt∩Xt

⟨Gt, X
′
t⟩+DVt(X

′
t, Xt).
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Notice that for any X ′ ∈ X , we have X ′
t ∈ Gt, and so by Lemma B.1 X ′

tPt = X ′
t, thus for

Gt : Ω→ Rnt ,
⟨Gt, X

′
t⟩ = ⟨Gt, X

′
tPt⟩ = ⟨GtPt, X

′
t⟩.

Thus, we prove the first claim

X+
t = argmin

X′
t∈Gt∩Xt

⟨GtPt, X
′
t⟩+DVt(X

′
t, Xt).

For the second claim, we first define the function h : Xt × Ω→ R as

h(xt, w) := ⟨GtPt(w), xt⟩+Dvt(xt, Xt(w)).

By a similar argument as above, argminxt∈Xt
h(xt, w) is well defined and unique. In addition, it’s

easy to check that h is random lsc w.r.t. Gt. Thus, by Theorem 14.37 in [34], w → argminxt∈Xt
h(xt, w)

is measurable w.r.t. Gt. In particular,

argmin
X′

t∈F∩Xt

⟨GtPt, X
′
t⟩+DVt(X

′
t, Xt) = argmin

X′
t∈Gt∩Xt

⟨GtPt, X
′
t⟩+DVt(X

′
t, Xt),

and since F is the power set of [K], the LHS can be decoupled, i.e.

X ′′
t ∈ argmin

X′
t∈F∩Xt

⟨GtPt, X
′
t⟩+DVt(X

′
t, Xt) ⇐⇒ X ′′

t (w) ∈ argmin
xt∈Xt

h(xt, w) ∀w ∈ Ω

which proves the second claim.
The last claim can be proved by a similar argument as Lemma 3.4 in [21].

B.2 Acceleration based on inexact oracle

First, we reformulate (MS-Unconstrained) as the following

min
X1:T∈Q

F (X1:T ) := E[f(X1:T )], (28)

where Q = X . Recall that we equip Rn with the standard Euclidean inner product, and Rn×K with
the inner product ⟨X1:T , X

′
1:T ⟩ = E[

∑T
t=1⟨Xt, X

′
t⟩]. In this section, we assume that all norms are

the norms corresponding to the inner products. For simplicity, we abbreviate X
(l)
1:T as x(l), X

(l)
1:T as

y(l), and X
(l)
1:T as z(l). In addition, we denote

ϕl(x) := (1 + γ)L2V (x) +

l∑
l′=0

αl′(F (x
(l′)) + ⟨G(l′), x− x(l′)⟩+ (1− θ)µ

2
∥x− x(l′)∥2)

Lemma B.3. Under the assumptions in Lemma 3.4,

µ

2
∥x− x′∥2 ≤ F (x′)− F (x)− ⟨∇F (x), x′ − x⟩ ≤ L2

2
∥x− x′∥2, ∀x, x′ ∈ Q. (29)

Assume that ∇V (x(0)) = 0, then for all l ≥ 0, we have AlF (y
(l)) ≤ ψl(z

(l)) + El, where El =∑l
l′=0Al′δl′.

δ0 = ⟨G(0) −∇F (x(0)), x(0) − y(0)⟩ − γL2

2
∥y(0) − x(0)∥2,

and for l ≥ 0, δl+1 = δ̂l+1 + (1− τl)δ̃l+1 where

δ̂l+1 = ⟨∇F (x(l+1))−G(l+1), y(l+1) − x(l+1)⟩ − γL2

2
∥y(l+1) − x(l+1)∥2,

δ̃l+1 = ⟨G(l+1) −∇F (x(l+1)), y(l) − x(l+1)⟩ − µ

2
∥y(l) − x(l+1)∥2.
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The proof of Lemma B.3 follows closely [10]. However, [10] considers the case where the gradient
inexactness is upper bounded by a constant δ, independent of the query point and the iteration
number. In the proof below, we explicitly track the accumulation of the error at each stage.

