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Abstract

Stochastic and soft optimal policies resulting from entropy-regularized Markov
decision processes (ER-MDP) are desirable for exploration and imitation learning
applications. Motivated by the fact that such policies are sensitive with respect to
the state transition probabilities, and the estimation of these probabilities may be
inaccurate, we study a robust version of the ER-MDP model, where the stochastic
optimal policies are required to be robust with respect to the ambiguity in the
underlying transition probabilities. Our work is at the crossroads of two impor-
tant schemes in reinforcement learning (RL), namely, robust MDP and entropy-
regularized MDP. We show that essential properties that hold for the non-robust
ER-MDP and robust unregularized MDP models also hold in our settings, making
the robust ER-MDP problem tractable. We show how our framework and results
can be integrated into different algorithmic schemes including value or (modified)
policy iteration, which would lead to new robust RL and inverse RL algorithms to
handle uncertainties. Analyses on computational complexity and error propagation
under conventional uncertainty settings are also provided.

1 Introduction

This paper is focused on a robust approach for entropy-regularized Markov Decision Processes
(ER-MDP) when the transition probabilities (or dynamics) are themselves uncertain. By studying
the robust ER-MDP framework, we aim at providing a theoretical basis to develop new robust
reinforcement learning (RL)/planning algorithms to make decisions under dynamics uncertainty, and
more accurate inverse reinforcement learning (IRL) algorithms for solving the problem of reward
learning when the experts are conservative with respect to the dynamics uncertainty.

Robust MDP is an important framework in the machine learning and operations research literature.
The framework is motivated by the fact that, in many practical RL/planning problems, the estimation
of dynamics might be far from accurate and optimal policies to Markov Decision problems would be
very sensitive with respect to these probabilities [23]. The MDP/RL literature has seen a number of
solution methods on how to make robust policies in this uncertainty setting [27, 21]. On the other
hand, ER-MDP is another important scheme in the RL/IRL literature with a different motivation.
The framework was first proposed by [39] in the context of IRL, i.e., the problem of recovering an
expert’s reward function from demonstrations, with the advantage of removing ambiguity between
demonstrations and the expert policy, and casting the reward learning as a maximum likelihood
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estimation problem. This framework then became popular in the IRL literature with many successful
algorithms [20, 16, 8]. To the best of our knowledge, existing IRL frameworks/algorithms all assume
that the expert knows the dynamics with certainty. Since it might be not the case and the expert would
adapt their decisions with respect to the dynamic uncertainty, e.g., being conservative when making
decisions, ignoring this uncertainty issue in expert’s demonstrations would lead to inaccurate reward
structures. In addition, the ER-MDP has also been popular in the (deep) reinforcement learning (RL)
literature with many state-of-the-art soft-RL algorithms, e.g. Soft-Actor-Critic [13, 14], with various
motivations such as improving exploration, compositionality and robustness in RL. In fact, since the
estimation of the dynamics might not be accurate, robust versions of the ER-MDP framework and
soft-RL algorithms are relevant and worth exploring, noting that such a robust framework has never
been formally studied before.

Given the importance of the ER-MDP framework in the RL/IRL literature and the issue of facing
uncertainties when making policies, a robust approach for ER-MDP would provide principled answer
to the questions of how to recover an accurate reward function from expert’s robust/conservative
demonstrations, and how to be robust in soft-RL algorithms when the dynamics are themselves
uncertain. This motivates us to introduce and study the robust ER-MDP framework, aiming at proving
a complete and rigorous theoretical basic for developing new RL/IRL algorithm that is robust with
respect to dynamics uncertainty. More specifically, we explore several aspects such as the duality
properties of the robust problem, the complexity of the resulting algorithms and the complexity of the
adversary’s problem under different uncertainty settings. We then use these results to design new and
efficient robust soft-RL and IRL algorithms.

Our main contributions in this paper are to show that the estimation of the robust optimal policies in
robust ER-MDP can be done efficiently 1, under conventional uncertainty settings, and the complexity
is similar to the case of the robust (unregularized) MDP and only modestly larger than the case of
non-robust ER-MDP model. More specifically, we consider two conventional uncertainty settings,
i.e., (s, a)- and (s)-rectangularity [17, 35] and show that some essential properties such as contraction
and Markov optimality hold for the robust ER-MDP model. These properties are important to design
tractable algorithms to solve our robust Markov problems. We also point out that the perfect duality
(or minimax equality) that holds for the classical robust MDP model also holds in our setting, noting
that our robust ER-MDP problem is more challenging to handle and requires new proofs, as many
results that hold for the unregularized MDP do not hold for the ER-MDP, e.g. the Markov problem
no-longer can be formulated as a linear program. From these basic properties, we analyze and
provide bounds for the computational complexity and error propagation of value function when
the adversary’s minimization problems are only solved approximately. We further show how our
framework can be used to develop new RL/IRL algorithms. Moreover, since solving the adversary’s
minimization problem is a key issue in robust MDP, we extend the results from previous studies
[17, 27] by considering uncertainty sets based on several KL divergence bounds and show that the
resulting minimization problem can be solved efficiently as well. We also provide numerical results
to demonstrate applications of our framework/algorithms in some IRL tasks.

Related work: The machine learning and operations research literatures have seen a number of
studies on robust Markov decision processes (MDP) and reinforcement learning in robust MDP
[34, 17, 27, 21, 35]. Existing work mostly relies on unregularized MDP, thus makes use of some
results that only hold for the unregularized model, e.g., the Markov problem can be formulated
as a linear program. On the other hand, the ER-MDP framework has become popular in both
RL and IRL literature. In RL, [31] propose a policy iteration scheme, called Trust Region Policy
Optimization, in which entropy terms are added to the greedy step to penalize the Kullback-Leibler
(KL) divergence between two consecutive policies. The idea of using entropy regularizers to penalize
the divergence between consecutive policies has been also used in Dynamic Policy Programming
(DPP) [3], Maximum A Posteriori Policy Optimization (MPO) [2, 1], and robust MPO [22]. Some
recent RL algorithms have been developed to take advantage of soft value function and soft policies
resulting from the ER-MDP scheme, for example, Soft-Q learning [7, 32, 12] and Soft-Actor-
Critic [13, 14]. [22] have added robustness to a soft-RL (i.e., MPO) algorithm, but their work is
experimentally focused and their theoretical explorations are limited, in the sense that many important
aspects such as duality properties, complexity and other uncertainty settings were not investigated. In
IRL, many state-of-the-art algorithms are based on the ER-MDP framework, e.g., Gaussian Process
IRL [20] and generative adversarial IRL [11, 8, 37]. [33] propose a robust IRL algorithm under a

1Here, “efficiency” means that “the worst-case complexity is polynomial time.”
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dynamic mismatch between the expert and learner, but their settings are different, as they assume that
the learner does not knows the expert’s dynamics with certainty, while in our context the expert is
unsure about the dynamics and this information is revealed to the learner. Other types of regularizers
have been also studied. For example, [19] propose to use a Tsallis entropy with the motivation of
having sparse policies. [9] propose a general MDP framework regularized by any concave function.
We will show that our theoretical results can also be applied to these general settings.

Our paper is structured as follows. Section 2 describes our problem setting and Section 3 presents
theoretical properties of the robust ER-MDP model. We discuss related algorithms and frameworks
in Section 4. Section 5 analyses the computational complexity of the adversary’s problems. Section
6 provides experiments for robust IRL, and finally, Section 7 concludes. We provide all the proofs
and relevant discussions in the supplementary material. We use |S| to denote the cardinality of set S .
Boldface characters represent matrices (or vectors) or a collection of values.

2 Problem description

Consider an infinite-horizon Markov decision process (MDP) for an agent with finite states and
actions, defined by a tuple (S,A,Q, r, γ), where S is a set of states S = {1, 2, . . . , |S|}, A is a finite
set of actions, Q = {q0, . . . ,q∞} are transition probabilities where qt : S × A × S → [0, 1] is
a transition probability function at time t, i.e., qt(st+1|at, st) is the probability of moving to state
st+1 ∈ S from st ∈ S by performing action at ∈ A at time step t, r = {r(a|s), a ∈ A, s ∈ S} is a
reward function, and γ ∈ [0, 1] is a discount factor.

Let ΠΠΠ = {πππ0, ...,πππ∞} be a policy function where πt(at|st) is the probability of making action
at ∈ A at state st ∈ A at time t ∈ {0, 1, ...}, the goal of (forward) reinforcement learning under
maximum causal entropy principle is to find an optimal policy ΠΠΠ that maximizes the expected
entropy-regularized discounted reward [38, 4, 32, 12]

max
πππt∈∆π

t=0,1...

{
F∞(ΠΠΠ,Q) = Eτ∼(ΠΠΠ,Q)

[ ∞∑
t=0

γ[t]r(at|st)− γ[t]η lnπt(at|st)
]}
, (1)

where γ[t] refers to “γ to the power of t” (we use [.] to distinguish it from a superscript t),
τ = {(s0, a0), . . . , (s∞, a∞)} is a strategy in the infinite-horizon case, ∆π is the set of policies
∆π = {π(a|s) ∈ [0, 1]|

∑
a∈A π(a|s) = 1, ∀s ∈ S}, and η ≥ 0 is a regularization coefficient.

The term H(πππ) = −EΠΠΠ,Q[
∑∞
t=0 γ

[t]η lnπ(at|st)] is referred to as a γ-discounted causal entropy,
distinguishing the entropy regularized with the standard MDP one. This term makes the expected
discount rewards no-longer linear in πππt, for 1 = 0, . . . ,∞.
In our problem, we assume that the dynamics (i.e., transition probabilities) are uncertain and the robust
model aims at finding a robust policy that maximizes the worst-case expected entropy-regularized
reward function. The robust problem can be formulated as

max
πππt∈∆π

t=0,1...

min
qt∈Q
t=0,1...

