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We consider the following problem: Does there exist a probability distribution over subsets of a finite partially

ordered set (poset), such that a set of constraints involving marginal probabilities of the poset’s elements and

maximal chains is satisfied? In this article, we present a combinatorial algorithm to positively resolve this

question. We show that this result plays a crucial role in the equilibrium analysis of a generic security game

on a capacitated flow network. The game involves a routing entity that sends its flow through the network

while facing path transportation costs, and an interdictor who simultaneously interdicts one or more edges

while facing edge interdiction costs. The first (resp. second) player seeks to maximize the value of effective

(resp. interdicted) flow net the total transportation (resp. interdiction) cost. Using our existence result on

posets and strict complementary slackness in linear programming, we show that the equilibrium properties

of this game can be described using primal and dual solutions of a minimum cost circulation problem. Our

analysis provides a new characterization of the critical network components.

Key words : probability distributions on posets, network security games, duality theory.

1. Introduction. In this article, we study the problem of showing the existence of a proba-

bility distribution over a partially ordered set (or poset) that satisfies a set of constraints involving

marginal probabilities of the poset’s elements and maximal chains. This problem is directly moti-

vated by the technical issues arising in the equilibrium analysis of a generic network security game,

in which a strategic interdictor seeks to disrupt the flow of a routing entity. In particular, our

existence result on posets enables us to show that the equilibrium structure of the game can be

described using primal and dual solutions of a minimum cost circulation problem. Furthermore,

we show that the set of critical components for our network security game can be characterized

using strict complementary slackness in linear programming.

1.1. Probability distributions over posets. For a given finite nonempty poset, we consider

a problem in which each element is associated with a value between 0 and 1; additionally, each
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maximal chain has a value at most 1. We want to determine if there exists a probability distribution

over the subsets of the poset such that: (i) The probability with which each element of the poset is in

a subset is equal to its corresponding value; and (ii) the probability with which each maximal chain

of the poset intersects with a subset is as large as its corresponding value. Solving this problem,

denoted (D), is equivalent to resolving the feasibility of a polyhedral set. However, geometric ideas

– such as the ones involving the use of Farkas’ lemma or Carathéodory’s theorem – cannot be

applied to solve this problem, because they do not capture the structure of posets. We positively

resolve problem (D) under two conditions that are naturally satisfied for our purposes:

1. The value of each maximal chain is no more than the sum of the values of its elements.

2. The values of the maximal chains satisfy a conservation law. Particularly, let C be the union

of two intersecting maximal chains. Then, for any decomposition of C into two maximal chains,

the sum of the corresponding values is constant.

Under these two conditions, we prove the feasibility of problem (D) (Theorem 1). First, we

show that solving (D) is equivalent to proving that the optimal value of an exponential-size linear

optimization problem, denoted (Q), is no more than 1 (Proposition 1). Then, to optimally solve

(Q), we design a combinatorial algorithm (Algorithm 1) that exploits the relation between the

values associated with the poset’s elements and maximal chains. In particular, we show that the

optimal value of (Q) can be computed in closed form: it is equal to the largest value associated with

an element or maximal chain of the poset, which is no more than 1 (Theorem 2). Each iteration of

the algorithm involves constructing a subposet, selecting its set of minimal elements, and assigning

a specific weight to it. The proof of optimality of the algorithm is carried out in three steps: First,

we prove that it is well-defined (Proposition 2). Secondly, we show that it terminates and outputs

a feasible solution of (Q) (Proposition 3). Finally, we show that at termination, it assigns a total

weight that is exactly equal to the optimal value of (Q) (Proposition 4). Importantly, in the design

of the algorithm, we need to ensure that the conservation law satisfied by the values associated

with the maximal chains of the poset is preserved after each iteration. This design feature enables

us to obtain a relation between maximal chains after each iteration (Lemma 3), which leads to

optimality guarantee of the algorithm.