Proof of Lemma B.3. (29) follows from (9).
For l = 0, first, notice that since α0 = 1 and V is 1-strongly convex, we have

ψ0(x) = (1 + γ)L2V (x) + F (x(0)) + ⟨G(0), x− x(0)⟩+ (1− θ)µ
2

∥x− x(0)∥2

≥ (1 + γ)L2

2
∥x− x(0)∥2 + F (x(0)) + ⟨G(0), x− x(0)⟩

Thus, we have

ψ0(z
(0)) = min

x∈Q
ψ0(x) ≥ min

x∈Q

(1 + γ)L2

2
∥x− x(0)∥2 + F (x(0)) + ⟨G(0), x− x(0)⟩

=
(1 + γ)L2

2
∥y(0) − x(0)∥2 + F (x(0)) + ⟨G(0), y(0) − x(0)⟩

=
L2

2
∥y(0) − x(0)∥2 + F (x(0)) + ⟨∇F (x(0)), y(0) − x(0)⟩ − δ0

where δ0 = ⟨G(0)−∇F (x(0)), x(0)− y(0)⟩− γL2

2 ∥y
(0)−x(0)∥2. Assume now that the statement holds

for some l ≥ 0. By the update of z(l), we have

⟨(1 + γ)L2∇V (z(l)) +
l∑

l′=0

αl′G
(l′) + (1− θ)µαl′(z

(l) − x(l′)), x− z(l)⟩ ≥ 0, ∀x ∈ Q.

Then, the strong convexity of V implies that

L2V (x) ≥ L2V (z(l)) + ⟨L2∇V (z(l)), x− z(l)⟩+ L2

2
∥x− z(l)∥2

≥ L2V (z(l)) +
L2

2
∥x− z(l)∥2

− (1 + γ)−1⟨
l∑

l′=0

αl′G
(l′) + (1− θ)µαl′(z

(l) − x(l′)), x− z(l)⟩

Thus we have

ψl+1(x) ≥ (1 + γ)L2V (z(l)) +
(1 + γ)L2

2
∥x− z(l)∥2

− ⟨
l∑

l′=0

αl′G
(l′) + (1− θ)µαl′(z

(l) − x(l′)), x− z(l)⟩

+

l∑
l′=0

αl′(F (x
(l′)) + ⟨G(l′), x− x(l′)⟩+ (1− θ)µ

2
∥x− x(l′)∥2)

+ αl+1(F (x
(l+1)) + ⟨G(l+1), x− xl+1⟩+

(1− θ)µ
2

∥x− x(l+1)∥2)

Using

⟨z(l) − x(l′), z(l) − x⟩ = 1

2
∥z(l) − x(l′)∥2 + 1

2
∥z(l) − x∥2 − 1

2
∥x− x(l′)∥2,
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we have

ψl+1(x) ≥ (1 + γ)L2V (z(l)) +
(1 + γ)L2 +Al(1− θ)µ

2
∥x− z(l)∥2

+
l∑

l′=0

αl′(F (x
(l′)) + ⟨G(l′), z(l) − x(l′)⟩+ (1− θ)µ

2
∥z(l) − x(l′)∥2)

+ αl+1(F (x
(l+1)) + ⟨G(l+1), x− x(l+1)⟩+ (1− θ)µ

2
∥x− x(l+1)∥2)

= ψl(z
(l)) +

(1 + γ)L2 +Al(1− θ)µ
2

∥x− z(l)∥2

+ αl+1(F (x
(l+1)) + ⟨G(l+1), x− x(l+1)⟩+ (1− θ)µ

2
∥x− x(l+1)∥2).

