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Abstract

In this paper, we address the existence and computation of competitive equilibrium
in the transportation market for autonomous carpooling first proposed by [18]. At
equilibrium, the market organizes carpooled trips over a transportation network in a
socially optimal manner and sets the corresponding payments for individual riders and
toll prices on edges. The market outcome ensures individual rationality, stability of
carpooled trips, budget balance, and market clearing properties under heterogeneous
rider preferences. We show that the question of market’s existence can be resolved by
proving the existence of an integer optimal solution of a linear programming problem.
We characterize conditions on the network topology and riders’ disutility for carpooling
under which a market equilibrium can be computed in polynomial time. This char-
acterization relies on ideas from the theory of combinatorial auctions and minimum
cost network flow problem. Finally, we characterize a market equilibrium that achieves
strategyproofness and maximizes welfare of individual riders.

1 Introduction

Autonomous transportation has the potential to significantly transform urban mobility when
the technology becomes mature enough for real-world deployment. A significant fleet of
driverless cars could be utilized to organize carpooled trips at a much cheaper price and in
a more flexible manner relative to the current mobility services that rely on human drivers.
Naturally, this technology would reshape the riders’ incentives to make trips and share
cars. Whether autonomous driving technology will relieve or aggravate congestion crucially
depends on how riders will be incentivized to participate in efficient carpooled trips that are
constrained by socially optimal tolls. Thus, to fully exploit the potential of self-driving cars,
we need to address the complementarity between efficient carpooling and optimal tolling for
riders with heterogeneous preferences.1

∗S. Amin is with the Laboratory for Information and Decision Systems, P. Jaillet is with the Department
of Electrical Engineering and Computer Science, Laboratory for Information and Decision Systems, and
Operations Research Center, M. Wu is with the Institute for Data, Systems, and Society, Massachusetts
Institute of Technology (MIT), Cambridge, MA, USA, {amins, jaillet, manxiwu}@mit.edu

1For example, when toll prices are zero on all roads, all riders will choose to take the shortest route in
the network, and the traffic load will exceed the capacity. As the toll prices of edges on this route increase,
riders will be incentivized to take carpooled trips in order to split the toll prices (or switch to longer routes).
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In [18], the authors introduced a competitive market model to study riders’ incentives to
participate in autonomous carpooled trips and share the road capacity in a socially optimal
manner. In this model, the transportation authority sets toll prices on edges, and riders
organize carpooled trips and make payments to split the toll prices and trip costs. An out-
come is defined by organized trips, riders’ payments, and edge tolls. A market equilibrium is
defined as an outcome that satisfies the following conditions: individual rationality, stability,
budget balance, and market clearing. The authors show that a market equilibrium may not
always exist, but when it does the equilibrium carpooled trips are socially optimal. This
result essentially follows from the first welfare theorem for competitive markets. Our goal
in this paper is to address the question of existence of market equilibrium and provide tools
to compute a desirable equilibrium.

Building on [18], we consider that each rider’s value of carpooled trips is equal to the
value of completed trip, minus the travel time cost and a disutility from carpooling that
depends on the size of rider group in the carpool. We make three contributions for this
setting: (1) We derive sufficient conditions under which market equilibrium exists; (2) We
provide a computational approach to efficiently compute equilibrium outcomes; and (3) We
characterize an equilibrium in which riders truthfully report their preferences to a neutral
platform that facilitates market implementation.

Market equilibrium is challenging to analyze because trip organization is essentially a
coalition formation problem, in which the riders form carpooled groups and split payments
in a manner which ensures that toll prices clear the market. Both trip organization and toll
pricing are crucially influenced by the network topology since any trip on a certain route
consumes a unit capacity of all edges in that route. Consequently, the toll price on an edge
can impact the usage of all edges on the route. The classical methods in mechanism design
and coalition games cannot be readily applied to address these features. To address this
challenge, we develop a new approach that draw ideas from combinatorial auction theory
and network flow optimization.

We now discuss our approach and main results. In Sec. 3, we analyze the linear program-
ming relaxation of the optimal trip organization problem and its dual program. We find that
the problem of existence of market equilibrium can be equivalently posed as the problem
of existence of an integer optimal solution for the relaxed linear program. Consequently,
our goal becomes that of finding conditions under which the primal linear program has an
optimal integer solution. Moreover, when these conditions hold, by strong duality of linear
programming, optimal solutions of the primal and dual programs provide us an equilibrium
outcome of the market.

We show that when the network is series-parallel and riders have homogeneous levels
of carpool disutility, the primal program is guaranteed to have an integer optimal solution,
and thus market equilibrium exists (Sec. 4). The condition that the network is series-
parallel allows us to compute a set of routes with integer capacities such that the optimal
trip organization in the sub-network formed by these routes is also optimal for the original
network. These routes can be computed by a greedy algorithm that selects routes in the
increasing order of travel time and greedily allocates network capacity to them. Intuitively,
the algorithm select routes in a manner that minimizes the total travel time and carpool
disutility costs for all trips on a series-parallel network. This intuition however does not
apply to non-series-parallel networks. In fact, we provide an example to demonstrate that
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market equilibrium may not exist in a Wheatstone network.
On the other hand, the condition that riders have homogeneous carpool disutility allows

us to augment the trip value function of each route into a function that is monotonic in rider
groups and satisfies the gross substitutes condition ([11, 10, 15]). The augmented trip value
function and the route set obtained from aforementioned greedy algorithm can be used to
define an equivalent “economy”, in which the riders are viewed as “indivisible goods” and
each unit capacity on the routes is viewed as an “agent”. Using this definition, we show
that the existence of market equilibrium on the sub-network is mathematically equivalent to
the existence of a Walrasian equilibrium in the economy, which is guaranteed by the gross
substitutes condition [14].

The issue of equilibrium computation in the autonomous carpooling market is addressed
in Sec. 5. Our approach for computing optimal carpooled trips takes two steps: firstly, we
compute the set of optimal routes using the greedy algorithm; and secondly, we compute the
optimal trips on these routes by using well-known Kelso-Crawford algorithm that provides
optimal good allocation in Walrasian equilibrium of the equivalent economy. Moreover,
riders’ equilibrium utilities and toll prices can be computed from the dual linear program
using a separation-based method that also relies on the gross substitutes condition.

Finally, we identify a particular market equilibrium under which riders truthfully report
their preferences to a platform (in our context, this is a a neutral entity which facilitates
the market implementation). We find that in this equilibrium, riders’ payments are equal to
their externalities on other riders, and hence are equivalent to the payments in the classical
Vickery-Clark-Grove mechanism. This equilibrium also has the advantage of achieving the
highest rider utilities among all market equilibria, and only collecting the minimum total
toll prices.

Related literature

Autonomous vehicle market design and competition. The paper [21] studied the
impact of competition between two ride-hailing platforms on their choices of autonomous
vehicle fleet sizes, prices and wages of human drivers. The authors of [16] studied the prices
in ride-hailing markets, where an uncertain aggregate demand is served by a fixed fleet of
autonomous vehicles and elastic supply of human drivers. They argue that the only design
that unambiguously reduces the service prices corresponds to the setting when the provision
of autonomous carpooled trips occurs in a competitive environment. This finding aligns well
with our focus on a competitive autonomous carpooling market. We show that by exploiting
the complementarity between carpooling and road pricing, we can achieve an equilibrium
outcome that is socially optimal (when sufficient conditions for equilibrium existence are
satisfied).
Human-driven ride-hailing platforms. A rich body of literature exists on matching
and pricing schemes in ride-hailing platforms that rely on supply of human-driven cars.
These work includes online matching ([2, 19]), dynamic and spatial pricing ([3, 8, 9, 7]),
and stochastic control and queuing ([12, 1, 4]). A key challenge in these problems comes
from the two-sided nature of matching between riders and human drivers. In contrast, the
autonomous carpooling market that we consider focuses on forming carpooling groups among
riders with heterogeneous preferences with constraints imposed by car size, route capacity,
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edge tolls, and network structure.

2 A Market Model

2.1 Network, Riders, and Trips

Consider a traffic network modeled as a directed graph with a single origin-destination pair.
The set of edges in the network is E, and the capacity of each edge e ∈ E is a positive integer
qe ∈ N+. The set of routes is R, where each route r ∈ R is a sequence of edges that form a
directed path from the origin to the destination. We denote the travel time of each edge e
as te > 0, and the travel time of each route r as tr =

∑
e∈r te.

2

A finite set of riders m = 1, . . . ,M want to take autonomous carpool trips to travel
from the origin to the destination. A trip is defined as a tuple (b, r), where b is the group
of riders taking route r during the trip.3 The maximum number of riders in any group
must be below the capacity of individual car, denoted A.4 Thus, the set of rider groups is

B
∆
=
{

2M | |b| < A
}

, and the set of trips is (b, r) ∈ B × R. If the group b in a trip (b, r) is
a singleton set {m}, then rider m takes a solo trip on route r. Otherwise riders in b share a
pooled trip. Each trip (b, r) occupies a unit capacity for all edges in route r.

The value of each trip (b, r) for a rider m ∈ b, denoted as vmr (b), is given by:

vmr (b) = αm − βm · tr − γm(|b|) · tr, ∀b ∈ {B|b 3 m}, ∀m ∈M, ∀r ∈ R. (1)

Thus, riders have heterogeneous trip values: The parameter αm is rider m’s value of arriving
at the destination, βm is rider m’s value of time, and γm(|b|) is rider m’s disutility of sharing
the pooled trip with rider group of size |b| for a unit travel time. That is, rider m’s value of
each trip (b, r) equals to their value of arriving at the destination nets the cost of trip time
and the carpool disutility.

The carpool disutility γm(|b|) represents the rider m’s inconvenience of sharing the vehicle
with other riders in the carpool group, potentially due to the need to share space with
others and time spent on taking detours and walking to pick-up location. This disutility
only depends on the group sizes rather than the identity of riders in the group, riders’ values
are identical for any two trips (b, r) and (b′, r) with the same group sizes (i.e. |b| = |b′|) and
the same route r. We consider that the carpool disutility γm(|b|) ≥ 0 for all |b| = 1, . . . , A,
and the disutility of solo trip is zero, i.e. γm(1) = 0 for all m ∈M . Thus, all riders prefer to
take solo trips rather than pooling with other riders. Additionally, the marginal disutility
γm(|b|) − γm(|b| − 1) is non-decreasing in the group size |b| for all |b| = 2, . . . , A, i.e. the

2Thus, in our setting, each edge has an L-shaped cost function: cost is a constant when the edge load is
below the edge capacity, and becomes extremely high once the load exceeds capacity. In the context of traffic
congestion: when the traffic load is below the road capacity, all vehicles pass through the segment at the
free-flow speed. However, when the traffic load exceeds the capacity, the travel time significantly increases
due to congestion. In our market mechanism, the toll prices are set to ensure that the load of each edge does
not exceed its capacity.

3All individuals in the set b of an autonomous carpool trip are riders. On the other hand, in human-driven
carpool trips, we need to designate a driver in the set b, and match riders with drivers.

4For simplicity, we assume that cars are of homogeneous capacity.
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extra carpool disutility of adding one rider to any trip (b, r) is non-decreasing in the original
trip size |b|.

The cost of each trip includes the fuel charge and the cost of car’s wear and tear. We
simply assume that the cost of each trip (b, r) ∈ B ×R is cr(b) = δ|b|tr, and δ ≥ 0 is cost of
driving one rider for a unit travel time.

The social value of each trip (b, r) is the summation of the trip values for riders in b nets
the cost of trip:

Vr(b) =
∑
m∈b

vmr (b)− cr(b) =
∑
m∈b

αm −
∑
m∈b

βmtr −
∑
m∈b

γm(|b|)tr − δ|b|tr, ∀b ∈ B, ∀r ∈ R.

(2)

2.2 Market Equilibrium

We now discuss how an efficient autonomous carpooling market can be organized. A trans-
portation authority sets non-negative toll prices τ = (τe)e∈E ∈ R|E|≥0 on edges in the network,
where τe is the toll price of edge e. Riders form carpool trips. The trip vector is a binary vec-
tor x = (xr(b))r∈R,b∈B ∈ {0, 1}|B|×|R|, where xr(b) = 1 if trip (b, r) is organized and xr(b) = 0
if otherwise. A trip vector x must satisfy the following feasibility constraints:∑

r∈R

∑
b3m

xr(b) ≤ 1, ∀m ∈M, (3a)∑
r3e

∑
b∈B

xr(b) ≤ qe, ∀e ∈ E, (3b)

xr(b) ∈ {0, 1}, ∀b ∈ B, ∀r ∈ R, (3c)

where (3a) ensures that no rider takes more than 1 trip, and (3b) ensures that the total
number of trips that use any edge e ∈ E does not exceed the edge capacity.

Additionally, each rider m ∈ M makes a payment pm for covering the cost of their trip
and the toll prices of the taken edges. The payment vector is p = (pm)m∈M .