Next, we show that the feasibility of problem (D) on posets is crucial for the equilibrium analysis

of a class of two-player non-cooperative games on flow networks.

1.2. Network security games. Wemodel a network security game between player 1 (routing

entity) that sends its flow through the network while facing heterogeneous path transportation

costs; and player 2 (interdictor) who simultaneously chooses an interdiction plan comprised of one

or more edges. Player 1 (resp. player 2) seeks to maximize the value of effective (resp. interdicted)
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flow net the transportation (resp. interdiction) cost. We adopt mixed strategy Nash equilibria as

the solution concept of this game.

Our security game is rich and general in that it models heterogeneous costs of transportation

and interdiction. It models the strategic situation in which player 1 is an operator who wants to

route flow (e.g. water, oil, or gas) through pipelines, while player 2 is an attacker who targets

multiple pipes in order to steal or disrupt the flow. An alternative setting is the one where player

1 is a malicious entity composed of routers who carry illegal (or dangerous) goods through a

transportation network (i.e., roads, rivers, etc.), and player 2 is a security agency that dispatches

interdictors to intercept malicious routers and prevent the illegal goods from crossing the network.

In both these settings, mixed strategies can be viewed as the players introducing randomization in

implementing their respective actions. For instance, player 1’s mixed strategy models a randomized

choice of paths for routing its flow of goods through the network, while player 2’s mixed strategy

indicates a randomized dispatch of interdictors to disrupt or intercept the flow.

The existing literature in network interdiction has dealt with this type of problems in a sequential

(Stackelberg) setting (see Avenhaus and Canty [4], Ball et al. [6], Ratliff et al. [24], Wollmer [28]).

Typically, these problems are solved using large-scale integer programming techniques, and are

staple for designing system interdiction and defense (see Bertsimas et al. [9], Cormican et al. [10],

Neumayer et al. [22], Sullivan and Cole Smith [25], Wood [29]). However, these models do not

capture the situations in which the interdictor is capable of simultaneously interdicting multiple

links, possibly in a randomized manner. Recently, Bertsimas et al. [8] considered a sequential game

in which the interdictor first randomly interdicts a fixed number of edges, and then the operator

routes a feasible flow in the network. The interdictor’s goal is to minimize the largest amount of

flow that reaches the destination node. Although this model is equivalent to a simultaneous game,

our model is general in that we do not impose any restriction on the number of edges that can

be simultaneously interdicted. Additionally, we account for transportation and interdiction costs

faced by the players.

Our work is also motivated by previous problems studied in network security games (e.g. Baykal-

Gürsoy et al. [7], Gueye et al. [13], Szeto [26]). However, the available results in this line of work

are for simpler cases, and do not apply to our model. Related to our work are the network security

games proposed by Washburn andWood [27] and Gueye and Marbukh [14]. In Washburn andWood

[27], the authors consider a simultaneous game where an evader chooses one source-destination path

and the interdictor inspects one edge. In this model, the interdictor’s (resp. evader’s) objective is

to maximize (resp. minimize) the probability with which the evader is detected by the interdictor.

Gueye and Marbukh [14] model an operator who routes a feasible flow in the network, and an

attacker who disrupts one edge. The attacker’s (resp. operator’s) goal is to maximize (minimize)
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the amount of lost flow. Additionally, the attacker faces a cost of attack. In contrast, our model

allows the interdictor to inspect multiple edges simultaneously, and accounts for the transportation

cost faced by the routing entity.

The generality of our model renders known methods for analyzing security games inapplicable

to our game. Indeed, prior work has considered solution approaches based on max-flows and min-

cuts, and used these objects as metrics of criticality for network components (see Assadi et al. [2],

Dwivedi and Yu [11], Gueye et al. [13]). However, these objects cannot be applied to describe the

critical network components in our game due to the heterogeneity of path interdiction probabilities

resulting from the transportation costs. A related issue is that computing a Nash equilibrium of

our game is hard because of the large size of the players’ action sets. Indeed, player 1 (resp. player

2) chooses a probability distribution over an infinite number of feasible flows (resp. exponential

number of subsets of edges). Therefore, well-known algorithms for computing (approximate) Nash

equilibria are practically inapplicable for this setting (see Lipton et al. [19] and McMahan et al.

