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Abstract

Although the existing max-value entropy
search (MES) is based on the widely cele-
brated notion of mutual information, its em-
pirical performance can suffer due to two
misconceptions whose implications on the
exploration-exploitation trade-off are investi-
gated in this paper. These issues are essen-
tial in the development of future acquisition
functions and the improvement of the exist-
ing ones as they encourage an accurate mea-
sure of the mutual information such as the
rectified MES (RMES) acquisition function
we develop in this work. Unlike the evalua-
tion of MES, we derive a closed-form proba-
bility density for the observation conditioned
on the max-value and employ stochastic gra-
dient ascent with reparameterization to effi-
ciently optimize RMES. As a result of a more
principled acquisition function, RMES shows
a consistent improvement over MES in sev-
eral synthetic function benchmarks and real-
world optimization problems.

1 Introduction

Bayesian optimization (BO) has demonstrated to
be highly effective in optimizing an unknown com-
plex objective function (i.e., possibly noisy, non-
convex, without a closed-form expression nor deriva-
tive) with a finite budget of expensive function eval-
uations [Brochu et al., 2010, Shahriari et al., 2015,
Snoek et al., 2012]. A BO algorithm depends on a
choice of acquisition function (e.g., improvement-based
such as probability of improvement [Kushner, 1964]
and expected improvement (EI) [Mockus et al., 1978],
information-based such as those described below, or
upper confidence bound (UCB) [Srinivas et al., 2010])
as a heuristic to guide its search for the global maxi-

mizer. To do this, the BO algorithm utilizes the cho-
sen acquisition function to iteratively select an input
query for evaluating the unknown objective function
that trades off between observing at or near to a likely
maximizer based on a Gaussian process (GP) belief of
the objective function (exploitation) vs. improving the
GP belief (exploration) until the budget is expended.

In this paper, we consider information-based acqui-
sition functions based on the widely celebrated no-
tion of mutual information, which include entropy
search (ES) [Hennig and Schuler, 2012], predictive ES
(PES) [Hernández-Lobato et al., 2014], output-space
PES (OPES) [Hoffman and Ghahramani, 2015], max-
value ES (MES) [Wang and Jegelka, 2017], and fast
information-theoretic BO [Ru et al., 2018]. In general,
they either maximize the information gain on the max-
value (i.e., global maximum of objective function) or
its corresponding global maximizer. Though ES and
PES perform the latter and hence directly achieve
the goal of BO, they require a series of approxima-
tions. On the other hand, MES and OPES perform
the former and enjoy the advantage of requiring sam-
pling of only a 1-dimensional random variable repre-
senting the max-value (instead of a multi-dimensional
random vector representing the maximizer). In par-
ticular, MES can be expressed in closed form and
thus optimized easily. Unfortunately, its BO perfor-
mance is compromised by a number of misconcep-
tions surrounding its design, as discussed below. Since
there may be subsequent works building on MES (e.g.,
[Knudde et al., 2018, Takeno et al., 2019]), it is im-
perative that we rectify these pressing misconceptions.

So, our first contribution of this paper is to review the
principle of information gain underlying MES, which
will shed light on two (perhaps) surprising misconcep-
tions (Section 3) and their negative implications on its
interpretation as a mutual information measure and
its BO performance. We give an intuitive illustration
in Section 4 using simple synthetic experiments how
they can cause its search to behave suboptimally in
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trading off between exploitation vs. exploration.

Our second contribution is the development of a rec-
tified max-value entropy search (RMES) acquisition
function that resolves the misconceptions present in
MES and hence provides a more precise measure of
mutual information. In contrast to the straightforward
implementation of MES, the evaluation of RMES may
seem challenging at first glance: Unlike the noiseless
observations assumed by MES that follow the well-
known truncated Gaussian distribution when condi-
tioned on the max-value, the true noisy observations
obtained from evaluating the objective function do
not. However, by deriving a closed-form expression
for the conditional probability density of the noisy ob-
servation, we make the evaluation of RMES possible.
Furthermore, the optimization is made efficient by us-
ing stochastic gradient ascent with a reparameteriza-
tion trick [Kingma and Welling, 2013]. As a result of
a more principled acquisition function, RMES gives a
rewarding performance that is improved over the ex-
isting MES in several synthetic function benchmarks
and real-world optimization problems.

