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Abstract

We propose two first-order methods for convex, non-smooth, distributed optimization prob-
lems, hereafter called Multi-Timescale Gradient Sliding (MT-GS) and its accelerated variant
(AMT-GS). Our MT-GS and AMT-GS can take advantage of similarities between (local) ob-
jectives to reduce the communication rounds, are flexible so that different subsets (of agents)
can communicate at different, user-picked rates, and are fully deterministic. These three desir-
able features are achieved through a block-decomposable primal-dual formulation, and a multi-
timescale variant of the sliding method introduced in [24, 23], where different dual blocks are
updated at potentially different rates.

To find an ϵ-suboptimal solution, the complexities of our algorithms achieve optimal depen-
dency on ϵ: MT-GS needs O(rA/ϵ) communication rounds and O(r/ϵ2) subgradient steps for
Lipchitz objectives, and AMT-GS needs O(rA/

√
ϵµ) communication rounds and O(r/(ϵµ)) sub-

gradient steps if the objectives are also µ-strongly convex. Here, r measures the “average rate
of updates” for dual blocks, and A measures similarities between (subgradients of) local func-
tions. In addition, the linear dependency of communication rounds on A is optimal [3], thereby
providing a positive answer to the open question whether such dependency is achievable for
non-smooth objectives [3].

1 Introduction

Distributed optimization is a branch of optimization, where multiple agents, each having access to
only partial information about the (global) objective, work together to solve the global problem. As
an example, in distributed empirical risk minimization for machine learning, the global objective
function is the sum of local loss functions, each depending on the local dataset which is only
available to one agent [4, 9, 2, 3, 21]. Examples of other applications include power system control
[27, 29], multi-robot system control [10, 29, 17, 35], and signal processing [8, 25, 32], to name a
few.

In this work, we study convex, non-smooth, distributed optimization problems of the following
form:

min
x∈X

∑
v∈V

fv(x) (P)

where V = [m] represents m agents, X ⊂ Rd is a nonempty, closed convex set, and fv : X → R is
a convex and possibly non-smooth objective function such that for some M,µ ≥ 0, we have for all
v ∈ V ,

µ

2
∥x− y∥2 ≤ fv(x)− fv(y)− ⟨f ′

v(y), x− y⟩ ≤M∥x− y∥, ∀x, y ∈ X , (1)
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where f ′
v : X → Rd is a subgradient oracle, i.e. f ′

v(x) ∈ ∂fv(x) for all x ∈ X , and f ′
v is only available

to agent v. For instance, when ∥f ′
v∥∗ ≤Mf , M = 2Mf holds.1

We assume that agent v maintains and updates xv, a local version of the decision variable x.
In this setting, due to the lack of “global views” from agents’ (local) perspectives, information
aggregation – such as communication and averaging – is necessary for agents to reach consensus
and approximately solve (P).

We target settings where within and between different subsets of the local objectives, the scales
of the function similarities and the costs of information aggregation could be (vastly) different.
For instance, in distributed empirical risk minimization, local loss functions could inherit potential
similarities in local datasets, which helps reduce the communication round needed [2, 22, 34, 45,
38, 3]; the costs of communication could depend on factors such as the distance between agents,
methods of communication, and amounts of data sent [6, 8, 33, 40, 41].

The heterogeneity in the function similarities and the communication costs makes it desirable
to have more refined control over the numbers of communication rounds among different subsets
of agents. In addition, sometimes stochastic algorithms are impractical or inefficient due to factors
such as unpredictability, random memory access [37], and sampling overhead [14]. For these rea-
sons, we aim at designing deterministic algorithms which allow users to pick different numbers of
communication rounds among different subsets of agents. Toward this end, we make contributions
to both the problem formulation and the algorithm design.

We propose a saddle point reformulation of (P) with block-decomposable duals, where each
dual block imposes “consensus constraints” within a subset of the agents, and when a dual block is
updated, information is aggregated within the corresponding agents. Taking advantage of the block-
decomposable structure, we propose updating different dual blocks at different rates, which leads to
the Multi-Timescale Gradient Sliding (MT-GS) algorithm and its accelerated variant (AMT-GS).

To find an ϵ-suboptimal solution, the complexities of our algorithms achieve optimal dependency
on ϵ: MT-GS needs O(rA/ϵ) communication rounds and O(r/ϵ2) subgradient steps for Lipchitz
objectives, and AMT-GS needs O(rA/

√
ϵµ) communication rounds and O(r/(ϵµ)) subgradient

steps if the objectives are also µ-strongly convex. Here, r measures the “average rate of updates”
for dual blocks, and A measures similarities between (subgradients of) local functions. In addition,
the linear dependency of communication rounds on A is optimal [3], thereby providing a positive
answer to the open question whether such dependency is achievable for non-smooth objectives [3].

Numerical experiments for the support vector machine problem with regularized hinge losses
confirm the effectiveness of our algorithms and demonstrate the above dependence on r and A.

1.1 Related works

Non-smooth distributed optimization. Since the seminal works [8, 39], numerous algorithms
have been proposed for non-smooth distributed optimization under various settings, and we refer
readers to surveys such as [4, 30, 20]. For the function class of Lipschitz, non-smooth, convex
objectives, most of these algorithms fall into the following two categories: subgradient based and
dual based [24]. Subgradient based algorithms such as the incremental gradient method [7], de-
centralized subgradient method [28], and the dual averaging [15] usually require O(1/ϵ2) rounds
of communication, each followed by one gradient step. Within the function class, this achieves

1This is because fv(y) ≥ fv(x) + ⟨f ′
v(x), y − x⟩, and so using Cauchy–Schwarz inequality

fv(x)− fv(y)− ⟨f ′
v(y), x− y⟩ ≤ ⟨f ′

v(x)− f ′
v(y), x− y⟩ ≤ 2Mf∥x− y∥.
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the optimal subgradient oracle complexity, but is suboptimal with respect to the communication
rounds: as proven by [3, 33], the communication rounds needed is O(1/ϵ).

As a comparison, dual based algorithms, which dualize the consensus constraints, usually have
better communication complexity: O(1/ϵ) rounds are needed for distributed ADMM [5, 42] and
the decentralized communication sliding (DCS) [24], as examples. However, each round of commu-
nication is followed by optimization of Lagrangians or proximal updates, performed locally by each
agent. To make the overall algorithm first-order, [24] proposes the Communication Sliding (CS)
procedure, which approximates the proximal updates through O(1/ϵ) steps of (local) mirror de-
scent, thereby achieving the O(1/ϵ2) subgradient oracle complexity. The CS procedure has roots in
the gradient sliding technique [23], which can save gradient computation for the smooth component
when the objective involves a smooth and a non-smooth component.

For the class of strongly convex objectives, DCS can be accelerated, needing O(1/
√
ϵ) rounds of

communication and O(1/ϵ) gradient steps in total, both achieving the theoretical optimal [24]. In
this work, due to the different time scales, we generalize the CS procedure for problems involving
a mixture of Bregman divergences. In addition, we point out that for problems with smooth
objectives, Local SGD – which applies gradient steps locally but communicates only once in a
while – has been studied under various settings [47, 36, 43].

Primal-Dual Hybrid Gradient and its block variant. DCS [24] is inspired by the Primal-
Dual Hybrid Gradient (PDHG) algorithm [12, 13]. In this work, motivated by real-life settings
where the costs – e.g. time and/or resources – needed for communication between different agents
are different [33], we further decompose the dual variables into blocks, and propose updating
them at different frequencies. Thus, our algorithms can be viewed as multi-timescale variants of
the PDHG. As a comparison, existing block-coordinate descent type of algorithms for the saddle
point problem of interest, such as the Stochastic Primal-Dual Coordinate (SPDC) [46] and the
Stochastic-PDHG (S-PDHG)[1, 11], update a random subset of blocks in each iteration k, where
all blocks have strictly positive probability of being selected. The O(1/k) rate of convergence,
due to the randomness, is only shown for the expected objective value suboptimality (for SPDC)
or expected duality gap (for S-PDHG). Nevertheless, in real applications, stochastic algorithms
could potentially be less efficient, due to reasons such as random memory access [37] and potential
overhead in computing sampling distributions [14]. Although deterministic block coordinate descent
for convex optimization has been shown to converge, such as under the cyclic updating rule [37, 44],
to the best of our knowledge, the multi-timescale updating rule we propose is the first deterministic
block updating rule for PDHG with separable duals, such that different blocks could be updated
different numbers of times, and the duality gap converges deterministically at the optimal rate.

Lower bounds on communication. In [3], it is shown that for distributed convex optimiza-
tion, O(1/ϵ) rounds of communication are needed for 1-Lipschitz objectives, and O(1/

√
µϵ) rounds

are needed when the objectives are also µ-strongly convex. These lower bounds are achieved by
splitting a “chain like” objective into two, each given to one agent. [33] extends these results to
a decentralized, network setting and shows the dependence of the lower bounds on the network
diameter and communication delay. [40] provides lower bound and (nearly) optimal algorithm for
a different setup, where distributed agents have stochastic first order oracles to the same smooth
nonconvex objective, but computation and communication speeds are bounded and different for
different edges and agents. Apart from the round complexity, [41] shows a dimension-dependent
lower bound on the bit-complexity of communication.

In addition, motivated by distributed training in machine learning, communication lower and
upper bounds have been established using function similarities [3, 34, 2, 38, 22, 18, 19]: for instance,
in (distributed) empirical risk minimization, the local loss functions have the same functional form
but use different subsets of data, thereby inheriting the similarity in data. In [3], function similar-
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condition (1) communication round subgradient oracle

MT-GS (Corollary 3.2, 3.3) µ ≥ 0 O( rA
√
DX

ϵ ) O( rmM2DX

ϵ2
)

AMT-GS (Corollary 4.2, 4.3) µ > 0 O( rA√
µϵ) O( r

√
mM2

µϵ )

Table 1: Communication rounds and subgradient oracles needed to find an ϵ suboptimal solution to
(P). r =

∑S
s=1 rsρs, A measures function similarities, DX = DwX (X∗, Xinit). Subgradient oracle

for AMT-GS assumes S = 1; for general S, see Section 4.2.

ities are measured using norms of the differences in (sub)gradients (and Hessians if exist), and a
communication round lower bound linear in this measure is shown for convex Lipschitz objectives
and strongly convex objectives. Known algorithms that take advantage of function similarities usu-
ally require additional assumptions such as strong convexity and smoothness [2, 34, 45, 38, 22, 18,
19]. As pointed out in [3], there is no known algorithm which achieve these communication round
lower bounds for non-smooth convex objectives. In this work, we formalize the notion of function
similarity for non-smooth convex objectives (Definition 2.1), and show that the communication
round complexity for our (A)MT-GS indeed achieve these lower bounds, thereby answering [3]’s
open question positively.

1.2 Contributions

We make the following contributions to the convex non-smooth distributed optimization literature.
Formulation: generalized, block-decomposable penalties for consensus constraints.
We propose relaxing the consensus constraints through generic convex penalty functions ((Pr)),

generalizing the characteristic function penalty used in previous works. Motivated by settings
where the consensus constraints consist of orthogonal components (e.g. the hierarchical setting),
we propose using block-decomposable penalties. This results in a saddle point formulation (Ps)
with decomposable duals, a structure which we exploit in designing the multi-timescale algorithms.

Further, we propose a set of conditions on the growth rates of penalties (Lemma 2.3 and
Corollary 2.1), under which the duality gap for (Ps) provides upper bounds on objective value
suboptimality and consensus constraint violation. This relates solution qualities for the penalized
problems ((Pr) and (Ps)) back to the original distributed optimization problem (P).

Algorithm: (accelerated) multi-timescale gradient sliding.
We propose MT-GS and AMT-GS for saddle point problems with block-decomposable duals.

At each iteration, our algorithms apply a generalized communication sliding procedure [24] – con-
sisting of multiple subgradient (mirror descent) steps – to approximate the proximal updates of the
primal variables. By comparison, the dual blocks are updated at potentially different, user-chosen
frequencies. Denoting the (weighted) average of these frequencies as r, we show that the duality gap
of MT-GS converges at the rate of O(r/k) for Lipschitz convex objectives (Lemma 3.1, Theorem
3.1), and the duality gap of AMT-GS converges at the rate of O((r)2/µk2) for µ-strongly convex
objectives (Lemma 4.1, Theorem 4.1). When specialized in the setting of distributed optimization,
to find an ϵ-suboptimal solution, the communication round and subgradient oracle complexities of
our algorithms (Table 1) have optimal dependency on ϵ.

To the best of our knowledge, MT-GS and AMT-GS are the first deterministic algorithms
for saddle point problems with block-decomposable duals that allow different number of updates
for different dual blocks. This extra flexibility in choosing the update frequencies allows one to
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design more communication-efficient algorithms, especially when the cost of updating different
duals and/or the domain sizes of different duals are different (Section 3.5).

Beyond Lipschitz constants: function similarity based complexity.
We formalize the notion of function similarity for non-smooth objectives (Definition 2.1) studied

in [3], and show that with proper choices of the penalties, the communication round complexities
of MT-GS and AMT-GS have linear, and thus optimal, dependency on function similarities (Sec-
tions 3.5 and 4.2). This provides positive answers to the open question whether the theoretical
communication round lower bounds proposed in [3] can be attained.

1.3 Roadmap

In Section 2, we introduce the penalty and primal-dual formulation ((Pr) and (Ps)) and propose
a set of requirements on the penalty functions (Lemmas 2.2 and 2.3, and Corollary 2.1). We also
formalize the notion of function similarities for non-smooth objectives (Definition 2.1). In Section
3, we present our MT-GS algorithm and provide its convergence guarantees for general saddle point
problems (Section 3.3) and for (P) (Section 3.4). The section ends with further discussion on the
cost and the dependence on function similarities (Section 3.5). In Section 4, we give the convergence
results of our AMT-GS for general saddle point problems. Then we propose a communication-
free initialization process (Section 4.1), and discuss the overall communication round complexities
(Section 4.2). In Section 5, we present numerical experiments for support vector machine problems
with regularized hinge losses. Finally, in Section 6, we point out directions of future work.