[20]). Guo et al. [15] developed a column and constraint generation algorithm to approximately solve

their network security game. However, it cannot be applied to our model due to the transportation

and interdiction costs that we consider.

Instead, we propose an approach for analyzing equilibria of our game based on a minimum cost

circulation problem, which we denote (M), and our existence problem on posets (D). In particular,

we show (Proposition 5) that Nash equilibria of the game can be described using primal and dual

optimal solutions of (M), if they satisfy the following conditions: (i) each network edge is interdicted

with probability given by the corresponding optimal dual variable; and (ii) each source-destination

path is interdicted with some probability, derived from the properties of the network, as well as the

optimal dual solution. In fact, this problem is an instantiation of problem (D), and an equilibrium

interdiction strategy can be constructed with our combinatorial algorithm (Algorithm 1).

The main insights from our equilibrium analysis are as follows:

1. An equilibrium strategy for player 1 is given by an optimal flow of (M), and marginal edge

interdiction probabilities resulting from player 2’s equilibrium strategy are given by the dual solu-

tions of (M). This result circumvents the complexity of equilibrium computation for our game-

theoretic model. Computing an equilibrium interdiction strategy with our algorithm is NP-hard

due to the enumeration of exponentially many maximal chains. However, the marginal edge inter-

diction probabilities and route flows can be obtained in polynomial time by solving the minimum

cost circulation problem (M) (see Karmarkar [18] and Orlin et al. [23]).

2. Primal-dual pairs of solutions of (M) that satisfy strict complementary slackness provide a

new characterization of the critical components in the network. Specifically, the primal (resp. dual)

solution provides the paths (resp. edges) that are chosen (resp. interdicted) in at least one Nash
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equilibrium of the game (Theorem 3). This result generalizes the classical min-cut-based metrics

of network criticality previously studied in the network interdiction literature (see Assimakopoulos

[3], McMasters et al. [21], Washburn and Wood [27], Wood [29]). Indeed, we show that in our more

general setting, multiple edges in a source-destination path may be interdicted in equilibrium, and

cannot be represented with a single cut of the network. We address this issue by computing the dual

solutions of (M), and by constructing an equilibrium interdiction strategy using our combinatorial

algorithm (Algorithm 1) for posets.

The rest of the paper is organized as follows: In Section 2, we pose our existence problem on

posets, and introduce our main feasibility result. Section 3 constructs a solution to the existence

problem. The implications of our existence result are then demonstrated in Section 4, where we

study our generic network security game. Lastly, we provide some concluding remarks in Section 5.

2. Problem formulation and main result. In this section, we first recall some standard

definitions in order theory. We then pose our problem of proving the existence of probability

distributions over partially ordered sets, and introduce our main result about its feasibility.

2.1. Order theoretic definitions. A finite partially ordered set or poset P is a pair (X,�),

where X is a finite set and � is a partial order on X, i.e., � is a binary relation on X satisfying:

– Reflexivity: ∀x∈X, x� x in P .

– Antisymmetry: ∀(x, y)∈X2, if x� y in P and y � x in P , then x= y.

– Transitivity: ∀(x, y, z)∈X3, if x� y in P and y � z P , then x� z in P .

Given (x, y) ∈ X2, we denote x ≺ y in P if x � y in P and x 6= y. We say that x and y are

comparable in P if either x≺ y in P or y ≺ x in P . On the other hand, x and y are incomparable

in P if neither x≺ y in P nor y ≺ x in P . We say that x is covered in P by y, denoted x≺: y in

P , if x≺ y in P and there does not exist z ∈X such that x≺ z in P and z ≺ y in P . When there

is no confusion regarding the poset, we abbreviate x� y in P by writing x� y, etc.