2 Background

2.1 Gaussian Processes in BO

Consider the problem of sequentially optimizing an un-
known objective function f : X → R over a bounded
input domain X ⊂ Rd. BO algorithms repeatedly se-
lect an input query x ∈ X for evaluating f to obtain
a noisy observed output yx , fx + ε with fx , f(x),
i.i.d. Gaussian noise ε ∼ N (0, σ2

n), and noise vari-
ance σ2

n. Since it is costly to evaluate f , our goal
is to strategically select input queries for finding the
maximizer x∗ , argmaxx′∈X fx′ as rapidly as possi-
ble. To achieve this, the belief of f is modeled by a
GP. Let {fx′}x′∈X denote a GP, that is, every finite
subset of {fx′}x′∈X follows a multivariate Gaussian
distribution [Rasmussen and Williams, 2006]. Then,
the GP is fully specified by its prior mean E[fx′ ]
and covariance kx′x′′ , cov[fx′ , fx′′ ] for all x′,x′′ ∈
X , the latter of which can be defined, for example,
by the widely-used squared exponential (SE) kernel
kx′x′′ , σ2

s exp(−0.5(x′ − x′′)>Λ−2(x′ − x′′)) where
Λ , diag[`1, . . . , `d] and σ2

s are its length-scale and
signal variance hyperparameters, respectively. For no-
tational simplicity (and w.l.o.g.), the prior mean is
assumed to be zero. Given a column vector yD ,
(yx′)

>
x′∈D of noisy outputs observed from evaluating f

at a set D of input queries selected in previous BO
iterations, the GP predictive belief of f at any input
query x is a Gaussian fx|yD ∼ N (µx, σ

2
x) with the

following posterior mean µx and variance σ2
x:

µx , KxD(KDD + σ2
nI)−1yD

σ2
x , kxx −KxD(KDD + σ2

nI)−1KDx
(1)

where KxD , (kxx′)x′∈D, KDD , (kx′x′′)x′,x′′∈D, and

KDx , K>xD. Then, yx|yD ∼ N (µx, σ
2
+ , σ2

x + σ2
n).

2.2 Max-value information gain

Mutual information between 2 random variables
has been used to quantify the amount of infor-
mation gain about one random variable through
observing the other. In the context of BO
where the observations are the noisy function out-
put yx at the input query x, the information
gain is about the maximizer (e.g., entropy search
(ES) [Hennig and Schuler, 2012] and predictive en-
tropy search (PES) [Hernández-Lobato et al., 2014]),
i.e., x∗, or the max-value (e.g., max-value entropy
search (MES) [Wang and Jegelka, 2017]), denoted as
f∗ , fx∗ . In this paper, we consider the information
gain on the max-value. The information gain on the
max-value can be interpreted as the reduction in the
uncertainty of the max-value f∗ by observing yx where
the uncertainty is measured by the entropy, i.e., the
mutual information between f∗ and yx:

I(f∗; yx|yD) = H(p(f∗|yD))−Ep(yx|yD)[H(p(f∗|yD, yx))]
(2)

where, given a random variable z following a distribu-
tion specified by the probability density p(z), H(p(z))
denotes the entropy of z and Ep(z)f ′(z) denotes the
expectation of a function f ′ over z. As (2) requires
p(f∗|yD, yx) which is computationally expensive to
evaluate for different values of yx, the symmetry prop-
erty of the mutual information is often exploited to
express the acquisition function as:

I(f∗; yx|yD) = H(p(yx|yD))−Ep(f∗|yD)[H(p(yx|yD, f∗))] .
(3)

To evaluate the acquisition function in (3), it requires
the evaluation of p(yx|yD, f∗). This probability is dif-
ficult to evaluate as it requires imposing the condition
that fx′ ≤ f∗ ∀x′ ∈ X , so MES only imposes the con-
dition of the max-value at the input query:1

p(yx|yD, f∗) ≈
∫
p(yx|fx)p(fx|yD)Ifx≤f∗ dfx (4)

where Ifx≤f∗ is the indicator function such that it is 1
if fx ≤ f∗ and 0 otherwise. We adopt this assumption
throughout the paper.

Furthermore, to make (4) a truncated Gaussian den-
sity whose entropy has a closed-form expression, MES

1It is noted that OPES uses a more relaxed assumption
than MES, but it requires a difficult approximation.
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replaces yx with fx on the right hand side of (4), which
results in αMES(x,yD) , I(f∗; fx|yD) =

H(p(fx|yD))− Ep(f∗|yD)[H(p(fx|yD, f∗))] . (5)

This formulation of MES has been applied in
quite a few works, e.g., [Knudde et al., 2018,
Takeno et al., 2019]. In (5), fx|yD, f∗ follows a trun-
cated Gaussian distribution whose entropy has a
closed-form expression. Hence, the MES expression
can be reduced to [Wang and Jegelka, 2017]:

1

|F|
∑

f∗∈F

[
hf∗(x)ψ(hf∗(x))

2Ψ(hf∗(x))
− log Ψ(hf∗(x))

]
(6)

where F is a finite set of samples of f∗ drawn

from p(f∗|yD), hf∗(x) ,
f∗ − µx

σx
, ψ(hf∗(x)) ,

N (hf∗(x); 0, 1) denotes the probability density func-
tion at hf∗(x) of the standard Gaussian dis-
tribution, and Ψ(hf∗(x)) denotes the cumulative
density function value at hf∗(x) of the stan-
dard Gaussian distribution. This set F is ob-
tained by either optimizing sampled functions from
the GP posterior [Hernández-Lobato et al., 2014,
Wang and Jegelka, 2017] or approximating with a
Gumbel distribution [Wang and Jegelka, 2017].