{
F∞(ΠΠΠ,Q)

}
, (2)

where Q is an uncertainty set for the dynamics, defined as Q ⊂ ∆q = {q|
∑
s′∈S q(s

′|a, s) =
1,∀(s′, s, a)}, and qt is a vector of transition probabilities chosen by the adversary at time step
t = 0, 1, ...∞. Here, the uncertainty set Q are assumed to be (state,action)-wise or (state)-wise
decomposable, i.e.. the uncertainty set Q has the form Q = ⊗(s,a)Qsa or Q = ⊗(s)Qs, where
Qsa and Qs are uncertainty sets for the transition probabilities qsa = {q(s′|s, a),∀s′} and qs =
{q(s′|s, a)|∀s, a}, respectively, for all a ∈ A, s ∈ S. We call these assumptions as (s, a)- and
(s)-rectangularity. These assumptions have been widely used to derive tractable solutions for robust
MDP problems [27, 17, 35].

3 Theoretical Properties and Algorithms

We present essential theoretical results for the ER-MDP model. These results are critical for the
tractability of the robust problems. We then also discuss how to compute robust optimal policies and
provide complexity analyses.
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3.1 Theoretical Properties

We will show that some basic results holding for the robust unregularized MDP and non-robust
ER-MDP models are are also valid for our robust one, making the computation of robust optimal
policies tractable. To facilitate our exposition, let us first consider the mapping T [V ] : R|S| → R|S|

T [V ](s) = max
πππ∈∆π

min
q∈Q

{
ψs(πππ,q, V )

}
, ∀s ∈ S (3)

where ψs(πππ,q, V ) = Eπππs [r(a|s) − η lnπ(a|s) + γEs′∼qsa [V (s′)]]. We also define T πππ[V ] =
minq∈Q{ψs(πππ,q, V )} for a fixed policy πππ. On the other hand, let V ∗, V πππ : S → R be the ex-
pected worst-case accumulated rewards under uncertain transition probabilities (value functions)

V πππ(s) = min
qt∈Q
t=0,1...

{
Eτ∼(ΠΠΠ,Q)

[ ∞∑
t=0

γ[t]

(
r(at|st)− η lnπt(at|st)

)∣∣∣∣∣ s0 = s

]}
(4)

and V ∗(s) = maxπππt∈∆π, t=0,1... V
πππ(s), ∀s ∈ S. The following theorem focuses on the (s, a)-

rectangularity case and shows some main properties of the robust problem. For notational brevity, let
us first denote h(a, s|V ) = r(a|s) + γminqsa∈Qsa {E[V (s′)]} for any a ∈ A, s ∈ S.

Theorem 3.1 ((s, a)-rectangularity) Assume that the uncertainty set Q is (s, a)-rectangular, T [V ]
and T πππ[V ] are contraction mappings of parameters γ and V ∗, and V πππ are unique solutions
to the contraction systems T [V ] = V and T πππ[V ] = V , and the mapping T [V ] can be up-

dated as T [V ] = η ln
(∑

a∈A exp
(
h(a, s|V )/η

))
, and the policy πππ∗ defined as π∗(a|s) =(

exp
(
h(a, s|V ∗)/η

))/(∑
a′ exp

(
h(a′, s|V ∗)/η

))
, ∀s ∈ S, a ∈ A is optimal to (2). More-

over, the perfect duality holds for both the mapping T [V ] and T πππ[V ] and robust expected re-

ward function, i.e., maxπππ∈∆π minq∈Q

{
ψs(πππ, q, V )

}
= minq∈Q maxπππ∈∆π

{
ψs(πππ, q, V )

}
and

maxπππ0,... minq0,... F∞(ΠΠΠ,Q) = minq0,... maxπππ0,... F∞(ΠΠΠ,Q).

The detailed proof is provided in the supplementary (Section A.1). The proof for the contraction
property of T and T π shares the same spirit as in the standard robust MDP model [17]. The main
difference here is the inclusion of the nonlinear entropy term in the Bellman update. The formulation
for the robust optimal policy has a similar form as those from the non-robust ER-MDP model,
except that instead of performing the Bellman update with known transition probabilities, we need to
compute a minimization value minqsa∈Qsa

{
Eqsa [V (s′)]}. The proof can done using the fact that

the minimization problem minqsa can be put inside the expectation in such a way that it does not
depend on the policy πππ, i.e.,

min
q∈Q

{
ψs(πππ,q, V )

}
= Eπππ

[
r(a|s)− η lnπ(a|s) + γmin

qsa
Es′∼qsa [V (s′)]

]
, (5)

noting that it is only valid if the uncertainty set Q are (s, a)-rectangular. [22] give the same formula-
tions, but they do not explicitly show that this solution is optimal to the infinite-horizon problem (2)
and corresponds to a saddle point of the max-min problem. The perfect duality property is interesting
in the sense that we can swap the max-min order even-though the objective functions ψs(πππ,q, V ) and
F∞(·) are not linear in πππ and the uncertainty set Q is not necessarily compact and/or convex. We
note that in [27], the perfect duality is proved for standard robust MDP using linear programming,
which is not applicable in our context.

We now discuss how our results can be extended to the (s)-rectangularity case, which allows the
transition probabilities qsa to be dependent over actions a ∈ A. The main difference and challenge lie
in the fact that adversary’s minimization problem involve the policy variable πππ, making (5) no-longer
valid. The following theorem shows how a robust optimal policy in this case can be efficiently
computed. First, let z(a, s|V,q) = r(a|s) + γ

∑
s′∈S q(s

′|a, s)V (s′) for notational simplicity.

Theorem 3.2 ((s)-rectangularity) Assume that the uncertainty set Q is (s)-rectangular and Qs
are compact and convex, for all s ∈ S, a robust optimal policy πππ∗s to (2) can be computed as
π∗(a|s) =

(
exp

(
z(a, s|V ∗, q∗)/η

)) / (∑
a′ exp

(
z(a′, s|V ∗, q∗)/η

))
, ∀s ∈ S, a ∈ A, where

V ∗ is the unique fixed point solution to the contraction mapping T [V ] = V , where T [V ](s) =
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η

{
ln

(∑
a∈A exp

(
z(a, s|V, q∗)/η

))}
, where and q∗s is an optimal solution to the convex opti-

mization problem

min
qs∈Qs

{∑
a∈A

exp
(
z(a, s|V ∗, q)/η

)}
, ∀s ∈ S. (6)

Moreover, the perfect duality holds.

The proof can be found in the supplementary material. In this setting, we assume that the uncertainty
set if convex and compact in order to use the Von Neumann’s minimax theorem to swap the max-min
order. Note that the perfect duality for the robust unregularized MDP model under (s)-rectangular
sets has been proved in [35] using the result that the value function can be expressed as V πππ =∑∞
t=0[λP̂

πππ
][t]r̂πππ, where P̂

πππ
is of size |S| × |S| with entries P̂

πππ

ss′ =
∑
a π(a|s)q(s′|a, s) and r̂πππs =∑

a π(a|s)r(a|s) [28]. This result does not apply in our context due to the inclusion of the (nonlinear)
entropy terms. Our idea to derive the formulation for the optimal policy is that if we swap the min-max
order, then the inner maximization problem maxπππ

{
ψs(π,q, V )

}
will yield a closed-form solution

and the corresponding min-max problem can be converted into a min problem with a (strictly) convex
objective function, which is way easier to solve than the max-min counterpart. For this reason, we
assume that the uncertainty set Q is convex, which is a typical assumption in the robust optimization
literature, and show that a solution to the min-max problem is also optimal to the max-min one (i.e.,
saddle point). This greatly simplifies the computation.

In the (s)-rectangularity case, the Bellman update requires to solve an exponential convex optimization
problem, instead of a linear one. Under the same uncertainty settings as in the (s, a)-rectangularity
case (e.g. uncertainty sets based on KL divergence), it seems not possible to efficiently solve the
inner problem by bisection. However, it is still possible to solve these problems in polynomial time.
We discuss this in detail in Section 5.

3.2 Approximate Robust Value Iteration and Complexity Analysis

In this section we discuss the computation of optimal policies under our robust settings. We focus on
value iteration and will talk about other algorithms, e.g., IRL, policy iteration, in the next section. We
first consider the (s, a)-rectangularity case and note that the analysis can be further extended to the
(s)-rectangularity case.

The contraction mapping implies that the value iteration method converges to a unique fixed point
when the number of iterations tends to infinity. Let us define T n[V ] = T [T n−1[V ]] for n = 1, 2, ...
and T 0[V ] = V , for any V ∈ R|S|, and let V ∗ is the unique fixed point to the mapping T [V ] = V
From the contraction property, it is well-known that, to obtain an ε-approximation of the fixed point
solution, one would need (ln ε−1 − ln ||V ∗||∞)/ ln γ ∈ O(ln ε−1) iterations.

The mapping T [V ] involves a minimization problem minqsa E[V (s′)], which can be solved approxi-
mately by bisection [17, 27]. In this section we study the complexity to compute ε-approximations of
the value function and optimal policy under soft Bellman updates. First, to facilitate our exposition,
given ξ > 0, assume that there is an algorithm of complexity C(ξ) that allows to compute a solution
qsa such that, ∀a ∈ A, s ∈ S, minqsa Eqsa [V (s′)] ≥ Eqsa [V (s′)] − ξ. We will examine C(ξ)
under different uncertainty sets later in Section 5. Since the adversary’s problem can only be solved
approximately, T [V ] and optimal policies are approximated, for any s ∈ S, as

T̃ [V ](s) = η ln

(∑
a∈A

exp

((
z(a, s|V,q)

)
/η

))
, π̃ππs =

exp
(
z(a, s|Ṽ , q)/η

)
∑
a′ exp

(
z(a′, s|Ṽ , q)/η

) , (7)

where Ṽ is an approximate value function. Theorem 3.3 below examines approximation errors in (7).
The results differ from standard robust MDP because we have soft approximate optimal policies and
T̃ [V ] involves log and exp functions.

Theorem 3.3 The approximate Bellman update and policy can be bounded as follows

(i) ||T̃ n[V ]− T n[V ]||∞ ≤ ξγ(1− γ[n])/(1− γ)
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(ii) For any ε > 0, if ξ ≤ ε(1 − γ)2/(4γ) and ||T̃ n+1[V ] − T̃ n[V ]||∞ ≤ 3ε(1 − γ)/4, then
||T̃ n[V ]− V ∗||∞ ≤ ε

(iii) If we compute a soft policy π̃ππ by an approximate value function Ṽ such that ||Ṽ −V ∗||∞ ≤ ε,
for an ε > 0, then ||π̃ππ − πππ∗||∞ ≤ (e2(ε+ξ)/η − 1).