Let Y be a nonempty subset of X, and let �
Y
denote the restriction of � to Y . Then, �

Y
is

a partial order on Y , and (Y,�
Y
) is a subposet of P . A poset P = (X,�) is called a chain (resp.

antichain) if every distinct pair of elements in X is comparable (resp. incomparable) in P . Given

a poset P = (X,�), a nonempty subset Y ⊆X is a chain (resp. an antichain) in P if the subposet

(Y,�
Y
) is a chain (resp. an antichain). A single element of X is both a chain and an antichain.

Given a poset P = (X,�), an element x ∈ X is a minimal element (resp. maximal element)

if there are no elements y ∈X such that y ≺ x (resp. x ≺ y). Note that any chain has a unique

minimal and maximal element. A chain C ⊆X (resp. antichain A⊆X) is maximal in P if there

are no other chains C ′ (resp. antichains A′) in P that contain C (resp. A). Let C and A respectively

denote the set of maximal chains and antichains in P . A maximal chain C ∈ C of size n can be

represented as C = {x1, . . . , xn} where ∀k ∈ J1, n− 1K, xk ≺: xk+1. We state the following property:
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Lemma 1. Given a finite nonempty poset P , the set of minimal elements of P is an antichain

of P , and intersects with every maximal chain of P .

Proof in Appendix A.

Given a poset P = (X,�), we consider its cover graph, denoted HP = (X,EP ). HP is an undi-

rected graph whose set of vertices is X, and whose set of edges is given by EP := {(x, y)∈X2 | x≺:

y or y ≺: x}. When HP is represented such that for all x≺: y ∈X, the vertical coordinate of the

vertex corresponding to y is higher than the vertical coordinate of the vertex corresponding to x,

the resulting diagram is called a Hasse diagram of P .

We now introduce the notion of subposet generated by a subset of maximal chains. Given a

poset P = (X,�), let X ′ ⊆X be a subset of elements, let C′ ⊆ C be a subset of maximal chains of

P , and consider the binary relation �C′ defined by ∀(x, y) ∈X ′2, x�C′ y⇐⇒ (x= y) or (∃C ∈ C′

such that x, y ∈C and x≺ y). Furthermore, we consider that if C1 = {x−k, . . . , x−1, x
∗, x1, . . . , xn}

and C2 = {y−l, . . . , y−1, x
∗, y1, . . . , ym} are in C′ and intersect in x∗ ∈X ′, then C′ also contains C2

1 =

{x−k, . . . , x−1, x
∗, y1, . . . , ym} and C1

2 = {y−l, . . . , y−1, x
∗, x1, . . . , xn}. In other words, C′ preserves the

decomposition of maximal chains intersecting in X ′. Then, we have the following lemma:

Lemma 2. Consider the poset P = (X,�), a subset X ′ ⊆X, and a subset C′ ⊆C that preserves

the decomposition of maximal chains intersecting in X ′. Then, P ′ = (X ′,�C′) is also a poset.

Furthermore, for any maximal chain C of P ′ of size at least two, there exists a maximal chain C ′

in C′ such that C =C ′ ∩X ′.

Proof in Appendix A.

The subposet P ′ = (X ′,�C′) of P in Lemma 2 satisfies the property that if two elements in X ′

are comparable in P , and belong to a same maximal chain C ∈ C′, then they are also comparable

in P ′. Graphically, this is equivalent to removing the edges from the Hasse diagram HP if their

two end nodes do not belong to a same maximal chain C ∈ C′.

Example 1. Consider the poset P represented by the Hasse Diagram HP in Figure 1.