2 Setup and formulations

In (1) above and in the rest of this work, ⟨·, ·⟩ is the standard Euclidean inner product. In addition,
we assume that Rd is equipped with a norm ∥ · ∥ not necessarily generated by the inner product,
and denote its dual norm as ∥·∥x,∗. We extend this norm to Rmd through ∥X ′∥2 :=

∑
v∈V ∥x′v∥2 for

any X ′ ∈ Rmd, and its dual norm satisfies ∥X ′∥2X,∗ =
∑

v∈V ∥x′v∥2x,∗. When there is no confusion,
we drop the subscript x and X. We make the following assumption.

Assumption 2.1. (P) has an optimal solution x∗ ∈ X .

When Assumption 2.1 holds, we denote X∗ ∈ Rmd as (X∗)v = x∗ for all v ∈ V .

2.1 Saddle point problem formulations

The problem (P) can be approximated using an optimization problem defined on the space X =
X V ⊂ Rmd, with additional “consensus constraints”. Precisely,

min
X=(xv)v∈V ∈X

F (X) +
S∑

s=1

Rs(KsX), F (X) :=
∑
v∈V

fv(xv). (Pr)

Consensus constraints. In (Pr), Ks : Rmd → Rns is a linear operator such that ∩s∈S ker(Ks)
is the subspace in Rmd where {xv}v∈V does not violate the consensus constraints. That is, denoting
n =

∑S
s=1 ns and K : Rmd → Rn as (KX)s = KsX for s ∈ [S], we make the following requirement.

Assumption 2.2. KX = 0 if and only if xv = xv′ for all v, v′ ∈ V .

5



Denoting Π : Rmd → Rmd as the projection such that for any X ∈ Rmd, Π(X)v = 1
m

∑
v′∈V xv′ ,

we have KX = 0 if and only if ΠX = X. Thus, Assumption 2.2 implies that

K∗(KK∗)†K = I −Π.

For convenience, we further decompose KsX =
∑

v∈V Ks,vxv for Ks,v : Rd → Rns .
Penalty. In (Pr), Rs : Rns → R is a regularization term, penalizing the deviation of KsX

from 0. We further define R : Rn → R as R(y1, . . . , yS) =
∑S

s=1Rs(ys). Recall that the Fenchel
conjugate of Rs is defined as

R∗
s(ys) = sup

y′s∈Rns

⟨ys, y′s⟩ −Rs(y
′
s),

and it is easy to see R∗(Y ) =
∑S

s=1R
∗
s(ys) for Y = (ys)s∈[S]. We make the following assumption.

Assumption 2.3. For each s ∈ [S], Rs : Rns → R,

1. Rs is proper, convex, and lower-semicontinuous;

2. Rs(ys) ≥ 0 for all ys ∈ Rns, and Rs(ys) = 0 if and only if ys = 0.

As an example, if for all s ∈ [S], Rs is the characteristic function of the set {0}, i.e. Rs(0) = 0
and Rs(ys) = ∞ for ys ̸= 0, then (Pr) is equivalent to (P), and R∗

s(ys) = 0 for all ys ∈ Rns . As
another example, Rs can be any scaled norm, for instance Rs(ys) = λ∥ys∥p for some p ≥ 1 and
λ > 0, then R∗

s(ys) = 0 for ∥ys∥q ≤ λ and R∗
s(ys) = ∞ otherwise, where ∥ · ∥q is the dual norm of

∥ · ∥p (i.e. p−1 + q−1 = 1). That is R∗
s is the characteristic function of the dual-norm-ball of size

λ. We would like to point out that the first condition in Assumption 2.3 is standard in the PDHG
literature [13, 12]. We discuss further requirements on the choices of Rs in Section 2.3.

Under the first part of Assumption 2.3, we have Rs = R∗∗
s (Theorem 11.1 [31]). Thus, (Pr) can

be equivalently formulated as the following saddle point problem:

min
X∈X

max
Y ∈Rn

S∑
s=1

⟨KsX, ys⟩+ F (X)−
S∑

s=1

R∗
s(ys). (Ps)

Performance measure. To measure the performance of X ∈ X , following [24], we consider
the (ϵ, δ)-solution, satisfying the following conditions

F (X) ≤ F (X∗) + ϵ, ∥(I −Π)X∥ ≤ δ. (2)

That is, X is ϵ-suboptimal in terms of the objective value, while violating the consensus constraints
by at most δ.2

To solve (P), we resort to the primal dual formulation (Ps), where the common measure of
performance of (X,Y ) is the duality gap, defined as G : Z × Z → R where Z = X × Rn as

G(X,Y ;X ′, Y ′) :=⟨KX,Y ′⟩+ F (X)−R∗(Y ′)

−
{
⟨KX ′, Y ⟩+ F (X ′)−R∗(Y )

}
. (3)

2In [24], ∥KX∥ ≤ δ is used instead of ∥(I−Π)X∥, and K is assumed to be the Laplacian matrix for the underlying
graph of communication. However, we use a generic K satisfying condition 2.2. In particular, for any K that is a
valid choice, λK is also valid for any λ ̸= 0. Thus, it makes sense to “normalize” K, and we use I−Π = K∗(KK∗)†K.

6



Our algorithms are guaranteed to find a pair Z = (X,Y ) such that supZ′∈Z G(Z;Z ′) is small
(Theorems 3.1 and 4.1). To transfer such duality gap guarantee back to (ϵ, δ)-solution guarantee,
in Section 2.3, we propose additional requirements for the regularization R.

Distance generating functions and mirror maps. We equip X with a distance generating
function3 wx : X → R with modulus 1, and extend it to X through wX(X) :=

∑
v∈V wx(xv).

Similarly, for each s ∈ [S], we assume that Rns is equipped with a norm ∥ · ∥ not necessarily
generated by the inner product, and a distance generating function wy

s : dom(R∗
s) → R with

modulus 1. Recall that for any distance generating function w, the Bregman divergence is defined
as Dw(x, z) := w(x)− w(z)− ⟨∇w(z), x− z⟩.

Assumption 2.4. For any ys ∈ dom(R∗
s), g ∈ Rns the following problem can be solved exactly:

min
ys∈dom(R∗

s)
R∗

s(ys) + ⟨g, ys⟩+Dwy
s
(ys, ys).

For any g ∈ Rd, the following problem can be solved exactly:

min
x∈X
⟨g, x⟩+ wx(x).

2.2 Agents, communication, and additional requirements on K

By distributed optimization, we mean that the objective functions {fv}v∈V are distributed among
m primal agents: for each v ∈ V , Agent(xv) has access to f ′

v, the first order oracle for fv, and is
responsible for updating the variable xv. In addition, we assume that there are S dual agents: for
each s ∈ [S], Agent(ys) is responsible for updating the variable ys.

We assume that for any pair (s, v) ∈ [S]× V such that Ks,v ̸= 0, Agent(xv) and Agent(ys) can
communicate (in both directions). For instance, all agents might be nodes in a connected graph
with vertices [S] ∪ V (representing S dual agents and m primal agents), and communication can
be realized through edges (directly) or through paths (i.e. with the help of intermediate agents).
In particular, since the graph is connected, any pair can communicate, but the resources consumed
and/or time taken by communication between different pairs could be (significantly) different.

At this point, we abstract away from how such communication is realized, and leave the dis-
cussion of the costs of communication to Sections 3.5.1 and 3.5.2. Below, we provide two such
realizations: decentralized and hierarchical, and provide examples in Figure 1.

Decentralized setting. In this setup, we assume that the dual variables are kept and updated
by primal agents, respecting a graph based communication constraints. Precisely, let G = (V,E)
denote an undirected, connected graph, and for each s ∈ [S], we assign all tasks of Agent(ys) to
Agent(xvs) for some vs ∈ V , such that {vs, v′} ∈ E for each Ks,v′ ̸= 0.

As an example, let W ∈ RV×V be a doubly stochastic matrix such that Wv,v′ ̸= 0 only if
{v, v′} ∈ E or v = v′, and ker(I −W ) = Span(1) (and so K := (I −W )⊗ Id satisfies Assumption
2.2). We can choose S = m, ns = d, and decompose K as Ks := (I −W )s ⊗ Id,

KsX =
∑
v∈V

(I −W )s,vxv = xs −
∑

{v,s}∈E

Ws,vxv, s = 1, . . . ,m.

3For a convex closed set S, a function w : S → R is a distance generating function [16] with modulus ν > 0 w.r.t.
∥ · ∥ if w is continuously differentiable and

⟨x− z,∇w(x)−∇w(z)⟩ ≥ ν∥x− z∥2, ∀x, z ∈ S.
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Thus, Agent(ys)’s tasks can be assigned to Agent(xs).
Hierarchical setting. In this setup, we assume that there is an underlying tree with nodes

[S]∪ V , where all non-leaf nodes ([S]) correspond to dual agents and all leaf nodes (V ) correspond
to primal agents. Each non-leaf node can communicate with its child nodes directly. Precisely, for
s ∈ [S], we use Chi(s) ⊂ [S] ∪ V to denote the child nodes of Agent(ys), and Des(s) ⊂ V to denote
all primal agents in the subtree rooted at Agent(ys).

For convenience, for each s ∈ [S], we denote the “mean” of all descendants of Agent(ys) as
xs = |Des(s)|−1

∑
j∈Des(s) xj . Then, consider Ks : Rmd → R|Chi(s)|d defined as

(KsX)i = xi − xs = xi −
∑

j∈Chi(s)

|Des(j)|
|Des(s)|

xj , i ∈ Chi(s). (4)

Then, it is easy to see that K satisfies Assumption 2.2, and since xj can be computed in a bottom
up manner, {Ks}s∈[S] can be realized through this tree. In addition, the set of {Ks}s∈[S] admits
the following orthogonality properties which will be useful in choosing R. We defer the proof to
Appendix A.

Lemma 2.1. Let {Ks}s∈[S] be as defined in (4). Then for s ̸= s′ ∈ [S], KsK
∗
s′ = 0. In addition,

denoting Πs := K∗
s (KsK

∗
s )

†Ks, we have for any X̃, X̂ ∈ Rmd

⟨X̂,ΠsX̃⟩ = ⟨ΠsX̂,ΠsX̃⟩ =
∑

i∈Chi(s)

|Des(i)| · ⟨(KsX̂)i, (KsX̃)i⟩.

x1 x2 · · · xm

y1 · · · yS

x1

y1

x2

y2
x3

y3

x4

y4
y4

x1 x2 x3 x4 x5 x6

y1 y2 y3

Figure 1: Left: abstract setting with m primal agents and S dual agents. Middle: realization in
the decentralized setting, where S = m = 4, Agent(xs) = Agent(ys), and the underlying graph is
(V,E = {{1, 3}, {1, 4}, {2, 3}}). Right: realization in the hierarchical setting.

2.3 Requirements for R

Recall that when R is the characteristic function of {0}, the penalized formulation (Pr) and its
primal-dual version (Ps) are equivalent to (P). In this section, we discuss the requirements for R
such that the duality gap provides upper bounds on the suboptimality of the objective value and
the violation of the consensus constraints.

Lemma 2.2. Under Assumption 2.3, we have for any X̂ ∈ X such that KX̂ = 0,

F (X) ≤ F (X̂) + sup
Y ′∈dom(R∗)

G(X,Y ; X̂, Y ′).

In particular, under Assumption (2.1), if supY ′∈dom(R∗)G(X,Y ;X∗, Y ′) ≤ ϵ, then F (X) ≤ F (X∗)+
ϵ.
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Proof of Lemma 2.2. Notice that by Assumption (2.3),

sup
Y ∈Rn

⟨KX,Y ⟩+ F (X)−R∗(Y ) = F (X) +R(KX).

In addition, since R(0) = 0, we have R∗(Y ) = supY ′∈Rn⟨Y ′, Y ⟩ − R(Y ′) ≥ ⟨0, Y ⟩ − R(0) = 0, and
so

⟨KX̂, Y ⟩+ F (X̂)−R∗(Y ) ≤ F (X̂), ∀ X̂ ∈ X , KX̂ = 0.

The second claim follows directly from the first since KX∗ = 0.

To connect the duality gap with the constraint violation ∥(I−Π)X∥ in (2), or with the objective
value suboptimality of 1

m

∑
v∈V xv, it turns out additional requirements are needed for R.

For convenience, we denote σ+
min(Ks) = minX∈Rmd, ΠsX ̸=0

∥KsX∥∗
∥ΠsX∥ , where the numerator uses

the dual norm to the norm in Rns and the denominator uses the norm in Rmd. As an example,
when all norms are l2 norms, σ+

min(Ks) is the smallest non-zero singular value of Ks.

2.3.1 Requirements on R under orthogonaltiy

Below, we show that if Ks measures the constraint violation in orthogonal subspaces, then as long
as Rs grows fast enough, the duality gap provides an upper bound on the constraint violation
∥(I −Π)X∥ and the suboptimality of ΠX.

Lemma 2.3. Under Assumption (2.3), further assuming that for any s ̸= s′ ∈ [S], KsK
∗
s′ = 0,

and for each s ∈ [S], denoting

Πs = K∗
s (KsK

∗
s )

†Ks, as ≥ sup
X′∈X , KX′=0

∥Πs∇F (X ′)∥∗,

where ∇F : X → Rmd is an arbitrary subgradient oracle, i.e. (∇F (X))v ∈ ∂fv(xv). If Assumption
2.1 also holds and supY ′∈dom(R∗)G(X,Y ;X∗, Y ′) ≤ ϵ,

1. X is an (ϵ, ϵ/ξ)-solution if for each s ∈ [S],

Rs(ys) ≥ Rccv
s (ys) :=

ξ + as

σ+
min(Ks)

∥ys∥∗. (5)

2. the projected solution ΠX is an (ϵ(1 + 1/ξ), 0)-solution if for each s ∈ [S],

as > 0, Rs(ys) ≥ Rprj
s (ys) :=

(1 + ξ)as

σ+
min(Ks)

∥ys∥∗. (6)

In Lemma 2.3 (Corollary 2.1 below), the superscript ccv means {Rccv
s }s∈[S] ({R̂ccv

s }s∈[S]) are
designed to provide guarantees on the consensus constraint violation, and the superscript prj
means {Rprj

s }s∈[S] ({R̂
prj
s }s∈[S]) are designed to provide guarantees the projected solution ΠX.