Theorem 3.3-(i) is useful to analyze the error propagation of value iteration after a certain number of
iterations. This bound also holds for policy evaluation. Theorem 3.3-(ii) answers the questions of
when we should stop the value iteration algorithm to achieve a certain level of accuracy, and Theorem
3.3-(iii) shows an approximation error of the approximate optimal policy. We also see that one needs
O(ln ε−1) iterations to get an approximation in (ii). We now analyze the computational complexity
to get ε-approximations of the value function V ∗ and the optimal policy πππ∗. According to Theorem
3.3-(ii) and analyses from Section 5, to get an ε-approximation of the value function, it would require
a worst-case complexity of O(|S||A|maxs{Ns}(ln ε−1)2) for uncertainty sets based on a single KL
divergence bound, and O(|S||A|(maxs{Ns})7/2(ln ε−1)2) for the case of several KL divergence
bounds, where Ns is the number of states that can be reached from state s ∈ S, which is typically
much smaller than |S|. On the other hand, to get an ε-approximation of πππ∗, using Theorem 3.3-(ii)-
(iii), the computation would need complexities ofO(|S||A|maxs{Ns} ln ε−1 ln((ln(ε+1))−1)) and
O(|S||A|(maxs{Ns})7/2 ln ε−1 ln((ln(ε+ 1))−1)) for the cases of single KL bound and several KL
bounds, respectively Note that the robust (unregularized) MDP problem has the same complexity
bounds, and under non-robust ER-MDP the complexity of getting an ε- approximation of the value
function becomes O(|S||A|(maxs{Ns}) ln ε−1). Thus, adding robustness to ER-MDP yields an
extra computational cost of O(ln ε−1) for the case of single KL bound and O((maxsNs)

5/2 ln ε−1)
in the case of several KL bounds.

In the (s)-rectangularity case, we perform the Bellman update by solving (6). This is a convex
optimization problem and, under some conventional settings, can be solved in polynomial time.
Section 5 below shows that a ξ-approximation of the inner minimization problem (with uncertainty
sets of several KL bounds) can be achieved with complexity O(N

7/2
s ln ξ−1). As a result, it would

require a complexity of O(|S|(maxs{|A|Ns})7/2(ln ε−1)2) to have an ε-approximation of V ∗, and
a complexity of O(|S|(|A|maxs{Ns})7/2 ln ε−1 ln((ln(ε+ 1))−1)) to have an ε-approximation of
the optimal policy.

4 Applications

We discuss relevant frameworks and algorithms that would make use of our results. This shows broad
benefits of using the robust ER-MDP formulations in different contexts.

IRL/Imitation Learning under Uncertainty. The (robust) ER-MDP framework yields
soft/randomized optimal policies, making it appealing for imitation learning/IRL [38, 16, 37], as
one can conveniently formulate the reward learning problem as maximum likelihood estimation. In
general, the robust model will be useful under the assumption that the experts who give demonstrated
decisions do not know the transition probabilities with certainty, and make robust decisions (looking
at worst-case scenarios), noting that the problem of how to make robust decisions in uncertain
environments has been widely investigated in the literature [34, 17, 27, 21]. So, it would be valuable
to have an IRL algorithm that is able to learn a reward function from expert’s robust decisions. Our
results allow to cast the reward learning problem as maximum likelihood estimation as in the standard
case. A detailed robust IRL algorithm with a complexity analysis are provided in the supplementary
material. We provide numerical experiments in Section 6 below to demonstrate the benefits of having
such a robust IRL algorithm to recover reward functions from robust policies.

RL with KL Divergence Penalties. Solving an ER-MDP problem can provide an optimal policy
that is not too far from a given policy. In a planning context, one might be interested in finding a
policy that is not far from a given pre-computed policy πππ. This policy πππ may be an outcome of a
robust (unregularized) MDP model, but due to some changes to the system (e.g. reward function
or uncertainty set Q), one might need to recompute the robust optimal policy without ending up
with a completely new one. To this end, we can penalize the reward function by a KL divergence
between the old policy πππ and the new one KL(πππs||πππs) =

∑
a π(a|s) ln π(a|s)

π(a|s) , or solve a Markov
problem with constraints KL(πππs||πππs) ≤ β, for a scalar β ≥ 0. The uses of KL divergence penalties
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or constraints are generally equivalent due to the fact that the function KL(πππs||πππs) can be moved to
the objective function using Lagrange duality. We then can solve following robust ER-MDP problem
to obtain a new optimal policy

max
πππt∈∆π

t=0,...

min
qt∈Q
t=0,...

{
EΠΠΠ,Q

[ ∞∑
t=0

γ[t](r(at|st)− ηKL(πππtst ||πππst)
]}
, (8)

which yields robust regularized Bellman equation T [V ] = maxπππs minqs{E[r(a|s) − η ln π(a|s)
π(a|s) +

γEqsa [V (s′)]]}. Clearly, if we let η →∞ then the optimal solution to (8) should approaches πππ and
if η → 0 then we retrieve the robust unregularized MDP model.

ER-MDP has been also used in policy iteration to prevent early convergence to sub-optimal policies,
e.g., [2, 1, 22]. So, it would be useful to use it to compute an optimal policy of a robust (unregularized)
MDP while solving a robust regularized Bellman equation at each greedy step of a policy iteration
algorithm. To facilitate the idea, let consider the modified policy iteration (MPI) approach [29].
Under our uncertainty settings, at an iteration k of the robust MPI algorithm, we need to perform

(i) πππk+1
s = argmaxπππs

{
min

qs

{
Eπππs

[
r(a|s) + E[V k(s′)]

] }
− ηKL(πππs||πππks)

]}
(ii) V k+1 = (T UR,πππk+1

)m[V k],

where T UR,πππk+1

= minqs Eπππk+1
s ,qs

[r(a|s) + γV (s′)]. Here, T UR,πππk is the robust (unregularized)
Bellman update under policy πππk and the entropy term ηKL(πππs||πππks) is used to control the distance
between πππk and πππk+1. Note that robust policy iteration algorithms without the KL entropy terms
have been studied in some previous work [18, 15]. Now, from an initial policy πππ0, the algorithm
iteratively find new policy by performing the robust regularized step (i) and robust (unregularized)
policy evaluation step (ii). Clearly, if m = 1 we retrieve the robust value iteration considered in
Section 3.2, and with a sufficiently large m we retrieve a policy evaluation step. Since we only solve
the inner minimization approximately, it is important to look at the approximation errors of Steps
(i) and (ii). Theorem 3.3-(iii) tells us that if we solve the inner minimization with approximation
error ε > 0, then we can obtain a policy π̃ππk+1 with approximation error e2ε/η − 1. For Step (ii), the
bound in Theorem 3.3-(i) applies to an approximate Bellman update T̃ UR,πππk where the min problem
is solved approximately. Hence, the approximation error for Step (ii) is εγ(1− γm)/(1− γ). These
bounds allow to analyze the error propagation of the robust MPI (and thus, its convergence and rate of
convergence), analogously to non-robust MPI algorithms [30, 9], and bound the complexity required
for the two steps to get a certain level of accuracy.

Robust General Regularized MDP. Beside entropy-regularized models, other types of regularizers
have been considered. For example, [19] propose to use Tsallis entropy with the motivation of having
sparse optimal policies. [9] study a general version of the ER-MDP model by replacing the entropy
terms by any convex functions of πππs. It is possible to show that the basic properties mentioned in
Theorem 3.3 still hold for the robust version of that general model, but the robust Bellman update
might have no closed-forms and would be more difficult to perform. In some cases, one may only do
it approximately, thus producing an additional level of approximation to value/policy iteration. We
briefly discuss these in the supplementary (Section B.5).

5 Uncertainty Models

A key issue when solving robust MDP problems is to efficiently solve the adversary’s minimization
problems. We discuss this under both (s, a)- and (s)-rectangularity cases, noting that the objective
function in the latter case is exponential. We focus on uncertainty sets based on KL divergence
(relative entropy or likelihood models) due to their appealing statistical properties in modeling uncer-
tainties [27, 17]. Previous studies show that if the uncertainty set involves only one KL divergence
bound, then in the (s, a)-rectangularity case, the inner minimization can be solved efficiently by
bisection. We further extend these results by examining the (s)-rectangularity case and uncertainty
sets based on several KL divergence bounds, with the motivation of better use the availability of
historical data and migrate the conservativeness of the uncertainty sets. We present our main results
below and refer the reader to the supplementary (Section B.6) for detailed proofs.
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(s, a)-rectangular uncertainty sets. In this setting, the objective function of the inner minimization
problem is linear in qsa. In a likelihood model or relative entropy model, the uncertainty sets
Qs are determined by KL divergence constraints of the forms

∑
s′ q̂(s

′|s, a) ln q(s′|s, a) ≥ β or∑
s′ q(s

′|s, a) ln(q(s′|s, a)/q̂(s′|s, a)) ≤ β, respectively, where q̂(s′|s, a) is an empirical estimate
of the transition probability associated with states s, s′ ∈ S and action a ∈ A. In [17] the authors
show that if Qsa is defined based on only one KL bound, then the inner problem can be solved by
bisection with complexity C(ξ) = O(Ns ln ξ−1). If we define uncertainty sets using several KL
bounds, the bisection no-longer works. However, using some results from convex programming [25],
we can show that if the number of KL bounds is much less than Ns (which is typically the case), then
the inner problem can be solved by interior-point with complexity O(N

7/2
s ln ξ−1).