An outcome of the carpooling market is represented by the tuple (x, p, τ). Given any
(x, p, τ), the utility of each rider m ∈ M equals to the value of the trip that m takes minus
the payment:

um =
∑
r∈R

∑
b3m

vmr (b)xr(b)− pm, ∀m ∈M. (4)

We next define four properties of the market outcomes, namely individual rationality,
stability, budget balance, and market clearing. Firstly, an outcome (x, p, τ) is individually
rational if riders’ utilities are non-negative:

um ≥ 0, ∀m ∈M. (5)

That is, no rider has an incentive to opt-out of the market.
Secondly, an outcome (x, p, τ) is stable if there is no rider group in B that can gain higher

utilities by organizing trips that are not included in x. Note that the total utility of all riders
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in any group b for organizing a trip (b, r) cannot exceed the value of the trip minus the toll
price for route r, i.e. Vr(b)−

∑
e∈r τe. Thus, a stable market outcome (x, p, τ) requires that

the total utilities of riders in b obtained using (4) is higher or equal to the total utility that
can be obtained from any feasible trip (b, r):5∑

m∈b

um ≥ Vr(b)−
∑
e∈r

τe, ∀b ∈ B, ∀r ∈ R. (6)

Thirdly, an outcome (x, p, τ) is budget balanced if the total payments of each organized
trip is equal to the sum of the toll prices and the cost of the trip; and moreover a rider’s
payment is zero if they are not part of any organized trip, i.e.

xr(b) = 1, ⇒
∑
m∈b

pm =
∑
e∈r

τe + cr(b), ∀b ∈ B, ∀r ∈ R, (7a)

xr(b) = 0, ∀r ∈ R, ∀b 3 m, ⇒ pm = 0, ∀m ∈M. (7b)

Fourthly, an outcome (x, p, τ) is market-clearing if there are zero tolls on all edges whose
capacity limits are not met:∑

r3e

∑
b∈B

xr(b) < qe, ⇒ τe = 0, ∀e ∈ E. (8)

We define market equilibrium as an outcome that satisfies all four properties:

Definition 1 A market outcome (x∗, p∗, τ ∗) is an equilibrium if it is individually rational,
stable, budget balanced and market clearing.

The autonomous carpooling market assumes a competitive environment in that riders are
free to join any trip and occupies a unit capacity on any route as long as their total payments
cover the trip cost and toll prices. From an implementation viewpoint, the process of trip
organization and payment can be facilitated by introducing a market platform.6 In such an

implementation, each rider m ∈M reports their preference parameters
(
αm, βm, (γm(d))Ad=1

)
to the platform, and the platform assigns riders to trips according to the trip vector x∗.
Then, riders make payments according to p∗ to the platform, and the platform pays for the
toll prices τ ∗ and trip costs on the riders’ behalf. When the vector (x∗, p∗, τ ∗) is a market
equilibrium, riders follow the trip assigned by the platform, the payments cover the toll
prices and trip costs, and toll prices are non-zero only on edges where the load meets the
capacity. 7

In paper [18], the authors argued that such a transportation market can be mapped
into a standard competitive market, where the market equilibrium defined in Definition 1 is

5A stable market outcome (x, p, τ) is Pareto optimal in that no rider’s utility can be improved by orga-
nizing different trips that are not in x without decreasing the utilities of other riders.

6For simplicity, we assume that this platform is a simple non-strategic market mediator and does not
charge a fee for organizing trips. However, a non-negative constant fee can be added to the model without
changing the results.

7The computed market equilibrium depends on the reported preference parameters (α, β, γ). For simplic-
ity, we drop the dependence of (x∗, p∗, τ∗) with respect to these parameters in notation.
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equivalent to the standard concept of competitive equilibrium. The key issue that we seek
to investigate is that market equilibrium may not exist since the edge capacities and riders
are indivisible. On the other hand, if an equilibrium (x∗, p∗, τ ∗) exists, from the first welfare
theorem, we conclude that the trip vector x∗ necessarily maximizes the total social welfare
(Theorem 1 in [18]); i.e., x∗ is an optimal solution of the following optimal trip organization
problem:

max
x

S(x) =
∑
b∈B

∑
r∈R

Vr(b)xr(b)

s.t. x satisfies (3a) – (3c),

(IP)

where S(x) is the social welfare of all trips given by x.

3 Primal and Dual Formulations

In this section, we show that there exists a market equilibrium if and only if the linear
relaxation of the optimal trip organization problem (IP) has integer optimal solutions. We
also show that the equilibrium outcomes can be derived from the optimal solutions from the
linear relaxation and its dual program.8

We first introduce the linear relaxation of (IP) and its dual formulation. The primal
linear program is as follows:

max
x

S(x) =
∑
b∈B

∑
r∈R

Vr(b)xr(b),

s.t.
∑
r∈R

∑
b3m

xr(b) ≤ 1, ∀m ∈M, (LP.a)∑
r3e

∑
b∈B

xr(b) ≤ qe, ∀e ∈ E, (LP.b)

xr(b) ≥ 0, ∀b ∈ B, ∀r ∈ R. (LP.c)

Note that the constraint xr(b) ≤ 1 is implicitly included in (LP.a), so it is omitted.
By introducing dual variables u = (um)m∈M for constraints (LP.a) and τ = (τe)e∈E for

constraints (LP.b), the dual program of (LP) can be written as follows:

min
u,τ

U(u, τ) =
∑
m∈M

um +
∑
e∈E

qeτe

s.t.
∑
m∈b

um +
∑
e∈r

τe ≥ Vr(b), ∀b ∈ B, ∀r ∈ R, (D.a)

um ≥ 0, τe ≥ 0, ∀m ∈M, ∀e ∈ E. (D.b)

Theorem 1 A market equilibrium (x∗, p∗, τ ∗) exists if and only if (LP) has an optimal
integer solution. Any optimal integer solution x∗ of (LP) is an equilibrium trip vector, and

8All results in this section hold for arbitrary trip values V = (Vr(b))b∈B,r∈R.
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any optimal solution (u∗, τ ∗) of (D) is an equilibrium utility vector and an equilibrium toll
vector. The equilibrium price vector p∗ is given by:

pm∗ =
∑
r∈R

∑
b3m

x∗r(b)v
m
r (b)− um, ∀m ∈M. (11)

Thus, the question of existence of market equilibrium is equivalent to resolving whether
there exists an integer optimal solution for the LP relaxation of the optimal trip problem.
This result follows from the fact that the four properties of market equilibrium, namely
individual rationality, stability, budget balance, and market clearing are equivalent to the
constraints of (LP) and (D), and the complementary slackness conditions. From strong
duality, a market equilibrium exists if and only if the optimality gap between the linear
relaxation (LP) and the integer problem (IP) is zero. Hence, the linear relaxation (LP) must
have an integer optimal solution, which is the equilibrium trip vector x∗.

Theorem 1 turns the problem of finding sufficient conditions on the existence of market
equilibrium to finding conditions under which (LP) has optimal integer solutions. Moreover,
it enables us to compute market equilibrium as optimal solutions of (LP) and (D).

As a consequence, we obtain that the total toll prices of shorter routes (routes with lower
travel time) must be no less than that of the longer ones (routes with higher travel time).

Corollary 1 In any market equilibrium (x∗, p∗, τ ∗), for any r, r′ ∈ R such that tr ≥ tr′,∑
e∈r τ

∗
e ≤

∑
e∈r′ τ

∗
e .

This result is intuitive since for all rider groups, taking a shorter route results in a higher
trip value than taking a longer route. Therefore, the toll price (which is charged per unit
capacity) of shorter routes must be no less than that of longer routes.

4 Existence of Market Equilibrium

We characterize the sufficient conditions on network topology and trip values under which
the there exists a market equilibrium. We first present an example when market equilibrium
does not exist on a wheatstone network.

Example 1 Consider the wheatstone network as in Fig. 1. The capacity of each edge in
the set {e1, e2, e3, e4} is 1, and the capacity of edge e5 is 4. The travel time of each edge is
given by t1 = 1, t2 = 3, t3 = 3, t4 = 1, and t5 = 0.

The maximum capacity of vehicle is A = 2. Three riders m = 1, 2, 3 travel on this
network. Riders have identical reference parameters: value of trip αm = 7, value of time
βm = 1, zero carpool disutility, i.e. γm(d) = 0 for any d = 1, 2 and any m ∈ M , and zero
trip cost parameter, i.e. δ = 0.

We define the route e1-e2 as r1, e1-e5-e4 as r2, and e3-e4 as r3. Then, trip values are:
V1(m) = V3(m) = 3, and V2(m) = 5 for all m ∈ M ; V1(m,m′) = V3(m,m′) = 6, and
V2(m,m′) = 10 for all m,m′ ∈ M . The unique optimal solution of the linear program (LP)
on this network is x∗1(1, 2) = x∗2(2, 3) = x∗3(1, 3) = 0.5, and S(x∗) = 11. That is, (LP) does
not have an integer optimal solution, and market equilibrium does not exist (Theorem 1).
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Figure 1: Wheatstone network

We define a network to be series-parallel if a Wheatstone structure as in Example 1 is
not embedded.

Definition 2 (Series-Parallel (SP) Network [17]) A network is series-parallel if there
do not exist two routes that pass through an edge in opposite directions. Equivalently, a
network is series-parallel if and only if it is constructed by connecting two series-parallel
networks either in series or in parallel for finitely many iterations.

Our next theorem shows that market equilibrium is guaranteed to exist if the network is
series-parallel (i.e. the Wheatstone structure is not embedded) and riders have homogeneous
carpool disutilities.

Theorem 2 Market equilibrium (x∗, p∗, τ ∗) exists if the network is series-parallel and all
riders have identical carpool disutility parameters, i.e.

γm(d) = γ(d), ∀d = 1, . . . , A, ∀m ∈M. (12)

Recall from Theorem 1 that showing the existence of market equilibrium is equivalent to
proving that (LP) has an integer optimal solution. Our proof of Theorem 2 has three parts:

Firstly, we compute an integer route capacity vector k∗ = (k∗r)r∈R, where R∗
∆
= {R|k∗r > 0}

is the set of routes that are assigned positive capacity and k∗r is the integer capacity of each
route r. We show that when the network is series-parallel, any optimal trip vector for the
sub-network with routes R∗ and capacity vector k∗ is also an optimal trip vector for the
original network (Lemma 1). Thus, to prove Theorem 2, we only need to show that there
exists an optimal integer solution of trip organization on the sub-network with capacity
vector k∗. Secondly, we argue that mathematically the problem of trip organization on the
sub-network with capacity vector k∗ can be viewed as a problem of allocating goods in an
economy with indivisible goods, and the existence of integer optimal solution is equivalent
to the existence of Walrasian equilibrium in the economy (Lemmas 2 – 3). Finally, we show
that when riders have homogeneous carpool disutility parameters, the trip value functions
satisfy gross substitutes condition. This condition is sufficient to ensure the existence of
Walrasian equilibrium in the equivalent economy (Lemmas 2 – 6). These three parts ensure
that the trip organization problem on the sub-network with capacity vector k∗ has an integer
optimal solution, and this solution is also an integer optimal solution of (LP). We can thus
conclude that a market equilibrium exists.

The rest of this section elaborates on these ideas and presents the lemmas corresponding
to each of the three parts. The proofs of these lemmas are included in Appendix A.
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Part 1. We first compute the route capacity vector k∗ by a greedy algorithm (Algorithm 1).
The algorithm begins with finding a shortest route of the network rmin, and sets its capacity
as k∗rmin

= mine∈rmin
qe, which is the maximum possible capacity that can be allocated to

rmin. After allocating the capacity k∗rmin
to route rmin, the residual capacity of each edge

on rmin is reduced by k∗rmin
. We then repeat the process of finding the next shortest route

and allocating the maximum possible capacity to that route until there exists no route with
positive residual capacity in the network.

Note that in each step of Algorithm 1, the capacity of at least one edge is fully allocated
to the route that is chosen in that step. Therefore, the algorithm must terminate in less than
|E| number of steps. The algorithm returns the capacity vector k∗, where R∗ = {R|k∗r > 0} is
the set of routes allocated with positive capacity, and the capacity of each r ∈ R∗ is k∗r . The
remaining routes in R\R∗ are set with zero capacity. Since the network is series-parallel, the
total capacity given by the output of the greedy algorithm equals to the network capacity C
([5]), i.e.

∑
r∈R∗ k

∗
r = C.

Moreover, the shortest path of the network in each step can be computed by Dijkstra’s
algorithm with time complexity of O(|N |2), where |N | is the number of nodes in the network.
Therefore, Algorithm 1 has time complexity of O(|N |2|E|).

Algorithm 1: Greedy algorithm for computing route capacity

Initialize: Set q̃e ← qe, ∀e ∈ E; kr ← 0, ∀r ∈ R; Ẽ ← E;
(tmin, rmin)← ShortestRoute(Ẽ);

while tmin <∞ do
k∗rmin

← mine∈rmin
q̃e;

for e ∈ rmin do
q̃e ← q̃e − k∗rmin

;
if q̃e = 0 then

Ẽ ← Ẽ \ {e};
end

end

(tmin, rmin)← ShortestRoute(Ẽ);

end
Return k∗

Next, we consider the sub-network comprised of routes in R∗ with corresponding route
capacities given by k∗. Analogous to (LP), the linear relaxation of optimal trip organization
problem on this sub-network is given by:

max
x

S(x) =
∑
b∈B

∑
r∈R

Vr(b)xr(b),

s.t.
∑
r∈R

∑
b3m

xr(b) ≤ 1, ∀m ∈M, (LPk∗.a)∑
b∈B

xr(b) ≤ k∗r , ∀r ∈ R, (LPk∗.b)

xr(b) ≥ 0, ∀b ∈ B, ∀r ∈ R, (LPk∗.c)
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where (LPk∗.a) ensures that each rider is in at most one trip, and (LPk∗.b) ensures that the
total number of trips in each route r does not exceed the route capacity k∗r given by k∗.