1

3

4

2

5

6

1

3

4 2

6

Figure 1. On the left is represented a Hasse diagram of a poset P . On the right is represented a Hasse diagram of

the subposet P ′ = (X ′,�C′) of P , where X ′ = {1,2,3,4,6} and C′ = {{1,3,5,6},{2,3,5,6}}.
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We observe that 1≺ 4, 2≺: 3; 1 and 3 are comparable, but 4 and 6 are incomparable; {2,4} is a

chain in P , but is not maximal since it is contained in the maximal chain {2,3,4}. Similarly, {4} is

an antichain in P , but is not maximal since it is contained in the maximal antichain {4,5}. The set

of maximal chains and antichains of P are given by C = {{1,3,4},{2,3,5,6},{1,3,5,6},{2,3,4}}

and A= {{1,2},{3},{4,5},{4,6}}, respectively. The set of minimal elements of P is given by {1,2},

and intersects with every maximal chain in C. Finally, P ′ = (X ′,�C′), where X ′ = {1,2,3,4,6} and

C′ = {{1,3,5,6},{2,3,5,6}}, is a poset, and is illustrated in Figure 1. △

2.2. Existence of probability distributions over posets. Consider a finite nonempty

poset P = (X,�). Let P := 2X denote the power set of X, and let ∆(P) := {σ ∈R|P|
+ |

∑
S∈P σS = 1}

denote the set of probability distributions over P. We are concerned with the setting where each

element x ∈X is associated with a value ρx ∈ [0,1], and each maximal chain C ∈ C has a value

πC ≤ 1. Our problem is to determine if there exists a probability distribution σ ∈∆(P) such that

for every element x ∈X, the probability that x is in a subset S ∈ P is equal to ρx; and for every

maximal chain C ∈ C, the probability that C intersects with a subset S ∈P is at least πC . That is,

(D) : ∃σ ∈R|P|
+ such that





∑

{S∈P |x∈S}

σS = ρx, ∀x∈X, (1a)

∑

{S∈P |S∩C 6=∅}

σS ≥ πC , ∀C ∈ C, (1b)

∑

S∈P

σS =1. (1c)

For the case in which πC ≤ 0 for all maximal chains C ∈ C, constraints (1b) can be removed,

and the feasibility of (D) follows from Carathéodory’s theorem. However, no known results can

be applied to the general case. Note that although (1a)-(1c) form a polyhedral set, Farkas’ lemma

cannot be directly used to evaluate its feasibility. Instead, in this article, we study the feasibility

of (D) using order-theoretic properties of the problem. We assume two natural conditions on ρ=

(ρx)x∈X and π= (πC)C∈C, which we introduce next.

Firstly, for feasibility of (D), ρ and π must satisfy the following inequality:

∀C ∈ C,
∑

x∈C

ρx ≥ πC . (2)

Indeed, if (D) is feasible, then for σ ∈R|P|
+ satisfying (1a)-(1c), the following holds:

∀C ∈ C,
∑

x∈C

ρx
(1a)
=

∑

x∈C

∑

{S∈P |x∈S}

σS =
∑

S∈P

σS

∑

x∈C

1{x∈S} =
∑

S∈P

σS |S ∩C| ≥
∑

{S∈P |S∩C 6=∅}

σS

(1b)

≥ πC .

That is, the necessity of (2) follows from the fact that for any probability distribution over P,

and any subset of elements C ⊆X, the probability that C intersects with a subset S ∈P is upper

bounded by the sum of the probabilities with which each element in C is in a subset S ∈P.
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Secondly, we consider that π satisfies a specific condition for each pair of maximal chains that

intersect each other. Consider any pair of maximal chains C1 and C2 of P , with C1∩C2 6= ∅. Let x∗ ∈

C1∩C2, and let us rewrite C1 = {x−k, . . . , x−1, x
∗, x1, . . . , xn} and C2 = {y−l, . . . , y−1, x

∗, y1, . . . , ym}.