(s)-rectangular uncertainty sets. In this case, the inner minimization problems involve exponential
(convex) objective function: minqs

∑
a exp(r(a|s)+Eqs [V (s′)]), making it not solvable by bisection,

even with uncertainty sets of only one KL bound. In this context, the problem still can be solved
efficiently by interior-point and it is possible to show that, if the number of KL bounds is much smaller
than Ns, then the complexity can be bounded by O((|A|Ns)7/2 ln ξ−1), for which we provide a
detailed proof in the supplementary. If the number of KL bounds is significant, then we also provide
a detailed bound for the complexity in the supplementary material. It is worth noting that in a general
regularized MDP model [9], there might be no closed-form for maxπππs{·} problems, thus one needs
to solve maxπππs minqs{·} to perform the Bellman update, for which a saddle-point algorithm would
be useful [e.g. 10], but the complexity is not easy to bound.

6 Experiments with Robust IRL

We provide numerical experiments to demonstrate the application of our robust ER-MDP models and
algorithms in IRL Here we focus on IRL, noting that extensive experiments for a robust soft-RL were
provided in [22]. We employ the MaxEnt algorithm [39], one of the most popular IRL algorithms in
the literature. We assume that the experts are uncertain about the dynamics and make robust decisions
and our aim is to recover the experts’ reward function from such robust decisions. In this context,
the standard MaxEnt algorithm will ignore the uncertainties and tries to learn the reward function
using a fixed vector of transition probabilities, and our robust version (named as Robust MaxEnt) will
explicitly take the uncertainty issue into consideration.

To evaluate how each algorithm performs, in analogy to prior IRL work [20], we use the “expected
value difference” score, which measures how a learned policy performs under the true rewards. We
will evaluate IRL outputs on both environments on which they were learned and random environments
(denoted by “transfer”). For the latter, we bring the learned parameters of the rewards to compute
rewards and optimal policies in the new environments. We will test our robust IRL algorithm using
two simulated environments, i.e., Objective-world and Highway Driving Behavior. Brief descriptions
are given below.

The Objectworld is an N ×N grid of states in which objects are randomly placed. Each object is
assigned one of C inner and outer colors. At each state, there are five possible actions corresponding
to staying at the same place or stepping to four different directions (up, down, left, right). For the
Highway Driving Behavior environment, the task is to navigate a vehicle in a highway of three
lanes with all vehicles moving with the same speed. The agent’s vehicle can switch lanes and drive at
up to four times speed of the traffic. Other vehicles (motorcycle or car) are civilian or police, and are
placed randomly on the three lanes. The agent can make five different actions of changing lanes (left
or right), speeding or slowing down, or staying at the same lane and same speed. Demonstrations are
paths of length 8 generated by the true rewards, true dynamics and robust behavior. We generate 128
samples for each score measures and we repeat the training and evaluation 8 times to compute the
means and standard errors of the scores. We test the algorithms with two ways of generating expert
trajectories, that is, standard unregularized MDP (deterministic policy) and ER-MDP (stochastic
policy). We use the code and data used in [20] and keep the the same settings. The experiments were
conducted using a PC running Window 10 with Intel(R) CoreTM i7-7700HQ CPU (2.80Hz) and 16
GB RAM.

We define the uncertainty sets as Qsa = {qsa |KL(qsa||q0
sa) ≤ ε}, ∀s ∈ S, a ∈ A where q0

sa are
the “true” transition probabilities, noting that these true values are not known by the experts and we
used q0

sa to compute the expected value difference scores. In this context, ε represents an uncertainty
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level. That is, larger ε will correspond to more uncertain expert behavior. We vary ε from 0 to 0.1 to
show the performance of the robust IRL algorithm with different ε.

Figure 1: Experiments with objectworld, solid curves show the mean and the shading shows the standard errors.

Figure 2: Highway driving behavior experiments, solid curves shows the means and shading shows standard
errors.

The means and standard errors of the expected value difference scores for the Objectworld and
Highway Driving Behavior environments are plotted in Fig. 1 and Fig. 2, in which the lower the
better. It is clear that the Robust MaxEnt constantly outperforms the standard MaxEnt for all the
tests, especially for the Objectworld example. The performance gap also increases when ε grows,
demonstrating the consequences of ignoring the uncertainty issues in IRL.

7 Conclusion

We study a robust ER-MDP model, aiming at taking the advantages of both robust MDP and ER-MDP
schemes to develop new algorithms for robust decision-making and learning. We show that several
properties that hold in the robust- and ER-MDP models also hold in the robust ER-MDP one. From
that, we look at the computation of robust optimal policies and providing computational complexity
and error propagation analyses. We show how our robust framework can be used to design robust IRL
and robust policy iteration algorithms under dynamics uncertainty. We provide numerical experiments
to demonstrate the application of our frameworks/algorithms in the context of IRL.

In this paper we focus on planing settings, i.e., all the information of the MDP is given, except that
the dynamics are only known partially. In the context that the environment is unknown and one needs
to interact with it to make policies, the algorithms and approximation bounds would need additional
work and we keep this for future work. Our robust model might be conservative, in the sense that we
assume the dynamics can take any values in the uncertainty set and the uncertainty set needs to satisfy
some rectangularity assumptions. Some ways to relax these assumptions are to use distributionally
robust approaches [36] and/or k-rectangular robust MDP [24], which would be promising for future
work.
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Supplementary Material
A Proofs of Main Results

A.1 Proof of Theorem 3.1

Contraction property. We prove the Contraction property. For any s ∈ S, let us consider two
cases T [V ](s) ≥ T [V ′](s) or T [V ](s) < T [V ′](s). If T [V ](s) ≥ T [V ′](s). For any ε > 0, let
πππ∗ ∈ ∆π be a solution such that

T [V ](s) ≤ min
qs∈Qs

{
Eπππ∗

[
r(a|s)− η lnπ∗(a|s) + γEs′∼qsa [V (s′)]

]}
+ ε.

Since, T [V ](s) ≥ T [V ′](s), we have

|T [V ](s)− T [V ′](s)| ≤ min
qs∈Qs

{
Eπππ∗s [r(a|s)− η lnπ∗(a|s) + γEs′∼qV (s′)]

}
+ ε

− min
qs∈Qs

{
Eπππ∗s [r(a|s)− η lnπ∗(a|s) + γEs′∼qV ′(s′)]

}

= min
qs∈Qs

{
γEπππ∗s ,s′∼qs [V (s′)]

}
− min

qs∈Qs

{
γEπππ∗s ,s′∼qs [V

′(s′)]

}
+ ε. (9)

We see that minqs∈Qs
{
γEπππ∗s ,s′∼qsV (s′)

}
≤ minqs∈Qs

{
γEπππ∗s ,s′∼qsV

′(s′)
}

, so if we denote by
q∗s ∈ Qs a solution such that

min
qs∈Qs

{
γEπππ∗s ,s′∼qs [V

′(s′)]
}
≥ Eπππ∗s ,s′∼q∗s [V ′(s′)]− ε,

then from (9) we have

|T [V ](s)− T [V ′](s)| ≤ γEπππ∗s ,s′∼q∗s (V (s′)− V ′(s′)) + 2ε ≤ γ||V − V ′||∞ + 2ε,∀s ∈ S.

Let ε → ∞ we obtain ||T [V ] − T [V ′]||∞ ≤ ||V − V ′||∞. The case T [V ](s) < T [V ′](s) can be
done in a similar way. So T [V ] is a contraction. The contraction property of T πππ[V ] can be proved in
a similar way.

Markov optimality. We will now prove that if V ∗ is a unique solution to the contraction mapping
T [V ] = V , then V ∗ will satisfies V ∗(s) = maxπππt∈∆π,t=0,1,... V

πππ(s), ∀s ∈ S. To this end, we first
denote h(at, st) = r(at|st) − η lnπt(at|st), s ∈ S, a ∈ A. For any policy πππ0,πππ1, ... ∈ ∆π, from
the definition of T [V ] we have

V ∗(s) ≥ min
q0
s

{
Eπππ0

s

[
h(a0, s0) + γEs1∼q0

s0a0
[V ∗(s1)]

]}
≥ min

q0,q1

{
Eπππ0,πππ1

q0,q1

[h(a0, s0) + γh(a1, s1)] + γ2Eq1 [V ∗(s2)|s0 = s]

}
.

This leads to, for any n ∈ N,

V ∗(s) ≥ min
q0,...,qn

{
Eπππ0,...,πππn

q0,...,qn

[
n∑
t=0

γ[t]h(at, st)
∣∣∣s0 = s

]
+ E πππt,qt

t=0,1,...,n

[
γ[n+1]V ∗(sn+1)

∣∣∣ s0 = s
]}

= min
q0,...

{
E πππt,qt
t=0,1,...

[ ∞∑
t=0

γ[t]h(at, st)
∣∣∣s0 = s

]
+ E πππt,qt

t=0,1,...,n

[
γ[n+1]V ∗(sn+1)

∣∣∣ s0 = s
]

− Eπππn+1,...
qn+1,...

[ ∞∑
t=n+1

γ[t]h(at, st)

]}

≥ min
q0,...

{
Eπππ0,...

q0,...

[ ∞∑
t=0

γ[t]h(at, st)
∣∣∣s0 = s

]}
− γ[n+1]||V ∗||∞ −

γ[n+1]H

1− γ
,
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where ||V ∗||∞ = maxs V
∗(s) and

H = max
at∈A,st∈S

q0,...,qt

Eπππ0,...,πππt

q0,...,qt
[r(at|st)− η lnπ(at|st)|s0 = s].

We can show that H <∞ because

H ≤ max
at∈A,st∈S

q0,...,qt

Eπππ0,...,πππt

q0,...,qt
[r(at|st)

∣∣s0 = s] + Eπππ0,...,πππt

q0,...,qt
[−η lnπ(at|st)|s0 = s]

≤ R+ max
at∈A,st∈S

q0,...,qt

−ηπ(at|st) lnπ(at|st)

≤ R+ η/e, (10)

where R = maxa,s r(a|s) and e the base of the natural logarithm (e ≈ 2.7828). Inequality (10) is
due to the fact that −x lnx ≤ e−1 for all x ∈ [0, 1]. So we have

V ∗(s) ≥ max
πππ0,...

min
q0,...

{
Eπππ0,...

q0,...