Proof of Lemma 2.3. First, notice that by the orthogonality of {Ks}s∈[S], for any Y ∈ Rn

(KK∗Y )s = Ks(
S∑

s′=1

K∗
s′ys′) = KsK

∗
sys, ∀s ∈ [S].

9



That is, KK∗ is diagonal, and so

((KK∗)†Y )s = (KsK
∗
s )

†ys, ∀s ∈ [S].

Thus, we can make the following decomposition

K∗(KK∗)†KX =
S∑

s=1

K∗
s (KsK

∗
s )

†KsX =
S∑

s=1

ΠsX.

For convenience, we denote X̃ := ΠX, and by Lemma 2.3,

sup
Y ′∈dom(R∗)

G(X,Y ;X∗, Y ′) ≤ ϵ =⇒ F (X) +R(KX) ≤ F (X∗) + ϵ ≤ F (X̃) + ϵ. (7)

In addition, using the convexity of F ,

F (X̃)− F (X) ≤ −⟨∇F (X̃), (I −Π)X⟩ = −
S∑

s=1

⟨∇F (X̃),ΠsX⟩

≤
S∑

s=1

∥Πs∇F (X̃)∥∗ · ∥ΠsX∥ ≤
S∑

s=1

as · ∥ΠsX∥. (8)

For the first claim, since ∥KsX∥∗ ≥ ∥ΠsX∥σ+
min(Ks), with the first condition (5) on Rs, we

have
Rs(KsX) ≥ (ξ + as) · ∥ΠsX∥ (9)

Combining the (7), (8), and (9), we get

ξ ·
S∑

s=1

∥ΠsX∥ ≤ ϵ =⇒ ∥(I −Π)X∥ = ∥
S∑

s=1

ΠsX∥ ≤
S∑

s=1

∥ΠsX∥ ≤ ϵ/ξ.

For the second claim, following a similar argument as above but with the second condition (6) on
Rs, we get

S∑
s=1

as · ∥ΠsX∥ ≤ ϵ/ξ. (10)

Thus, using (7), (8), and (10), we have

F (X̃) ≤ F (X) + ϵ/ξ ≤ F (X∗) + ϵ/ξ + ϵ.

We would like to point out that in (8), ⟨∇F (X̃),ΠsX⟩ is upper bounded using ∥∇F (X̃)∥∗ ·
∥ΠsX∥. A tighter upper bound could be obtained if one has more information about the set
Gs := {Πs∇F (X ′), X ′ ∈ X , KX ′ = 0}. Indeed, ⟨∇F (X̃),ΠsX⟩ ≤ supGs∈Gs

⟨Gs,ΠsX⟩, and so the
inner product can be bounded using the support function of the set Gs.
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2.3.2 Function similarity for general convex functions

The terms {as}s∈[S] in Lemma 2.3 can be viewed as a “decomposition” of the function variation
into different subspaces spanned by (the row spaces of) {Ks}s∈[S]. To be more concrete, consider
the hierarchical setting presented in Section 2.2, which satisfies exactly the conditions in Lemma 2.3
due to Lemma 2.1. Defining µs(i) =

|Des(i)|
|Des(s)| for i ∈ Chi(s) as a probability measure, and assuming

that all norms are l2 norms, then by Lemma 2.1,

∥Πs∇F∥2∗ = |Des(s)| · Vari∼µs(f
′
i), f ′

i =

∑
j∈Des(i) f

′
j

|Des(i)|
, i ∈ Chi(s), (11)

where for a random vector V , we denote Var(V ) := E[∥V − E[V ′]∥2∗]. Thus, ∥Πs∇F∥∗ measures
the function variation among the descendants of different child nodes of Agent(ys), i.e. among{∑

j∈Des(i) f
′
j

}
i∈Chi(s)

. As a result, the agents closer to the root of the tree, with more descendants,

take care of function variation at larger scales, but at lower resolution, since for all i ∈ Chi(s), the

variation inside
{
f ′
j(x)

}
j∈Des(i)

has been taken care of by the dual agents in each sub-tree rooted

at i.
For general but still orthogonal {Ks}s∈[S], as measures the function variation along the span of

Ks. With this interpretation in mind, we make the following definition regarding function similarity.

Definition 2.1. Assume that for all s ̸= s′ ∈ [S], KsK
∗
s′ = 0. We say that the set of func-

tions {fv}v∈V is {(as,Ks)}s∈[S]-similar if there exists a subgradient oracle ∇F : X → Rmd, i.e.
(∇F (X))v ∈ ∂fv(xv)), such that for each s ∈ [S],

Πs = K∗
s (KsK

∗
s )

†Ks, as ≥ sup
X′∈X , KX′=0

∥Πs∇F (X ′)∥∗.

If S = 1 and Π1 = I −Π, we abbreviate {(a1,K1)}-similar as a1-similar.

For instance, if S = 1 and all norms are l2 norms, then Assumption 2.2 requires that Π1 = I−Π,
and one can take a1 as

a21 ≥ sup
x∈X

∑
v∈V
∥f ′

v(x)−
1

m

∑
v′∈V

f ′
v′(x)∥2.

Thus, if ∥f ′
v(x)∥ ≤Mf for all v ∈ V, x ∈ X , we can also take a1 = 2

√
mMf .

Comparisons with existing notions of function similarity. [18] proposes the bounded
gradient dissimilarity for differentiable convex objectives, which coincides with our Definition 2.1
when S = 1 and when the objectives are differentiable. For twice differentiable objectives, function
similarity is also defined in terms of differences in Hessians, i.e. ∥∇2fv −∇2fv′∥ [38, 20, 3, 18]. For
general convex functions which could be non-differentiable, [3] informally defines it (δ-relatedness
in their terminology) as the condition that “subgradients of local functions are at most δ-different
from each other”. Our Definition 2.1 formalizes this idea, and extend it to the case where S > 1.

2.3.3 Requirements on Rs without orthogonality

The above Lemma 2.3 imposes orthogonality assumptions on {Ks}s∈[S]. In the more general case
where such assumptions do not hold, one can always view (Ps) as a problem with only 1 block,
with K and R as the corresponding operator and regularization. Applying Lemma 2.3, we get the
following corollary.
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Corollary 2.1. Under Assumption (2.3), denoting â1 ≥ supX′∈X , KX′=0 ∥(I−Π)∇F (X ′)∥∗ where

∇F : X → Rmd is an arbitrary subgradient oracle, i.e. (∇F (X))v ∈ ∂fv(xv). If Assumption 2.1
also holds and supY ′∈dom(R∗)G(X,Y ;X∗, Y ′) ≤ ϵ,

1. X is an (ϵ, ϵ/ξ)-solution if for each s ∈ [S],

Rs(ys) ≥ R̂ccv
s (ys) :=

ξ + â1

σ+
min(K)

∥ys∥∗, (12)

2. assume that â1 > 0, then the projected solution ΠX is an (ϵ(1 + 1/ξ), 0)-solution if for each
s ∈ [S],

Rs(ys) ≥ R̂prj
s (ys) :=

(1 + ξ)â1

σ+
min(K)

∥ys∥∗. (13)

Assume that all norms are l2 norms, then with orthogonality, KK∗ is “diagonal” and so
σ+
min(K) = mins∈[S] σ

+
min(Ks). In addition, since ∥(I − Π)∇F (X)∥ ≥ ∥Πs∇F (X)∥ for any X ∈ X

and s ∈ [S], one can always take as ≤ â1 for all s ∈ [S]. Thus ξ+â1
σ+
min(K)

≥ ξ+as
σ+
min(Ks)

. Since for

the function h(x) = λ∥x∥ defined on Rn0 for some λ > 0, the conjugate h∗ is the characteristic
function of {x ∈ Rn0 |∥x∥ ≤ λ}, i.e. dom(h∗) = {x ∈ Rn0 |∥x∥ ≤ λ}. As will be seen in Theorem 3.1,
the convergence is faster with smaller domains, suggesting that one should use the more refined
decomposition when orthogonality holds.

Comparisons with [24] when S = 1. Assume that R̂prj
1 in (13) is used for some constant

ξ > 0 and â1 = 2
√
mMf , where Mf (defined below) is an upper bound on the norm of the

subgradient oracle f ′
v ∈ ∂fv (i.e. only one subgradient in the subdifferential for each x ∈ X , v ∈ V ).

Then, the diameter of dom(R∗) is O(
√
mMf

σ+
min(K)

). In [24], it is shown that for (Ps) with R being the

characteristic function of {0}, there exists an optimal dual solution ∥Y ∗∥ ≤
√
mM̂f

σ+
min(K)

, where M̂f is

an upper bound on the norms of all subgradients g ∈ ∂fv:

M̂f := sup
x∈X , v∈V, g∈∂fv(x)

∥g∥∗ ≥Mf := sup
x∈X , v∈V

∥f ′
v(x)∥∗.

Thus, even without function similarity, our R̂prj
1 provides better control over the dual variables,

leading to faster convergence. Moreover, when X ≠ Rd, due to the normal cones at the boundary
of X , M̂f =∞.

3 Multi-timescale gradient sliding

To solve (Ps) with the costs of information aggregation in mind, we resort to the decentralized
communication sliding (DCS)[24], a communication efficient variant of the classical primal-dual
hybrid gradient algorithm. As a recap, at iteration k, DCS performs the following updates: (R is
the characteristic function of {0}, and wy(Y ) = 1

2⟨Y, Y ⟩)

X̃k = Xk + αk(X
k −Xk−1) (14)

Y k = argmin
Y ∈Rn

R∗(Y ) + ⟨−KX̃k, Y ⟩+ τkDwy(Y, Y k−1) (15)

Xk ≈ argmin
X∈X

F (X) + ⟨K∗Y k, X⟩+ ηkDwX (X,Xk−1) (16)
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where the proximal update (16) is solved inexactly through the Communication-Sliding (CS) pro-
cedure (i.e. Tk steps of mirror descent) locally by each primal agent. Since only computing KX̃k

and K∗Y k requires the communication between primal and dual agents, to reach ϵ suboptimality
in terms of the gap, O(1/ϵ) rounds of communication/matrix-vector multiplication are needed.
This is desirable, especially when the bottleneck of the entire algorithm is communication and/or
matrix-vector multiplication.

We take a step further: with separable duals, we consider potential heterogeneity in the costs of
information aggregation (e.g. sending messages and/or computing matrix-vector products). Since
the dual (15) can be separated into S blocks, one can apply block-coordinate descent type of
algorithms such as S-PDHG [11], which updates only a random subset of the dual blocks at each
iteration. The flexibility in choosing the sampling distribution allows one to control the frequency
of updates of different blocks. However, due to the randomness, the O(1/k) rate of convergence is
usually shown only for the expected gap.

To maintain the deterministic convergence guarantee as well as the flexibility in choosing the
number of updates applied to each dual block, we propose the Multi-Timescale Gradient Sliding
(MT-GS) for (Ps), where different dual agents live in different timescales, and update at different
rates: Agent(ys) only updates ys at iteration 0, rs, 2rs, . . .. Our convergence results indicate that
to reach ϵ duality gap, the number of communication rounds needed is N = O( rϵ ), where r is the
weighted average of {rs}s∈[S], with weights depending on “dual domain sizes”, and thus on the
function similarities if the penalties Rs’s are chosen as suggested by Section 2.3. In addition, when
the costs of updating different duals and/or the function variation along different Ks’s are different
(significantly), one can take advantage of the flexibility in choosing {rs}s∈[S] to design more efficient
algorithms.

3.1 Updating rules of multi-timescale gradient sliding

We assume that there is a global time k = 0, 1, 2, . . . , N .
Initialization. We assume that each Agent(xv) is given some xinitv ∈ X , and initialize xk

′
v =

x̂k
′

v = xinitv for all k′ < 0. Similarly, each Agent(ys) is given some yinits ∈ dom(R∗
s), and initialize

yk
′

s = yinits for all k′ < 0.
Dual updates. We associate each dual ys with a rate rs ∈ N and a local time is = 0, 1, . . . , Ns−

1, such that N + 1 = rsNs. For k = 0, 1, . . . , N , Agent(ys) remains dormant (no computation or
communication) unless k = rsis for some is ∈ {0, 1, . . . , Ns − 1}, where Agent(ys) computes the
updated yiss using the following rules.

x̃iss,v = αs,is

 rsis−1∑
k′=rsis−rs

θk′(x̂
k′
v − xk

′−rs
v )

+

rsis−1∑
k′=rsis−rs

θk′+rsx
k′
v , v ∈ V, (17)

yiss = argmin
ys∈Rns

⟨− 1∑rsis+rs−1
k′=rsis

θk′

∑
v∈V

Ks,vx̃
is
s,v, ys⟩+R∗

s(ys) + τs,isDwy
s
(ys, y

is−1
s ). (18)

Further, we denote yks = y
⌊k/rs⌋
s , i.e. the corresponding dual ys at the global time k, and

Y
k
= (yks)s∈[S]
Primal updates. All primal variables are updated at each global time, through a generalized

CS procedure, which we provide details in Section 3.2. For k = 0, 1, . . . , N ,

(xkv , x̂
k
v) = CS(fv,X , Dwx , Tk, (ηk,s)s∈[S], (x

k−rs
v )s∈[S],

S∑
s=1

K∗
s,vy

k
s , x

k−1
v ), ∀ v ∈ V. (19)
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With correct choices of the parameters, (19) provides approximate solutions to the following prob-
lem

min
x∈X

fv(x) + ⟨
S∑

s=1

K∗
s,vy

k
s , x⟩+

S∑
s=1

ηk,sDwx(x, xk−rs
v ). (20)

Final outputs. Denoting Ẑk = (X̂k, Y
k
), then the output is

ZN = (
N∑
k=0

θk)
−1

N∑
k=0

θkẐ
k. (21)

Algorithm 1 (Accelerated) Multi-timescale gradient sliding

Require: {αs,is}, {θk}, {Tk}, {ηk,s}, {τs,is}, {rs}, Xinit, Y init

(Xk′ , X̂k′ , Y k′)← (Xinit, Xinit, Y init) for all k′ < 0
for k = 0, 1, . . . , N do ▷ implicitly is = ⌊k/rs⌋ for all s ∈ [S]

for s ∈ [S] such that k = 0 ( mod rs) do
for v ∈ V such that Ks,v ̸= 0 do

Agent(xv) computes x̃iss,v using (17), and sends to Agent(ys)
end for
Agent(ys) computes yiss using (18), and sends yiss − yis−1

s (y0s if is = 0) to Agent(xv) for all
v ∈ V such that Ks,v ̸= 0

end for
for v ∈ V do

Agent(xv) computes
∑S

s=1K
∗
s,vy

k
s , and updates (xkv , x̂

k
v) using (19)

end for
end for
Output ZN in (21).