Then, P also contains two maximal chains C2
1 = {x−k, . . . , x−1, x

∗, y1, . . . , ym} and C1
2 =

{y−l, . . . , y−1, x
∗, x1, . . . , xn} that satisfy C1 ∪ C2 = C2

1 ∪ C1
2 ; see Figure 2 for an illustration. We

require that π satisfy the following condition:

πC1 +πC2 = πC2
1
+πC1

2
. (3)

Thus, (3) can be viewed as a conservation law on the maximal chains in C.

1

3

4

3

2

5

6

1

3

5

6

3

4

2

C1 C2 C2
1 C1

2

Figure 2. Four maximal chains of the poset shown in Figure 1.

We now present our main result regarding the feasibility of (D), under conditions (2) and (3):

Theorem 1. The problem (D) is feasible for any finite nonempty poset (X,�), with parameters

ρ= (ρx)∈ [0,1]
|X| and π= (πC) ∈]−∞,1]|C| that satisfy (2) and (3).

This result plays a crucial role in solving a generic formulation of network security game, which

we study in Section 4. The game involves two players: a “router” who sends a flow of goods

to maximize her value of flow crossing the network while facing transportation costs; and an

“interdictor” who inspects one or more network edges to maximize the value of interdicted flow

while facing interdiction costs. Our analysis in Section 4 shows that if a randomized network

interdiction strategy interdicts each edge x with a probability ρx, and interdicts each path C with

a probability at least πC , then it is an interdiction strategy in a Nash equilibrium. Essentially,

for this game, (ρx) and (πC) are governed by network properties, such as edge transportation

and interdiction costs, and naturally satisfy (2) and (3). In fact, when the network is a directed

acyclic graph, a partial order can be defined on the set of edges, such that the set of maximal

chains is exactly the set of source-destination paths of the network. Thus, showing the existence

of interdiction strategies satisfying the above-mentioned requirements is an instantiation of the

problem (D). Theorem 1 can then be used to derive several useful insights on the equilibrium

strategies of this game.
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Importantly, note that (D) may not be feasible if P is not a poset. Let us consider the following

example: X = {1,2,3}, C = {{1,2},{1,3},{2,3}}, ρx =0.5, ∀x∈X, and πC = 0.5, ∀C ∈ C. There is

no poset that has C as its set of maximal chains. If σ ∈R|P|
+ satisfies (1a) and (1b), then necessarily,

σ{x} =0.5, ∀x∈X. However, this implies that
∑

S∈P σS ≥ 1.5> 1, which renders (D) infeasible for

this example.

Thus, in proving Theorem 1, we consider that the problem (D) is defined for a poset. Next, we

show that (D) is feasible if and only if the optimal value of a linear program is no more than 1.

2.3. Equivalent optimization problem. Consider the problem (D) for a given poset P =

(X,�), and vectors ρ∈ [0,1]|X| and π ∈]−∞,1]|C| satisfying (2) and (3). We can observe that when
∑

x∈X
ρx ≤ 1, a trivial solution for (D) is given by: σ̃{x} = ρx, ∀x∈X, and σ̃∅ = 1−

∑
x∈X

ρx. The

vector σ̃ so constructed indeed represents a probability distribution over P, and satisfies constraints

(1a). Furthermore, for each maximal chain C ∈ C,
∑

{S∈P |S∩C 6=∅} σ̃S =
∑

x∈C
ρx

(2)

≥ πC . Therefore, σ̃

is a feasible solution of (D). However, in general,
∑

x∈X
ρx may be larger than 1, which prevents

the aforementioned construction of σ̃ from being a probability distribution. Thus, to construct a

feasible solution of (D), we need to assign some probability to subsets of elements of size larger

than 1. This is governed by the following quantity:

∀C ∈ C, δC =
∑

x∈C

ρx−πC . (4)

To highlight the role of δ = (δC)C∈C when assigning probabilities to subsets of elements, we

consider the following optimization problem:

(Q) : minimize
∑

S∈P

σS

subject to
∑

{S∈P |x∈S}

σS = ρx, ∀x∈X (5)

∑

{S∈P | |S∩C|≥2}

σS(|S ∩C| − 1)≤ δC , ∀C ∈ C (6)

σS ≥ 0, ∀S ∈P.