Lemma 1 If the network is series-parallel, then any optimal solution of (LPk∗) is an opti-
mal solution of (LP).

To prove Lemma 1, we first prove that any feasible solution of (LPk∗) is also a feasible
solution of (LP) by showing that the capacity vector k∗ computed from Algorithm 1 satisfies∑

r3e k
∗
r ≤ qe for all e ∈ E. Thus, the optimal value of (LPk∗) is no higher than that of

(LP).
Next, we argue that for a series-parallel network, the optimal value of (LPk∗) is no less

than that of (LP); hence, any optimal solution of (LPk∗) must also be an optimal solution
of (LP). To prove this argument, we show that for any optimal solution x̂∗ of (LP), we can
construct another trip vector x∗ such that x∗ is feasible in (LPk∗), and S(x∗) ≥ S(x̂∗). Such a

vector x∗ can be constructed from x̂∗ by re-assigning rider groups b̂ ∈ B̂ ∆
= {B|

∑
r∈R x̂r(b̂) >

0} – the set of rider groups with positive weights in x̂ – to routes in k∗. Then, for each

b̂ ∈ B̂, the trip value
(
b̂, r
)

as in (2) can be written as Vr(b̂) =
∑

m∈b̂ α
m − g(b̂)tr, where

g(b̂) =
∑

m∈b̂ β
m +

∑
m∈b̂ γ

m(|b̂|) + δ|b̂| is each group b̂’s sensitivity to route travel time.

Moreover, we define the weight of each group b̂ under the vector x̂∗ as f(b̂) =
∑

r∈R x̂
∗
r(b̂).

To construct the new vector x∗, we start with re-assigning weights of the rider groups in B̂
one-by-one in decreasing order of their sensitivities to the shortest route in R∗ until the
capacity of the shortest route given k∗ is fully utilized. Then, we proceed to assign the
weights of the remaining rider groups in B̂ to the second shortest route in R∗. This process
is repeated until either all weights of rider groups in B̂ are re-assigned to routes or all routes’
capacities in k∗ are used-up. Since the total weight of x̂ is less than or equal to the network
capacity C, and the total capacity given by k∗ equals to C, all weights of B̂ given by x̂ must
get assigned to routes in R∗ when the algorithm terminates. Additionally, the constructed
trip vector x∗ is a feasible solution of (LPk∗).

This re-assignment process enables rider groups with higher sensitivity of travel time to
take shorter routes. This ensures that the constructed x∗ satisfies the inequality S(x∗) ≥
S(x̂) when the network is series-parallel. We prove this by mathematical induction: First,
S(x∗) ≥ S(x̂) holds trivially on any single link network. Second, if this inequality holds on
any two series-parallel networks, then it also holds on the network that is constructed by
connecting the two sub-networks in series or in parallel. Since any series-parallel network
is constructed by connecting single link networks in series or in parallel for a finite number
times, S(x∗) ≥ S(x̂) must hold for any series-parallel network. Hence, we can conclude that
the optimal value of (LPk∗) is no less than that of (LP), and any optimal solution of (LPk∗)
must also be an optimal solution of (LP).

In part 1, Lemma 1 ensures that if (LPk∗) has an integer optimal solution, then that
solution must be an optimal integer solution of (LP). It remains to show that (LPk∗) indeed
has an integer optimal solution.

Part 2. In this part, we first construct an augmented trip value function that is monotonic
in the rider group. Then, we construct an auxiliary network comprised of parallel routes
with unit capacities based on the set of routes given by k∗. We show that (LPk∗) has an
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integer optimal solution if and only if the linear relaxation of the trip organization problem
on the auxiliary network with the augmented value function has integer optimal solution.
Moreover, the trip organization problem on the auxiliary network with the augmented value
function is equivalent to an allocation problem in an economy with indivisible goods. The
existence of optimal integer solution is equivalent to the existence of Walrasian equilibrium
in this economy.

To begin with, we introduce the definition of monotonic trip value function as follows:

Definition 3 (Monotonicity) For each r ∈ R, the trip value function Vr is monotonic if
for any b, b′ ∈ B, Vr(b ∪ b′) ≥ Vr(b).

Monotonicity condition requires that adding any rider group b′ to a trip (b, r) does not reduce
the trip’s value. The monotonicity condition may not be always satisfied in general because
of two reasons: First, if the size of riders |b ∪ b′| > A, then the trip (b ∪ b′, r) is infeasible,
and the trip value is not defined. Second, even when |b ∪ b′| ≤ A, the value Vr(b ∪ b′) may
be less than Vr(b) when the carpool disutility is sufficiently high.

We augment V : B × R → N to a monotonic value function V : B̄ × R → N, where

B̄
∆
= 2M is the set of all rider subsets (including the rider subsets with sizes larger than A).

The value of V r(b̄) can be written as follows:

V r(b̄)
∆
= max

b⊆b̄, b∈B
Vr(b), ∀r ∈ R, ∀b̄ ∈ B̄. (14)

That is, the value of any rider group b̄ ∈ B̄ on route r equals to the maximum value of a
feasible trip (b, r) where rider group b is a subset of b̄. The augmented value function V
satisfies the monotonicity condition.

We refer hr(b̄)
∆
= arg maxb⊆b̄, b∈B Vr(b) as the representative rider group of b̄ for route r.

From (2), we can re-write the augmented trip value function V as a linear function of travel
time:

V r(b̄) =
∑

m∈hr(b̄)

αm −
∑

m∈hr(b̄)

βmtr −
∑

m∈hr(b̄)

γm(|hr(b̄)|)tr − δ|hr(b̄)|tr, ∀b̄ ∈ B̄, ∀r ∈ R. (15)

Next, we construct an auxiliary network given the set of routes R∗ with capacity vector
k∗ output from Algorithm 1. Specifically, we convert each route r ∈ R∗ with integer capacity
k∗r to the same number of parallel routes each with a unit capacity in the auxiliary network.
We denote the route set of the auxiliary network as L = ∪r∈R∗Lr, where each set Lr is the
set of routes converted from route r in the original network.

We now consider the trip organization problem on the auxiliary network with the aug-
mented trip value function. For each l ∈ L and each b̄ ∈ B̄, we define

(
b̄, l
)

as an augmented
trip. In this trip, the rider group hr(b̄) takes route l of the auxiliary network, while the
remaining riders m ∈ b̄ \ hr(b̄) are not included in the trip. We denote the augmented
trip vector as y =

(
yl(b̄)

)
b̄∈B̄,l∈K ∈ {0, 1}

|B̄|×L, where yl(b̄) = 1 if the augmented trip
(
b̄, l
)

is organized, and yl(b̄) = 0 if otherwise. The value of the augmented trip is defined as
Wl(b̄) = V r(b̄) for any b̄ ∈ B̄, any l ∈ Lr and any r ∈ R∗.

For any y ∈ {0, 1}|B̄|×L, we can compute a trip vector for the original optimal trip
organization problem x = χ(y) ∈ {0, 1}|B|×R such that the actually organized trips given
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by x = χ(y) are the same as that given by y. In particular, for each route r ∈ R∗, and
each augmented trip

(
b̄, l
)
∈ B̄ × Lr such that yl(b̄) = 1, we choose a representative rider

group b̂ ∈ hr(b̄) and set xr(b̂) = 1 for the original trip
(
b̂, r
)

that represents the organized

augmented trip
(
b̄, l
)
. We set xr(b) = 0 for all other trips. The trip vector x = χ(y) can be

written as follows:

∀r ∈ R∗, ∀
(
b̄, l
)
s.t.yl(b̄) = 1, ∃b̂ ∈ hr(b̄), s.t. xr(b̂) = 1, and xr(b) = 0, ∀b ∈ B \ {b̂} (16)

Hence, we write the linear relaxation of optimal trip organization problem on the auxiliary
network with the augmented trip value function as follows:

max
y

S(y) =
∑
b̄∈B̄

∑
l∈L

Wl(b̄)yl(b̄),

s.t.
∑
l∈L

∑
b̄3m

yl(b̄) ≤ 1, ∀m ∈M, (LP-y.a)∑
b̄∈B̄

yl(b̄) ≤ 1, ∀l ∈ L, (LP-y.b)

yl(b̄) ≥ 0, ∀b̄ ∈ B̄, ∀l ∈ L, (LP-y.c)

Lemma 2 The linear program (LPk∗) has an integer optimal solution if and only if (LP-y)
has an integer optimal solution. Moreover, if y∗ is an integer optimal solution of (LP-y),
then x∗ = χ(y∗) as in (16) is an optimal integer solution of (LPk∗).

This lemma shows that finding an optimal integer solution of (LPk∗) is equivalent to
finding an optimal integer solution of (LP-y).

We finally show that the augmented trip organization problem is mathematically equiva-
lent to an economy G with indivisible goods, and the existence of market equilibrium in our
carpooling market is equivalent to the existence of Walrasian equilibrium of the economy.
In G, the set of indivisible “goods” is the rider set M and the set of agents is the route set
L in the auxiliary network. Each agent l’s value of any good bundle b̄ ∈ B̄ is equivalent
to the augmented trip value function Wl(b̄). Moreover, each good m’s price is equivalent to
rider m’s utility um. The vector of good allocation is y, where yl(b̄) = 1 if good bundle b̄
is allocated to agent l. Given any y, for each l ∈ L, we denote the bundle of goods that is
allocated to l as b̄l, i.e. yl(b̄l) = 1. If no good is allocated to l (i.e.

∑
b̄∈B̄ yl(b̄) = 0), then

b̄l = ∅. The Walrasian equilibrium of economy G is defined as follows:

Definition 4 (Walrasian equilibrium [14]) A tuple (y∗, u∗) is a Walrasian equilibrium
if

(i) For any l ∈ L, b̄l ∈ arg maxb̄∈B̄Wl(b̄) −
∑

m∈b̄l u
m, where b̄l is the good bundle that is

allocated to l given y∗

(ii) For any m ∈ M that is not allocated to any agent, (i.e.
∑

l∈L
∑

b̄3m y
∗
l (b̄) = 0),

um∗ = 0.

13



In fact, we can show that (LP-y) has integer optimal solution if and only if Walrasian
equilibrium exists in this equivalent economy:

Lemma 3 The linear program (LP-y) has integer optimal solution if and only if a Walrasian
equilibrium (y∗, u∗) exists in the equivalent economy. Furthermore, y∗ is an integer optimal
solution of (LP-y), and x∗ = χ(y∗) as in (16) is an optimal integer solution of (LPk∗).

In part 2, from Lemmas 2 – 3, we turn the problem of proving the existence of inte-
ger optimal solution in (LPk∗) to proving that the equivalent economy G has Walrasian
equilibrium.

Part 3. In this final part, we show that if the carpool disutility parameter γm is homogeneous
across all m ∈ M , then Walrasian equilibrium exists in the economy G constructed in Part
2.

To begin with, we introduce the following definition of gross substitutes condition on
the augmented value function V . In this definition, we utilize the notion of marginal value
function V r(b̄

′|b̄) = V r(b̄ ∪ b̄′)− V r(b̄) for all r ∈ R and all b̄, b̄′ ⊆M .

Definition 5 (Gross Substitutes [20]) For each r ∈ R, the augmented trip value func-
tion V r is said to satisfy gross substitutes condition if

(a) For any b̄, b̄′ ⊆ B̄ such that b̄ ⊆ b̄′ and any i ∈M \ b̄′, V r(i|b̄′) ≤ V r(i|b̄).

(b) For all groups b̄ ∈ B̄ and any i, j, k ∈M \ b̄,

V r(i, j|b̄) + V r(k|b̄) ≤ max
{
V r(i|b̄) + V r(j, k|b̄), V r(j|b̄) + V r(i, k|b̄)

}
. (18)

In Definition 5, (a) requires that the augmented value function V is submodular, i.e. the
marginal valuation of

(
b̄, r
)

decreases in the size of group b̄. Additionally, the gross substi-
tutes condition also requires that the augmented value function satisfy (b). This condition
ensures that the sum of marginal values of {i, j} and k is not strictly higher than that of
both i, {j, k} and j, {i, k}.

The following lemma shows that when all riders have a homogeneous carpool disutility,
the augmented trip value function V satisfies gross substitutes condition.

Lemma 4 The augmented value function V r satisfies gross substitutes for all r ∈ R if riders
have homogeneous carpool disutility: γm(d) ≡ γ(d) for all d = 1, . . . , A and all m ∈M .

In the economy G, since each agent l’s value function Wl(b̄) = V r(b̄) for all b̄ ∈ B̄ and all
l ∈ Lr, the agents’ value functions W satisfy gross substitutes under the condition in Lemma
4. Moreover, from (15), the value functions W are also monotonic. From the following result,
we know that a Walrasian equilibrium exists in economy with value functions that satisfy
monotonicity and gross substitutes conditions.

Lemma 5 ([6]) If Wl satisfies the monotonicity and gross substitutes conditions for all
l ∈ L, then Walrasian equilibrium (y∗, u∗) exists.

Based on Lemmas 3, 4 and 5, we conclude the following:
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Lemma 6 The linear program (LPk∗) has an optimal integer solution if all riders have
homogeneous carpool disutilities, i.e. γm(d) ≡ γ(d) for all m ∈M and all d = 1, . . . , A.