Notice Agent(xv) needs to be able to compute all the x̃iss,v, which could require extra space to

store past (xv, x̂v)’s. One approach is to keep in memory all x
(k−2rmax):(k−1)
v and x̂

(k−rmax):(k−1)
v ,

where rmax = maxs∈[S] rs. This requires storing 3rmax vectors in Rd. Another approach is to
keep in memory the accumulative (xv, x̂v): for each s ∈ [S], for rs(is − 1) ≤ k ≤ rsis, keep in
memory (previously computed)

∑rsis−rs−1
k′=rsis−2rs

θk′+rsx
k′
v , while computing the sum

∑rsis−1
k′=rsis−rs

θk′ x̂
k′
v

and
∑rsis−1

k′=rsis−rs
θk′+rsx

k′
v as k increases. This requires storing 3S vectors in Rd. Also, due to the

proximal centers, x
(k−rmax):k
v should be kept in memory, which requires storing rmax vectors.

In addition, notice that in Algorithm 1, Agent(ys) calculates Ks,vx̃
is
s,v and sends a vector in

Rns , Agent(xv) calculates K∗
s,v(y

k
s − yk−1

s ) and sends a vector in Rd. In fact, there are many task
assignment strategies: for instance, Ks,vx̃

is
s,v can also be computed by Agent(xv), and the message

from Agent(xv) to Agent(ys) will be Ks,vx̃
is
s,v. This is preferable if Agent(xv) can compute matrix-

vector products faster/at lower cost than Agent(ys). Due to this variability, in the cost analysis in
Section 3.5, we take a “modular” perspective and assume that the cost of updating ys (including
all matrix-vector multiplication and communication) is cs.

3.2 Generalized communication sliding

In [24], the CS procedure is used to approximately solve the primal proximal updates. How-
ever, due to differences in dual time scales, we need extra control on the variation of the primal
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sequence. Intuitively, when computing Xk, the K∗
sys term is evaluated using yks = yiss , where

is = ⌊k/rs⌋. However, yiss is computed at the global iteration rs⌊k/rs⌋ ≤ k, using the (outdated)

X
(rsis−2rs):(rsis−1)
s and X̂

(rsis−rs):(rsis−1)
s . Thus, for the multi-timescale updates to converge, we

need to control the variation of the primal sequence. To achieve that, we take the proximal term
in the primal updates as a mixture of proximal terms centered at {Xk−rs}s∈[S], which gives the
formulation (20).

Motivated by this, we propose the following generalization of the CS procedure in [24] (which
is a special case where |I| = 1).

Algorithm 2 Generalized communication sliding procedure

Require: The sequences {βt} and {λt}, ϕ′ : U → Rd0 a subgradient oracle for ϕ.
Ensure: (uT , ûT ) = CS(ϕ,U,Dw, T, (ηi)i∈I , v, (xi)i∈I , x

init), an approximate solution to

min
u∈U

Φ(u) := ⟨v, u⟩+ ϕ(u) +
∑
i∈I

ηiDw(u, xi)

(u0, û0)← (xinit, xinit), η ←
∑

i∈I ηi
for t = 1, . . . , T do

ut = argmin
u∈U

⟨v + ϕ′(ut−1), u⟩+
∑
i∈I

ηiDw(u, xi) + ηβtDw(u, u
t−1)

end for

ûT = (

T∑
t=1

λt)
−1

T∑
t=1

λtu
t.

As a corollary to Lemma B.2, we have the following performance guarantee.

Corollary 3.1. Assume that U ⊂ Rd0 is a convex set, and ϕ : U → R is a convex function such
that

µ

2
∥x− y∥2 ≤ ϕ(x)− ϕ(y)− ⟨ϕ′(y), x− y)⟩ ≤M∥x− y∥, ∀x, y ∈ U,

where ϕ′ : U → Rd0 is a subgradient oracle, i.e. for each y ∈ U , ϕ′(y) ∈ ∂ϕ(y) is a subgradient.
With λt = t+ 1 and βt =

t
2 for t ≥ 1, we have for any u ∈ U

⟨v, ûT − u⟩+ ϕ(ûT )− ϕ(u) ≤ 2η

T (T + 3)
Dw(u, x

init) +
∑
i∈I

ηiDw(u, xi)

− (T + 1)(T + 2)

T (T + 3)
ηDw(u, u

T )−
∑
i∈I

ηiDw(û
T , xi) +

4M2

η(T + 3)
.

Further, if µ > 0, and Dwx(x, x′) ≤ C
2 ∥x − x′∥2 for some C < ∞, then denoting η =

∑
i∈I ηi,

setting λt = t and βt =
(t+1)µ
2ηC + t−1

2 , we have for any u ∈ U ,

⟨v, ûT − u⟩+ ϕ(ûT )− ϕ(u) ≤
∑
i∈I

ηiDw(u, xi)−
∑
i∈I

ηiDw(û
T , xi)

− (
µ

C
+ η)Dw(u, u

T ) +
2M2/η

T (T + 1)

T∑
t=1

λt

βt
,
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and 2M2/η
T (T+1)

∑T
t=1

λt
βt
≤ 4CM2

µ(T+1) .

3.3 Convergence of multi-timescale gradient sliding

The proof of convergence of Algorithm 1 follows a similar type of argument as the proof of con-
vergence of PDHG and DCS: the primal updates (19) and dual updates control the following two
terms ((25), (26)): {

N∑
k=0

⟨K∗Y
k
, X̂k −X⟩+ F (X̂k)− F (X)

}

+

{
Ns−1∑
is=0

⟨−KsX̃
is
s , yiss − ys⟩+ rs(R

∗
s(y

is
s )−R∗

s(ys))

}
.

The above sum (approximately) matches the gap
∑N

k=0Q(Ẑk, Z) up to an additive term ((27))

S∑
s=1

N∑
k=0

⟨X̂k − X̃⌊k/rs⌋
s ,K∗

s,v(ys − yks)⟩ =
Ns−1∑
is=0

⟨
rs−1∑
i=0

x̂rsis+i
v − x̃iss,v,K

∗
s,v(ys − yiss )⟩.

Notice that as compared to the proof of PDHG and DCS, due to the different timescales for the

duals, we bound the above terms at dual time scales: instead of controlling ⟨x̂kv − x̃
⌊k/rs⌋
s,v ,K∗

s,v(ys−
y
⌊k/rs⌋
s )⟩ for each k, we control the cumulative term (sum from k = rsis to k = rs(i1+1)−1). With
our choice of the X̃is

s and the mixture terms used in primal proximal updates, the result follows.
We defer the proof to Appendix C.

Lemma 3.1. Under Assumption 2.4 and the first part of Assumption 2.3, with the following choice
of parameters:

• αs,is = α = 1, θk = 1, Tk = T ≥ 1;

• ηk,s = ηρs where ρs ≥ 0 and
∑S

s=1 ρs = 1;

• τs =
2κ̃2

s
ρsη

where κ̃s := sup∥ys∥≤1 ∥K∗
sys∥∗;

• λt = t+ 1 and βt = t/2 for the CS procedure for all iteration k.

Then for any Z ∈ X × Rn,

(N + 1) ·Q(ZN ;Z)

≤ η

{
3

2
(

S∑
s=1

rsρs)DwX (X,Xinit)−DwX (X,XN )

}

+
1

η

{
S∑

s=1

κ̃2srs
ρs

{
3Dwy

s
(ys, y

init
s )−Dwy

s
(ys, y

Ns−1
s )

}
+

4mM2(N + 1)

T + 3

}

Thus, with proper choices of η, ρs, T , we get the following bound.
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Theorem 3.1. For X̂ ∈ X , assume that the following are finite:

DwX (X̂,Xinit) ≤ DX <∞, sup
ys∈dom(R∗

s)
Dwy

s
(ys, y

init
s ) ≤ Dy

s <∞.

Under the conditions in Lemma 3.1, taking η = (
∑S

s′=1 κ̃s′
√
Dy

s′)
√

8
3DX , ρs =

κ̃s

√
Dy

s∑S
s′=1 κ̃s′

√
Dy

s′
, and

T ≥ ⌊ 4mM2(N+1)

r(
∑S

s=1 κ̃s

√
Dy

s )2
⌋ where r :=

∑S
s=1 rsρs, we have

sup
Y ′∈Rn

Q(ZN ; X̂, Y ′) ≤
2
√
6r · (

∑S
s=1 κ̃s

√
Dy

s ) ·
√
DX

N + 1
. (22)

Proof of Theorem 3.1. From Lemma 3.1, we first notice that with ρs =
κ̃s

√
Dy

s∑S
s′=1 κ̃s′

√
Dy

s′

S∑
s=1

κ̃2srsD
y
s

ρs
= r(

S∑
s′=1

κ̃s′
√
Dy

s′)
2.

Thus, we have

T + 3 ≥ 4mM2(N + 1)

r(
∑S

s=1 κ̃s
√

Dy
s )2

=⇒ 4mM2(N + 1)

T + 3
≤

S∑
s=1

κ̃2srsD
y
s

ρs

Thus, with the additional assumptions, we get

sup
Y ′∈Rn

Q(ZN ; X̂, Y ′) ≤ (N + 1)−1

{
3ηDX

2
(

S∑
s=1

rsρs) +
4

η
(

S∑
s=1

κ̃2srsD
y
s

ρs
)

}

= (N + 1)−1

{
3ηDX

2
· r + 4

η
r(

S∑
s′=1

κ̃s′
√
Dy

s′)
2

}

=
2
√
6r(
∑S

s′=1 κ̃s′
√
Dy

s′) ·
√
DX

N + 1
.

We would like to point out that Algorithm 1 and the above guarantees Lemma 3.1 and The-
orem 3.1 (as well as Lemma 4.1 and Theorem 4.1 below) hold for any saddle point problem of
the structure (Ps), where the duals are block-separable. In particular, the convergence holds with-
out the assumptions specific to distributed optimization problems, such as the assumption that
ker(K) = Span(1) (Assumption 2.2), or Rs has to be nonnegative and R−1

s (0) = {0} (second part
of Assumption 2.3). In addition, Lemma 3.1 (and Lemma 4.1 below) can be used to show the con-
vergence of supZ∈Z Q(ZN ;Z), with DX ≥ supX∈X DwX (X,Xinit). In Theorem 3.1 (and Theorem

4.1), we give the “weaker” convergence for a fixed X̂. This is due to our Lemmas 2.2, 2.3, and
Corollary 2.1, which only require an upper bound on supY ′∈Rn Q(Z;X∗, Y ′). In addition, as will
be seen in Section 4.1, the dependence on DwX (X∗, Xinit) rather than supX∈X DwX (X,Xinit) is
crucial to obtain complexities which depend on function similarities for AMT-GS.

In addition, we point out that according to Theorme 3.1, T = O( mM2N

r(
∑S

s′=1 κ̃s′
√

Dy

s′ )
2
), and so the

total subgradient needed to find an ϵ suboptimal solution is

NT = O(
mM2N2

r(
∑S

s′=1 κ̃s′
√
Dy

s′)
2
) = O(

rmM2DX

ϵ2
).
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3.4 Communication round complexities for (P)

With additional assumptions specific to distributed optimization, and with proper choices of Rs’s,
the duality gap for (Ps) can be related to the suboptimality in terms of objective values F and/or
violation of the consensus constraint for the original problem (P). Next, we establish such connec-
tion.

We point out that with wy
s = 1

2∥ys∥
2
2 and y0s = 0, we can take

√
2Dy

s as ξ+as
σ+
min(Ks)

for Rccv
s in (5),

as (1+ξ)as
σ+
min(Ks)

for Rprj
s in (6), as ξ+â1

σ+
min(K)

for R̂ccv
s in (12), and as (1+ξ)â1

σ+
min(K)

for R̂prj
s in (13).

Corollary 3.2. Assume that all norms are the l2 norm, and take y0s = 0, wy
s (ys) = 1

2∥ys∥
2 and

wx(x) = 1
2∥x∥

2. Assume that Assumptions 2.1, 2.2 and 2.3 and the conditions of Theorem 3.1 hold,

and {fv}v∈V is â1-similar. Take ρs = ∥Ks∥∑S
s′=1 ∥Ks′∥

, r =
∑S

s=1 rsρs, and assume DwX (X∗, Xinit) ≤

DX , then for

N ≥ 2
√
3rA
√
DX

ϵ
,

1. 1
N+1

∑N
k=0 X̂

k is an (ϵ, ϵ/ξ)-solution if Rs = R̂ccv
s as defined in (12) and A =

(
∑S

s=1 ∥Ks∥)
σ+
min(K)

·
(ξ + â1);

2. Π( 1
N+1

∑N
k=0 X̂

k) is an (ϵ(1 + 1/ξ), 0)-solution if Rs = R̂prj
s as defined in (13) and A =

(1+ξ)(
∑S

s=1 ∥Ks∥)·â1
σ+
min(K)

.

Corollary 3.3. Assume that all norms are the l2 norm, and take y0s = 0, wy
s (ys) = 1

2∥ys∥
2

and wx(x) = 1
2∥x∥

2. Assume that KsK
∗
s′ = 0 for all s, s′ ∈ [S], that Assumptions 2.1, 2.2 and

2.3 and the conditions of Theorem 3.1 hold, and that {fv}v∈V is {(as,Ks)}s∈[S]-similar. Take

r =
∑S

s=1 rsρs, and assume DwX (X∗, Xinit) ≤ DX , then for

N ≥ 2
√
3rA
√
DX

ϵ
,

1. 1
N+1

∑N
k=0 X̂

k is an (ϵ, ϵ/ξ)-solution if Rs = Rccv
s as defined in (5), ρs = ( ξ+as

σ+
min(Ks)

)/(
∑S

s′=1
ξ+as′

σ+
min(Ks′ )

),

and A =
∑S

s=1(ξ + as) · ∥Ks∥
σ+
min(Ks)

;

2. Π( 1
N+1

∑N
k=0 X̂

k) is an (ϵ(1+1/ξ), 0)-solution if Rs = Rprj
s satisfies (6), ρs = ( as

σ+
min(Ks)

)/(
∑S

s′=1
as′

σ+
min(Ks′ )

),

and A = (1 + ξ)(
∑S

s=1 as ·
∥Ks∥

σ+
min(Ks)

).