3 Misconceptions in MES

This section investigates two main issues with the ex-
isting MES [Wang and Jegelka, 2017], which paves the
way to an improved variant of MES in the next section.

3.1 Noiseless Observations

Since BO observations are often the noisy function
output yx due to uncontrolled factors such as ran-
dom noise in environmental sensing, stochastic opti-
mization, and random mini-batches of data in machine
learning, replacing yx with fx in (5) fundamentally
changes the principle behind the information gain on
the max-value. In other words, MES measures the
amount of information gain about f∗ through observ-
ing fx which is often not observed in practice. In
fact, the noisy observation yx contains less information
about the latent function than its noiseless counter-
part fx. Thus, replacing yx with fx potentially over-
estimates the amount of information gain as shown in
Fig. 4 in Section 4.

Fig. 1 illustrates the difference between the distribu-
tion of the noisy function output yx (i.e., the observa-
tion of BO) and that of the noiseless function output
fx. It is noted that conditioned on the max-value f∗,
the distribution of the noiseless function output fx|f∗
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p(yx)

p(fx)

−5 0 5
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0.3 p(yx|f∗)
p(fx|f∗)

(a) p(fx) vs. p(yx). (b) p(fx|f∗) vs. p(yx|f∗).

Figure 1: A comparison between the distribution of
the noiseless function function output fx and that of
the noisy function output yx where fx ∼ N (0, 4), yx =
fx + ε, ε ∼ N (0, 1), and f∗ = 0.5.

is a truncated Gaussian distribution having a closed-
form expression for its entropy. On the contrary, it is
challenging to evaluate the probability density of the
noisy function output conditioned on the max-value,
i.e., yx|f∗ in Fig. 1b, not to mention its entropy. We
will resolve this issue in Section 4.

3.2 Discrepancy in Evaluation

The mutual information can be interpreted as
the mutual dependence between two random vari-
ables via the Kullback-Leibler (KL) divergence.
In (5), these random variables are fx and f∗,
and the mutual information can be expressed as
I(f∗; fx|yD) = DKL [p(f∗, fx|yD) ‖ p(f∗|yD)p(fx|yD)]
which denotes the KL divergence between p(f∗, fx|yD)
and p(f∗|yD)p(fx|yD). If the KL divergence be-
tween p(f∗, fx|yD) and the fully factorized distribu-
tion p(f∗|yD)p(fx|yD) is large, f∗ and fx are depen-
dent on each other. Hence, the distributions of f∗ and
fx should be defined consistently throughout the eval-
uation of the mutual information. On the contrary,
if there exist discrepancies in the evaluation of the
mutual information such that p(fx|yD) or p(f∗|yD) is
not uniquely evaluated, the mutual information is no
longer properly defined. Therefore, for MES to have
an interpretation as a measure of the mutual infor-
mation, p(f∗|yD) and p(fx|yD) should be consistently
defined throughout the MES evaluation. For exam-
ple, in (5), p(fx|yD) should have the same probability
density under assumptions in H(p(fx|yD)) and those
in Ep(f∗|yD)[H(p(fx|yD, f∗))].
Let us consider the conditional probability density
p(fx|yD) under assumptions imposed when evaluating
H(p(fx|yD)) and Ep(f∗|yD)[H(p(fx|yD, f∗))] of MES
in order to identify the discrepancy in the evaluation
of these two terms.

• Evaluating H(p(fx|yD)): In MES, there is no ap-
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proximation when evaluating H(p(fx|yD)) since
p(fx|yD) is the density of a Gaussian distribution
with a closed-form expression for its entropy, i.e.,

fx|yD ∼ N (µx, σ
2
x) . (7)

• Evaluating Ep(f∗|yD)[H(p(fx|yD, f∗))]: As
the expectation over f∗|yD is intractable,
MES approximates the expectation with an
average over a finite set F of max-value
samples, i.e., Ep(f∗|yD)[H(p(fx|yD, f∗))] ≈

1

|F|
∑

f∗∈F

H(p(fx|yD, f∗)). This set F is ob-

tained in the same approach in (6). Under this
assumption, it follows that

fx|yD ∼
1

|F|
∑

f∗∈F

Nf∗(µx, σ
2
x) (8)

where Nf∗(µx, σ
2
x) denotes a distribution ob-

tained from restricting a Gaussian distribution
N (µx, σ

2
x) to the interval of (−∞, f∗], i.e., an up-

per truncated Gaussian distribution.