Lemma 6 shows that (LPk∗) has an optimal integer solution. From Lemma 1, we know
that this solution is also an optimal integer solution of (LP). Therefore, we can conclude
Theorem 2 that market equilibrium exists when the network is series parallel and riders have
homogeneous carpool disutilities. In Sec. 5 and 6, we assume that the sufficient conditions
in Theorem 2 hold, and market equilibrium exists.

5 Computing Market Equilibrium

In this section, we present an algorithm for computing the market equilibrium (x∗, p∗, τ ∗).
The ideas behind the algorithm are based on Theorems 1 – 2 and their proofs.

Computing optimal trip vector x∗. To begin with, one can obtain the optimal trip
vector x∗ following the proof of Theorem 2. In particular, we compute the route capacity
vector k∗ from Algorithm 1. From Lemma 1, we know that the optimal trip assignment
vector x∗ is an optimal integer solution of (LPk∗). Moreover, from Lemmas 2 – 6, we know
that: (i) x∗ can be derived from optimal solution y∗ on the auxiliary network with the
augmented trip value function W ; and (ii) y∗ is the same as the optimal good allocation in
Walrasian equilibrium of the equivalent economy G. We introduce the following well-known
Kelso-Crawford algorithm (Algorithm 2) for computing Walrasian equilibrium y∗.

Algorithm 2: Kelso-Crawford Auction [14]

Initialize: Set um ← 0 ∀m ∈M ; b̄l ← ∅, ∀l ∈ L;
while TRUE do

for l ∈ L do

Jl ← arg maxJ⊆M\b̄l φl(J |b̄l)
∆
=
{
Wl(J ∪ b̄l)−

∑
m∈b̄l u

m −
∑

m∈J (um + ε)
}

if Jl = ∅, ∀l ∈ L then
break

else

Arbitrarily pick l̂ with Jl̂ 6= ∅;
b̄l̂ ← b̄l̂ ∪ Jl̂;
b̄l̂ ← b̄l̂ \ Jl̂, ∀l 6= l̂;
um ← um + ε, ∀m ∈ Jl̂.

Return
(
b̄l
)
l∈L

Algorithm 2 begins with all riders having zero utilities um = 0 and all routes in the
auxiliary network being empty b̄l = ∅. In each iteration, we compute the set of riders Jl
who are currently unassigned to route l and maximize the function φl(Jl|b̄l). The function
φl(Jl|b̄l) equals to the trip value minus the riders’ utilities when the set Jl is added to b̄l. If
there exists a route l̂ ∈ L with Jl̂ 6= ∅, then we assign riders in Jl̂ to one of such route l̂, and
increase the utilities of these riders by a small number ε.
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Algorithm 2 terminates when Jl = ∅ for all l ∈ L. Given any ε < 1
2|M | , when the

algorithm terminates, all routes are assigned with the rider set that maximizes its trip value
minus riders’ utilities. The trip vector based on

(
b̄l
)
l∈L is given by:

y∗l (b̄l) = 1, and y∗l (b̄) = 0, ∀b̄ ∈ B̄ \ {b̄l}, ∀l ∈ L. (19)

The following lemma shows that y∗ is optimal under the conditions of monotonicity and
gross substitutes.

Lemma 7 ([14]) For any ε < 1
2|M | , if the augmented value function W satisfies mono-

tonicity and gross substitutes condition, then y∗ as in (19) is an optimal integer solution of
(LP-y).

Recall from Lemma 4, we know that when all riders have identical carpool disutility, i.e.
γm(d) = γ(d) for all d = 1, . . . , A, then the augmented trip value function V satisfies gross
substitutes condition. Since Wl(b̄) = V r(b̄) for all l ∈ Lr and all r ∈ R, W also satisfies
gross substitutes condition. Therefore, y∗ is a Walrasian equilibrium good allocation vector
in the equivalent economy G, and from Lemmas 1 – 3, the vector x∗ = χ(y∗) as in (16) is an
optimal trip vector in market equilibrium.

In each iteration of Algorithm 2, we need to compute the set Jl ∈ arg maxJ⊆M\b̄l φl(Jl|b̄l)
for each l ∈ L. Since the value function Wl(b̄) is monotonic and satisfies gross substitutes
condition, Jl can be computed by a greedy algorithm, in which riders are added to the set
Jl one by one in decreasing order of the difference between the rider’s marginal trip value
Wl(m|b̄l∪Jl) = Wl({m}∪ b̄l∪Jl)−Wl(b̄l∪Jl) and their utility um ([14]). Since Wl(b̄) = V r(b̄)
as in (14), and all riders have identical carpool disutility parameter, we can write Wl(b̄) as
follows:

Wl(b̄) = V r(b̄) =
∑

m∈hr(b̄)

ηmr − θ(|hr(b̄)|)tr, ∀l ∈ Lr, ∀b̄ ∈ B̄,

where ηmr
∆
= αm− βmtr and θ(|hr(b̄)|) = |hr(b̄)|γ(|hr(b̄)|) + δ|hr(b̄)|. The representative rider

group hr(b̄) for any trip
(
b̄, r
)
∈ B̄ × R can be constructed by selecting riders from b̄ in

decreasing order of ηmr . The last selected rider m̂ (i.e. the rider in hr(b̄) with the minimum
value of ηmr ) satisfies:

ηm̂r ≥
(
θ(|hr(b̄)|)− θ(|hr(b̄)| − 1)

)
tr.

That is, adding rider m̂ to the set hr(b̄) \ {m̂} increases the trip value. Additionally,

ηmr <
(
θ(|hr(b̄)|+ 1)− θ(|hr(b̄)|)

)
tr, ∀m ∈ b̄ \ hr(b̄).

We can compute the set Jl ← arg maxJ⊆M\b̄l φl(J |b̄l) in each iteration of Algorithm 2 using
Algorithm 3. In this algorithm, we first compute the size of the representative rider group
h̃ = |hr(b̄l)|, then we add riders not in b̄l into Jl greedily according to their marginal trip
value minus utility. Note that for computing marginal trip value, we do not need to compute
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the augmented trip value function Wl(b̄), but simply need to keep track of the representative
rider group size h̃.

Algorithm 3: Computing Jl

Initialize: Set Jl ← ∅, h̃← 0, b̃l ← b̄l;
while TRUE do

m̂← arg maxm∈b̃l η
m
l ;

if ηm̂l <
(
θ(h̃+ 1)− θ(h̃)

)
tl then

break
else

h̃← h̃+ 1, b̃l ← b̃l \ {m̂}

while TRUE do

ĵ ← arg maxj∈S\(b̄l∪Jl) η
j
l − uj;

if ηjl − uj <
(
θ(h̃+ 1)− θ(h̃)

)
tl then

break
else

h̃← h̃+ 1, Jl ← Jl ∪ {ĵ}
Return Jl

We next discuss the time complexity of Algorithm 2. The time complexity of computing
Jl as in Algorithm 3 is O(|M |) for each l ∈ L (each rider is counted at most once in Algorithm
3). Additionally, we know from Sec. 4 that the sum of route capacities given k∗ equals to
the maximum capacity of the network C. Thus |L| = C, and the time complexity of each
iteration of Algorithm 2 is O(|M |C). Moreover, riders’ utilities are non-decreasing and at
least one rider increases their utility by ε in each iteration. Besides, riders’ utilities can not
exceed the maximum trip value Vmax, because otherwise Jl = ∅ for all l ∈ L regardless of
the assigned set b̄l; thus Algorithm 2 must terminate before the utility exceeds Vmax. We
can conclude that Algorithm 2 terminates in less than MVmax/ε iterations, and its time
complexity is O

(
Vmax

ε
|M |2C

)
.

We summarize that x∗ is computed in the following two steps:
Step 1: Compute the optimal route capacity vector k∗ from Algorithm 1. 9

Step 2: Compute y∗ from Algorithm 2. Derive the optimal trip organization vector x∗ =
χ(y∗).

Computing equilibrium payments p∗ and toll prices τ ∗. Given the optimal trip
vector x∗, we compute the set of rider payments p∗ and toll prices τ ∗ such that (x∗, p∗, τ ∗) is
a market equilibrium. Recall from Theorem 1, the riders’ utilities and toll prices (u∗, τ ∗) in
any market equilibrium are optimal solutions of the dual program (D). Sec. 4 constructed
the augmented trip value function V , which satisfies monotonicity and gross substitutes
conditions. Following the same proof ideas as in Theorem 1, we can show that the utility
vector u∗ and toll prices τ ∗ also can be solved from the following dual program with the

9This step can be omitted if the network is parallel with vector k∗ = (qr)r∈R.
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augmented trip value function:

min
u,τ

U(u, τ) =
∑
m∈M

um +
∑
e∈E

qeτe

s.t.
∑
m∈b̄

um +
∑
e∈r

τe ≥ V r(b̄), ∀b̄ ∈ B̄, ∀r ∈ R, (D.a)

um ≥ 0, τe ≥ 0, ∀m ∈M, ∀e ∈ E. (D.b)

The linear program (D) has |M |+|E| number of variables and |R|×|B̄| number of constraints.
This linear program can be solved by the ellipsoid method. In each iteration of this method,
we need to solve a separation problem to decide whether or not a solution (u, τ) is feasible,
and if not find the constraint that it violates. Since the trip value function V is monotonic and
satisfies the gross substitutes condition, we can solve the separation problem using Algorithm
3. For each route r ∈ R, we compute b̄r ∈ arg maxb̄∈B̄{V r(b̄) −

∑
m∈b̄ u

m} using Algorithm

3. Then, by checking whether or not
∑

m∈b̄r u
m +

∑
e∈r τe ≥ V r(b̄r), we can determine if the

constraint (D.a) is satisfied for all route r ∈ R. In this way, we solve the separation problem
in time polynomial in |M | and |R|. Thus, the optimal solution of (D) can also be solved by
ellipsoid method in time polynomial in |M | and |R|.

Finally, given any optimal solution (u∗, τ ∗), the riders’ payment vector p∗ can be obtained
from (4). Thus, we obtain (x∗, p∗, τ ∗) as a market equilibrium.

Notice that the set of equilibrium utility and toll prices (u∗, τ ∗) may not be single-
ton. From strong duality theory, we know that the sum of riders’ equilibrium utilities and
toll prices, must equal to the optimal social welfare given the organized trips in x∗, i.e.∑

m∈M um∗ +
∑

e∈E qeτ
∗
e = S(x∗). Therefore, different market equilibria can result in differ-

ent splits of social welfare between the riders’ utilities and the collected toll prices. Next, we
highlight a specific market equilibrium that provides the maximum share of social welfare to
riders and collects the minimum tolls.

6 Strategyproofness and Maximum Rider Utilities

In this section, we consider the situation where the market is facilitated by a platform that
implements a market equilibrium based on the reported preferences of each rider. Two
questions arise in this situation: The first is whether or not riders truthfully report their
preference parameters to the platform. The second is which market equilibrium is imple-
mented and how it determines the splits between riders’ utilities and collected tolls. We
show that there exists a strategyproof market equilibrium under which riders truthfully re-
port their preferences. Moreover, this market equilibrium also achieves the maximum utility
for all riders and the total toll is the minimum.

We first introduce the definition of strategyproofness. To distinguish between the true
preference parameters and the reported preference parameters, we denote the reported pa-
rameters as α

′
and β

′
.10 The corresponding market equilibrium is denoted

(
x∗
′
, p∗

′
, τ ∗

′)
. The

utility vector under market equilibrium with the true preference parameters (resp. reported
preference parameters) u∗ (resp. u∗

′
) can be computed as in (4).

10We assume that riders have homogeneous carpool disutility that is known by the platform.
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Definition 6 (Strategyproofness) A market equilibrium (x∗, p∗, τ ∗) is strategyproof if for
any preference parameters α

′ 6= α and β
′ 6= β, um∗ ≥ um∗

′
for all m ∈M .

We next define the Vickery-Clark-Grove (VCG) Payment vector. For each m ∈ M ,
we denoted x−m∗ as the optimal trip vector when rider m is not present. The social wel-
fare for riders in M \ {m} given the optimal trip vector x−m∗ is denoted S−m(x−m∗) =∑

b∈B
∑

r∈R Vr(b)x
−m∗
r (b) , and the social welfare for riders in M \{m} with x∗ is S−m(x∗) =

S(x∗)−
∑

b3m
∑

r∈R v
m
r (b)x∗r(b).

Definition 7 A VCG payment vector p† =
(
pm†
)
m∈M is given by:

pm† = S−m(x−m∗)− S−m(x∗), ∀m ∈M. (21)

In VCG payment vector (21), each rider m’s payment is the difference of the total trip
values for all other riders with and without rider m, i.e. pm† is the externality of each rider
m on all other riders. Under the optimal trip vector x∗ and the VCG payment vector p†, the
utility vector u† =

(
um†
)
m∈M is given by:

um†
(4)
=
∑
b3m

∑
r∈R

Vr(b)x
∗
r(b)− pm†

(21)
= S(x∗)− S−m(x∗−m), ∀m ∈M. (22)

That is, the utility of each rider m ∈ M is the difference of the optimal social welfare with
and without rider m.

Lemma 8 ([22]) A market equilibrium is strategyproof if the payment vector is p†.