Thus, the communication round N depends on r, the weighted average of the rates at which
the duals are updated, as well as A, which measures the function similarities.

3.5 Discussions

Below, we look at the communication rounds (N) and the subgradient oracle complexities (T and
NT ) of Algorithm 1 in order to find an ϵ suboptimal solution. In Section 3.5.1, we focus on the
saddle point formulation (Ps), assuming that the regularization R is given. In Section 3.5.2, we
look at the original distributed optimization problem (P), and choose R based on the discussion in
Section 2.3.
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3.5.1 Saddle point problem (Ps)

Theorem 3.1 implies that to find an ϵ-suboptimal solution, one can take

N = O(
r · (

∑S
s=1 κ̃s

√
Dy

s ) ·
√
DX

ϵ
), T = O(

M2m
√
DX

ϵ
∑S

s=1 κ̃s
√
Dy

s

),

where r :=
∑S

s=1 rsρs =
∑S

s=1 rsκ̃s

√
Dy

s∑S
s=1 κ̃s

√
Dy

s

. In particular, the total rounds of communication is O( rϵ ).

For the subgradient, notice that NT = O( rM
2mDX

ϵ2
), which agrees with [24] for when rs = 1 for all

s.
To further illustrate the benefits of having different update frequencies for different duals, we

analyze the “cost” of Algorithm 1. Precisely, we assume that every time ys is updated, the cost,
including all the communication between Agent(ys) and Agent(xv) for Ks,v ̸= 0, together with
the matrix-vector products involving {Ks,v}v∈V , is cs ∈ [0,∞]. When multiple duals S ⊂ [S] are
updated at the same time (in parallel), we assume that the total cost is additive, i.e.

∑
s∈S cs.

Then, with the above N , the dual variable ys is updated O( r
rsϵ

) times, which is different for
duals with different rs. Thus, suppose one is allowed to choose the update frequencies {rs}s∈[S], to
minimize the total cost to find an ϵ suboptimal solution, the following should be (approximately)
minimized

O(r
S∑

s=1

cs
rs
) = O((

S∑
s=1

ρsrs) · (
S∑

s=1

cs
rs
)).

With rs ∝
√

cs/ρs
4, the above becomes O((

∑S
s=1

√
csρs)

2). As a comparison, the strategy where

all rs = r′0 are the same has the cost O(
∑S

s=1 cs). By Cauchy–Schwarz inequality, (
∑S

s=1

√
csρs)

2 ≤∑S
s=1 cs, and the difference can be very large when {csρs}s∈[S] are very different, thereby showing

the benefit of optimizing the updating rates {rs}s∈[S] when {cs/(κ̃s
√

Dy
s )}s∈[S] are heterogeneous.

The additive cost is motivated by resources consumption when sending messages along each
edge. In general, the total cost can be an arbitrary set function of the set of duals updated.
For instance, to model time required to send messages (in parallel) where total time depends on
the largest time, the cost could be maxs∈S cs. In fact, when the costs {cs}s∈[S] are differently
significantly (e.g. by an order of magnitude), maxs∈S cs ≈

∑
s∈S cs. Precisely, assume that there

exists ξ > 1, such that for any s ̸= s′ ∈ [S], either cs ≤ ξcs′ or cs′ ≤ ξcs. In this case, for any
S ⊂ [S], ∑

s∈S
cs ≤ (

|S|−1∑
l=0

ξ−l) ·max
s∈S

cs ≤
ξ

ξ − 1
·max

s∈S
cs ≤

ξ

ξ − 1
·
∑
s∈S

cs,

and so the additive cost is a constant approximation to the maximum.

3.5.2 Distributed optimization problem (P)

For the distributed optimization problem (P), the more natural measure of performance is the
objective value suboptimality and the consensus constraint violation, as defined in (2). As indicated
by Corollaries 3.2 and 3.3, with good choices of the regularization R, 1

N+1

∑N
k=0 X̂

k or its projection
using Π satisfies (2). In the rest of Section 3.5.2, we assume that all norms are l2 norms, and take
wx(x) = 1

2∥x∥
2 and wy

s (x) =
1
2∥ys∥

2.

4Here and below, ∝ means (approximately) proportional to, i.e. there exists r0 ∈ R such that rs ≈ r0
√

cs/ρs for
all s ∈ [S].
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Bounds using the Lipschitz constants. Consider the case where ∥f ′
v∥ ≤ Mf , and to

guarantee that 1
N+1

∑N
k=0 X̂

k is an (ϵ, ϵ/ξ)-solution, in Corollary 3.2 we can take ξ = â1 = 2
√
mMf

which gives the following N1, and in Corollary 3.3, we can take ξ = as = 2
√
mMf for all s ∈ [S],

which gives the following N2:

N1 = O(
rMf

√
mDX

ϵ
·
∑S

s=1 ∥Ks∥
σ+
min(K)

), N2 = O(
rMf

√
mDX

ϵ
· (

S∑
s=1

∥Ks∥
σ+
min(Ks)

)).

Both N1 and N2 depend linearly in r. However, when {Ks}s∈[S] are orthogonal, as discussed in

Section 2.3, σ+
min(K) ≤ σ+

min(Ks) for all s, and so in terms of the rounds of communication N , it
appears that orthogonality allows a more refined (i.e. s-dependent) control over the decomposition
of the function variation and thus the dual domain size, thereby achieving better convergence.
In addition, similar to the argument in Section 3.5.1, when the cost of updating ys is cs and
total cost is additive, one should choose rs ∝

√
cs/∥Ks∥ when Corollary 3.2 holds, and rs ∝√

cs/(∥Ks∥/σ+
min(Ks)) if Corollary 3.3 holds. Similar results hold for Π( 1

N+1

∑N
k=0 X̂

k) to be an

(ϵ, 0)-solution.
Bounds using the function similarity. In reality, sometimes the functions {fv}v∈V exhibit

similarity. For instance, in the extreme case fv = fv′ for all v, v
′ ∈ V , and thus communication is

not needed at all! In that case, the bound on sup
X̃∈X , KX̃=0

∥(I − Π)∇F (X̃)∥ (and other terms

using Πs) using the Lipschitz constant Mf is too loose: in fact, one can choose â1 = as = ϵ0 for all
s for arbitrarily small ϵ0 > 0, then when Rs are set according to (13) or (6) with constant ξ, one
only needs N = O( ϵ0ϵ

∑S
s=1 rs), which can be arbitrarily small.

More generally, choosing ξ = 1 and setting Rs according to (13) or (6), we obtain the following
bound on the rounds of communication following Corollary 3.2 (N3) and 3.3 (N4)

N3 = O(
r
√
DX

ϵ
·
∑S

s=1 ∥Ks∥
σ+
min(K)

· â1), N4 = O(
r ·
√
DX

ϵ
· (

S∑
s=1

as∥Ks∥
σ+
min(Ks)

)).

Importantly, the number of rounds needed now depends on the function similarity instead of
crude quantities such as Lipschitz constants.

In fact, when S = 1, such dependency is optimal. Indeed, [3] designs a pair of “chain like”
functions {F1, F2}, such that for any γ ≥ 0, {γF1, γF2} is

√
1.5γ-similar. In addition, when

m/2 agents are given γF1 and the rest are give γF2, finding an ϵ suboptimal x (in terms of the
objective value) in the l2 unit ball requires Ω( γ

ϵ/m) rounds of communication (see Theorem 2 and

the discussions after it in [3]). For our algorithm, with â1 = O(
√
mγ), Dx = 1/2, and K = I − Π

(and so ∥K∥ = σ+
min(K)), we have N3 = O( r1γ

ϵ/m). Thus, y1 is updated only N3/r1 = O( γ
ϵ/m) times,

which is also the number of actual communication rounds needed. This achieves the theoretical
lower bound, and so is optimal.

However, to achieve the above function-variation-dependent bounds, the parameters â1 and
{as}s∈[S] need to be set correctly. It is an interesting open question how one can achieve such
dependence without additional prior knowledge (such as function similarity) about {fv}v∈V .

The hierarchical setting and function similarity at different scales. In addition, we
provide results when function variations could be different along the span of Ks for different s ∈
[S]. As an example, consider the hierarchical setting discussed in Section 2.2, with the additional
assumption that for each non-leaf layer of the tree, all dual variables in that layer have the same
number of child nodes. Then it can be shown that ∥Ks∥ = σ+

min(Ks) =
√
|Chi(s)|/|Des(s)| (by (24)
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in the proof of Lemma 2.1), so the above bound N4 can be simplified as

N ′
4 = O(

r · (
∑S

s=1 as) ·
√
DX

ϵ
), ρs ∝ as

√
|Des(s)|.

As discussed in Section 2.3.2, as measures the function variation along the span of Ks, i.e. variation
in {fv}v∈Des(s) not taken care of by Agent(ys′) in the subtree rooted at Agent(ys). In addition, (11)

shows that a2s = |Des(s)| · supx∈X Vari∼µs(f
′
i(x)), and so ρs ∝ |Des(s)| ·

√
supx∈X Vari∼µs(f

′
i(x)).

Thus, from the cost-minimization perspective in Section 3.5.1, denoting the cost of updating ys

as cs, one should choose rs ∝
√

cs/|Des(s)|√
supx∈X Vari∼µs (f

′
i(x))

. This corroborates the intuition that if along

some Ks the function does not vary by too much (Vari∼µs(f
′
i) is small), then Agent(ys) does not

need to update ys very frequently (can use larger rs).

4 Accelerated convergence under strong convexity

The convergence result in Section 3.3 can be applied to objectives {fv}v∈V where µ = 0. In
case strong convexity holds, i.e. µ > 0, Algorithm 1 can achieve the accelerated convergence rate
O(1/N2). We defer the proof of Lemma 4.1 to Appendix D.

Lemma 4.1. Under Assumption 2.4, further assume that Dwx(x, x′) ≤ C
2 ∥x−x

′∥2 for all x, x′ ∈ X
for some 1 ≤ C < ∞, and µ > 0. Let {ρs}s∈[S] be a distribution over [S], r =

∑S
s=1 rsρs and

similarly define r2 and r3.
With αs,is = 1, θk = k + 2r2/r, ηk = µ

2rC (k + r2/r), ηk,s = ηkρs, τs,is(
∑rsis+rs−1

k′=rsis
θk′) = τs =

κ̃2
s

ρs
· 4rsr2Cµ , Tk/N = T/N ≥ max( 5√

D1
, 64rD1

) where D1 = µ2(r2/r)2

2M2C2 D0, assume that the CS procedure

at iteration k is run with λt = t and βk
t = (t+1)µ

2ηkC
+ t−1

2 for t = 1, . . . , Tk, then for any Z ∈ Z

Q(ZN ;Z) ≤ 2

N(N + 1)

{
µ(r3/r + 5(r2/r)2)

2C
DwX (X,Xinit)

+
mµ(r2/r)2

C
D0 +

4rC

µ

S∑
s=1

κ̃2srs
ρs

Dwy
s
(ys, y

init
s )

}
.

As a direct consequence, we have the following theorem.

Theorem 4.1. For X̂ ∈ X , assume that the following are finite:

DwX (X̂,Xinit) ≤ DX <∞, sup
ys∈dom(R∗

s)
Dwy

s
(ys, y

init
s ) ≤ Dy

s <∞.

Under the conditions in Lemma 4.1, taking ρs =
κ̃s

√
Dy

s∑S
s′=1 κ̃s′

√
Dy

s′
and D0 = DX/m,

sup
Y ′∈Rn

Q(ZN ; X̂, Y ′) ≤ 2

N(N + 1)

{
µ(r3/r + 7(r2/r)2)

2C
DX +

4C(r)2

µ
(

S∑
s′=1

κ̃s′
√
Dy

s′)
2

}
.

Notice that (1) implies that ∥x−x′∥ ≤ M
µ for all x, x′ ∈ X . Thus, one can take DX = O(mCM2

µ2 ).

The resulting upper bound, when r3 = O((r)3) and r2 = O((r)2), becomes

sup
Y ′∈Rn

Q(ZN ; X̂, Y ′) = O(
r2

µN2

{
mM2 + C(

S∑
s′=1

κ̃s′
√
Dy

s′)
2

}
).
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4.1 Good initialization for (P)

In Theorem 4.1, assuming that X is compact, then one can always useDX ≥ supX∈X DwX (X,Xinit),

suggesting that Xinit should be chosen as the “center” of X , and DX measures the (squared) radius
of X . The resulting N , then, depends on DX . However, such dependence on the size of X could
be suboptimal, especially when local objectives are similar. Indeed, in the extreme case where
all local functions are the same, then primal agents can optimize their local objectives without
communication at all.

To take advantage of potential similarities in the local functions, we propose initializing the
primal variables at (approximate) local optimal solutions, which has the following guarantee on
DwX (X∗, Xinit).

Lemma 4.2. Assume that all norms are the l2 norm, and for some ϵ0 ≥ 0, X̂ = (x̂v)v∈V ∈ X
satisfies the following condition

F (X̂) ≤ min
X∈X

F (X) + ϵ0.

Assume that (1) holds for some µ > 0 and Assumption 2.1 holds, and {fv}v∈V is {(as,Ks)}s∈[S]-
similar, then

∥X̂ −X∗∥ ≤
(
∑S

s=1 a
2
s)

1/2

µ
+

√∑S
s=1 a

2
s

µ2
+

2ϵ0
µ

.

Proof of Lemma 4.2. By the suboptimality condition for X̂ and (1), we get

µ

2
∥X̂ −X∗∥2 ≤ F (X̂)− F (X∗)− ⟨∇F (X∗), X̂ −X∗⟩ ≤ −⟨∇F (X∗), X̂ −X∗⟩+ ϵ0.