[ ∞∑
t=0

γ[t]h(at, st)
∣∣∣s0 = s

]}
− γ[n+1]||V ∗||∞ −

γ[n+1]H

1− γ
, (11)

noting that ||V ∗||∞ is also finite. On the other hand, there is a policy πππ0,πππ1, . . . such that, for any
ε > 0 and any s ∈ S

V ∗(s) ≤ min
q0

{
Eπππ0

[
h(a0, s) + γEs′∼q0

sa
[V (s′)]

]}
+ ε.

We can expand the Bellman equation to obtain

V ∗(s) ≤ min
q0

{
Eπππ0

[
h(a0, s) + γEs1∼q0

s0a0
[V (s1)]

]}
+ ε

≤ min
q0,q1

{
Eq0,q1

πππ0,πππ1

[
h(a0, s0) + γh(a1, s1)

∣∣s0 = s
]

+ γ2Eq0,q1

πππ0,πππ1

[V (s2)
∣∣s0 = s]

}
+ (1 + γ)ε.

Thus, by continuing expanding the inequality, we have, for any n ∈ N,

V ∗(s) ≤ min
q0,...,qn

{
Eq0,...,qn

πππ0,...,πππn

[
n∑
t=0

γ[t]h(at, st)
∣∣s0 = s

]
+ γ[n+1]Eq0,...,qn

πππ0,...,πππn
[V ∗(sn+1)

∣∣s0 = s]

}

+
1− γ[n+1]

1− γ
ε

≤ min
q0,...

{
Eq0,...
πππ0,...

[ ∞∑
t=0

γ[t]h(at, st)
∣∣s0 = s

]
+ γ[n+1]||V ∗||∞−

Eq0,...
πππ0,...

[ ∞∑
t=n+1

γ[t]h(at, st)
∣∣s0 = s

]}
+

1− γ[n+1]

1− γ
ε

≤ min
q0,...

{
Eq0,...
πππ0,...

[ ∞∑
t=0

γ[t]h(at, st)
∣∣s0 = s

]}
+ γ[n+1]||V ∗||∞ +

γ[n+1]H

1− γ
+

1− γ[n+1]

1− γ
ε.

So we have

V ∗(s) ≤ max
πππ0,...

min
q0,...

{
Eπππ0,...

q0,...

[ ∞∑
t=0

γ[t]h(at, st)
∣∣s0 = s

]}
+ γ[n+1]||V ∗||∞ +

γ[n+1]H

1− γ
+

1− γ[n+1]

1− γ
ε

(12)

From (11) and (12), we can take n→∞ and ε arbitrarily small, we have

V ∗(s) = max
πππ0,...

min
q0,...

{
Eπππ0,...

q0,...

[ ∞∑
t=0

γ[t]h(at, st)
∣∣∣s0 = s

]}
,
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as desired. From the proof, we can also validate see that if V πππ is a solution to the system T πππ[V ] = V ,
then it also satisfies Eq. 4.

Perfect duality. We move to the Perfect Duality property. We first prove that this property holds for
the Bellman update. The weak duality implies that

min
qs∈Qs

max
πππs∈∆π

s

ψs(πππ,q, V ) ≥ max
πππs∈∆π

s

min
qs∈Qs

ψs(πππ,q, V )

To prove the opposite inequality, for any ε > 0, let qs ∈ Qs be a transition solution such that

min
qsa∈Qsa

{
Es′∼qsa [V (s′)]]

}
≥ Es′∼qsa [V (s′)]− ε.

We have the chain

min
qs∈Qs

max
πππs∈∆π

s

ψs(πππ,q, V ) ≤ max
πππs∈∆π

s

ψs(πππ, q̄, V )

= max
πππs∈∆π

s

{
Eπππs

[
r(a|s)− η lnπ(a|s) + Es′∼qsa [V (s′)]

]}

≤ max
πππs∈∆π

s

{
Eπππs

[
r(a|s)− η lnπ(a|s) + min

qsa
Es′∼qsa [V (s′)]

]}
+ ε

= max
πππs∈∆π

s

min
qs∈Qs

{
Eπππs

[
r(a|s)− η lnπ(a|s) + Es′∼qsa [V (s′)]

]}
+ ε.

Let ε → 0 we obtain the opposite-side of the inequality, which implies the perfect duality for the
Bellman update. To prove the perfect duality for maxπππ minq F∞(πππ,q) we define the dual of the
mapping T [V ] as T̂ [V ] = maxπππ minq ψs(πππ,q, V ). Since T [V ] = T̂ [V ] for any V ∈ R|S|, they
yield the same fixed point solution V ∗. Now, similarly to the proof of the Markovian Optimality
property, we can also show that V ∗ will satisfy

V ∗(s) = min
q0,...

max
πππ0,...

{
Eπππ0,...

q0,...

[ ∞∑
t=0

γ[t]h(at, st)
∣∣∣s0 = s

]}
.

Combining with the Markov Optimality shown in point (iv), we obtain the minimax equality

max
πππ0,...

min
q0,...

F∞(ΠΠΠ,Q) = min
q0,...

max
πππ0,...

F∞(ΠΠΠ,Q),

which completes the proof.

To compute an optimal policy to the Markov problem, according to the Markov Optimality property
of Theorem 3.1, we just need to find a solution by solving the Bellman equation T [V ] = V . Given
any state s ∈ S, we have

max
πππs

min
qs

{
Eπππ
[
r(a|s)− η lnπ(a|s) + Eqsa [V (s′)]

]}

= max
πππs

{
Eπππs

[
r(a|s)− η lnπ(a|s) + γmin

qsa
Eqsa [V (s′)]

]}
.

So we can write

V (s) = max
πππs

{∑
a∈A

π(a|s)
(
r(|s)− η lnπ(a|s) + δ(s, a)

)}
,

where δ(s, a) = minqsa
∑
s′∈S q(s

′|s, a)V (s′) for notational brevity. Let consider the maximization
problem

J(s) = max
πππs

∑
a∈A

π(a|s)
(
r(a|s)− η lnπ(a|s) + δ(s, a)

)
(13)

subject to
∑
a∈A

π(a|s) = 1

π(a|s) ≥ 0, ∀a ∈ A.
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We consider the Lagrange function

L(πππs, β) =
∑
a∈A

π(a|s)
(
r(a|s)− η lnπ(a|s) + δ(s, a)

)
− β

(∑
a

π(a|s)− 1

)
.

We see that if πππ∗s is optimal to (13), then (∂L(π(·|s), β))/∂π(a|s) = 0 at π∗(a|s) for all a ∈ A,
leading to the following equations{

η lnπ∗(a|s) = r(a|s) + δ(s, a)− (η + β)∑
a π
∗(a|s) = 1.

(14)

Hence, we have 
π∗(a|s) = (exp(r(a|s)/η + δ(s, a)/η))/exp(1 + β/η)

exp(1 + β/η) =
∑
a exp(r(a|s)/η + δ(s, a)/η)

J(s) = (1 + β/η) = ln (
∑
a exp(r(a|s)/η + δ(s, a)/η)) .

This leads to a closed form to compute the objective of the maximization problem. The value of V t
becomes

T [V ](s) = η ln

(∑
a

exp

(
r(a|s)/η +

1

η
min
qsa

∑
s′∈S

q(s′|s, a)V (s′)

))

= η ln

(∑
a

eV (a|s)

)
,

where
V (a|s) = r(a|s)/η +

1

η
min
qsa

∑
s′∈S

q(s′|s, a)V (s′).

The optimal policies π∗(a|s) then becomes exp (V (a|s))/exp (T [V ](s)/η), according to (14). We
obtain the desired equations for both T [V ] and an optimal policy πππ∗.

A.2 Proof of Theorem 3.2

Contraction property. We also consider two cases. If T [V ](s) ≥ T [V ′](s). For any ε > 0, let
πππ∗ ∈ ∆π be a solution such that

T [V ](s) ≤ min
qs∈Qs

{
ψs(πππ

∗,q, V )

}
+ ε.

We have

0 ≤ T [V ](s)− T [V ′](s) ≤ min
qs∈Qs

{
ψs(πππ

∗,q, V )
}

+ ε− min
qs∈Qs

{
ψs(πππ

∗,q, V ′)
}
. (15)

So if we denote by q∗s ∈ Qs a solution such that

min
qs∈Qs

{
ψs(πππ

∗,q, V ′)
}
≥ ψs(πππ∗,q∗, V ′)− ε,

then from (15) we have

|T [V ](s)− T [V ′](s)| ≤ ψs(πππ∗,q∗, V )− ψs(πππ∗,q∗, V ′) + 2ε ≤ γ||V − V ′||∞ + 2ε,∀s ∈ S.

Let ε→∞ we obtain ||T [V ]−T [V ′]||∞ ≤ ||V −V ′||∞. The case T [V ](s) < T [V ′](s) is similarly
proved.

Given the contraction property, the Markov Optimality (iv) can be validated similarly as in the
(s, a)-rectangularity case.

Perfect duality. For the perfect duality property, noting that the variables πππs in the adversary’s
problem minqs{·} cannot be eliminated as in the (s, a)-rectangularity case. However, with the
assumption that the uncertainty set is convex and compact, we can make use of the von Neumann’s
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minimax theorem [5] and the fact that function ψs(πππ,q, V ) is linear in πππs and convex in qs, to see
that

max
πππs

min
qs

{
ψs(πππ,q, V )

}
= min

qs
max
πππs

{
ψs(πππ,q, V )

}
,

Thus the Perfect Duality holds for Bellman equation T [V ], T [V ] = T̂ [V ] for all V ∈ R|S|. Using
the contraction property, let V ∗ be a unique fixed point solution to the systems T [V ] = V and
T̂ [V ] = V , then similarly to proof of Theorem 3.1-(v), we can show that the Perfect Duality also
holds for maxπππ0,... minq0,... F∞(ΠΠΠ,Q).

Optimal policy. The key issue/challenge when proving the formulation for the optimal policy is to
show that if (πππ∗s,q∗s) is a solution to the Bellman update maxπππs minqs

{
ψs(πππ,q, V )

}
, then is is also

solution to the min-max counterpart. It is not always the case even if the perfect duality (or minimax
equality) holds. In this proof we show that this is actually the case.