By induction hypothesis,

A−1
l (ψl(z

(l)) + El) ≥ F (y(l)) ≥ F (x(l+1)) + ⟨G(l+1), y(l) − x(l+1)⟩ − δ̃l+1

where
δ̃l+1 = ⟨G(l+1) −∇F (x(l+1)), y(l) − x(l+1)⟩ − µ

2
∥y(l) − x(l+1)∥2.

Thus we have

ψl+1(x) ≥ Al(F (x
(l+1)) + ⟨G(l+1), y(l) − x(l+1)⟩ − δ̃l+1)− El

+
(1 + γ)L2 +Al(1− θ)µ

2
∥x− z(l)∥2

+ αl+1(F (x
(l+1)) + ⟨G(l+1), x− x(l+1)⟩+ (1− θ)µ

2
∥x− x(l+1)∥2)

≥ Al+1F (x
(l+1)) + αl+1⟨G(l+1), x− z(l)⟩ −Alδ̃l+1 − El

+
(1 + γ)L2 +Al(1− θ)µ

2
∥x− z(l)∥2

where the last equality is by noticing that

Al(y
(l) − x(l+1)) + αl+1(x− x(l+1)) = αl+1(x− z(l)).

Therefore, we have

ψl+1(z
(l+1)) ≥Al+1F (x

(l+1))−Alδ̃l+1 − El

+Al+1 ·min
x∈Q

τl⟨G(l+1), x− z(l)⟩+
(1 + γ)L2τ

2
l

2
∥x− z(l)∥2.

Notice that defining y = τlx + (1 − τl)y
(l), we get y − x(l+1) = τl(x − z(l)) and defining Q′ =

τlQ+ (1− τl)y(l) ⊂ Q, we have

min
x∈Q

τl⟨G(l+1), x− z(l)⟩+
(1 + γ)L2τ

2
l

2
∥x− z(l)∥2

= min
x∈Q′
⟨G(l+1), y − x(l+1)⟩+ (1 + γ)L2

2
∥y − x(l+1)∥2

≥ min
x∈Q
⟨G(l+1), y − x(l+1)⟩+ (1 + γ)L2

2
∥y − x(l+1)∥2.
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Thus, we have

ψl+1(z
(l+1)) + El

≥ Al+1min
y∈Q

(⟨G(l+1), y − x(l+1)⟩+ (1 + γ)L2

2
∥y − x(l+1)∥2 + F (x(l+1)))−Alδ̃l+1

= Al+1(⟨G(l+1), y(l+1) − x(l+1)⟩+ (1 + γ)L2

2
∥y(l+1) − x(l+1)∥2 + F (x(l+1)))−Alδ̃l+1

≥ Al+1F (y
(l+1))−Alδ̃l+1 −Al+1δ̂l+1

where

δ̂l+1 = ⟨∇F (x(l+1))−G(l+1), y(l+1) − x(l+1)⟩ − γL2

2
∥y(l+1) − x(l+1)∥2.

Taking δl+1 = δ̂l+1 + (1− τl)δ̃l+1 proves the result for l + 1.

Lemma B.4. For any l ≥ 0, we have

F (y(l)) ≤ F ∗ + (1 + γ)L2A
−1
l V (x∗) +A−1

l El

+A−1
l

l∑
l′=0

αl′(⟨G(l′) −∇F (x(l′)), x∗ − x(l′)⟩ − θµ

2
∥x∗ − x(l′)∥2).

where El =
∑l

l′=0Al′δl′ is as defined in Lemma B.3.

Proof of Lemma B.4. Notice that from the definition of ψl and z
(l), we have

ψl(z
(l))− (1 + γ)L2V (x∗) = min

x∈Q
ψl(x)− (1 + γ)L2V (x∗)

≤ ψl(x
∗)− (1 + γ)L2V (x∗)

=
l∑

l′=0

αl′(F (x
(l′)) + ⟨G(l′), x∗ − x(l′)⟩+ (1− θ)µ

2
∥x∗ − x(l′)∥2)

≤ AlF
∗ +

l∑
l′=0

αl′(⟨G(l′) −∇F (x(l′)), x∗ − x(l′)⟩ − θµ

2
∥x∗ − x(l′)∥2).