The next theorem shows that there exists a toll price vector such that the market equi-
librium payment vector is p† and the riders’ utility vector is u†. This market equilibrium
is strategyproof. Moreover, all riders’ utilities are higher than that under any other market
equilibrium, and the total collected tolls is the minimum.

Theorem 3 There exists a toll price vector τ † such that
(
x∗, p†, τ †

)
is a market equilibrium,

and is strategyproof. Moreover, for any other market equilibrium (x∗, p∗, τ ∗),

um† ≥ um∗, ∀m ∈M,
∑
e∈E

qeτ
†
e ≤

∑
e∈E

qeτ
∗
e .

We denote the set of u∗ in the optimal solutions of the dual problem (D) as U∗. From
Theorem 1, we know that any utility vector u∗ is an equilibrium utility vector if and only if
there exists a toll price vector τ ∗ such that (u∗, τ ∗) is an optimal solution of (D), i.e. u∗ ∈ U∗.
To show that u† is the maximum equilibrium utility vector, we need to prove that u† is the
maximum component in the set U∗.

We proceed in three steps: Firstly, Lemma 9 shows that the set U∗ is equivalent to the
set of utility vectors in the optimal solution set of the dual program of (LPk∗). Secondly,
the set of optimal utility vectors in the dual program of (LPk∗) is the same as the set of
prices in Walrasian equilibrium of the equivalent economy constructed in Sec. 4 (Lemma
10). Finally, the set of good prices in Walrasian equilibrium is a complete lattice, and the
maximum component is u† as in (22) (Lemma 11).

We now present the formal statements of these lemmas and their proof ideas. The proofs
are included in Appendix B.
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Lemma 9 A utility vector u∗ ∈ U∗ if and only if there exists vector λ∗ = (λ∗r)r∈R such that
(u∗, λ∗) is an optimal solution of the following linear program:

min
u,λ

∑
m∈M

um +
∑
r∈R∗

k∗rλr,

s.t.
∑
m∈b

um + λr ≥ Vr(b) ∀r ∈ R∗, ∀b ∈ B, (Dk∗.a)

um ≥ 0, λr ≥ 0, ∀m ∈M, ∀r ∈ R∗, (Dk∗.b)

where λr is the dual variable of constraint (LPk∗.b) for each r ∈ R.

In (Dk∗), the dual variable λr can be viewed as the toll price set on each route r ∈ R∗.
We note that (Dk∗) is less restrictive than (D), which is the dual program on the original
network, in two respects: Firstly, constraints (Dk∗) are only set for the set of routes R∗ of
the sub-network rather than on all routes in the whole network. Secondly, the toll prices
λ in (Dk∗) are set on routes instead of on edges as in τ of (D). Any edge toll price vector
can be equivalently represented as toll prices on routes by summing the tolls of all edges on
any route. Therefore, given any feasible solution (u, τ) of (D), (u, λ) where λr =

∑
e∈r τe for

each r ∈ R∗ is also feasible in (Dk∗).
We can check that for any optimal solution (u∗, τ ∗) of (D), the vector (u∗, λ∗) – where

λ∗r =
∑

e∈r τ
∗
e for each r ∈ R∗ – must also be optimal in (Dk∗). That is, the set U∗ is a subset

of the optimal utility vectors in (Dk∗). This result follows from strong duality theory and
Lemma 1: From the strong duality theory, the optimal values of the objective function in
(Dk∗) (resp. (LP)) equals to the optimal value of the primal problems (LP) (resp. (LPk∗)).
From Lemma 1, we know that the optimal trip organization vector is the same in both (LP)
and (LPk∗). Thus, the optimal value of (D) is the same as that of (LPk∗). Since the value of
the objective function with (u∗, τ ∗) equals to that with (u∗, λ∗), we know that (u∗, λ∗) must
be an optimal solution of (Dk∗).

Furthermore, we can show that for any optimal solution u∗ of (Dk∗), there must exist an
edge toll vector τ ∗ such that (u∗, τ ∗) is an optimal solution of (D). That is, any equilibrium
utility vector with route toll prices on the sub-network can also be induced by edge toll prices
on the original network. This result relies on the fact that the network is series parallel, and
it is proved by mathematical induction.

Lemma 9 enables us to characterize the riders’ utility set U∗ using the less restrictive dual
program (Dk∗). Recall that in Sec. 4, we have shown that the trip organization problem on
the constructed augmented network with the augmented value function is equivalent to an
economy with indivisible goods (Lemma 3). The next lemma shows that the set U∗ is the
same as the set of Walrasian equilibrium prices in the equivalent economy.

Lemma 10 A utility vector u∗ ∈ U∗ if and only if there exists y∗ such that (y∗, u∗) is a
Walrasian equilibrium of the economy.

Moreover, since the augmented trip value function W is monotonic and satisfies gross
substitutes condition, the set of Walrasian equilibrium price vectors is a lattice, and has a
maximum component.
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Lemma 11 ([11]) If the value function W satisfies the monotonicity and gross substitutes
conditions, then the set of Walrasian equilibrium prices is a lattice and has a maximum
component u† =

(
um†
)
m∈M as in (22).

From Lemmas 9 – 11, we know that u† is the maximum component in the set U∗. That
is, there exists a toll price vector τ † =

(
τ †e
)
e∈E such that

(
u†, τ †

)
is an optimal solution of

(D), and hence
(
x∗, p†, τ †

)
is a market equilibrium. Additionally, from Lemma 8, we know

that this market equilibrium is strategyproof. Moreover, all riders achieve the maximum
equilibrium utilities in the equilibrium. Since

∑
m∈M um∗ +

∑
e∈E qeτ

∗
e = S(x∗) for any

market equilibrium (x∗, u∗, τ ∗), this also implies that the total amount of tolls
∑

e∈E qeτ
†
e that

is collected in market equilibrium
(
x∗, p†, τ †

)
is the minimum. We thus conclude Theorem

3.
Finally, we discuss the computation of the market equilibrium

(
x∗, p†, τ †

)
. In particular,

the optimal trip assignment x∗ can be computed in two steps described in Sec. 5 using
Algorithms 1 – 2. Then, we re-run Algorithm 2 given k∗ and rider set M \ {m} to compute
x−m∗ for each m ∈ M . We compute the utility vector u† (resp. payment vector p†) as in
(22) (resp. (21)).

For any e ∈ E, we set τ †e = 0 if
∑

b∈B
∑

r3e x
∗
r(b) < qe. From (D), we know that τ † is any

vector that satisfies the following constraints:∑
e∈r

τ †e = max
b̄∈B̄

V r(b̄)−
∑
m∈b̄

um†, ∀r ∈ R∗,∑
e∈r

τ †e ≥ max
b̄∈B̄

V r(b̄)−
∑
m∈b̄

um†, ∀r ∈ R \R∗.
(24)

Finding a vector τ † that satisfies constraints in (24) is equivalent to solving a linear program
with a constant objective function and feasibility constraints (24). This linear program can
be computed by the ellipsoid method, in which the separation problem in each iteration is to
check whether or not the toll price vector τ † satisfies the feasible constraints in (24). Since
the augmented trip value function V satisfies monotonicity and gross substitutes condition,
we can compute the right-hand-side value of the constraint in (24) using Algorithm 3 in time
O(|M |) for each r ∈ R. That is, the separation problem in each iteration can be computed
in polynomial time of |M | and |R|. Therefore, a toll vector τ † that satisfies (24) can be
computed in polynomial time of |M | and |R|.

7 Concluding Remarks

In this article, we studied the existence and computation of market equilibrium for organizing
socially efficient carpooled trips over a transportation network using autonomous cars. We
also identified a market equilibrium that is strategyproof and maximizes riders’ utilities.
Our approach can be used to analyze incentive mechanisms for sharing limited resources in
networked environment.

One interesting direction for future work is to characterize equilibrium in a transporta-
tion market when riders belong to different classes that are differentiated by their carpool
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disutility levels. In this situation, riders with different carpool disutilies may be grouped
into trips that are organized using different vehicle sizes to reflect the riders’ car sharing
preferences.

A more general problem is to design market with both autonomous and human-driven
carpooled trips, wherein riders may have different preferences of over these service types. A
pre-requisite to the design of such a market is quantitative evaluation of how autonomous and
human-driven vehicles differ in terms of their utilization of road capacity and the incurred
route travel times [13]. Analysis of differentiated pricing and tolling schemes corresponding
to trip assignments between the two service types is an interesting and relevant problem for
future work.
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A Proof of Section 3

Proof of Theorem 1. First, we proof that the four conditions of market equilibrium (x∗, p∗, τ ∗)
ensures that x∗ satisfies the feasibility constraints of the primal (LP), (u∗, τ ∗) satisfies the
dual (D), and (x∗, u∗, τ ∗) satisfies the complementary slackness conditions. The vector u∗ is
the utility vector computed from (4).

(i) Feasibility constraints of (LP). Since x∗ is a feasible trip vector, x∗ must satisfy the
Feasibility constraints of (LP).

(ii) Feasibility constraints of (D). From the stability condition (6), individual rationality
(5), and the fact that toll prices are non-negative, we know that (u∗, τ ∗) satisfies the
feasibility constraints of (D).

(iii) Complementary slackness condition with respect to (LP.a). If rider m is not assigned,
then (LP.a) is slack with the integer trip assignment x∗ for some rider m. The budget
balanced condition (7b) shows that p∗m = 0. Since rider m is not in any trip and the
payment is zero, the dual variable (i.e. rider m’s utility) um∗ = 0. On the other hand,
if um∗ > 0, then rider m must be in a trip, and constraint (LP.a) must be tight. Thus,
we can conclude that the complementary slackness condition with respect to the primal
constraint (LP.a) is satisfied.

(iv) Complementary slackness condition with respect to (LP.b). Since the mechanism is
market clearing, toll price τe is nonzero if and only if the load on edge e is below
the capacity, i.e. the primal constraint (LP.b) is slack for edge e ∈ E. Therefore,
the complementary slackness condition with respect to the primal constraint (LP.b) is
satisfied.

(v) Complementary slackness condition with respect to (D.a). From (7a), we know that
for any organized trip, the corresponding dual constraint (D.a) is tight. If constraint
(D.a) is slack for a trip (b, r), then the budget balance constraint ensures that trip is
not organized. Therefore, the complementary slackness condition with respect to the
primal constraint (D.a) is satisfied.

We can analogously show that the inverse of (i) – (v) are also true: the feasibility con-
straints of (LP) and (D), and the complementary slackness conditions ensure that (x∗, p∗, τ ∗)
is a market equilibrium. Thus, we can conclude that (x∗, p∗, τ ∗) is a market equilibrium if and
only if (x∗, u∗, τ ∗) satisfies the feasibility constraints of (LP) and (D), and the complementary
slackness conditions.

From strong duality theory, we know that the equilibrium trip vector x∗ must be an
optimal integer solution of (LP). Therefore, the existence of market equilibrium is equivalent
to the existence of an integer optimal solution of (LP). The optimal trip assignment is an
optimal integer solution of (LP), and (u∗, τ ∗) is an optimal solution of the dual problem (D).
The payment p∗ can be computed from (4). �

Proof of Corollary 1. Consider any two routes r, r′ ∈ R such that tr ≥ tr′ . Given x∗, we
denote the rider group that takes route r as br. If no rider group is assigned to route r, then
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we denote br = ∅. From (7a), we have∑
m∈br

u∗m +
∑
e∈r

τ ∗e = Vr(br).

Additionally, since (u∗, τ ∗) satisfies constraint (D.a), we know that∑
m∈br

u∗m +
∑
e∈r′

τ ∗e ≥ V ′r (br).

Therefore, we must have:

∑
e∈r′

τ ∗e −
∑
e∈r

τ ∗e ≥ V ′r (br)− Vr(br) =

(∑
m∈br

αm −
∑
m∈br

βmtr′ −
∑
m∈br

γm(|br|)tr′ − δ|br|tr′
)

−

(∑
m∈br

αm −
∑
m∈br

βmtr −
∑
m∈br

γm(|br|)tr − δ|br|tr

)

=

(∑
m∈br

βm +
∑
m∈br

γm(|br|) + δ|br|

)
(tr − tr′) ≥ 0.

�

B Proof of Section 4.

Proof of Lemma 1. Consider any (fractional) optimal solution of (LP), denoted as x̂. We

denote f̂(b) =
∑

r∈R x̂r(b) as the flow of group b, and F̂ =
∑

b∈B f̂(b) is the total flows. Since

x̂ is feasible, we know that F̂ ≤ C, where C is the maximum capacity of the network. For
each b ∈ B, we re-write the trip valuation as follows:

Vr(b) = z(b)− g(b)tr, ∀ (b, r) ∈ B ×R,

where g(b) =
∑

m∈b β
m +

∑
m∈b γ(|b|) + δ|b|, and z(b) =

∑
m∈b α

m.

The set of all groups with positive flow in x̂ is B̂
∆
= {b̂ ∈ B|f̂(b̂) > 0}. We denote the

number of rider groups in B̂ as n, and re-number these rider groups in decreasing order of
g(b̂), i.e.

g(b̂1) ≥ g(b̂2) ≥ · · · ≥ g(b̂n).