Problems (Q) and (D) are related in that the set of constraints (1a)-(1b) is equivalent to the set

of constraints (5)-(6); see the proof of Proposition 1 below. Furthermore, the objective function

in (Q) is analogous to the constraint (1c) in (D). The feasibility of (Q) is straightforward (for

example, σ̃ constructed above is a feasible solution); however, a feasible solution of (Q) may not

be a probability distribution.

Note that given a maximal chain C ∈ C, constraint (6) bounds the total amount of probability

that can be assigned to subsets that contain more than one element in C. One can see that for a
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subset S ∈P such that |S ∩C| ≤ 1, the probability σS assigned to S does not influence constraint

(6). However, the more elements from C a subset S contains, the smaller the probability that can

be assigned to S, due to scaling by the factor (|S ∩ C| − 1). Thus, δ determines the amount of

probability that can be assigned to larger subsets.

Let z∗(Q) denote the optimal value of (Q). We show the following equivalence between (D) and

(Q):

Proposition 1. (D) is feasible if and only if z∗(Q) ≤ 1.

Proof of Proposition 1. First, let us show that the set of constraints (1a)-(1b) is equivalent to

the set of constraints (5)-(6). Let σ ∈ R
|P|
+ that satisfies

∑
{S∈P |x∈S} σS = ρx,∀x ∈ X. For every

maximal chain C ∈ C, we have the following equality:

∑

x∈C

ρx =
∑

x∈C

∑

{S∈P |x∈S}

σS =
∑

S∈P

σS

∑

x∈C

1{x∈S} =
∑

{S∈P |S∩C 6=∅}

σS|S ∩C|. (7)

Therefore, for every maximal chain C ∈ C, we obtain:

∑

{S∈P |S∩C 6=∅}

σS ≥ πC

(4),(7)
⇐⇒ δC ≥

∑

{S∈P |S∩C 6=∅}

σS(|S ∩C| − 1)=
∑

{S∈P | |S∩C|≥2}

σS(|S ∩C| − 1). (8)

Now, let us show that (D) is feasible if and only if the optimal value of (Q) satisfies z∗(Q) ≤ 1.

– If ∃σ ∈R|P|
+ that satisfies (1a)-(1c), then we showed that σ also satisfies (5)-(6). Therefore, σ

is a feasible solution of (Q). Furthermore, the objective value of σ is equal to 1, which implies that

z∗(Q) ≤ 1.

– If z∗(Q) ≤ 1, let σ∗ be an optimal solution of (Q). Necessarily, σ∗
∅ = 0 and we can define a vector

σ ∈R|P| as follows: σS = σ∗
S, ∀S ∈P\∅, and σ∅ = 1−

∑
S∈P\∅ σ

∗
S = 1− z∗(Q) ≥ 0. Therefore, σ ∈R|P|

+

and satisfies (5)-(6), which we showed is equivalent to satisfying (1a)-(1b). Finally, σ satisfies (1c)

by construction. Thererefore, σ is feasible for (D). �

Therefore, proving Theorem 1 is equivalent to showing that z∗(Q) ≤ 1. In fact, we show a stronger

result, which will be useful for our equilibrium analysis in Section 4:

Theorem 2. z∗(Q) =max{max{ρx, x∈X},max{πC , C ∈ C}}.