First, to simplify the notations, let

g(πππs,qs) = Eπππs

[
r(a|s)−lnπ(a|s)+γEqs [V

∗(s′)]

]
, v(a, s|qs) = exp

(
r(a|s) + γEqs

[
V ∗(s′)

])
.

We see that (q∗s,πππ∗s) specified in Theorem 3.2 is an optimal solution to the minimax problem
minqs∈Qs maxπππs{g(πππs,qs)}. We will show that (q∗s,πππ∗s) is also a saddle point of the minimax
problem, thus also a solution to the max-min counterpart. From the definition of (q∗s,πππ∗s) we have
πππ∗s = argmaxπππsg(πππs,q∗s). Now we prove that q∗s = argminqs

g(πππ∗s,qs). From the definition of the
optimal policy πππ∗s we write

g(πππ∗s,qs) =
∑
a

v(a, s|q∗s) (r(a|s)− lnπ∗(a|s))∑
a′ v(a′, s|q∗s)

+
γ
∑
a

∑
s′ v(a, s|q∗s)q(s′|a, s)V (s′)∑

a′ v(a′, s|q∗s)
. (16)

Recall that q∗s is an optimal solution to minqs{h(qs) =
∑
a v(a, s|qs)}. Now, consider any point

q′s ∈ Qs and denote δδδs = q′s − q∗s . The convexity of Qs implies that q∗s + αδδδs ∈ Q, for any
α ∈ [0, 1], and there exists β ∈ [0, 1] such that

h(q∗s + αδδδs)− h(q∗s) = ∇qsh(q∗s + αβδδδ)T(αδδδs),

where the equality is due to the fact that h(qs) is differentiable and convex. This is also equivalent to

∇qsh(q∗s + αβδδδ)Tδδδs =
h(q∗s + αδδδs)− h(q∗s)

α
. (17)

Let α → 0, the left side of (17) converges to ∇qsh(q∗s)Tδδδs while the right side is always non-
negative. As a result, we need to have ∇qsh(q∗s)Tδδδs ≥ 0. To show this more precisely, assume that
∇qsh(q∗s)Tδδδs < 0, then the continuity of the left side of (17) implies that there exists α small enough
such that ∇qsh(q∗s + αβδδδ)Tδδδs < 0, which means h(q∗s + αδδδs) < h(q∗s), which is contrary to the
definition of q∗s . So, we have ∇qsh(q∗s)Tδδδs ≥ 0 or ∇qsh(q∗s)Tq′s ≥ ∇qsh(q∗s)Tq∗s . Since we can
choose q′s arbitrarily in Q, we have q∗s = argminqs

∇qsh(q∗s)Tqs. Moreover,

∇qsh(q∗s)
Tqs = γ

∑
a

v(a, s|q∗s)
∑
s′

V (s′)q(s′|a, s). (18)

Combine (16) and (18) and the recent claim that q∗s = argminqs
∇qsh(q∗s)Tqs, we have

q∗s = argminqs
g(πππ∗s,qs). As such, (q∗s,πππ∗s) is also a saddle point of the minimax problem

minqs∈Qs maxπππs{g(πππs,qs)}. We need one more step to prove that the policies determined in
the theorem is optimal to the max-min problem maxπππs minqs∈Qs{g(πππs,qs)}. Using the property of
the saddle point, for any policies πππs we have

min
qs∈Qs

{g(πππs,qs)} ≤ g(πππs,q∗s) ≤ max
πππs
{g(πππs,q∗s)}

= g(πππ∗s,q
∗
s) = min

qs
{g(πππ∗s,qs)},

which finally implies that (πππ∗,q∗) determined in the theorem is also optimal to the original max-min
problem. we complete the proof.
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A.3 Proof of Theorem 3.3

We first prove the following result. Let define a function f : RI → R as f(x) = ln
(∑I

i=1 e
xi
)

.

Given any vector x, y ∈ RI , the mean value theorem implies that there is z = αx + (1 − α)y,
α ∈ [0, 1], such that

|f(x)− f(y)| = |∇f(z)T(x− y)| ≤
∑
i∈[I]

||x− y||∞
ezi∑

i′∈[I] e
zi′

= ||x− y||∞. (19)

For (i), we first have, for any s ∈ S, we have

T [V ](s) ≤ T̃ [V ](s) ≤ η ln

(∑
a∈A

exp
(
r(a|s)/η + γmin

qsa

{∑
s′∈S

q(s′|a, s)V (s′)

}
/η + γξ/η

))
.

So, the inequality in (19) tells us that

|T [V ](s)− T̃ [V ](s)| ≤

∣∣∣∣∣T [V ](s)− η ln

(∑
a∈A

exp
(
r(a|s)/η + γmin

qsa

{∑
s′∈S

q(s′|a, s)V (s′)

}
η + γξ/η

))∣∣∣∣∣
≤ γξ,

which means
||T [V ]− T̃ [V ]||∞ ≤ γξ. (20)

Moreover, using the triangle inequality, We can further write

||T n[V ]− T̃ n[V ]||∞ ≤ ||T̃ n[V ]− T [T̃ n−1[V ]]||∞ + ||T [T̃ n−1[V ]]− T n[V ]||∞
(∗)
≤ γξ + γ||T n−1[V ]− T̃ n−1[V ]||∞
≤ . . .
≤ γξ(1 + . . .+ γ[n−1])

= γξ(1− γ[n])/(1− γ),

where (*) is due to (20). This is the desired bound.

For (ii), we need the following chain of claims.

• Claim 1: For any V ∈ R|S|

||T [V ]− V ||∞ ≤ ||T̃ [V ]− T [V ]||∞ + ||T̃ [V ]− V ||∞ ≤ γξ + ||T̃ [V ]− V ||∞ (21)

• Claim 2: For any V ∈ R|S|

||T n[V ]− V ||∞ ≤ ||T n[V ]− T n−1[V ]||∞ + ||T n−1[V ]− V ||∞
≤ γ[n−1]||T [V ]− V ||∞ + ||T n−1[V ]− V ||∞

≤ ||T [V ]− V ||∞
(

1 + . . .+ γ[n−1]
)

= ||T [V ]− V ||∞
1− γ[n]

1− γ
.

So
||V − V ∗||∞ ≤ ||T [V ]− V ||∞

1

1− γ
.

• Claim 3: For any V ∈ R|S| and n ∈ N+

||T̃ n[V ]− T̃ n−1[V ]||∞ ≤ ||T̃ n[V ]− T [T̃ n−1[V ]]||∞ + ||T̃ n−1[V ]− T [T̃ n−2[V ]]||∞+

γ||T̃ n−1[V ]− T̃ n−2[V ]||∞
(∗∗)
≤ 2γξ + γ||T̃ n−1[V ]− T̃ n−2[V ]||∞,

where (**) is due to (20). So,

||T̃ n[V ]− T̃ n−1[V ]||∞ ≤ 2ξγ
1− γ[n−1]

1− γ
+ γ[n−1]||T̃ [V ]− V ||∞.
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• Claim 4: For any V ∈ R|S| and n ∈ N+

||T̃ n[V ]− V ∗||∞ ≤
1

1− γ
||T [T̃ n[V ]]− T̃ n[V ]||∞

≤ γξ

1− γ
+

1

1− γ
||T̃ n+1[V ]− T̃ n[V ]||∞

(∗∗∗)
≤ γξ

1− γ
+

2γξ

(1− γ)2
+

γ[n]

1− γ
||T̃ [V ]− V ||∞, (22)

where (***) is due to Claim 4.

Thus, to have ||T̃ n[V ]− V ∗||∞ ≤ ε, it is necessary to select ξ ≤ ε(1− γ)2/(4γ) and ||T̃ n+1[V ]−
T̃ n[V ]||∞ ≤ 3ε(1− γ)/4. Note that the latter inequality always occurs if n is large enough, because

||T̃ n+1[V ]− T̃ n[V ]||∞ ≤ 2ξγ
1

1− γ
+ γ[n−1]||T̃ [V ]− V ||∞

≤ ε(1− γ)/2 + γ[n−1]||T̃ [V ]− V ||∞

and the term γ[n−1]||T̃ [V ]− V ||∞ converges to zero when n→∞. Moreover, we see that it would
requires n = O(ln ε−1) to have γ[n−1]||T̃ [V ]− V ||∞ ≤ ε(1− γ)/4.

For the last claim (iii) , we write the optimal policy and the approximate policy as

π∗(a|s) =
exp(z(a, s|V ∗,q∗))/η∑
a′ exp(z(a′, s|V ∗,q∗)/η)

; and π̃(a|s) =
exp(z(a, s|Ṽ , q))/η∑
a′ exp(z(a′, s|Ṽ , q)/η)

where z(a, s|Ṽ , q) = r(a|s) + γEq̄sa [Ṽ (s′)]. We see that, for any a ∈ A, s ∈ S

|z(a, s|V ∗,q∗)− z(a, s|Ṽ , q)| = γ|Eq̄sa [Ṽ (s′)]−min
qsa

Eqsa [V ∗(s′)]|

≤ γ|Eq̄sa [Ṽ (s′)]−min
qsa

Eqsa [Ṽ (s′)]|+ γ|min
qsa

Eqsa [Ṽ (s′)]

−min
qsa

Eqsa [V ∗(s′)]|

(i)

≤ γξ + γ|min
qsa

Eqsa [Ṽ (s′)]−min
qsa

Eqsa [V ∗(s′)]| (23)

We now consider two cases

• If minqsa{Eqsa [Ṽ (s′)]} ≥ minqsa{Eqsa [V ∗(s′)]}, then let q∗sa be a solution attaining the
optimal value minqsa{Eqsa [V ∗(s′)]}. We have

min
qsa

Eqsa [Ṽ (s′)]−min
qsa

Eqsa [V ∗(s′)] ≤ |Eq∗sa [Ṽ (s′)− V ∗(s′)]|

≤ ||Ṽ − V ∗||∞ (24)

• If minqsa{Eqsa [Ṽ (s′)]} < minqsa{Eqsa [V ∗(s′)]}, then similarly we let q∗sa be a solution
attaining the optimal value minqsa{Eqsa [V̂ (s′)]} and obtain

min
qsa

Eqsa [Ṽ (s′)]−min
qsa

Eqsa [V ∗(s′)] ≤ ||Ṽ − V ∗||∞ (25)

Combine (23), (24) and (25) we have

|z(a, s|V ∗,q∗)− z(a, s|Ṽ , q)| ≤ γ(ξ + ε). (26)
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We now look at the difference between π̃(a|s) and π∗(a|s) as

∣∣∣∣ln π̃(a|s)
π∗(a|s)

∣∣∣∣
≤ 1

η
|z(a, s|V ∗,q∗)− z(a, s|Ṽ , q)|+∣∣∣∣∣ln
(∑

a′

exp(z(a, s|Ṽ , q)/η)

)
− ln

(∑
a′

exp(z(a, s|V ∗,q∗)/η)

)∣∣∣∣∣
(i)

≤ 1

η
|z(a, s|V ∗,q∗)− z(a, s|Ṽ , q)|+ 1

η
max
a′
|z(a′, s|V ∗,q∗)− z(a′, s|Ṽ , q)|

(ii)

≤ 2

η
(ξ + ε), (27)

where (i) is due to (19) and (ii) is due to (26). Continue to elaborate (27) we get

|π̃(a|s)− π∗(a|s)|
π∗(a|s)

≤ exp(2(ξ + ε)/η)− 1, (28)

thus |π̃(a|s)− π∗(a|s)| ≤ exp(2(ξ + ε)/η)− 1, which leads to the desired bound.