We now construct another trip vector x∗ by the following procedure:
Initialization: Set route set R̃ = R∗, route capacity q̃r = k∗r for all ∀r ∈ R̃, and initial zero
assignment vector x∗r(b)← 0 for all r ∈ R and all b ∈ B
For j = 1, . . . , n:

(a) Assign rider group b̂j to a route r̂ in R̃, which has the minimum travel time among all
routes with flow less than the capacity, i.e. r̂ ∈ arg minr∈{R̃|∑b∈B x∗r(b)<q̃r}{tr}.
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(b) If
∑

b∈B x
∗
r(b) + f̂(b̂j) ≤ q̃r, then x∗r(b̂j) = f̂(b̂j).

(c) Otherwise, assign x∗r(b̂j) = q̃r −
∑

b∈B x
∗
r(b), and continue to assign the remaining

weight of rider group b̂j to the next unsaturated route with the minimum cost. Repeat

this process until the condition in (b) is satisfied, i.e. the total weight f̂(bj) is assigned.

We can check that
∑

b3m
∑

r∈R x
∗
r(b) =

∑
b3m f̂(b) ≤ 1 so that (LPk∗.a) is satisfied.

Additionally, since in the assignment procedure, the total weight assigned to route r is less
than or equal to k∗r , we must have

∑
b∈B x

∗
r(b) ≤ k∗r for all r ∈ R, i.e. (LPk∗.b) is satisfied.

Thus, x∗ is a feasible solution of (LPk∗).
It remains to prove that x∗ is optimal of (LPk∗). We prove this by showing that V (x∗) ≥

V (x̂). The objective function S(x∗) can be written as follows:∑
r∈R

∑
b∈B

Vr(b)x
∗
r(b) =

∑
r∈R

∑
b∈B

z(b)x∗r(b)−
∑
r∈R

∑
b∈B

g(b)trx
∗
r(b). (25)

We note that since
∑

r∈R k
∗
r = C and

∑
r∈R
∑

b∈B x̂r(b) ≤ C, the algorithm must terminate

with all groups in x̂ being assigned. Therefore,
∑

r∈R x
∗
r(b) = f̂(b) =

∑
r∈R x̂r(b) for all

b ∈ B. Therefore, ∑
r∈R

∑
b∈B

z(b)x∗r(b) =
∑
b∈B

z(b)f̂(b) =
∑
r∈R

∑
b∈B

z(b)x̂r(b) (26)

Then, V (x∗) ≥ V (x̂) is equivalent to
∑

r∈R
∑

b∈B g(b)trx
∗
r(b) ≤

∑
r∈R
∑

b∈B g(b)trx̂
∗
r. To

prove this, we show that x∗ minimizes the term
∑

r∈R
∑

b∈B g(b)trx
∗
r(b) among all feasible x

that induces the same flow of groups as x̂, i.e.

x∗ ∈ arg min
x∈X(f̂)

∑
r∈R

∑
b∈B

g(b)trxr(b), (27)

where

X(f̂)
∆
=

(xr(b))r∈R,b∈B

∣∣∣∣∣∣
∑

r∈R xr(b) = f̂(b), ∀b ∈ B,∑
b∈B
∑

r3e xr(b) ≤ qe, ∀e ∈ E,
xr(b) ≥ 0, ∀r ∈ R, ∀b ∈ B.

 (28)

We prove (27) by mathematical induction. To begin with, (27) holds trivially on any
single-link network. We ext prove that if (27) holds on two series-parallel sub-networks G1

and G2, then (27) holds on the network G that connects G1 and G2 in series or in parallel.
In particular, we analyze the cases of series connection and parallel connection separately:

(Case 1) Series-parallel Network G is formed by connecting two series-parallel sub-networks
G1 and G2 in series.
We denote the set of routes in subnetwork G1 and G2 as R1 and R2, respectively. Since G1

and G2 are connected in series, the set of routes in network G is R
∆
= R1×R2. For any flow

vector f̂ , we define the set of trip vectors on G that satisfy the constraint in (27) as X(f̂).
We also define the trip vector that is obtained from the above-mentioned procedure based
on f̂ as x∗.
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Since the two sub-networks are connected in sequence, the group flow vectors in G1 and
G2 are also f̂ . Analogously, we define the set of trip vectors on sub-network G1 (resp. G2)
that satisfies the constraint in (27) as X1(f̂) (resp. X2(f̂)). We can check that X1(f̂)
(resp. X2(f̂)) is the set of trip vectors in X(f̂) that is restricted on network G1 (resp.
G2). That is, for any x ∈ X(f̂), we can find x1 ∈ X1(f̂) (resp. x2 ∈ X2(f̂)) such that∑

r2∈R2 xr1r2(b) = x1
r1(b) (resp.

∑
r1∈R1 xr1r2(b) = x2

r2(b)) for all b ∈ B and all r1 ∈ R1 (resp.
r2 ∈ R2). Since the two subnetworks are connected sequentially, we have the follows:

∑
r∈R

∑
b∈B

g(b)trxr(b) =
∑
r1∈R1

∑
b∈B

g(b)tr1

(∑
r2∈R2

xr1r2(b)

)
+
∑
r2∈R2

∑
b∈B

g(b)tr2

(∑
r1∈R1

xr1r2(b)

)
=
∑
r1∈R1

∑
b∈B

g(b)tr1x
1
r1(b) +

∑
r2∈R2

∑
b∈B

g(b)tr2x
2
r2(b). (29)

We also denote the trip vector that is obtained from the above-mentioned procedure
based on f̂ in G1 (resp. G2) as x1∗ (resp. x2∗). We now argue that

∑
r2∈R2 x∗r1r2(b) = x1∗

r1(b)
for all b ∈ B and all r1 ∈ R1. For the sake of contradiction, assume that there exists
b ∈ B such that

∑
r2∈R2 x∗r1r2(b) 6= x1∗

r1(b) for at least one r1 ∈ R1. We denote b̂ as one

such group with the maximum g(b̂). Since the total flow of b̂ is f̂(b̂) in both x∗ and x1∗,
if
∑

r2∈R2 x∗r1r2(b̂) 6= x1∗
r1(b̂) on one r1 ∈ R1, the same inequality must hold for another

r1′ ∈ R1. Without loss of generality, we assume that tr1 < tr1′ . Since any group b that are

assigned before b̂ (g(b) < g(b̂)) satisfy
∑

r2∈R2 x∗r1r2(b) = x1∗
r1(b) for all r1 ∈ R1, we know that

the available route capacities f̃ in the round of assigning b̂ in procedure (i) – (iii) satisfy∑
r2∈R2 f̃r1r2 = f̃r1 for all r1 ∈ R1. Therefore, if

∑
r2∈R2 x∗r1r2(b̂) < x1∗

r1(b̂), then x1∗ is not
obtained by procedure (i) – (iii) on G1 because r1 is not saturated with x1∗ in the round
of assigning b̂, and more flow of b̂ should be moved from r1′ to r1 to saturate route r1. We
can analogously argue that if

∑
r2∈R2 x∗r1r2(b̂) > x1∗

r1(b̂), then x∗ is not obtained from the
algorithm for G. In either case, we have arrived at a contradiction. We can analogously
argue that

∑
r1∈R1 x∗r1r2(b) = x2∗

r2(b) for all b ∈ B and all r2 ∈ R2. Therefore,

∑
r∈R

∑
b∈B

g(b)trx
∗
r(b) =

∑
r1∈R1

∑
b∈B

g(b)tr1

(∑
r2∈R2

x∗r1r2(b)

)
+
∑
r2∈R2

∑
b∈B

g(b)tr2

(∑
r1∈R1

x∗r1r2(b)

)
=
∑
r1∈R1

∑
b∈B

g(b)tr1x
1∗
r1(b) +

∑
r2∈R2

∑
b∈B

g(b)tr2x
2∗
r2(b) (30)

If (27) holds on both sub-networks (i.e. x1∗ ∈ arg minx∈X1(f̂)

∑
r1∈R1

∑
b∈B g(b)tr1x

1
r1(b)

and x2∗ ∈ arg minx∈X2(f̂)

∑
r2∈R2

∑
b∈B g(b)tr2x

2
r2(b)), then from (29) – (30), we know that

(27) also holds in network G.

(Case 2) Series-parallel Network G is formed by connecting two series-parallel networks G1

and G2 in parallel.
Same as case 1, we denote R1 (resp. R2) as the set of routes in G1 (resp. G2). Then, the
set of all routes in G is R = R1 ∪R2.

Given any f̂ , we compute x∗ from the procedure (i) – (iii) in network G. We denote f 1∗ =∑
r1∈R1

∑
b∈B x

∗
r(b) (resp. f 2∗ =

∑
r2∈R2

∑
b∈B x

∗
r(b)) as the total flow assigned to subnetwork
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G1 (resp. G2) given x∗. We now denote x1∗ (resp. x2∗) as the trip vector x∗ restricted on
sub-network G1 (resp. G2), i.e. x1∗ =

(
x∗r1(b)

)
r1∈R1,b∈B (resp. x2∗ =

(
x∗r2(b)

)
r2∈R2,b∈B). We

can check that x1∗ (resp. x2∗) is the trip vector obtained by the procedure (i) – (iii) given
the total flow f 1∗ (resp. f 2∗) on network G1 (resp. G2).

Consider any arbitrary split of the total flow f̂ to the two sub-networks, denoted as(
f̂ 1, f̂ 2

)
, such that f̂ 1(b) + f̂ 2(b) = f̂(b) for all b ∈ B. Given f̂ 1 (resp. f̂ 2), we denote the

trip vector obtained by procedure (i) – (iii) on sub-network G1 (resp. G2) as x̂1∗ (resp. x̂2∗).
We also define the set of feasible trip vectors on sub-network G1 (resp. G2) that induce the
total flow f̂ 1 (resp. f̂ 2) given by (28) as X1(f̂ 1) (resp. X2(f̂ 2)). Then, the set of all trip
vectors that induce f̂ on network G is X(f̂) = ∪(f̂1,f̂2)(X1(f̂ 1), X2(f̂ 2)).

Under our assumption that (27) holds on sub-network G1 and G2 with any total flow, we

know that given any flow split
(
f̂ 1, f̂ 2

)
,∑

r1∈R1

∑
b∈B

g(b)trx̂
1∗
r1(b) +

∑
r2∈R2

∑
b∈B

g(b)trx̂
2∗
r2(b) ≤

∑
r1∈R1

∑
b∈B

g(b)trx̂
1
r1(b) +

∑
r2∈R2

∑
b∈B

g(b)trx̂
2
r2(b),

∀x̂1 ∈ X(f̂ 1), x̂2 ∈ X(f̂ 2).

Therefore, the optimal solution of (27) must be a trip vector (x̂1∗, x̂2∗) associated with a

flow split
(
f̂ 1, f̂ 2

)
. It thus remains prove that any (x̂1∗, x̂2∗) associated with flow split(

f̂ 1, f̂ 2
)
6= (f 1∗, f 2∗) cannot be an optimal solution (i.e. can be improved by re-arranging

flows).

For any
(
f̂ 1, f̂ 2

)
6= (f 1∗, f 2∗), we can find a group bj such that f̂ 1(bj) 6= f 1∗(bj) (hence-

forth f̂ 2(bj) 6= f 2∗(bj)). We denote bĵ as one such group with the maximum g(b), i.e.

f̂ 1(bj) = f 1∗(bj) for any j − 1, . . . , ĵ − 1. Since groups b1, . . . , bĵ−1 are assigned before group
bĵ according to procedure (i) – (iii), we know that x1∗

r1(bj) = x∗r1(bj) and x2∗
r2(bj) = x∗r2(bj)

for all r1 ∈ R1, all r2 ∈ R2 and all j = 1, . . . , ĵ − 1. Since f̂ 1(bĵ) 6= f 1∗(bĵ), the trip vector
in x1∗ and x2∗ must be different from that in x∗. Without loss of generality, we assume
that f̂ 1(bĵ) > f 1∗(bĵ) and f̂ 2(bĵ) < f 2∗(bĵ). Then, there must exist routes r̂1 ∈ R1 and
r̂2 ∈ R2 such that x1∗

r̂1(bĵ) > x∗r̂1(bĵ) and x2∗
r̂2(bĵ) < x∗r̂2(bĵ). Moreover, since x∗ assigns group

bĵ to routes with the minimum travel time cost that are unsaturated after assigning groups
b1, . . . , bĵ−1, we have tr̂2 < tr̂1 . If route r̂2 is unsaturated given x̂2∗, then we decrease x̂1∗

r̂1(bĵ)
and increase x̂2∗

r̂2(bĵ) by a small positive number ε > 0. We can check that the objective func-
tion of (27) is reduced by ε(tr̂1 − tr̂2)εg(bĵ) > 0. On the other hand, if route r̂2 is saturated,
then group bĵ+1 must be assigned to r̂2 because it is assigned right after group bĵ. Then, we
decrease x1∗

r̂1(bĵ) and x2∗
r̂2(bĵ+1) by ε > 0, increases x1∗

r̂1(bĵ+1) and x2∗
r̂2(bĵ) by ε (i.e. exchange

a small fraction of group bĵ with group bĵ+1). Note that g(bĵ) > g(bĵ+1) and tr̂1 > tr̂2 . We
can thus check that the objective function of (27) is reduced by ε(tr̂1g(bĵ)− tr̂2g(bĵ+1))ε > 0.
Therefore, we have found an adjustment of trip vector (x̂1∗, x̂2∗) that reduces the objec-

tive function of (27). Hence, for any flow split
(
f̂ 1, f̂ 2

)
6= (f 1∗, f 2∗), the associated trip

vector (x̂1∗, x̂2∗) is not the optimal solution of (27). The optimal solution of (27) must be
constructed by procedure (i) – (iii) with flow split (f 1∗, f 2∗), i.e. must be x∗.
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We have shown from cases 1 and 2 that if x∗ is an optimal solution of (27) on two series-
parallel sub-networks, then x∗ is an optimal solution on the connected series-parallel network.
Moreover, since (27) holds trivially when the network is a single edge, and any series-parallel
network is formed by connecting series-parallel sub-networks in series or parallel, we can
conclude that x∗ obtained from procedure (i) – (iii) minimizes the objective function in (27)
for any flow vector f̂ on any series-parallel network.