Notice that by the first-order optimality condition of X∗, we get

⟨∇F (X∗),Π(X̂ −X∗)⟩ ≥ 0.

Combining the above two results, we get

µ

2
∥X̂ −X∗∥2 ≤ −⟨∇F (X∗), (I −Π)(X̂ −X∗)⟩+ ϵ0

= −
S∑

s=1

⟨Πs∇F (X∗),Πs(X̂ −X∗)⟩+ ϵ0

≤
S∑

s=1

∥Πs∇F (X∗)∥∗ · ∥Πs(X̂ −X∗)∥+ ϵ0

≤ (

S∑
s=1

∥Πs∇F (X∗)∥2∗)1/2 · (
S∑

s=1

∥Πs(X̂ −X∗)∥2)1/2 + ϵ0

≤ (

S∑
s=1

a2s)
1/2 · ∥X̂ −X∗∥+ ϵ0,

where the last ≤ is because of the assumption that {fv}v∈V are {(as,Ks)}s∈[S]-similar, and all

norms are l2 norm. The above inequality is quadratic in ∥X̂ −X∗∥, and the result follows.

The above Lemma 4.2 shows that if {x̂v}v∈V are all approximately optimal to local objectives,

then DwX (X∗, X̂) ∼
∑S

s=1 a
2
s

µ2 . To find such initialization, one can apply the CS procedure.
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Corollary 4.1. Assume that all norms are l2 norms and wx(x) = 1
2∥x∥

2, that (1) holds with some
µ > 0, and that Assumption 2.1 holds. For each v ∈ V , assume that Agent(xv) is given some
x0v ∈ X such that supx∈X Dwx(x, x0v) ≤ Dx <∞

( , xinitv ) = CS(fv,X , Dwx , T , η,0, x0v, x
0
v),

where the CS procedure uses λt, βt according to Corollary 3.1 (for µ > 0), then with ϵ0 = ã2/µ,

T ≥ 8CM2m
ϵ0µ

and η = ϵ0/2
mDx

DwX (X∗, Xinit) ≤ 4ã2

µ2
,

where ã = â1 if {fv}v∈V is â1-similar for some â1 > 0, and ã = (
∑S

s=1 a
2
s)

1/2 if {fv}v∈V is

{(as,Ks)}s∈[S]-similar such that (
∑S

s=1 a
2
s)

1/2 > 0.

4.2 Complexities for (P) and discussions

Recall that with wy
s = 1

2∥ys∥
2
2 and y0s = 0, we can take

√
2Dy

s as ξ+as
σ+
min(Ks)

for Rccv
s in (5), as (1+ξ)as

σ+
min(Ks)

for Rprj
s in (6), as ξ+â1

σ+
min(K)

for R̂ccv
s in (12), and as (1+ξ)â1

σ+
min(K)

for R̂prj
s in (13). Now, combining Theorem

4.1, Corollary 4.1, Lemma 2.3, and Corollary 2.1, we get the following results.

Corollary 4.2. Assume that all norms are the l2 norm, and take y0s = 0, wy
s (ys) = 1

2∥ys∥
2 and

wx(x) = 1
2∥x∥

2. Assume that Assumptions 2.1, 2.2 and 2.3 and the conditions of Theorem 4.1

and Corollary 4.1 hold, and {fv}v∈V is â1-similar for some â1 > 0, and take ρs = ∥Ks∥∑S
s′=1 ∥Ks′∥

. In

addition, assume that Xinit is initialized according to Corollary 4.1, then we have

sup
Y ′∈Rn

Q(ZN ;X∗, Y ′) ≤ 4(r)2

µN2

{
(r3/(r)3 + 7(r2/(r)2)2) · â21 +A2

0

}
,

and so for

N ≥ 2rA
√
µϵ

, A =

√
r3/(r)3 + 7(r2/(r)2)2 · â1 +A0,

1.
∑N

k=0 θkX̂
k∑N

k=0 θk
is an (ϵ, ϵ/ξ)-solution if Rs = R̂ccv

s as defined in (12) and A0 =
(
∑S

s=1 ∥Ks∥)
σ+
min(K)

·(ξ+â1);

2. Π(
∑N

k=0 θkX̂
k∑N

k=0 θk
) is an (ϵ(1 + 1/ξ), 0)-solution if Rs = R̂prj

s as defined in (13) and A0 =

(1+ξ)(
∑S

s=1 ∥Ks∥)·â1
σ+
min(K)

.

Corollary 4.3. Assume that all norms are the l2 norm, and take y0s = 0, wy
s (ys) = 1

2∥ys∥
2 and

wx(x) = 1
2∥x∥

2. Assume that KsK
∗
s′ = 0 for all s, s′ ∈ [S], that Assumptions 2.1, 2.2 and 2.3 and

the conditions of Theorem 4.1 and Corollary 4.1 hold, and that {fv}v∈V is {(as,Ks)}s∈[S]-similar
where as > 0 for all s. In addition, assume that Xinit is initialized according to Corollary 4.1, then
we have

sup
Y ′∈Rn

Q(ZN ;X∗, Y ′) ≤ 4(r)2

µN2

{
(r3/(r)3 + 7(r2/(r)2)2) · (

S∑
s=1

a2s) +A2
0

}
,

and so for

N ≥ 2rA
√
µϵ

, A =

√
r3/(r)3 + 7(r2/(r)2)2 · (

S∑
s=1

a2s)
1/2 +A0,
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1.
∑N

k=0 θkX̂
k∑N

k=0 θk
is an (ϵ, ϵ/ξ)-solution if Rs = Rccv

s as defined in (5), ρs = ( ξ+as
σ+
min(Ks)

)/(
∑S

s′=1
ξ+as′

σ+
min(Ks′ )

+
),

and A0 =
∑S

s=1(ξ + as) · ∥Ks∥
σ+
min(Ks)

;

2. Π(
∑N

k=0 θkX̂
k∑N

k=0 θk
) is an (ϵ(1+1/ξ), 0)-solution if Rs = Rprj

s satisfies (6), ρs = ( as
σ+
min(Ks)

)/(
∑S

s′=1
as′

σ+
min(Ks′ )

+
),

and A0 = (1 + ξ)(
∑S

s=1 as ·
∥Ks∥

σ+
min(Ks)

).

Subgradient oracle complexities. With the initialization in Corollary 4.1 and C = 1, the
number of subgradient steps needed to find Xinit is T ≥ 8mM2

ã2
, constant in ϵ.

In addition, in Theorem 4.1, we can take D0 = 4ã2

µ2 , and so D1 = 2ã2(r2/r)2

M2 . Thus, the require-

ment on T becomes T/N ≥ max( 5√
D1

, 64rD1
), i.e. T/N = Ω(max(M/ã

r2/r
, (M/ã

r2/r
)2 · r)), and so the total

subgradient steps needed (for each agent) is

N2 ·O(max(
M/ã

r2/r
, (
M/ã

r2/r
)2 · r)) = O(

r2A2

µϵ
·max(

M/ã

r2/r
, (
M/ã

r2/r
)2 · r))

In the special case where S = 1 and ∥K∥ = O(σ+
min(K)), we have ã = Ω(A). Further assuming that

A = O(
√
mM) (which holds when ∥f ′

v∥ ≤Mf for all v and M = 2Mf ), the above can be simplified

as r
√
mM2

µϵ .
Communication rounds complexities. For both Corollaries 4.2 and 4.3, the communication

rounds needed is N = O( rA√
µϵ), where A depends on function similarities and higher moments

of {rs}s∈[S]. In terms of N and T ’s dependency on ϵ, µ, O(1/
√
µϵ) communication rounds and

O(1/(µϵ)) gradient steps are needed.
Now, consider the special case where r2 = O((r)2) and r3 = O((r)3), i.e. rs has small variation,

then

√
r3/(r)3 + 7(r2/(r)2)2 = O(1), and so A = O(ã + A0), then ξ = 1 with R̂prj

s and Rprj
s give

the following N1 and N2 respectively

N1 = O

(
râ1√
ϵµ
·
∑S

s=1 ∥Ks∥
σ+
min(K)

)
, N2 = O

(
r
√
ϵµ
·

(
S∑

s=1

as ·
∥Ks∥

σ+
min(Ks)

))
,

both have linear dependence on r and function similarities. (For N2, we use (
∑S

s=1 a
2
s)

1/2 ≤
∑S

s=1 as
and ∥Ks∥ ≥ σ+

min(Ks).)

Comparison with communication lower bounds. When S = 1 (and so r2 = (r)2),
K = I − Π (and so ∥K∥ = σ+

min(K)), with wx(x) = 1
2∥x∥

2 and wy
s (ys) = 1

2∥ys∥
2, assuming that

∥f ′
v∥ ≤ Mf (and take M = 2Mf ), a

2
1 ≤ mγ2 for some γ ≤ Mf , we have N = O( r·

√
mγ√
ϵµ ). Since

communication is only needed when Agent(y1) updates, the total number of communication rounds

is N/rs = O(
√
mγ√
ϵµ ), which achieves the theoretical lower bound (Theorem 2 and discussion after in

[3]) on the communication round complexity for µ-strongly convex,
√
mγ-similar functions, and so

is optimal5.

5[3] constructs a pair of “chain like” functions {γF1, γF2} which are Θ(γ)-similar and µ-strongly convex. In
addition, when m/2 agents are given γF1 and the rest are given γF2 (and so this set of m functions is Θ(

√
mγ)-

similar), the number of rounds of communication needed is Ω(γ
√

1
µϵ/m

).
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5 Numerical experiments: support vector machine

We consider the Support Vector Machine (SVM) problem with hinge loss and additional regular-
ization. More precisely, each primal Agent(xv) is given ms pairs {(blv, ylv)}l∈[ms] such that blv ∈ Rd

is a feature vector satisfying ∥blv∥ = 1, and ylv ∈ {±1} is the label. The goal of SVM is to find a
weight vector x ∈ Rd such that the linear classifier b → sign(⟨b, x⟩) agrees with most pairs (blv, y

l
v)

in the dataset. To achieve this, one common approach is to solve the following (regularized) hinge
loss minimization problem (in a distributed fashion)[24, 15]:

min
x∈X

∑
v∈V

fv(x), fv(x) =
1

ms

ms∑
l=1

[1− ylv⟨blv, x⟩]+ +
µ

2
∥x∥2, v ∈ V, (23)

where we take d = 50, X = {x ∈ Rd|∥x∥ ≤ 5}, and [c]+ = max(0, c) for all c ∈ R. When µ = 0,
(23) is the classical hinge loss minimization problem, and when µ > 0, the local objectives are
µ-strongly convex.

Setup. We take wx(x) = 1
2∥x∥

2 and wy
s (ys) =

1
2∥ys∥

2, and

f ′
v(x) = −

1

ms

ms∑
l=1

ylvb
l
v · 1[1 > ylv⟨blv, x⟩] + µx.

Since ∥blv∥ ≤ 1 and ∥x∥ ≤ 5 (since x ∈ X ), we have ∥f ′
v∥ ≤ 1+5µ and so we can take M = 2(1+5µ).

Below, we look at the suboptimality of F (ΠXk) where Xk :=
∑k

k′=0 θk′X̂
k′∑k

k′=0 θk′
. In Section 5.1, we

focus on how F (ΠXk) depends on the iteration k and the mean updating rates r. In Section 5.2,
we focus on how F (ΠXk) depends on the iteration k and function similarities A.

5.1 Suboptimality and k, r

In this experiment, we investigate the suboptimality of F (ΠXk) as a function of the iteration
number k and the mean updating rates for the dual r.

Data simulation. We first sample x∗ ∈ Rd on the unit sphere uniformly at random as the
“true solution”. For each agent Agent(xv), we generate the feature vectors b

l
v i.i.d. uniformly on the

unit sphere and take ylv = sign(⟨blv, x∗⟩) w.p. 1−p, and ylv = −sign(⟨blv, x∗⟩) otherwise, independent
of {blv}v∈V,l∈[ms]. We take ms = 50 and p = 0.05.

Communication setup. We consider the hierarchical setup, with 3 layers of dual agents and
1 layer of primal agents, where each non-leaf node has 5 child nodes. Thus, there are m = 125
primal agents and S = 31 dual agents, and |Chi(s)| = 5 for each non-leaf node. We assume that
the dual agents at layer i are updated with rate ri for i = 1, 2, 3, and test with various (r1, r2, r3)

Algorithm setup. Notice that the µx part in f ′
v is common to all v so we can take as =

2
√
|Des(s)| for all s. We use Rprj

s as defined in (6) with ξ = 1, and set xinitv = 0 and yinits = 0.
We test MT-GS for N + 1 = 3000 and µ = 0. All parameters are set according to Theorem 3.1.
We test AMT-GS for N + 1 = 500 and µ = 0.01. We set T = N + 16 and set all other parameters
according to Theorem 4.1.

Results: F (ΠXk) and k. In Figures 2(a) and 3(a), we present F (ΠXk) as a function of k for
MT-GS and AMT-GS respectively. Different lines correspond to different (r1, r2, r3, r), with the
line colors indicating r. As can be seen, for both MT-GS and AMT-GS, all settings of (r1, r2, r3, r)
converge or show trend of convergence, and the convergence is faster for smaller r. In addition,

6According to Lemma 4.1, T should be linear in N , and in this experiment, we set it as N + 1 for simplicity.
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comparing Figures 2(a) and 3(a), we see that strong convexity (with AMT-GS) indeed accelerates
the convergence.

Results: F (ΠXk) and r. In Figure 2(b), we present F (ΠXk) as a function of r, taken
at k = 400, 800, . . . , 2800 for MT-GS. In Figure 3(b), we present F (ΠXk) as a function of r2,
taken at k = 60, 120, . . . , 480 for AMT-GS. In both figures, the line colors indicate k. As can be
seen, as k increases, the suboptimaltiy of F (ΠXk) is approximately linear in r for MT-GS and is
approximately linear in r2 for AMT-GS, agreeing with our Theorem 3.1 and 4.1.
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Figure 2: MT-GS (µ = 0), dependence of F (ΠXk) on the iteration number k and the mean updating
rate r.
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Figure 3: AMT-GS (µ = 0.01), dependence of F (ΠXk) on the iteration number k and the mean
updating rate r.