B Relevant Algorithms and Discussions

B.1 Hardness of Solving Robust ER-MDP with Non-rectangular Uncertainty Sets

Theorems 3.1 and 3.2 imply that if we can efficiently (i.e., in polynomial time) solve
the inner minimization problems minqsa E[V (s′)] in the (s, a)-rectangularity case and
minqs∈Qs{

∑
a∈A exp(z(a, s|V ∗,q))} in the (s, a)-rectangularity case, then we can compute the

value function as well as the optimal policy in polynomial time as well. We will discuss this
in the next question. A relevant question here is that what happens if the uncertainty set is not
rectangular. [35] consider the standard roust MDP and show that, if this is the case, then un-
less P = NP , it is generally not possible achieve an ε-approximation of the expected accumu-
lated reward in polynomial time. We can show that this result also holds for the robust entropy-
regularized MDP model. Our argument is that, for any η > 0, if there is an algorithm X that
is able to give a ε-approximation of maxπππ minq F

η
∞(r,πππ,q), for any ε > 0, where F η∞(πππ,q) is

the expected accumulated regularized reward as in (1) but we add η and the reward function r
as parameters to facilitate our arguments. Now, for any N > 0 we can solve the regularized
problem (in polynomial time) by X with rewards r′ = r × N and approximation error ε, then
we see that the algorithm will give an (ε/2)-approximation of

(
N maxπππ minq F

η/N
∞ (r,πππ,q)

)
,

or a (ε/2)-approximation of
(

maxπππ minq F
η/N
∞ (r,πππ,q)

)
. Furthermore, by choosing N large

enough, we also have |maxπππ minq F
η/N
∞ (r,πππ,q) − maxπππ minq F

0
∞(r,πππ,q)| < ε/2, noting that

F 0
∞(r,πππ,q) is the objective in the unregularized case. By a triangle inequality, we see that
|F̃ − maxπππ minq F

0
∞(r,πππ,q)| < ε, which means that Algorithm X can give a ε-approximation

of maxπππ minq F
0
∞(r,πππ,q), which contradicts [35]’s claims.
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B.2 Approximate Robust Value Iteration

Algorithm 1: Robust value iteration
# Compute an ε-approximation of V ∗
V = V 0 = 0, V = 1
repeat
V = V ;
Solve the inner minimization problem minqas Eqsa [V (s)] by a ξ-approximation algorithm,
where ξ = ε(1− γ)2/(4γ). Then, update V ← T̃ [V ].

until ||V − V ||∞ ≤ 3ε(1− γ)/4.
# Compute an ε-approximation of πππ∗
V = V 0 = 0, V = 1
repeat
V = V ;
Solve the inner minimization problem minqas Eqsa [V (s)] by a ξ-approximation algorithm,
where ξ = ln(ε+ 1)(1− γ)2/(8γ). Then, update V ← T̃ [V ].

until ||V − V ||∞ ≤ 3 ln(ε+ 1)(1− γ)/8.

B.3 Robust IRL

In perspective of imitation learning/IRL, we are interested in approximating the log-likelihood func-
tion. Assume that the demonstrated data consists of I trajectories and i-th trajectory contains Ki state-
action observations. The average log-likelihood function is defined as L(Ω|θ) = 1

I

∑I
i=1 L(ωi|θ),

where θ is a vector of parameters to be inferred from the data, and L(ωi|θ) is the log-likelihood
value of sequence ωi, i = 1, . . . , I , defined as L(ωi|θ) =

∑Ki−1
t=0 lnπ∗(ait|sit). The follow-

ing algorithm describe a robust IRL algorithm that allows to learn from conservative behavior.

Algorithm 2: Robust infinite-horizon IRL
# Compute an ε-approximation of L(Ω|θ)
V = V 0 = 0, V = 1
for each sequence ωi, i ∈ [I] do

repeat
V = V ;

Solve minqas Eqsa [V (s)] by a ξ-approximation algorithm. where ξ = ε(1−γ)2

8γ2 maxi{Ki} .

Update V ← T̃ [V ].
until ||V − V ||∞ ≤ 3ε(1− γ)/(8γmaxi{Ki})
Compute P (aik|sik, θ), k = 0, . . . ,Ki, based on fixed point solution V , and
P (ωi|θ) =

∏Ki
k=0 P (aik|sik, θ)

end for
Return L̃(Ω|θ) = 1/I

∑
i∈[I] lnP(ωi|θ)

Similarly to the finite case, we can show that if we can compute an εV -approximation of the
fixed point solution V ∗, then we can achieve a (2γεV maxi{Ki})-approximation of L(ωi|θ)
and L(Ω|θ). Algorithm 2 presents main steps to compute an ε-approximation of the log-
likelihood function. The computational complexity in the case of single KL divergence bound
is O

(
I|S||A|maxs{Ns}(ln ε−1)2

)
and in the case of several bounds with interior-point algorithms,

the worst-case complexity is O
(
I|S||A|(maxs{Ns})7/2(ln ε−1)2

)
. On the other hand, when the

transition probabilities are assumed to be known with certainty, this worst-case complexity becomes
O
(
I|S||A|(maxs{Ns}) ln ε−1

)
.

B.4 Prediction Log-loss Guarantee in Robust ER-MDP

It is also interesting to look at how our robust ER-MDP model is connected to the standard maximum
causal entropy principle [38]. Proposition B.1 below shows that, in analogy to [38], the prediction
log-loss guarantee holds for the robust ER-MDP model, but with an additional level of robustness
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w.r.t uncertain dynamics Q. This result is also relevant to a claim in [6] saying that the standard
ER-MDP is robust for a certain class of reward functions. This implies that our robust ER-MDP
model adds another level of robustness to their setting when the dynamics are ambiguous.

Proposition B.1 Assume that Q is (a, s)-rectangular and compact, or (a, s)-rectangular, compact
and convex, let (πππ∗, q∗) be the solution determined in Theorems 3.1 or 3.2, then ρρρt = πππ∗ and
qt = q∗, for t = 0, . . . ,∞, minimize the prediction log-loss

min
ρρρt∈∆π

qt∈Q
t=0,...

max
πππt∈∆π, t=0,...

Eτ∼(ΠΠΠ,Q)[R(τ)]=ẼR

EΠΠΠ,Q

[ ∞∑
t=0

−γ[t] ln ρt(at|st)

]
,

where R(τ) is the accumulated and discounted reward of trajectory τ = {(s0, a0), (s1, a1), ....} and
ẼR is empirical expectation of the accumulated rewards.

Proof.

Under the assumptions, we see that (qt,πππt) = (q∗,πππ∗), t = 0, . . ., is a solution to the problem

min
q0,...

max
πππ0,...

{
EQ,ΠΠΠ

[ ∞∑
t=0

γ[t]
(
r(at|st)− η lnπt(at|st)

)]}
. (29)

It is also well-known that the inner maximization optimization problem of (29) can be formulated
equivalently as a maximum causal entropy problem [38]

sup
πππ0,...

Eπππ0,...

[ ∞∑
t=0

−γ[t]η lnπt(at|st)

]
(30)

subject to Eτ∼(ΠΠΠ,Q) [R(τ)] = ẼR.
πππt ∈ ∆π, t = 0, . . .

The prediction log-loss guarantee shown in [38] also implies that if πππ∗ is an optimal solution to (30),
then it is also a solution to the problem

min
ρρρt∈∆π

t=0,...

max
πππt∈∆π

t=0,...

EΠΠΠ,Q

[
T∑
t=0

−η ln ρ(at|st)

]
(31)

subject to Eτ∼(ΠΠΠ,Q) [R(τ)] = ẼR.

Combine (29), (30) and (31) we obtain the desired result.

B.5 Robust General-Regularized MDP

We show how our results can be extended to the general regularized MDP framework introduced in
[9]. In a regularized model, a regularized term φs(πππs) are added to the reward [9], for any s ∈ S.
The Markov decision problem in the finite-horizon case can be stated as

max
πππt∈∆π

t=0,...

min
qt∈Q
t=0,...

{
Eτ∼(ΠΠΠ,Q)

[ ∞∑
t=0

γ[t]
(
r(at|st) + φst(πππ

t
st)
)]}

. (32)

It is typically assumed that φs(πππs) is concave and bounded. If φs(πππs) = −
∑
a∈A π(a|s) lnπ(a|s)

(negative relative entropy), the model becomes the ER-MDP model studied above. In analogy to the
ER-MDP, we define the mapping T φφφ[V ] : R|S| → R|S|

T φφφ[V ](s) = max
πππs∈∆π

s

min
qs∈Qs

{
Eπππs,qs

[
r(a|s) + γ

∑
s′

q(s′|s, a)V (s′)
]

+ φs(πππs)

}
.