At first glance, the use of the Gaussian distribution
in (7) is convenient and fairly straightforward for
the closed-form expression of its entropy. However,
putting the probability densities inferred from the
evaluation of the two terms (i.e., (7) and (8)) together,
it becomes obvious that there exists a discrepancy in
the evaluation of MES as p(fx|yD) is different under
assumptions imposed on H(p(fx|yD)) and those im-
posed on Ep(f∗|yD)[H(p(fx|yD, f∗))]. This is because
(7) is the result of marginalizing out f∗ for all of its
possible values in R, while (8) is the result of marginal-
izing out f∗ over a finite set F ⊂ R. The discrep-
ancy between a Gaussian distribution and the average
over truncated Gaussian distributions is illustrated in
Fig. 2. This difference violates the definition of a ran-
dom variable as fx|yD does not have a unique distri-
bution throughout the evaluation of MES. As a re-
sult, MES cannot be interpreted as the mutual depen-
dence (mutual information) between 2 random vari-
ables since there is not a consistent description for the
distribution of fx|yD in its evaluation. An undesired
consequence is that MES might over-explore as shown
in Fig. 3 in Section 4. It is noted that a similar issue
also exists in PES [Hernández-Lobato et al., 2014].

4 Rectified Max-Value Entropy
Search

In this section, we propose a rectified max-value
entropy search (RMES) measuring the information
gain I(f∗; yx|yD) without the above misconceptions,

−2 0 2

0.0

0.2

0.4

Figure 2: Difference between N (0, 1) (shade blue area)
and

∑
uNu(0, 1)/4 (red line) for u ∈ {0.7, 0.9, 1, 1.5, 3}

(red circles).

i.e., αRMES(x,yD) , I(f∗; yx|yD) = H(p(yx|yD)) −
Ep(f∗|yD)[H(p(yx|yD, f∗))]. The expectation over
f∗|yD is approximated with a finite set F of
samples obtained by optimizing sampled functions
from the GP posterior [Hernández-Lobato et al., 2014,
Wang and Jegelka, 2017].

In MES, fx|yD, f∗ follows a truncated Gaussian dis-
tribution whose entropy has a closed-form expression.
On the contrary, in RMES, yx|yD, f∗ is the sum of a
Gaussian random variable ε and a truncated Gaussian
random variable fx|yD, f∗ (p(yx|f∗)) in Fig. 1b). Opti-
mizing RMES which involves the entropy of yx|yD, f∗
is challenging as no analytical expression of the en-
tropy is available. To resolve this challenge, we first
derive a closed-form expression for the probability den-
sity of yx|yD, f∗ in the following theorem.

Theorem 1 The probability density function of
yx|yD, f∗ is expressed as:

p(yx|yD, f∗) = N (yx;µx, σ
2
+)

Ψ(gf∗(yx))

Ψ(hf∗(x))
(9)

where gf∗(yx) ,
(
σ2
+f∗ − σ2

nµx − σ2
xyx
)
/ (σxσnσ+);

σ2
+ , σ2

x + σ2
n; hf∗(x) and Ψ are specified in (6).

The derivation of (9) is in Appendix A. Although
we cannot evaluate the entropy of yx|yD, f∗ analyti-
cally, we can optimize it using the stochastic gradi-
ent ascent. Given the closed-form expression in (9), a
straightforward solution is to express H(p(yx|yD, f∗))
as Ep(yx|yD,f∗)[− log p(yx|yD, f∗)]. Then, one can sam-
ple batches of yx|yD, f∗ by first sampling fx|yD, f∗
from a truncated Gaussian distribution, then, sam-
pling the Gaussian noise ε, and summing them up.
Stochastic gradient optimization has been made fea-
sible for an expectation over a random sample fol-
lowing a truncated Gaussian distribution by a clever
trick recently, namely, implicit reparameterization gra-
dients [Figurnov et al., 2018]. However, as samples of
yx|yD, f∗ depend on f∗, we need to draw different sam-
ples of yx|yD, f∗ for different values of f∗ ∈ F , which
is inefficient.
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Fortunately, we can design a more efficient approach to
stochastically optimize H(p(yx|yD, f∗)) where samples
are drawn independently from f∗ and the optimization
only requires the simple reparameterization trick: the
Gaussian standardization. By factoring p(yx|yD, f∗)
into wf∗(yx) , Ψ(gf∗(yx))/Ψ(hf∗(x)) dependent on
f∗ and p(yx|yD) = N (yx;µx, σ

2
+) independent from

f∗. We can express H(p(yx|yD, f∗)) in an importance
sampling approach with the weight wf∗(yx) as

H(p(yx|yD, f∗)) = Ep(yx|yD) [−wf∗(yx) log p(yx|yD, f∗)]

where p(yx|yD, f∗) is computed in (9). The ex-
pectation over the Gaussian distribution p(yx|yD)
which is independent from f∗ can be reparam-
eterized using the Gaussian standardization in
[Kingma and Welling, 2013]:

H(p(yx|yD, f∗)) = Ep(ν) [−wf∗(t(ν)) log p(t(ν)|yD, f∗)]

where ν ∼ N (0, 1), t(ν) , νσ+ + µx, and
p(t(ν)|yD, f∗) , p(yx = t(ν)|yD, f∗). The expecta-
tion over ν does not depend on x nor f∗, so sam-
ples of ν can be shared between different samples of
f∗. Furthermore, the gradient of the acquisition func-
tion is not propagated through this sampling proce-
dure. Hence, the term Ep(f∗|yD) [H(p(yx|yD, f∗))] ≈

1

|F|
∑

f∗∈F

H(p(yx|yD, f∗)) in RMES can be expressed

as:

Ep(ν)


− 1

|F|
∑

f∗∈F

wf∗(t(ν)) log p(t(ν)|yD, f∗)


 . (10)

Regarding the term H(p(yx|yD)) in RMES, to avoid
the discrepancy in the evaluation of MES (Section 3.2),
we apply the same restriction of f∗ to the finite set F
onto H(p(yx|yD)) to obtain

H(p(yx|yD)) = Ep(ν)

[
− 1

|F|
∑

f∗∈F

wf∗(t(ν))

× log


 1

|F|
∑

f ′∗∈F

p(t(ν)|yD, f ′∗)



]
.

where the Gaussian standardization is used to repa-
rameterize yx. Hence, from the above equation and
(10), we have αRMES(x,yD) , I(f∗; yx|yD) =

Ep(ν)

[
1

|F|
∑

f∗∈F

wf∗(t(ν)) log
|F|p(t(ν)|yD, f∗)∑
f ′∗∈F

p(t(ν)|yD, f ′∗)

]

(11)
which can be optimized using a stochastic optimization
algorithm such as Adam [Kingma and Ba, 2015]. It is

noted that in (11), samples of ν are shared for different
samples of the max-value f∗ and both terms in (3).
Hence, the number of samples of ν can be reduced
in comparison with the approach of directly sampling
yx|yD, f∗ mentioned above.
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−0.100 0.425 0.950 1.475 2.000
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2.0000 √
σ 2

x + σ 2
n
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Figure 3: Example where MES tends towards an ex-
ploration strategy. The plots share the x-axis. The
top plot shows the data samples as red squares; the
GP posterior mean as a red line; the GP posterior
standard deviations of yx and fx as dashed yellow lines
and dashed blue lines, respectively; and the max-value
samples as purple lines. The middle two plots show the
values of RMES and MES acquisition functions with
the maximum values of RMES and MES (the input
queries) as a circle and a cross, respectively. The in-
puts that maximize RMES and MES are also shown
in the bottom plot as a circle and a cross, respectively.

As mentioned in Section 3, the misconceptions in MES
cause an imbalance in the exploration-exploitation
trade-off. To observe the effects of correcting these
misconceptions in RMES, let us investigate two sim-
ple examples where RMES and MES select different
input queries such that MES over-explores and over-
exploits in Fig. 3 and Fig. 4, respectively.

Fig. 3 illustrates an example where MES tends towards
an exploration strategy. In this figure, the noise vari-
ance is small to minimize the effect of the noise in
the observation, i.e., the noiseless observation issue in
Section 3.1. Hence, the dashed blue and dashed yellow
lines in Fig. 3 are mostly overlapped since the standard
deviation values of yx and fx are almost the same. We
observe that MES selects an input query (the cross)
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Figure 4: Example where MES tends towards an ex-
ploitation strategy. The notations are adopted from
Fig. 3.

whose function output has a higher posterior vari-
ance and a smaller posterior mean than RMES. In
other words, MES tends towards exploration. How-
ever, MES explores at a cost of not exploiting an un-
certain input with a high posterior mean which is se-
lected by RMES (the circle). This could be because
the discrepancy in the evaluation issue in Section 3.2
causes the uncertainty in the GP posterior (i.e., the
term H(p(yx|yD))) to have a high influence on MES.
As a result, MES selects an input query far away from
the data samples in this example. Therefore, it is
noted that a small noise variance does not guarantee
a good selection strategy of MES due to the discrep-
ancy in the evaluation. An undesired consequence of
this over-exploration is that MES does not query in-
puts close to the maximizer compared with RMES as
shown in the experiments in Section 5.

Fig. 4 illustrates an example where MES tends towards
an exploitation strategy. In this example, the length-
scale is set such that function values in Fig. 4 are
more correlated with one another in comparison with
those in Fig. 3. The noise variance is set to a larger
value such that the variance of yx is significantly larger
than that of fx. Hence, there is a gap between the
dashed blue and dashed yellow lines in the top and
bottom plots of Fig. 4. MES selects an input query
(the cross) whose function value has a smaller poste-
rior variance and a larger posterior mean than RMES.
In other words, MES tends towards exploitation. How-

ever, MES exploits at an input query where the un-
certainty of the noise overwhelms the uncertainty of
the unknown objective function since the yellow line is
much larger than the blue line at the cross in the bot-
tom plot. This could be because MES overestimates
the amount of information gain by not taking into ac-
count the noise, i.e., replacing the noisy observation
yx with a noiseless function output fx in the acquisi-
tion function (Section 3.1). On the other hand, RMES
selects an input query (the circle) that balances be-
tween the noise in yx and information about f∗. Over-
exploitation could prevent MES from leaving a subop-
timal maximizer, which causes its poor performance in
the experiments in Section 5.