In addition, from Lemma B.3, we have

F (y(l)) ≤ A−1
l (ψl(z

(l)) + El)

= F ∗ + (1 + γ)L2A
−1
l V (x∗) +A−1

l El

+A−1
l

l∑
l′=0

αl′(⟨G(l′) −∇F (x(l′)), x∗ − x(l′)⟩ − θµ

2
∥x∗ − x(l′)∥2).

Lemma B.5. If µ > 0, the sequence Al satisfies that

(1 +
1

2

√
(1− θ)µ
(1 + γ)L2

)2Al ≤ Al+1, l = 0, 1, . . . .

If µ = 0, the sequence αl satisfies that

1

2
(l + 1) ≤ αl ≤ l + 1, l = 0, 1, . . . .
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Proof of Lemma B.5. The result for the case when µ > 0 is from Lemma 4 in [10]. For µ = 0,
notice that Al + αl+1 = α2

l+1. The claim is true for l = 0 since α0 = 1. Suppose the statement is
true for l, thus

(l + 1)(l + 2)

4
=

1

2

l∑
i=0

(i+ 1) ≤ Al ≤
l∑

i=0

(i+ 1) =
(l + 1)(l + 2)

2
.

Thus, for l + 1, notice that αl+1 =
1
2 +

√
Al +

1
4 , we have

αl+1 ≥
1

2
+
√
Al ≥

1

2
+
l + 1

2
=
l + 2

2
.

The upper bound follows from the following

Al +
1

4
≤ (l + 1)(l + 2)

2
+

1

4
=

2l2 + 6l + 5

4
≤ 4l2 + 12l + 9

4
= (l +

3

2
)2.

Proof of Lemma 3.4. The proof follows from Lemma B.4. We use
∑T

t=1 Ṽt(Xt) where Ṽt(Xt) =

Vt(Xt) − ⟨∇vt(X(0)
t ), Xt −X(0)

t ⟩ and Vt is the distance generating function defined in Section 3.1.
In addition, by first order optimality condition, at X(0), ∇ṽt(X(0))(w) = 0 for all w ∈ Ω, thus X(0)

is the minimum of V . In addition, DVt(·, ·) = DṼt
(·, ·) are the same, since adding a linear function

does not change the induced Bregman divergence.

Below, following the notation for Lemma B.3, y(l) = X
(l)
1:T , z

(l) = X
(l)
1:T , and x

(l) = X
(l)
1:T . For

convenience, by PG1:T
, we mean a KT ×KT block diagonal matrix, where the diagonal matrices

are P1, . . . ,Pt, and defining ∆(l) =
(
G(l) −∇F (x(l))

)
PG1:T

.
With γ = 1,

δ0 = ⟨G(0) −∇F (x(0)), x(0) − y(0)⟩ − γL2

2
∥y(0) − x(0)∥2 ≤ ∥∆

(0)∥2

2γL2
=
∥∆(0)∥2

2L2
.

Similarly δ̂l+1 ≤ ∥∆(l+1)∥2
2L2

. Thus, for any µ ≥ 0,

F (y(l)) ≤ F ∗ + 2L2A
−1
l V (x∗) +A−1

l

l∑
l′=0

Al′
∥∆(l′)∥2

2L2
+A−1

l ⟨∆
(0), x∗ − x(0)⟩

+A−1
l

l∑
l′=1

⟨∆(l′), αl′(x
∗ − x(l′)) +Al′−1(y

(l′−1) − x(l′))⟩

Thus, the result follows from taking for l′ ≥ 0, A−1 = 0,

∆
(l′)

= Al′
∥∆(l′)∥2

2L2
+ ⟨∆(l′), αl′(x

∗ − x(l′)) +Al′−1(y
(l′−1) − x(l′))⟩.