From (25), (26) and (27), we can conclude that V (x∗) ≥ V (x̂∗). Hence, x∗ must be an
optimal solution in (LPk∗). �

Proof of Lemma 2. First, for any feasible x in (LPk∗), consider a vector y such that for
any (r, b) ∈ {B × R|xr(b) = 1}, yl(b) = 1 for one l ∈ Lr and yl(b̄) = 0 for any other

(
b̄, l
)
.

We can check that y is feasible in (LP-y) and S(x) = S(y). On the other hand, for any
feasible y in (LP-y), there exists x = χ(y) as in (16) such that x is feasible in (LPk∗) and
S(x) = S(y). Thus, (LPk∗) and (LP-y) are equivalent in that for any feasible solution of
one linear program, there exists a feasible solution that achieves the same social welfare in
the other linear program.

Therefore, (LPk∗) has an integer optimal solution if and only if (LP-y) has an integer
optimal solution, and for any integer optimal solution y∗ of (LP-y), x = χ(y∗) as in (16) is
an optimal solution of (LPk∗). �

Proof of Lemma 3. We write the dual program of (LP-y) as follows:

min
u,µ

∑
m∈M

um +
∑
l∈L

µl,

s.t.
∑
m∈b̄

um + µl ≥ Wl(b̄) ∀b̄ ∈ B̄, ∀l ∈ L, (D-y.a)

um ≥ 0, µl ≥ 0, ∀m ∈M, ∀l ∈ L. (D-y.b)

For any Walrasian equilibrium (y∗, u∗), we consider the vector µ∗ = (µ∗l )l∈L as follows:

µ∗l = max
b̄∈B̄

Wl(b̄)−
∑
m∈b̄

um∗, ∀l ∈ L. (32)

From the definition of Walrasian equilibrium, we know that y∗ is a feasible solution of
(LP-y), and (u∗, µ∗) is a feasible solution of (D-y). We now show that (y∗, u∗, µ∗) satisfies
complementary slackness condition of (LP-y) and (D-y).

- Complementary slackness condition for (LP-y.a): Condition (ii) in Definition 5 ensures
that rider m’s utility is positive if and only if (LP-y.a) is tight (i.e. rider m joins a
trip).

- Complementary slackness condition for (LP-y.b): If no rider group takes route l ∈ L,
i.e. (LP-y.b) is slack and b̄l = 0, then µ∗l as in (32) is zero. On the other hand, µ∗l > 0,
then b̄l 6= 0. Hence, (LP-y.b) must be tight.

- Complementary slackness condition for (D-y.a): From condition (i) in Definition 5, we
know that y∗l (b̄l) = 1 if and only if b̄l ∈ arg maxb̄∈B̄Wl(b̄) −

∑
m∈b̄ u

m∗, i.e. constraint
(D-y.a) is tight.
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From strong duality, we know that y∗ must be an integer optimal solution of (LP-y) and
(u∗, µ∗) must be an optimal solution of (D-y). Therefore, we can conclude that a Walrasian
equilibrium (y∗t, u∗) exists in the equivalent economy G if and only if (LP-y) has an optimal
integer solution. �

Proof of Lemma 4. Since all riders have homogeneous carpool disutility, we can simplify the
trip value function from (15) as follows:

V r(b̄) =
∑

m∈hr(b̄)

ηmr − θ(|hr(b̄)|)tr,

where ηmr
∆
= αm − βmtr and θ(|hr(b̄)|) = |hr(b̄)|γ(|hr(b̄)|) + δ(|hr(b̄)|).

Before proving that the augmented trip value function V r(b̄) satisfies (a) and (b) in
Definition 5, we first prove the following statements that will be used later:

(i) The function θ(|hr(b̄)|) is non-decreasing in |hr(b̄)| because the marginal carpool
disutility is non-decreasing in the group size.

(ii) The representative rider group for any trip
(
b̄, r
)
∈ B̄ × R can be constructed by

selecting riders from b̄ in decreasing order of ηmr . The last selected rider ` (i.e. the rider in
hr(b̄) with the minimum value of ηmr ) satisfies:

η`r ≥
(
θ(|hr(b̄)|)− θ(|hr(b̄)| − 1)

)
tr. (33)

That is, adding rider ` to the set hr(b̄) \ {`} increases the trip valuation. Additionally,

ηmr <
(
θ(|hr(b̄)|+ 1)− θ(|hr(b̄)|)

)
tr, ∀m ∈ b̄ \ hr(b̄). (34)

Then, adding any rider in b̄ \ hr(b̄) to hr(b̄) no longer increases the trip valuation.
(iii) |hr(b̄′)| ≥ |hr(b̄)| for any two rider groups b̄′, b̄ ∈ B such that b̄′ ⊇ b̄.

Proof of (iii). Assume for the sake of contradiction that |hr(b̄′)| < |hr(b̄)|. Consider the rider
` ∈ arg minm∈hr(b̄) η

m
r . The value η`r satisfies (33). Since |hr(b̄′)| < |hr(b̄)|, b̄′ ⊇ b̄, and we

know that riders in the representative rider group hr(b̄
′) are the ones with |hr(b̄′)| highest ηmr

in b̄′, we must have ` /∈ hr(b̄′). From (34), we know that η`r <
(
θ(|hr(b̄′)|+ 1)− θ(|hr(b̄′)|)

)
tr.

Since the marginal carpool disutility is non-decreasing in the rider group size, we can check
that θ(|hr(b̄)| + 1) − θ(|hr(b̄)|) is non-decreasing in |hr(b̄)|. Since |hr(b̄′)| < |hr(b̄)|, we have
|hr(b̄′)| ≤ |hr(b̄)| − 1. Therefore,

η`r <
(
θ(|hr(b̄′)|+ 1)− θ(|hr(b̄′)|)

)
tr ≤

(
θ(|hr(b̄)|)− θ(|hr(b̄)| − 1)

)
tr,

which contradicts (33) and the fact that ` ∈ hr(b̄). Hence, |hr(b̄′)| ≥ |hr(b̄)|.
We now prove that V satisfies (i) in Definition 5. For any b̄, b̄′ ⊆M and b̄ ⊆ b̄′, consider

two cases:
Case 1: i /∈ hr({i} ∪ b̄′). In this case, hr(b̄

′ ∪ i) = hr(b̄
′), and V (i|b̄′) = V (b̄′ ∪ i)− V (b̄′) = 0.

Since V satisfies monotonicity condition, we have V (i|b̄) ≥ 0. Therefore, V (i|b̄) ≥ V (i|b̄′).
Case 2: i ∈ hr({i}∪b̄′). We argue that i ∈ hr({i}∪b̄). From (33), ηir ≥

(
θ(|hr(b̄′)|)− θ(|hr(b̄′)| − 1)

)
tr.

Since b̄′ ⊇ b̄, we know from (iii) that |hr(b̄′)| ≥ |hr(b̄)|. Hence, ηir ≥
(
θ(|hr(b̄)|)− θ(|hr(b̄)| − 1)

)
tr,

and thus i ∈ hr({i} ∪ b̄).
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We define `′
∆
= arg minm∈hr(b̄′) η

m
r and `

∆
= arg minm∈hr(b̄) η

m
r . We also consider two thresh-

olds µ′ =
(
θ(|hr(b̄′)|+ 1)− θ(|hr(b̄′)|)

)
tr, and µ =

(
θ(|hr(b̄)|+ 1)− θ(|hr(b̄)|)

)
tr. Since

b̄′ ⊇ b̄, from (iii), we have |hr(b̄′)| ≥ |hr(b̄)| and thus µ′ ≥ µ. We further consider four
sub-cases:

(2-1) η`
′
r ≥ µ′ and η`r ≥ µ. From (33) and (34), hr({i}∪ b̄′) = hr(b̄

′)∪{i} and hr({i}∪ b̄) =
hr(b̄)∪{i}. The marginal value of i is V r(i|b̄′) = ηir−µ′, and V r(i|b̄) = ηir−µ. Since µ′ ≥ µ,
V r(i|b̄′) ≤ V r(i|b̄).

(2-2) η`
′
r < µ′ and η`r ≥ µ. Since i ∈ hr({i}∪b̄′) in Case 2, we know from (33) and (34) that

hr({i}∪ b̄′) = hr(b̄
′)\{`′}∪{i} and hr({i}∪ b̄) = hr(b̄)∪{i}. Therefore, V r(i|b̄′) = ηir−η`

′
r and

V r(i|b̄) = ηir−µ. We argue in this case, we must have |hr(b̄′)| > |hr(b̄)|. Assume for the sake
of contradiction that |hr(b̄′)| = |hr(b̄)|, then µ′ = µ and η`

′
r ≥ η`r because b̄′ ⊇ b̄. However,

this contradicts the assumption of this subcase that η`
′
r < µ′ = µ ≤ η`r. Hence, we must have

|hr(b̄′)| ≥ |hr(b̄)| + 1. Then, from (33), we have η`
′
r ≥

(
θ(|hr(b̄′)|)− θ(|hr(b̄′)| − 1)

)
tr ≥ µ.

Hence, V r(i|b̄′) ≤ V r(i|b̄).
(2-3) η`

′
r ≥ µ′ and η`r < µ. From (33) and (34), hr(i∪ b̄′) = hr(b̄

′)∪ {i} and hr({i} ∪ b̄) =
hr(b̄) \ {`′} ∪ {i}. Therefore, V r(i|b̄′) = ηir − µ′ and V r(i|b̄) = ηir − η`r. Since µ′ ≥ µ ≥ η`r, we
know that V r(i|b̄′) ≤ V r(i|b̄).

(2-4) η`
′
r < µ′ and η`r < µ. From (33) and (34), hr({i} ∪ b̄′) = hr(b̄

′) \ {`′} ∪ {i}, and
hr({i} ∪ b̄) = hr(b̄) \ {`} ∪ {i}. Therefore, V r(i|b̄′) = ηir − η`

′
r and V r(i|b̄) = ηir − η`r. If

|hr(b̄′)| = |hr(b̄)|, then we must have η`
′
r ≥ η`r, and hence V r(i|b̄′) ≤ V r(i|b̄). On the other

hand, if |hr(b̄′)| ≥ |hr(b̄)|+ 1, then from (33) we have η`r ≥
(
θ(|hr(b̄′)|)− θ(|hr(b̄′)| − 1)

)
tr ≥

µ > η`r. Therefore, we can also conclude that V r(i|b̄′) ≤ V r(i|b̄).
From all four subcases, we can conclude that in case 2, V r(i|b̄) ≥ V r(i|b̄′).
We now prove that V satisfies condition (ii) of Definition 5 by contradiction. Assume for

the sake of contradiction that (18) is not satisfied. Then, there must exist a group b̄ ∈ B̄,
and i, j, k ∈M \ b̄ such that:

V r(i, j|b̄) + V r(k|b̄) > V r(i|b̄) + V r(j, k|b̄), ⇒ V r(j|i, b̄) > V r(j|k, b̄), (35a)

V r(i, j|b̄) + V r(k|b̄) > V r(j|b̄) + V r(i, k|b̄), ⇒ V r(i|j, b̄) > V r(i|k, b̄). (35b)

We consider the following four cases:
Case A: hr

(
b̄ ∪ {i, j}

)
= hr

(
b̄ ∪ {i}

)
∪{j} and hr

(
b̄ ∪ {j, k}

)
= hr

(
b̄ ∪ {k}

)
∪{j}. In this

case, if |hr
(
b̄ ∪ {i}

)
| ≥ |hr

(
b̄ ∪ {k}

)
|, then V r(j|i, b̄) ≤ V r(j|k, b̄), which contradicts (35a).

On the other hand, if |hr
(
b̄ ∪ {i}

)
| < |hr

(
b̄ ∪ {k}

)
|, then we must have hr

(
b̄ ∪ {i}

)
= hr(b̄)

and hr
(
b̄ ∪ {k}

)
= hr(b̄) ∪ {k}. Therefore, V r(i|j, b̄) = 0, and (35b) cannot hold. We thus

obtain the contradiction.
Case B: |hr

(
b̄ ∪ {i, j}

)
| = |hr

(
b̄ ∪ {i}

)
| and |hr

(
b̄ ∪ {j, k}

)
= hr

(
b̄ ∪ {k}

)
|. We further

consider the following four sub-cases:
(B-1). hr

(
b̄ ∪ {i, j}

)
= hr

(
b̄ ∪ {i}

)
and hr

(
b̄ ∪ {j, k}

)
= hr

(
b̄ ∪ {k}

)
. In this case,

V r(j|i, b̄) = V r(j|k, b̄) = 0. Hence, we arrive at a contradiction against (35a).
(B-2). hr

(
b̄ ∪ {i, j}

)
6= hr

(
b̄ ∪ {i}

)
and hr

(
b̄ ∪ {j, k}

)
= hr

(
b̄ ∪ {k}

)
. In this case, when

j is added to the set b̄∪{i}, j replaces a rider, denoted as ` ∈ b̄∪{i}. Since ` is replaced, we
must have η`r ≤ ηmr for any m ∈ hr(b̄∪{j}). If ` = i, then hr(b̄∪{i, j}) = hr(b̄∪{j}). Hence,
V r(i|j, b̄) = 0, and we arrive at a contradiction with (35b). On the other hand, if ` 6= i, then
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` is a rider in group b̄. This implies that ` ∈ b̄ should be replaced by j when j is added to the
set {k}∪ b̄, which contradicts the assumption of this case that hr

(
b̄ ∪ {j, k}

)
= hr

(
b̄ ∪ {k}

)
.