5 Experiments

In this section, we empirically evaluate
the performance of our RMES and ex-
isting acquisition functions such as EI
[Mockus et al., 1978], UCB [Srinivas et al., 2010],
PES [Hernández-Lobato et al., 2014], and MES
[Wang and Jegelka, 2017]. Similar to the MES work
[Wang and Jegelka, 2017], we use 2 evaluation criteria:
simple regret (SR) and inference regret (IR). The sim-
ple regret measures the regret of the best input query
so far, i.e., f∗ − maxx′∈D fx′ . The inference regret
measures the regret of the inferred maximizer which
is often defined as the maximizer of the GP pos-
terior mean function [Hennig and Schuler, 2012,
Hernández-Lobato et al., 2014,
Wang and Jegelka, 2017]. In other words, the
inference regret is defined as f∗ − fargmaxx′∈X µx′

where µx is defined in (1).

The experiments include (1) synthetic function bench-
marks such as a function sample drawn a GP, the
Branin-Hoo function, the 2-dimensional Michaelwicz
function, and the eggholder function which is a diffi-
cult function to optimize due to its many local max-
ima; and (2) real-world optimization problems. As an
environmental sensing problem, we use the pH field of
Broom’s Barn farm [Webster and Oliver, 2007] which
is spatially distributed over a 1200m by 680m region
discretized into 31 × 18 grid of sampling locations.
To generate a continuous objective function from the
dataset, we fit a GP model to the dataset and use its
mean function as the objective function which is un-
known to all BO algorithms. For tuning hyperparame-
ters of a machine learning model, we compare the per-
formance of different acquisition functions to tune the
hyperparameters of a support vector machine (SVM)
to fit the Wisconsin breast cancer dataset from the
UCI repository [Dua and Graff, 2017]. There are two
hyperparameters of the SVM: the penalty parameter
of the error term in the range [0.5, 2] and the natural
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logarithm of the kernel coefficient for the radial ba-
sis function kernel of the SVM in the range [−5,−3].
Given the SVM’s hyperparameters, the unknown ob-
jective function is the 100-fold cross-validation accu-
racy and the noisy observation is the 20-fold cross-
validation accuracy. The latter is provided to BO as
observations at input queries.

To account for the randomness in the observations,
synthetic experiments are repeated 15 times and the
real-word experiments are repeated 10 times with ran-
dom initialization of 2 training data samples. The log-
arithm to the base 10 of the performance measure aver-
age is reported. The objective functions are each mod-
eled as a sample of a GP whose kernel hyperparame-
ters are learned using maximum likelihood estimation
[Rasmussen and Williams, 2006]. The zero mean and
the SE kernel are used. The objective functions are
shifted to have a zero mean.

For MES and RMES, there are 5 samples of
the max-value at each BO iteration. For PES,
there are 5 samples of the maximizer at each BO
iteration. The max-value and maximizer sam-
ples are drawn by optimizing function samples
from the GP posterior [Hernández-Lobato et al., 2014,
Wang and Jegelka, 2017]. The approximated sam-
pling of the max-value via a Gumbel distribution
[Wang and Jegelka, 2017] is not used since we do not
want the approximation quality to tamper with the
performance of the acquisition functions.

5.1 Synthetic Function Benchmarks

In this section, we consider synthetic function bench-
marks: the Branin-Hoo function (Fig. 5a) and the
eggholder function (Fig. 5b). The experiments are
conducted with both small and large noise standard
deviations: σn = 0.01 and σn = 0.3. As the Branin-
Hoo and eggholder functions are often used in mini-
mization problems, the negative values of these func-
tions are used as the objective function. Experiments
with a function sample drawn from a GP and the
2-dimensional Michaelwicz function are in the Ap-
pendix B.

The logarithm to the base 10 of the average of the sim-
ple regret (SR) and that of the inference regret (IR)
at each BO iteration are shown in Figs. 6 and 8. In
general, RMES outperforms MES in all these experi-
ments by converging to both small simple and infer-
ence regrets. This empirically illustrates the beneficial
effects of correcting misconceptions in MES. In par-
ticular, when the noise is small, i.e., σn = 0.01, it
is likely that the over-exploration of MES prevents it
from properly exploiting the location of the maximizer
as shown in Fig. 3. On the other hand, when the noise

is large, i.e., σn = 0.3, the over-exploitation traps MES
at suboptimal maxima.
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Figure 5: Synthetic functions whose maximizers are
denoted as yellow squares.
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Figure 6: Branin-Hoo function.
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Figure 7: Distance of input queries to the maximizer
of the Branin-Hoo function.