Further assuming that µ > 0 and taking θ = 1/2, we get

⟨G(l′) −∇F (x(l′)), x∗ − x(l′)⟩ − θµ

2
∥x∗ − x(l′)∥2 ≤ ∥∆

(l′)∥2

2θµ
=
∥∆(l′)∥2

µ
.
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δ̃l+1 = ⟨G(l+1) −∇F (x(l+1)), y(l) − x(l+1)⟩ − µ

2
∥y(l) − x(l+1)∥2 ≤ ∥∆

(l+1)∥2

2µ
.

Thus, for all l ≥ 0, δl ≤ ∥∆(l)∥2
2µ + ∥∆(l)∥2

2L2
. Thus,

F (y(l)) ≤ F ∗ + 2L2A
−1
l V (x∗) +A−1

l

l∑
l′=0

(
αl′

µ
+
Al′

2µ
+
Al′

2L2
)∥∆(l′)∥2.

The result follows from taking ∆
(l′)

= (
αl′
µ +

Al′
2µ +

Al′
2L2

)∥∆(l′)∥2.

C Discussion on the bound on Yt
Noticing that for any Yt ∈ Gt ∩ Yt for all t ∈ [T ], minimizing (27) over (Xt,bt), (26) becomes
maximizing

T∑
t=1

E[−[ct([w]t)− ⟨Yt([w]t),at([w]t)⟩]+ − ⟨[Yt+1Pt − Yt]+,b0⟩]− E[⟨Y1,b0⟩] (30)

where YT+1 = 0, [s]+ = max(s, 0) for s ∈ R and is applied component-wise if applied to a vector.
Now, suppose that a, c > 0, and at(w) ≥ a1 and ct(w) ≤ c for all w ∈ Ω and all t. For any

s ∈ R, we use Π(s) to denote the projection of s to the interval [0, ca + 1] and Y ′
t = [0, ca + 1]M . If

Π is applied to a (random) vector, we use it component-wise and scenario wise. Then, it’s easy to
see that for any Yt([w]t) ∈ [0,∞)M ,

[ct([w]t)− ⟨Yt([w]t),at([w]t)⟩]+ = [ct([w]t)− ⟨Π(Yt([w]t)),at([w]t)⟩]+,

since if there is an index i ∈ [M ], such that Yt([w]t)i >
c
a + 1, then

⟨Yt([w]t),at([w]t)⟩ ≥ (
c

a
+ 1) · a > c,

and so the LHS is 0. After projection, the i-th index Π(Yt([w]t))i =
c
a +1 and so the RHS is also 0.

Suppose Yt([w]t) ∈ Y ′
t then the Yt([w]t) = Π(Yt([w]t)) and so the LHS and the RHS are the same.

For the second term in (30), notice that for each coordinate i ∈ [M ],

[Yt+1,iPt([w]t)− Yt,i([w]t)]+ ≥ [Π(Yt+1,iPt([w]t))−Π(Yt,i([w]t))]+

≥ [Π(Yt+1,i)Pt([w]t)−Π(Yt,i([w]t))]+

where the first inequality is by [a− b]+ ≥ [Π(a)−Π(b)]+ for any a, b ≥ 0. The second inequality is
by noticing that [·]+ is non-decreasing, and Π(E[W ]) ≥ E[Π(W )] for any random variable W ≥ 0.
Thus,

E[−⟨[Yt+1Pt − Yt]+,b0⟩] ≤ E[−⟨[Π(Yt+1)Pt −Π(Yt)]+,b0⟩].

For the last term in (30), since projection does not increase the components of Y1, we have
−E[⟨Y1,b0⟩] ≤ −E[⟨Π(Y1),b0⟩]. Thus, if (27) has an optimal solution, then it has an optimal
solution such that Yt ∈ Gt ∩ Y ′

t for all t.
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