(B-3). hr
(
b̄ ∪ {i, j}

)
= hr

(
b̄ ∪ {i}

)
and hr

(
b̄ ∪ {j, k}

)
6= hr

(
b̄ ∪ {k}

)
. Analogous

to case B-2, we know that hr
(
b̄ ∪ {j, k}

)
= hr

(
b̄ ∪ {j}

)
and ηjr ≥ ηkr . Moreover, since

hr
(
b̄ ∪ {i, j}

)
= hr

(
b̄ ∪ {i}

)
, we must have ηjr ≤ ηir. Therefore, V r(b̄∪ {i, j}) = V r(b̄∪ {i}),

and V r(i|j, b̄) = V r(b̄ ∪ {i}) − V r(b̄ ∪ {j}). Since ηjr ≤ ηir and ηjr ≥ ηkr , we know that
V r(i|k, b̄) = V r(b̄ ∪ {i}) − V r(b̄ ∪ {k}) ≥ V r(b̄ ∪ {i}) − V r(b̄ ∪ {j}) = V r(i|j, b̄), which
contradicts (35b).

(B-4). hr
(
b̄ ∪ {i, j}

)
6= hr

(
b̄ ∪ {i}

)
and hr

(
b̄ ∪ {j, k}

)
6= hr

(
b̄ ∪ {k}

)
. In this case, if

hr
(
b̄ ∪ {i, j}

)
= hr

(
b̄ ∪ {j}

)
, then V r(i|j, b̄) = V r(i, j, b̄)−V r(j, b̄) = V r(j, b̄)−V r(j, b̄) = 0,

which contradicts (35b). On the other hand, if hr
(
b̄ ∪ {i, j}

)
6= hr

(
b̄ ∪ {j}

)
, then one rider

` ∈ b̄ must be replaced by j when j is added into the set b̄ ∪ {i}, i.e. hr
(
b̄ ∪ {i, j}

)
=

hr
(
b̄ \ {`} ∪ {i, j}

)
. Hence, η`r ≤ ηir and η`r ≤ ηjr . If η`r ≤ ηkr , then under the assump-

tion that |hr
(
b̄ ∪ {j, k}

)
| = |hr

(
b̄ ∪ {k}

)
| and hr

(
b̄ ∪ {j, k}

)
6= hr

(
b̄ ∪ {k}

)
, we must have

hr
(
b̄ ∪ {j, k}

)
= hr

(
b̄ \ {`} ∪ {j, k}

)
. Then, we can check that V r(j|i, b) = V r(j|k, b), which

contradicts (35a).
On the other hand, if η`r > ηkr , then hr

(
b̄ ∪ {j, k}

)
= hr

(
b̄ ∪ {j}

)
. In this case, V r(i|j, b̄)

is the change of trip value by replacing ` with i, and V r(i|k, b̄) is the change of trip value
by replacing k with i. Since ηkr < η`r, we must have V r(i|j, b̄) < V r(i|k, b̄), which contradicts
(35b).

Case C: hr
(
b̄ ∪ {i, j}

)
= hr

(
b̄ ∪ {i}

)
∪ {j} and |hr

(
b̄ ∪ {j, k}

)
| = |hr

(
b̄ ∪ {k}

)
|. We

further consider the following sub-cases:
(C-1). hr

(
b̄ ∪ {j, k}

)
= hr

(
b̄ ∪ {k}

)
. In this case, ηjr ≤ ηmr for all m ∈ hr(b̄ ∪ {k}), and

ηjr < θ(|hr(b̄∪{k})+1|)−θ(|hr(b̄∪{k})|). Since hr
(
b̄ ∪ {i, j}

)
= hr

(
b̄ ∪ {i}

)
∪{j}, we know

that ηjr ≥ θ(|hr(b̄∪{i})+1|)−θ(|hr(b̄∪{i})|). Since carpool disutility is non-decreasing in rider
group size, for ηjr to satisfy both inequalities, we must have |hr(b̄∪{i})| < |hr(b̄∪{k})|. Then,
we must have hr(b̄∪{i}) = hr(b̄) and hr(b̄∪{k}) = hr(b̄)∪{k}. Therefore, V r(i, j, b̄) = V r(j, b̄)
and V r(i, k, b̄) = V r(k, b̄). Hence, V r(i|j, b̄) = V r(i|k, b̄) = 0, which contradicts (35b).

(C-2). hr
(
b̄ ∪ {j, k}

)
6= hr

(
b̄ ∪ {k}

)
. Since |hr

(
b̄ ∪ {j, k}

)
| = |hr

(
b̄ ∪ {k}

)
|, j replaces

a rider ` in b̄∪{k}, and η`r ≤ `mr for all m ∈ b̄∪k. If ` = k, then hr
(
b̄ ∪ {j, k}

)
= hr

(
b̄ ∪ {j}

)
.

Therefore, V r(j|i, b̄) = ηjr −
(
θ(|hr(b̄ ∪ {i})|+ 1)− θ(|hr(b̄ ∪ {i})|)

)
and V r(j|k, b̄) = ηjr − ηkr .

If ηkr ≤ θ(|hr(b̄ ∪ {i})| + 1) − θ(|hr(b̄ ∪ {i})|), then (35a) is contradicted. Thus, ηkr >
θ(|hr(b̄∪{i})|+ 1)− θ(|hr(b̄∪{i})|). Since k is replaced by j when j is added to b̄∪{k}, we
must have ηkr < θ(|hr(b̄∪ {j})|+ 1)− θ(|hr(b̄∪ {j})|). For ηkr to satisfy both inequalities, we
must have |hr(b̄∪{j})| > |hr(b̄∪{i})|. Hence, hr(b̄∪{j}) = hr(b̄)∪{j} and hr(b̄∪{i}) = hr(b̄).
Then, V r(i|j, b̄) = V r(b̄ ∪ {i, j})− V r(b̄ ∪ {j}) = 0, which contradicts (35b).

On the other hand, if ` ∈ b̄, then we know from (34) that η`r < θ(|hr
(
b̄ ∪ {k}

)
| +

1)− θ(|hr
(
b̄ ∪ {k}

)
|). Additionally, since hr

(
b̄ ∪ {i, j}

)
= hr

(
b̄ ∪ {i}

)
∪ {j}, we know from

(33) that η`r ≥ θ(|hr
(
b̄ ∪ {i}

)
| + 1) − θ(|hr

(
b̄ ∪ {i}

)
|). If η`r satisfies both inequalities,

then we must have |hr
(
b̄ ∪ {i}

)
| < |hr

(
b̄ ∪ {k}

)
|. Therefore, hr

(
b̄ ∪ {i}

)
= hr(b̄). Then,

V r(i|j, b̄) = 0, which contradicts (35b).
Case D: |hr

(
b̄ ∪ {i, j}

)
| = |hr

(
b̄ ∪ {i}

)
| and hr

(
b̄ ∪ {j, k}

)
= hr

(
b̄ ∪ {k}

)
∪ {j}. We

further consider the following sub-cases:
(D-1). hr

(
b̄ ∪ {i, j}

)
= hr

(
b̄ ∪ {i}

)
. In this case, analogous to (C-1), we know that
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|hr(b̄ ∪ {k})| < |hr(b̄ ∪ {i})|. Therefore, hr(b̄ ∪ {k}) = hr(b̄) and hr(b̄ ∪ {i}) = hr(b̄) ∪
{i}. Therefore, ηkr < ηir. Additionally, since hr

(
b̄ ∪ {i, j}

)
= hr

(
b̄ ∪ {i}

)
, ηjr < ηir. Then,

V r(i|j, b̄) = V r(i, b̄) − V r(j, b̄) and V r(i|k, b̄) = V r(i, b̄) − V r(b̄). Since V is monotonic,
V r(j, b̄) ≥ V r(b̄) so that V r(i|j, b̄) ≤ V r(i|k, b̄), which contradicts (35b).

(D-2). hr
(
b̄ ∪ {i, j}

)
6= hr

(
b̄ ∪ {i}

)
. Since |hr

(
b̄ ∪ {i, j}

)
| = |hr

(
b̄ ∪ {i}

)
|, j replaces

the rider ` ∈ b̄ ∪ {i} such that η`r ≤ ηmr for all m ∈ hr(b̄ ∪ {i}). If ` = i, then analogous
to case C-2, we know that if (35b) is satisfied, then |hr(b̄ ∪ {j})| < |hr(b̄ ∪ {k})|. Hence,
hr(b̄ ∪ {j}) = hr(b̄) and V (j|i, b̄) = 0, which contradicts (35a).

On the other hand, if ` ∈ b̄, then again analogous to case C-2, we know that |hr
(
b̄ ∪ {k}

)
| <

|hr
(
b̄ ∪ {i}

)
|. Therefore, hr

(
b̄ ∪ {k}

)
= hr(b̄), and hr

(
b̄ ∪ {i}

)
= hr(b̄) ∪ {i}. Then,

V r(j|i, b̄) = V r(b̄ \ {`} ∪ {i, j})− V r(i, b̄), and V r(j|k, b̄) = V r(b̄∪ {j})− V r(b̄). Since ` 6= i,
V r(i|j, b̄) = V r(b̄ \ {`}∪{i, j})−V r(j, b̄) = ηir− η`r. Additionally, since hr(i, b̄) = hr(b̄)∪{i},
V r(i|k, b̄) = V r(i, b̄)−V r(b̄) = ηir−(θ(|hr(b̄)|+1)−θ(|hr(b̄)|)). Since hr(b̄∪{i}) = hr(b̄)∪{i}
and ` ∈ b̄, we know from (33) that η`r ≥ θ(|hr(b̄)| + 1) − θ(|hr(b̄)|). Therefore, V r(i|j, b̄) ≤
V r(i|k, b̄), which contradicts (35b).

From all above four cases, we can conclude that condition (ii) of Definition 5 is satisfied.
We can thus conclude that V satisfies gross substitutes condition. �

C Proof of Section 6

Proof of Lemma 9. We first show that for any optimal utility vector u∗ ∈ U∗, there exists a
vector λ∗ such that (u∗, λ∗) is an optimal solution of (Dk∗). Since u∗ ∈ U∗, there must exist
a toll price vector τ ∗ such that (u∗, τ ∗) is an optimal solution of (D). Consider λ∗ = (λ∗r)r∈R∗
as follows:

λ∗r =
∑
e∈r

τ ∗e , ∀r ∈ R∗. (36)

Since (u∗, τ ∗) is feasible in (D), we can check that (u∗, λ∗) is also a feasible solution of (Dk∗).
Moreover, since (x∗, u∗, τ ∗) satisfies complementary slackness conditions with respect to (LP)
and (D), (x∗, u∗, λ∗) also satisfies complementary slackness conditions with respect to (LPk∗)
and (Dk∗). Therefore, (um∗, λ∗) is an optimal solution of (Dk∗).

We next show that for any optimal solution (u∗, λ∗) of (Dk∗), we can find a toll price
vector τ ∗ such that (u∗, τ ∗) is an optimal solution of (D) (i.e. u∗ ∈ U∗) on the original
network. We prove this part by mathematical induction: First, if the network has a single
edge e, then τ ∗e = λ∗e is the toll price vector. Second, if the network is parallel, then τ ∗e = λ∗e
for all parallel edges e ∈ E is the toll price vector. Third, if the argument holds on two series
parallel networks G1 and G2, then there exist vectors τ 1∗ and τ 2∗ such that (u∗, τ 1∗) and
(u∗, τ 2∗) are optimal solutions of (D) restricted on the sub-network G1 and G2, respectively.
Then, we can check that τ ∗ = (τ ∗1, τ 2∗) is feasible in (D) and achieves the same objective
function as the sum of that restricted in each one of the two sub-networks when the two
networks are connected in series or in parallel. From Lemma 1, we know that the optimal
values of the both dual problems equal to the optimal social welfare given x∗. Thus, (u∗, τ ∗)
is also an optimal solution of (D). �
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Proof of Lemma 10. For any u∗ ∈ U∗, we define λ∗ = (λ∗)r∈R as follows:

λ∗r = max
b̄∈B̄

V r(b̄)−
∑
m∈b̄

um∗, ∀r ∈ R∗.

Analogous to the proof of Lemma 3, we can show that (y∗, u∗) is a Walrasian equilibrium
if and only if (y∗, u∗, λ∗) satisfies the feasibility constraints of (LPk∗) and (Dk∗) and the
complementary slackness conditions. Therefore, (u∗, λ∗) must be an optimal solution of
(Dk∗) and u∗ ∈ U∗. �
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