The Branin-Hoo function is a simple function with a
high correlation between function values in the input
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domain (Fig. 5a), so all the acquisition functions per-
form similarly in Fig. 6. Nonetheless, MES still un-
derperforms slightly in comparison with RMES. Fig. 7
shows the histogram of the average distance from in-
put queries to the maximizer over 15 repetitions of the
experiment, i.e., ‖x−x∗‖2 ,

√
(x− x∗)>(x− x∗), for

RMES and MES. Due to the high correlation between
function values, it does not require either RMES or
MES to query for inputs close to the maximizer to ob-
tain a good performance. However, we still observe
that MES queries for inputs farther from the maxi-
mizer than RMES, which explains its poorer perfor-
mance. This phenomenon is most likely due to the
imbalance in the exploration-exploitation trade-off as
illustrated in Section 4. The same observation is noted
in other experiments: the function sample drawn from
a GP and the Michaelwicz function in Fig. 13 and
Fig. 15 in the Appendix B, respectively.

The eggholder function is a difficult function to opti-
mize as it has many local maxima (Fig. 5b). Hence,
it requires an acquisition function to balance between
exploration and exploitation to be query efficient. In
this case, RMES outperforms other acquisition func-
tions by converging to a smaller regret except for the
simple regret when σn = 0.3 in Fig. 8.
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Figure 8: Eggholder function.

5.2 Real-world Optimization Problems

This section presents the results of BO algorithms for
real-world optimization problems including an envi-
ronment sensing problem of finding the location with
the maximum pH value (Fig. 11b in Appendix B),

and a machine learning training problem of tuning
an SVM model for training the Wisconsin breast can-
cer dataset. The noise standard deviation values of
the pH field and tuning the SVM model problems are
σn = 0.25 and σn = 0.02, respectively. Although both
MES and RMES show reasonable performance in these
experiments, RMES has an advantage in the simple
regret of the tuning SVM experiment. In compari-
son with EI and UCB, the difference in performance
is insignificant. Regarding PES, it does not perform
as well as the other acquisition functions, especially in
the tuning SVM experiment.
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Figure 9: The pH field experiment.
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Figure 10: Tuning SVM model experiment.

6 Conclusion

In this paper, we illustrate two misconceptions in the
existing MES acquisition function: noiseless observa-
tions and discrepancy in the evaluation, which have
negative implications on its interpretation as the mu-
tual information as well as on its empirical perfor-
mance. Based on the insights of these issues, we de-
velop the RMES acquisition function that produces a
more accurate measure of the information gain about
the max-value through observing noisy function out-
puts. As a result, it has a superior performance com-
pared with MES thanks to the correction of these is-
sues. Nonetheless, optimizing RMES is more challeng-
ing than the existing MES as it does not have any
closed-form expression. To overcome this hurdle, we
derive a closed-form expression for the probability den-
sity of the noisy observation given the max-value, and
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design an efficient sampling approach to do stochastic
gradient ascent with a reparameterization trick. It is
empirically shown in several synthetic function bench-
marks and real-world optimization problems that the
performance of RMES is preferable over MES and
competitive with existing acquisition functions.
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A Probability Density of yx|yD, f∗

This section derives a closed-form expression of
p(yx|yD, f∗). Different from the relatively straightfor-
ward expression in (4), we can express p(yx|yD, f∗)
in an importance sampling manner. That is, samples
of yx|yD, f∗ can be obtained by first drawing a sam-
ple y of yx|yD and then, weighting the sample with
p(fx ≤ f∗|yD, yx = y). Let y denote a realization of
the random variable yx, we have

p(yx = y|yD, f∗)
∝ p(yx = y|yD)p(fx ≤ f∗|yD, yx = y) (12)

where p(fx ≤ f∗|yD, yx = y) can be considered as the
cumulative density function of the distribution speci-
fied by p(fx|yD, yx = y). Let f denote a realization of
the random variable fx. Recall that yx = fx + ε where
the noise ε ∼ N (0, σ2

n), we can evaluate the probability
density p(fx = f |yD, yx = y) as below:

p(fx = f |yD, yx = y)

= p(fx = f |yD)p(ε = y − f)

= N (f ;µx, σ
2
x)N (y − f ; 0, σ2

n)

= N
(
f ;
σ2
nµx + σ2

xy

σ2
+

,
σ2
xσ

2
n

σ2
+

)

= ψ

(
σ2
+f − σ2

nµx − σ2
xy

σxσnσ+

)

where p(fx = f |yD) = N (f ;µx, σ
2
x) is the GP poste-

rior distribution (1); ψ denotes the probability density
the standard Gaussian distribution, and σ2

+ , σ2
x+σ2

n.
Hence, we have the cumulative density function p(fx ≤
f∗|yD, yx = y) expressed as:

p(fx ≤ f∗|yD, yx = y) = Ψ

(
σ2
+f∗ − σ2

nµx − σ2
xy

σxσnσ+

)