5.2 Suboptimality and k,A

In this experiment, there is only one dual agent (thus A = Θ(a1)) who updates at rate r1 = 1. We
focus on (normalized) F (ΠXk) as a function of k and function similarities a1.

Dataset induced function similarities. In this experiment, similarities between {f ′
v}v∈V

are inherited from similarities in the local datasets. More precisely, we generate a global dataset
{(blglobal, ylglobal)}l∈[mglobal] consisting of mglobal pairs of data. In addition, for each agent, we
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generate mlocal pairs of private data {(bllocal,v, yllocal,v)}l∈[mlocal]. Thus, Agent(xv) has access to

{(blglobal, ylglobal)}l∈[mglobal]∪{(b
l
local,v, y

l
local,v)}l∈[mlocal], a total of ms = mglobal+mlocal pairs of data.

Data simulation. We simulate the x∗ and all pairs of data the same as in Section 5.1, with
ms = 50, mlocal = ⌊γms⌋ and mglobal = ms−mlocal, for γ = 0.1, 0.2, . . . , 0.9. We assume that there
are m = 500 primal agents. Due to the global dataset, we have ∥f ′

v−f ′
v′∥ ≤

mlocal
ms

for any v, v′ ∈ V ,
and so we can take a1 = 2γ

√
m.

Algorithm setup. We consider two setups.

1. Type-0 setup. We use Rs = Rprj
s as defined in (6) with ξ = 1, and yinits = 0. We set the

parameter T = N + 17 and all other parameters are set according to Theorems 3.1 and 4.1.
For the initialization, for MT-GS, we use xinitv = 0 and for AMT-GS, we use x0v = 0 and
construct xinitv according to Corollary 4.1.

2. Type-1 setup. In addition to the above γ-aware setup, we also test our algorithms for Rs =
100Rprj

s , a1 = 2
√
m, and xinitv = 0, which we denote as type-1 setup. Compared to type-0,

type-1 has larger dual domain size and ignores the function similarities, making it a closer
approximation to the DCS algorithms in [24].

For both types of setups, we test MT-GS for N +1 = 500 and µ = 0 and AMT-GS for N +1 = 200
and µ = 0.01. Since the datasets are different for different γ, below, for each γ, we normalize
F (ΠXk) such that F (0) = m = 500 is normalized to 1, and the minimum (over k and two types)
of F (ΠXk) is normalized to 0.

Results: normalized F (ΠXk) and k. In Figures 4(a) and 5(a), we present the normalized
F (ΠXk) as a function of k for MT-GS and AMT-GS respectively. Different lines correspond to
different types of setup and different γ, with the line colors indicating γ. As can be seen, our
MT-GS and AMT-GS converge in all the tested settings, and strong convexity (with AMT-GS)
accelerates the convergence.

Moreover, from Figure 4(a), solid curves are always below dotted curves of the same γ (color),
indicating that type-0 setups converge faster than type-1 setups. In addition, solid curves corre-
sponding to smaller γ (functions are more similar) are dominated by curves corresponding to larger
ones, while dotted curves converge at roughly the same rates. These suggest that type-0 setups,
with the γ-aware domain sizes and parameters, indeed take advantage of the function similarities
to speed up the convergence.

Results: normalized F (ΠXk) and γ. In Figure 4(b), we present normalized F (ΠXk) as a
function of γ, taken at k = 100, 200, 300, 400 for MT-GS. The line colors indicate k. As can be seen,
the normalized F (ΠXk) is approximately linear in γ for MT-GS, which agrees with our Theorem
3.1.

In Figure 5(b), we present normalized F (ΠXk) as a function of γ2, taken at k = 10, 15, 20, 25, 30, 40, 80, 120, 160
for AMT-GS. The line colors indicate k. It appears that the normalized F (ΠXk) is increasing in γ2

for most γ (the dip when γ2 = 0.36 could be due to the randomness in the simulated dataset). This
confirms that our AMT-GS can take advantage of function similarities. However, the normalized
F (ΠXk) does not appear to be linear in γ2: for small γ2, it does not converge to 0, which could
be because setting T = N + 1 (smaller than suggested) introduces additional suboptimality; in
addition, it is possible that the normalization process introduces extra γ-dependent factors.

7According to Theorems 3.1 and 4.1, T should be linear in N , and we set T = N + 1 for simplicity.
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Figure 4: MT-GS (µ = 0), dependence of normalized F (ΠXk) on the iteration number k and
function similarities γ.
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Figure 5: AMT-GS (µ = 0.01), dependence of normalized F (ΠXk) on the iteration number k and
function similarities γ.

6 Conclusion and future directions

In this work, we propose the (accelerated) multi-timescale gradient sliding algorithm for distributed
optimization with general convex, non-smooth objectives. Our MT-GS and AMT-GS are determin-
istic, can take advantage of potential similarities between local objectives, and allow user-picked
updating frequencies for different dual blocks. To make the algorithms more practical, one direction
of future work is to develop (if possible) adaptive algorithms which, without prior knowledge of
function similarities {as}s∈[S], still maintain communication round complexities which have opti-
mal dependency on {as}s∈[S]. Another direction of future work is to develop more space-efficient

algorithms: currently each primal agents need to store O(rmax) vectors in Rd, which are used as
mixtures of proximal centers and when calculating messages to dual agents. It is an interesting
question whether one can achieve similar convergence guarantees with smaller memory requirement.
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A Proof for Section 2

Proof of Lemma 2.1. For d = 1, the matrix representation of Ks ∈ R|Chi(s)|×m is Ks = (I −
1( |Des(j)|

|Des(s)|)
T
j∈Chi(s))Ps where Ps ∈ R|Chi(s)|×m, and Ps(i, j) = |Des(i)|−1 if j ∈ Des(i) and Ps(i, j) = 0

otherwise. Notice that

KsK
∗
s′ = (I − 1(

|Des(j)|
|Des(s)|

)Tj∈Chi(s))PsP
T
s′ (I − 1(

|Des(j)|
|Des(s′)|

)Tj∈Chi(s′))
T .

If s is not in the subtree rooted at s′ and s′ is not in the subtree rooted at s, then Des(s)∩Des(s′) = ∅,
and so PsP

T
s′ = 0. If s is in the subtree rooted at s′, then s is in the subtree rooted at some

ŝ ∈ Chi(s′). In particular, (PsP
T
s′ )(i, j) = 0 for all j ̸= ŝ and (PsP

T
s′ )(i, ŝ) = |Des(ŝ)|−1, and thus

(I − 1( |Des(j)|
|Des(s)|)

T
j∈Chi(s))PsP

T
s′ = 0. Similarly for the case when s′ is in the subtree rooted at s. The

case when d > 1 follows by applying the above argument coordinate-wise.
For the second claim, consider the case d = 1, denoting

D = diag((|Des(j)|)j∈Chi(s)), v = (|Des(j)|)j∈Chi(s)/∥(|Des(j)|)j∈Chi(s)∥2,

where the norm in the denominator in the definition of v is the l2 norm. Then when d = 1, we have
(applying Theorem 6 in [26])

KsK
∗
s = D−1 − 1

|Des(s)|
11T , (KsK

∗
s )

† = D − vvTD −DvvT + (vTDv)vvT . (24)

Thus, noticing that vTKs = 0, we have

Πs = K∗
s (KsK

∗
s )

†Ks = KT
s DKs.

Thus, for any X̃, X̂ ∈ Rm

⟨X̂,ΠsX̃⟩ = ⟨ΠsX̂,ΠsX̃⟩ = (KsX̂)TD(KsX̃) =
∑

i∈Chi(s)

|Des(i)| · ⟨(KsX̂)i, (KsX̃)i⟩.

The above argument can be applied coordinate-wise, and so extend to d ≥ 1.

B Proofs for Section 3.2

Lemma B.1 (generalized lemma 5 in [24]). Let the convex function q : U → R, and I an arbitrary
finite index set. Assume that the points xi ∈ U and the numbers ηi ≥ 0 for i ∈ I. Let w : U → R
be a distance generating function and

u∗ ∈ argmin
u∈U

q(u) +
∑
i∈I

ηiDw(u, xi).

Then for any u ∈ U , we have

q(u∗) +
∑
i∈I

ηiDw(u
∗, xi) ≤ q(u) +

∑
i∈I

ηiDw(u, xi)−
∑
i∈I

ηiDw(u, u
∗).
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Proof of Lemma B.1. First, by the optimality condition for u∗, there exists q′(u∗) ∈ ∂q(u∗) such
that

⟨q′(u∗) +
∑
i∈I

ηi∇Dw(u
∗, xi), u− u∗⟩ ≥ 0, ∀u ∈ U.

By definition, we have for each i ∈ I that

Dw(u, xi)−Dw(u
∗, xi)−Dw(u, u

∗) = ⟨∇w(xi)−∇w(u∗), u− u∗⟩ = −⟨∇Dw(u
∗, xi), u− u∗⟩

Thus, we have for any u ∈ U ,

q(u) +
∑
i∈I

ηiDw(u, xi)

≥ q(u∗) + ⟨q′(u∗), u− u∗⟩+
∑
i∈I

ηi (Dw(u
∗, xi) +Dw(u, u

∗)− ⟨∇Dw(u
∗, xi), u− u∗⟩)

≥ q(u∗) +
∑
i∈I

ηiDw(u
∗, xi) +

∑
i∈I

ηiDw(u, u
∗).

Lemma B.2. Assume that U ⊂ Rd0 is a convex set, and ϕ : U → R is a convex function such that

µ

2
∥x− y∥2 ≤ ϕ(x)− ϕ(y)− ⟨ϕ′(y), x− y⟩ ≤M∥x− y∥, ∀x, y ∈ U,

where ϕ′ : U → Rd0 is a subgradient oracle, i.e. for each y ∈ U , ϕ′(y) ∈ ∂ϕ(y) is a subgradient. In
addition, Dwx(x, x′) ≤ C

2 ∥x − x′∥2 for some C ∈ [0,∞]. If {βt} and {λt} in Algorithm 2 satisfies
that

λt+1(ηβt+1 − µ/C) ≤ λt(1 + βt)η, ∀t ≥ 1,

then for t ≥ 1 and u ∈ U

(

T∑
t=1

λt) · (Φ(ûT )− Φ(u)) ≤ (ηβ1 − µ/C)λ1Dw(u, u
0)− η(1 + βT )λTDw(u, u

T ) +

T∑
t=1

M2λt

2ηβt
.

Proof of Lemma B.2. Applying Lemma B.1, and using
∑

i∈I ηi = η, we have

⟨v + ϕ′(ut−1), ut − u⟩+
∑
i∈I

ηiDw(u
t, xi)−

∑
i∈I

ηiDw(u, xi)

≤ ηβtDw(u, u
t−1)− ηβtDw(u

t, ut−1)− (1 + βt)ηDw(u, u
t)

The rest follows a similar argument as in the proof of Proposition 2 [24].

C Proofs for Section 3.3

Proof of Lemma 3.1. For convenience, denote ηk =
∑S

s=1 ηk,s and r =
∑S

s=1 rsρs.
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Primal update properties. By Corollary 3.1, for any v ∈ V and xv ∈ X

⟨
S∑

s=1

K∗
s,vy

k
s , x̂

k
v − xv⟩+ fv(x̂

k
v)− fv(xv)

≤ 2ηk
Tk(Tk + 3)

Dwx(xv, x
k−1
v ) +

S∑
s=1

ηk,sDwx(xv, x
k−rs
v )

− (Tk + 1)(Tk + 2)

Tk(Tk + 3)
ηkDwx(xv, x

k
v)−

S∑
s=1

ηk,sDwx(x̂kv , x
k−rs
v ) +

4M2

ηk(Tk + 3)
.

Summing over k, and defining ηk,s = 0 for all k < 0 and k ≥ N + 1, we have

N∑
k=0

⟨
S∑

s=1

K∗
s,vy

k
s , x̂

k
v − xv⟩+ fv(x̂

k
v)− fv(xv)

≤
N∑

k=0−max{rs}

(
2ηk+1

Tk+1(Tk+1 + 3)
+

S∑
s=1

ηk+rs,s

)
Dwx(xv, x

k
v)

−
N∑
k=0

(Tk + 1)(Tk + 2)

Tk(Tk + 3)
ηkDwx(xv, x

k
v)

−
N∑
k=0

S∑
s=1

ηk,sDwx(x̂kv , x
k−rs
v ) +

N∑
k=0

4M2

ηk(Tk + 3)
.

Recall that xkv = xinitv for all k < 0, and so with Tk = T for all k and ηk,s = ηρs for k = 0, 1, . . . , N ,

−1∑
k=0−max{rs}

(
2ηk+1

T (T + 3)
+

S∑
s=1

ηk+rs,s

)
≤ η(

2

T (T + 3)
+

S∑
s=1

rsρs) = η(
2

T (T + 3)
+ r).

For k = 0, 1, . . . , N − 1

2ηk+1

Tk+1(Tk+1 + 3)
+

S∑
s=1

ηk+rs,s ≤ η(
2

T (T + 3)
+

S∑
s=1

ρs) =
η · (T + 1)(T + 2)

T (T + 3)
.