Then the contraction mapping can be verified analogously as in the entropy-regularized models. That
is, under both (s, a) and (s)-rectangularity conditions, i.e., for any V, V ′ ∈ R|S|, we have T φφφ[V ] is
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a contraction mapping with parameter γ ||T φφφ[V ] − T φφφ[V ′]||∞ ≤ γ||V − V ′||∞, with a note that
the contraction property for the non-robust model has been shown in [9]. The other basic properties,
except the perfect duality can be proved similarly as well. For example, we also have the Markov
optimality saying that, under the two uncertainty assumptions, if V φφφ,∗ is a solution to the equation
T φφφ[V ] = V , then

V φφφ,∗(s) = max
πππt∈∆π

t=0,...

min
qt∈Q
t=0,...

{
Eτ∼(ΠΠΠ,Q)

[ ∞∑
t=0

γ[t]
(
r(at|st) + φst(πππ

t
st)
) ∣∣∣∣∣s0 = s

]}
,

leading to the result that one can solve the Bellman equation T φ[V ] = V to get an optimal policy, as

π∗s = argmaxπππs {w
T
sπππs + φs(πππs)}

where ws ∈ R|A| with entries

wsa = r(a|s) + γ min
qs∈Qs

{∑
s′

q(s′|s, a)V φφφ,∗(s′)

}
.

Note that if the convex conjugate function (i.e. Legendre-Fenchel transform) of −φs(πππs) can be
computed efficiently, then the contraction mapping T φφφ[V ] can be expressed as T φφφ[V ] = φ∗s(ws),
where φ∗s(ws) is the convex conjugate of−φs(πππs) in ∆π

s , and ws ∈ R|A| with entries wsa =
r(a|s) + γminqs∈Qs {

∑
s′ q(s

′|s, a)V (s′)}.

If the uncertainty set Q is only (s)-rectangular, the inner infimum problem in the mapping T φφφ[V ]
involves πππs as decision variables. Thus, solving the robust Bellman equation is more difficult.
However, these max-min problems can be solved efficiently by a saddle point algorithm, e.g., the
Frank-Wolfe algorithms proposed in [10]. In this context, the computational complexity is more
difficult to bound, as compared to what we have in Section 5.

We also can show that the perfect duality also holds in the context, for any uncertainty set if Q is
(s, a)-rectangular and for convex and compact if Q is (s)-rectangular. The proof can be done by
showing that the perfect duality holds for the robust Bellman equation using the von Neumann’s
minimax theorem, analogously to the entropy-regularized case. The perfect duality property would
be helpful for solving the robust Bellman equation in the (s)-rectangularity case. More precisely,
in case that the convex conjugate of −φs(πππs) can be computed conveniently (e.g., by an analytical
form), one can solve the min-max counterpart of T φφφ[V ] as

T̃ φφφ[V ](s) = min
qs∈Qs

max
πππs∈∆π

s

{πππT
sws(qs) + φs(πππs)} = min

qs
φ∗s(ws(qs)),

where ws(qs) ∈ R|A| with entries wsa(qs) = r(a|s) + γ
∑
s′ q(s

′|s, a)V (s′). Since ws(qs) is
linear in qs, φ∗s(ws(qs)) is concave in qs, which implies that the problem minqs φ

∗
s(ws(qs)) can be

solved efficiently in polynomial time by a convex optimization algorithm (e.g., interior-point). Recall
that in the entropy-regularized model, the convex conjugate function of φs(·) has the closed form
φ∗s(ws) = ln

(∑
a∈A exp(wsa)

)
. In the general regularized case, there might be no closed form

to compute φ∗s(ws) and one might need to do it approximately. This would lead to an additional
approximation error in the error propagation of the approximate value iteration or (modified) policy
iteration.

B.6 Complexity Analyses for the Adversary’s Problems

We analyze the computational complexity of solving the adversary’s problem, under two rectangularity
settings and with uncertainty sets based on several KL bounds.

B.6.1 (s, a)-rectangularity

First, for notational simplicity, we consider a compact version of the inner optimization problem
minx

{∑Ns
i=1 xici| x ∈ X ⊂ ∆(Ns)

}
, where ∆(|Ns|) is the simplex in RNs and, Ns is the number

of states that can be reached from s. Normally, Ns � |S|. In a likelihood model, the uncertainty
set has the form X = {x ∈ ∆(Ns)|

∑
i x̂i lnxi ≥ β}, where x̂i is an empirical estimate and β is
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a scalar representing an uncertainty level, such that
∑
i x̂i ln x̂i ≥ β. On the other hand, a relative

entropy model takes the form X = {x ∈ ∆(|Ns|)|
∑
i xi ln(xi/x̂i) ≤ β}. It is possible to show that

under the above uncertainty sets, one can achieve a ξ-approximation of the inner optimal value by
bisection, with complexity C(ξ) = O(Ns ln ξ−1), for any s ∈ S. We refer the reader to [27, 17] for
detailed discussions.

One might be interested in a mixture of the above models, i.e., uncertainty sets determined by several
KL divergence bounds. In the most general form, such an inner minimization problem can be
formulated as.

minimize
x

cTx =

Ns∑
i=1

cixi (33)

subject to X̂ ln x ≥ ααα

(xT ln x)e− Ŷx ≤ βββ
x ∈ ∆(|Ns|),

where ln x = (lnx1, . . . , lnxNs)
T, X̂ ∈ RK×Ns+ , ααα ∈ RK are parameters of the likelihood models,

and Ŷ ∈ RH×Ns+ , βββ ∈ RH are parameters of the relative entropy models. In general, it seems not
possible to solve the above problem by bisection if K +H ≥ 2, but we can prove that (33) can be
solved by interior-point in polynomial time.

Proposition B.2 Assume that (33) satisfies the Slater condition, then a ξ-
approximation of Problem 33 can be achieved with complexity C(ξ) =
O
(
(4Ns +H +K + 2)1/2(4Ns +H +K)N2

s ln ξ−1
)
.

Proof. By a change of variable, we write an equivalent problem
minimize

x
cTx (34)

subject to
∑
i

X̂kizi ≥ αk ∀k∑
i

yi − Ŷhi ≤ βh ∀h

zi ≤ ln(xi) ∀i
yi ≥ xi lnxi ∀i∑
i

xi ≥ 1− ε

−
∑
i

xi ≥ −(1 + ε).

With the following notes [26]

• Φ(x, z) = − ln(lnx − z) − lnx is a 2-self-concordant barrier for the epigraph of
{(x, z)| ln(x) ≥ z, x ≥ 0}

• Γ(x, y) = − ln(y − x lnx) − lnx is a 2-self-concordant barrier for the epigraph of
{(x, z)| x ln(x) ≤ y, x ≥ 0}

This allows us to construct a barrier function of the feasible set of Problem 34.

F(x, y, z) = −
∑
k

ln

(∑
i

X̂ki − αk

)
−
∑
h

ln

(
−
∑
i

(yi + Ŷhi) + βh

)
+
∑
i

Φ(xi, zi)

+
∑
i

Γ(xi, yi)− ln

(∑
i

xi + ε− 1

)
− ln

(
−
∑
i

xi − ε+ 1

)
.

We see that F(x, y, z) is a self-concordant [26] with variable 4Ns +K +H + 2. The complexity of
the path-following method associated with the aforementioned barrier is

O
(

(4Ns +H +K + 2)1/2(4Ns +H +K)N2
s ln ε−1

)
.
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Typically, H,K � Ns. As a result, the complexity can be bounded by O(N
7/2
s ln ξ−1).

B.6.2 (s)-rectangularity

In this case, we need to solve the inner problem minqs∈Qs

{∑
a∈A exp

(
r(a|s) + γEs′ [V ∗(s′)]

)}
,

for any s ∈ S , to perform contraction iterations and compute optimal policies. The inner optimization
is of the form

minimize
x

∑
a∈A

da exp

(
Ns∑
i=1

caixai

)
(35)

subject to X̂ ln x ≥ ααα

(xT ln x)e− Ŷx ≤ βββ
x ∈ ∆(Ns × |A|),

where X̂ ∈ RK×(|A|Ns)
+ and Ŷ ∈ RH×(|A|Ns)

+ are parameter matrices of the likelihood models
and entropy models, respectively. The proposition below shows that one can solve Problem 35 in
polynomial time.

Proposition B.3 Assume that (35) satisfies the Slater condition, then a ξ-approximation of Problem
35 can be achieved with complexity

C(ξ) =O
(

(4|A|Ns + 4|A|+H +K)1/2(4|A|Ns +H +K)(|A|Ns)2 ln ξ−1
)
.

Proof. By a change of variable, we write an equivalent problem

minimize
x,y,z,t

∑
a∈A

ta (36)

subject to
Ns∑
i=1

caixai ≤ ln ta ∀a∑
a,i

X̂kaizai ≥ αk ∀k

∑
a,i

yai − Ŷhai ≤ βh ∀h

zai ≤ ln(xai) ∀i
yai ≥ xai lnxai ∀i∑
i

xai ≥ 1− ε ∀a

−
∑
i

xai ≥ −(1 + ε) ∀a

A self-concordant barrier for the feasible set of Problem 34 can be constructed as

F(x, y, z, t) = −
∑
k

ln

∑
a,i

X̂kaizai − αk

−∑
h

ln

−∑
a,i

(yai + Ŷhai) + βh


+
∑
a,i

Φ(xai, zai) +
∑
a,i

Γ(xai, yai) +
∑
a

Φ

(
ts,
∑
i

caixai

)

−
∑
a

ln

(∑
i

xi + ε− 1

)
−
∑
a

ln

(
−
∑
i

xi − ε+ 1

)
.
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F(x, y, z, t) is a self-concordant [26] with variable 4|A|Ns + 4|A|+K +H . The complexity of the
path-following method associated with the aforementioned barrier is

O
(

(4|A|Ns + 4|A|+H +K)1/2(4|A|Ns +H +K)(|A|Ns)2 ln ε−1
)
.

In cases H,K � |A|Ns the complexity is about O((|A|Ns)7/2 ln ξ−1).
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