(13)

where Ψ denotes the cumulative density function of
the standard Gaussian distribution. By substituting
(13) into (12), we obtain

p(yx = y|yD, f∗)

∝ p(yx = y|yD)Ψ

(
σ2
+f∗ − σ2

nµx − σ2
xy

σxσnσ+

)

= N (y;µx, σ
2
+)Ψ

(
σ2
+f∗ − σ2

nµx − σ2
xy

σxσnσ+

)

= N (y;µx, σ
2
+)Ψ (gf∗(y)) (14)

where gf∗(y) ,
σ2
+f∗ − σ2

nµx − σ2
xy

σxσnσ+
. To obtain the

expression for p(yx = y|yD, f∗), we need to evaluate

the integral of (14):

∫
N (y;µx, σ

2
+)Ψ (gf∗(y)) dy

=

∫
p(yx = y|yD)Ψ

(
σ2
+f∗ − σ2

nµx − σ2
xy

σxσnσ+

)
dy

=

∫
p(yx = y|yD)p

(
ν ≤ σ2

+f∗ − σ2
nµx − σ2

xy

σxσnσ+

)
dy

= p

(
ν ≤ σ2

+f∗ − σ2
nµx − σ2

xyx

σxσnσ+

∣∣∣yD
)

= p
(
νσxσnσ+ + σ2

xyx ≤ σ2
+f∗ − σ2

nµx|yD
)

where ν ∼ N (0, 1). Recall that yx|yD ∼ N (µx, σ
2
+),

it implies νσxσnσ+ + σ2
xyx follows a Gaussian dis-

tribution N (σ2
xµx, σ

2
xσ

4
+). Therefore, p(νσxσnσ+ +

σ2
xyx ≤ σ2

+f∗ − σ2
nµx|yD) is the cumulative density

function at σ2
+f∗ − σ2

nµx of a Gaussian distribution
N (σ2

xµx, σ
2
xσ

4
+), i.e.,

∫
N (y;µx, σ

2
+)Ψ (gf∗(y)) dy

= Ψ
(
σ2
+f∗ − σ2

nµx;σ2
xµx, σ

2
xσ

4
+

)

= Ψ

(
f∗ − µx

σx

)
. (15)

Hence, from (14) and (15), we obtain the exact prob-
ability density function of yx|yD, f∗ as below:

p(yx|yD, f∗) = N (yx;µx, σ
2
+)

Ψ(gf∗(yx))

Ψ(hf∗(x))
(16)

where gf∗(yx) ,
σ2
+f∗ − σ2

nµx − σ2
xyx

σxσnσ+
and hf∗(x) ,

f∗ − µx

σx
.

B Other Synthetic Function
Benchmarks

In this section, we describe experiments with other
synthetic function benchmarks including: a func-
tion sample drawn from a GP with hyperparameters:
l = 0.33, σ2

s = 1 (Fig. 11a); and the 2-dimensional
Michaelwicz function.

In the function sample drawn from a GP experiment
(Fig. 12), MES converges to a much larger regret in
comparison to other acquisition functions. We plot
the distance from the input queries to the maximizer,
i.e., ‖x− x∗‖2 ,

√
(x− x∗)>(x− x∗), for RMES and

MES in Fig. 13 which shows that MES does not query
inputs close the maximizer for both values of σn due
to the imbalance in the exploration-exploitation trade-
off. On the other hand, RMES spends a large pro-
portion of queries for inputs close to the maximizer.
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Figure 11: Function sample drawn from GP (a) and
the GP posterior mean of the pH field (b).

RMES explores more than EI, UCB, and PES in
this experiment as RMES converges slower in Fig. 12.
However, RMES converges to a better simple regret
when σn = 0.01. As this function is relatively easy to
optimize (Fig. 11a), EI can quickly exploit to get to
the maximizer, so it outperforms the other acquisition
functions in the inference regret when σn = 0.01 and in
the simple regret when σn = 0.3. On the other hand,
PES achieves the best inference regret when σn = 0.3.
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Figure 12: A function sample drawn from a GP.

Fig. 14 shows the results of the 2-dimensional Michael-
wicz function. We can observe that MES does not per-
form as well as the other acquisition functions. Fig. 15
of the distance of input queries to the maximizer also
shows that MES does not query inputs close to the
maximizer in comparison to RMES, which means MES
cannot properly search for the maximizer. Among EI,
UCB, PES, and RMES, we observe that in terms of
the simple regret, RMES is on par with EI and they
outperform the other acquisition functions. Regard-
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Figure 13: Distance of input queries to the maximizer
of a function sample drawn from a GP.

ing the inference regret, PES and EI have the best
performance though RMES matches the performance
of UCB.
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Figure 14: Michaelwicz function with σn = 0.01.
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Figure 15: Distance of input queries to the maximizer
of the Michaelwicz function.
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