Thus we have

N∑
k=0

⟨
S∑

s=1

K∗
s,vy

k
s , x̂

k
v − xv⟩+ fv(x̂

k
v)− fv(xv)

≤ η(
2

T (T + 3)
+ r)Dwx(xv, x

init
v )− (T + 1)(T + 2)

T (T + 3)
ηDwx(xv, x

N
v )

− η
N∑
k=0

S∑
s=1

ρsDwx(x̂kv , x
k−rs
v ) +

4M2(N + 1)

η(T + 3)
(25)

Dual update properties. In addition, by the updating rule for the dual, we have by Propo-
sition 2 in [24] for any ys ∈ Rns ,

⟨− 1

rs

∑
v∈V

Ks,vx̃
is
s,v, y

is
s − ys⟩+R∗

s(y
is
s )−R∗

s(ys)

≤ τs,is
(
Dwy

s
(ys, y

is−1
s )−Dwy

s
(ys, y

is
s )−Dwy

s
(yiss , y

is−1
s )

)
.
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Thus, with τs,is = τs for all is, summing over the above, we get

Ns−1∑
is=0

⟨− 1

rs

∑
v∈V

Ks,vx̃
is
s,v, y

is
s − ys⟩+R∗

s(y
is
s )−R∗

s(ys)

≤ τs
(
Dwy

s
(ys, y

init
s )−Dwy

s
(ys, y

Ns−1
s )

)
− τs ·

Ns−1∑
is=0

Dwy
s
(yiss , y

is−1
s ). (26)

Gap properties. Notice that for each s ∈ [S] and v ∈ V , we have

N∑
k=0

{
⟨x̂kv ,K∗

s,vys⟩ − ⟨xv,K∗
s,vy

k
s⟩
}

=

Ns−1∑
is=0

{
rs−1∑
i=0

⟨x̂rsis+i
v ,K∗

s,vys⟩ − rs⟨xv,K∗
s,vy

is
s ⟩

}

=

Ns−1∑
is=0

⟨
rs−1∑
i=0

x̂rsis+i
v − x̃iss,v,K

∗
s,v(ys − yiss )⟩+

N∑
k=0

⟨x̂kv − xv,K
∗
s,vy

k
s⟩+

Ns−1∑
is=0

⟨Ks,vx̃
is
s,v, ys − yiss ⟩. (27)

Recall that for is = 0, 1, . . . , Ns − 1,

x̃iss,v = α(

rsis−1∑
k′=rsis−rs

x̂k
′

v −
rsis−rs−1∑
k′=rsis−2rs

xk
′

v ) +

rsis−1∑
k′=rsis−rs

xk
′

v .

We first bound the first term in (27). Notice that for is = 0, 1, . . . , Ns − 1, we have

⟨
rs−1∑
i=0

x̂rsis+i
v − x̃iss,v,K

∗
s,v(ys − yiss )⟩

= ⟨
rs−1∑
i=0

(x̂rsis+i
v − xrs(is−1)+i

v )− α

rs−1∑
i=0

(x̂rs(is−1)+i
v − xrs(is−2)+i

v ),K∗
s,v(ys − yiss )⟩

= ⟨
rs−1∑
i=0

(x̂rsis+i
v − xrs(is−1)+i

v ),K∗
s,v(ys − yiss )⟩

− α⟨
rs−1∑
i=0

(x̂rs(is−1)+i
v − xrs(is−2)+i

v ),K∗
s,v(ys − yis−1

s )⟩

+ α⟨
rs−1∑
i=0

(x̂rs(is−1)+i
v − xrs(is−2)+i

v ),K∗
s,v(y

is
s − yis−1

s )⟩.

Thus, with α = 1, and recall that for is = 0, i = 0, . . . , rs − 1, x̂
rs(is−1)+i
v − x

rs(is−2)+i
v =
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xinitv − xinitv = 0, we have

∑
v∈V

Ns−1∑
is=0

⟨
rs−1∑
i=0

x̂rsis+i
v − x̃iss,v,K

∗
s,v(ys − yiss )⟩

= ⟨
rs−1∑
i=0

(X̂N−rs+i −XN−2rs+i),K∗
s (ys − yNs−1

s )⟩

+

Ns−1∑
is=1

⟨
rs−1∑
i=0

(X̂rs(is−1)+i −Xrs(is−2)+i),K∗
s (y

is
s − yis−1

s )⟩

≤
rs−1∑
i=0

∥X̂rs(Ns−1)+i −Xrs(Ns−2)+i∥ · ∥K∗
s (ys − yNs−1

s )∥∗

+

Ns−1∑
is=1

rs−1∑
i=0

∥X̂rs(is−1)+i −Xrs(is−2)+i∥ · ∥K∗
s (y

is
s − yis−1

s )∥∗

Thus, for any ρ > 0, we have

∑
v∈V

Ns−1∑
is=0

⟨
rs−1∑
i=0

x̂rsis+i
v − x̃iss,v,K

∗
s,v(ys − yiss )⟩

≤
N∑
k=0

ρ

2
∥X̂k −Xk−rs∥2 + rsκ̃

2
s

2ρ
(

Ns−1∑
is=1

∥yiss − yis−1
s ∥2 + ∥ys − yNs−1

s ∥2). (28)

Bounding the gap. Thus, with (25), (26), and (28), we have the following upper bound on
the gap

N∑
k=0

Q(X̂k, Y
k
;Z)

=
N∑
k=0

{
F (X̂k)−R∗(Y )− F (X) +R∗(Y

k
)
}
+

S∑
s=1

N∑
k=0

{
⟨KsX̂

k, Ys⟩ − ⟨KsX,Y
k⟩
}

≤ η(
2

T (T + 3)
+ r)DwX (X,Xinit)− (T + 1)(T + 2)

T (T + 3)
ηDwX (X,XN )

− η
N∑
k=0

S∑
s=1

ρsDwX (X̂k, Xk−rs) +
4mM2(N + 1)

η(T + 3)

+
S∑

s=1

τsrs

{
Dwy

s
(ys, y

init
s )−Dwy

s
(ys, y

Ns−1
s )−

Ns−1∑
is=0

Dwy
s
(yiss , y

is−1
s )

}

+

N∑
k=0

S∑
s=1

ηρs
2
∥X̂k −Xk−rs∥2 +

S∑
s=1

rsκ̃
2
s

2ηρs
(

Ns−1∑
is=1

∥yiss − yis−1
s ∥2 + ∥ys − yNs−1

s ∥2)
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where we take ρ = ηρs in (26). Thus, with κ̃2
s

ρsτs
≤ η

2 for all s ∈ [S], we have

N∑
k=0

Q(X̂k, Y
k
;Z)

≤ η(
2

T (T + 3)
+ r)DwX (X,Xinit)− (T + 1)(T + 2)

T (T + 3)
ηDwX (X,XN )

+

S∑
s=1

τsrs ·
{
3

2
Dwy

s
(ys, y

init
s )− 1

2
Dwy

s
(ys, y

Ns−1
s )

}
+

4mM2(N + 1)

η(T + 3)

In particular, taking τs =
2κ̃2

s
ρsη

, and using the convexity, we get

(N + 1) ·Q(ZN ;Z)

≤ η

{
(

2

T (T + 3)
+ r)DwX (X,Xinit)− (T + 1)(T + 2)

T (T + 3)
DwX (X,XN )

}
+

1

η

{
S∑

s=1

κ̃2srs
ρs

{
3Dwy

s
(ys, y

init
s )−Dwy

s
(ys, y

Ns−1
s )

}
+

4mM2(N + 1)

T + 3

}

The result follows from noticing that for any T ≥ 1, 2
T (T+3) ≤

1
2 ≤

1
2(
∑S

s=1 rsρs), and
(T+1)(T+2)

T (T+3) ≥
1.

D Proofs for Section 4

Proof of Lemma 4.1. Primal update properties. By Corollary 3.1, for any v ∈ V and xv ∈ X

⟨
S∑

s=1

K∗
s,vy

k
s , x̂

k
v − xv⟩+ fv(x̂

k
v)− fv(xv)

≤
S∑

s=1

ηk,sDwx(xv, x
k−rs
v )−

S∑
s=1

ηk,sDwx(x̂kv , x
k−rs
v )

− (
µ

C
+ ηk)Dwx(xv, x

k
v) +

2M2

ηkTk(Tk + 1)

Tk∑
t=1

λt

βk
t

.

Thus, taking a weighted sum of the above, we get

N∑
k=0

θk

{
⟨

S∑
s=1

K∗
s,vy

k
s , x̂

k
v − xv⟩+ fv(x̂

k
v)− fv(xv)

}

≤ µ(r3/r + 5(r2/r)2)

2C
Dwx(xv, x

init
v )−

N∑
k=0

θk

S∑
s=1

ηk,sDwx(x̂kv , x
k−rs
v ) +

µr2

Cr
D0,
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where the bounds on the sum of Bregman divergence terms follows from the following bounds on
the coefficients of Dwx(xv, x

k
v) term in the sum (θk = ηk = 0 for all k ≥ N + 1) for k = 0, 1, . . . , N

S∑
s=1

θk+rsηk+rs,s − (
µ

C
+ ηk)θk

≤ µ

2rC

{
S∑

s=1

(k + rs + 2r2/r)(k + rs + r2/r)ρs − (k + r2/r + 2r)(k + 2r2/r)

}

=
µ

2rC

{(
k2 + (2r +

3r2

r
)k + (4r2 + 2(r2/r)2)

)
−

(
k2 + (2r +

3r2

r
)k + (4r2 + 2(r2/r)2)

)}
= 0,

and for xinitv

S∑
s=1

rs−1∑
k=0

ηk,sθk ≤
µ

2rC

S∑
s=1

ρs · rs(rs +
r2

r
)(rs + 2

r2

r
) =

µ(r3/r + 5(r2/r)2)

2C
.

The bound on the rest of the terms is since

1

ηk

Tk∑
t=1

λt

βk
t

=

Tk∑
t=1

2tC/µ

(t+ 1) + (t− 1)(k + r2/r)/2r
≤ C

µ
(1 +

4(Tk − 1)

1 + (k + r2/r)/2r
),

and notice that
N∑
k=0

k + 2r2/r

k + r2/r + 2r
≤ 2(N + 1) ≤ 4N,

and since N + 1 ≥ rmax := maxs∈[S] rs, we have

r2 =
S∑

s=1

ρsr
2
s ≤

S∑
s=1

ρsrs(N + 1) = (N + 1)r =⇒ r2/r ≤ N + 1 ≤ 2N.

Thus, for Tk/N = T/N ≥ max( 5√
D1

, 64rD1
) where D1 =

µ2(r2/r)2

2M2C2 D0, we have

N∑
k=0

2M2θk
ηkTk(Tk + 1)

Tk∑
t=1

λt

βk
t

≤ 2M2C

µ

{
N∑
k=0

k + 2r2/r

Tk(Tk + 1)
+

N∑
k=0

4(k + 2r2/r)

(1 + (k + r2/r)/2r)(Tk + 1)

}

≤ 2M2C

µ

{
10N2

T 2
+

32Nr

T

}
≤ µ

C
D0(r2/r)

2

Dual update properties. Similar to (26), we get

Ns−1∑
is=0

⟨−∑
v∈V

Ks,vx̃
is
s,v, y

is
s − ys⟩+ (

rsis+rs−1∑
k′=rsis

θ′k)(R
∗
s(y

is
s )−R∗

s(ys))


≤

Ns−1∑
is=0

τs,is(

rsis+rs−1∑
k′=rsis

θ′k)
{
Dwy

s
(ys, y

is−1
s )−Dwy

s
(ys, y

is
s )−Dwy

s
(yiss , y

is−1
s )

}
= τs

{
Dwy

s
(ys, y

init
s )−Dwy

s
(ys, y

Ns−1
s )−

Ns−1∑
is=0

Dwy
s
(yiss , y

is−1
s )

}
. (29)
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Gap properties. Notice that for each s ∈ [S] and v ∈ V , we have

N∑
k=0

θk

{
⟨x̂kv ,K∗

s,vys⟩ − ⟨xv,K∗
s,vy

k
s⟩
}

=

Ns−1∑
is=0

⟨
rs−1∑
i=0

θrsis+ix̂
rsis+i
v − x̃iss,v,K

∗
s,v(ys − yiss )⟩

+
N∑
k=0

θk⟨x̂kv − xv,K
∗
s,vy

k
s⟩+

Ns−1∑
is=0

⟨Ks,vx̃
is
s,v, ys − yiss ⟩. (30)

We first bound the first term in (27). With αs,is = 1

∑
v∈V

Ns−1∑
is=0

⟨
rs−1∑
i=0

θrsis+ix̂
rsis+i
v − x̃iss,v,K

∗
s,v(ys − yiss )⟩

= ⟨
rs−1∑
i=0

(θN−rs+i(X̂
N−rs+i −XN−2rs+i)),K∗

s (ys − yNs−1
s )⟩

+

Ns−1∑
is=1

⟨
rs−1∑
i=0

(θrs(is−1)+i(X̂
rs(is−1)+i −Xrs(is−2)+i)),K∗

s (y
is
s − yis−1

s )⟩

≤
rs−1∑
i=0

θrs(Ns−1)+i∥X̂rs(Ns−1)+i −Xrs(Ns−2)+i∥ · ∥K∗
s (ys − yNs−1

s )∥∗

+

Ns−1∑
is=1

rs−1∑
i=0

θrs(is−1)+i∥X̂rs(is−1)+i −Xrs(is−2)+i∥ · ∥K∗
s (y

is
s − yis−1

s )∥∗

Bounding the gap. Putting the above together, and for convenience, denoting yNs
s = ys, we

have

N∑
k=0

θkQ(X̂k, Y
k
;Z)

≤ µ(r3/r + 5(r2/r)2)

2C
DwX (X,Xinit)−

N∑
k=0

θk

S∑
s=1

ηk,sDwX (X̂k, Xk−rs) +
mµ(r2/r)2

C
D0

+
S∑

s=1

τs

{
Dwy

s
(ys, y

init
s )−Dwy

s
(ys, y

Ns−1
s )−

Ns−1∑
is=1

Dwy
s
(yiss , y

is−1
s )

}

+

S∑
s=1

{
N∑
k=0

θkηk,s
2
∥X̂k −Xk−rs∥2 +

Ns∑
is=1

κ̃2s
2ρs

(

rs−1∑
i=0

θrs(is−1)+i

ηrs(is−1)+i
)∥yiss − yis−1

s ∥2
}

≤ µ(r3/r + 5(r2/r)2)

2C
DwX (X,Xinit) +

mµ(r2/r)2

C
D0 +

S∑
s=1

τsDwy
s
(ys, y

init
s )

using

τs =
κ̃2s
ρs
· 4rsrC

µ
≥ κ̃2s

ρs
· max
is∈[Ns]

(

rs−1∑
i=0

θrs(is−1)+i

ηrs(is−1)+i
).
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Since
∑N

k=0 θk ≥
N(N+1)

2 , using convexity, we get

Q(ZN ;Z) ≤ 2

N(N + 1)

{
µ(r3/r + 5(r2/r)2)

2C
DwX (X,Xinit)

+
mµ(r2/r)2

C
D0 +

4rC

µ

S∑
s=1

κ̃2srs
ρs

Dwy
s
(ys, y

init
s )

}
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