It is easy to see that z∗(Q) ≥ max{max{ρx, x ∈ X},max{πC , C ∈ C}}. Indeed, any feasi-

ble solution σ ∈ R
|P|
+ of (Q) satisfies

∑
S∈P σS ≥

∑
{S∈P |x∈S} σS = ρx, ∀x ∈ X, and

∑
S∈P σS ≥

∑
{S∈P |S∩C 6=∅} σS

(8)

≥ πC , ∀C ∈ C. To show the reversed inequality, we need to prove that there exists

a feasible solution of (Q) with objective value equal to max{max{ρx, x ∈ X},max{πC , C ∈ C}.

This is the focus of the next section.
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3. Constructive proof of Theorem 2. We design a combinatorial algorithm to compute a

feasible solution of (Q) with objective value exactly equal to max{max{ρx, x∈X},max{πC , C ∈

C}. Recall from Section 2.3 that such a feasible solution is optimal for (Q), and can be used to

construct a feasible solution of (D); see the proof of Proposition 1.

Before formally introducing our algorithm, we discuss the main ideas behind its design. In each

iteration, the algorithm selects a subset of elements, and assigns a positive weight to it. Let us

discuss the execution of the first iteration of the algorithm.

Firstly, we need to determine the collection of subsets that can be assigned a positive weight

without violating any of the constraints in the problem (Q). Essentially, this is dictated by the

maximal chains C ∈ C for which δC = 0. Indeed, for any C ∈ C with δC = 0, we have the following

equivalence:
∑

{S∈P | |S∩C|≥2} σS︸︷︷︸
≥0

(|S ∩C| − 1)︸ ︷︷ ︸
>0

≤ 0⇐⇒ σS = 0, ∀S ∈ P such that |S ∩ C| ≥ 2. In

other words, if a maximal chain C ∈ C is such that δC = 0 (i.e.,
∑

x∈C
ρx = πC), then a vector

σ ∈ R
|P|
+ is feasible for (Q) only if its support does not contain any set S ∈ P that intersects C

in more than one element. Therefore, our algorithm must select a subset of elements S ∈ P that

satisfies |S ∩C| ≤ 1, for all C ∈ C such that δC = 0.

To precisely characterize this collection of subsets, we consider the notion of subposet generated

by a subset of maximal chains, introduced in Section 2.1. In particular, by considering C′ the

set of maximal chains C ∈ C such that δC = 0, and X ′ the subset of elements x ∈ X such that

ρx > 0, we can show (in Proposition 2 below) that the condition stated in Lemma 2 is satisfied,

and P ′ = (X ′,�C′) is a poset. Interestingly, we can then deduce that the subsets of elements that

we can select from at that iteration are the antichains of P ′. In any poset, a chain and an antichain

intersect in at most one element. By definition of �C′ , this implies that |S ∩ C| ≤ 1 for every

antichain S ⊆X ′ of P ′ and every maximal chain C ∈ C of P such that δC =0.

Now, we need to determine which antichain of P ′ to select. Let S′ ⊆X ′ denote the subset of

elements selected by the algorithm in the first iteration. Recall that an optimal solution of (Q)

satisfies constraints (1a)-(1b) with the least total amount of weight assigned to subsets of elements

of X. Thus, it is desirable that the weight assigned to S′ in this iteration contribute towards

satisfying all constraints (1b). To capture this requirement, our algorithm selects S′ as the set of

minimal elements of P ′. The selected S′ is an antichain of P ′, intersects with every maximal chain

of P , and provides further properties that enable us proving the optimality of the algorithm.

Secondly, we discuss how to determine the maximum amount of weight w′ that can be assigned

to S′ in the first iteration, without violating any of the constraints (5) and (6). This is governed by

the remaining chains C ∈ C for which δC > 0 and the elements constituting S′. If w′ is larger than
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δC
|S′∩C|−1

for C ∈ C such that |S′ ∩C| ≥ 2, then the corresponding constraint (6) will be violated.

Similarly, w′ cannot be larger than ρx, ∀x∈ S
′. Thus, the weight that we must assign to S′ is:

w′ =min

{
min{ρx, x∈ S′} ,min

{
δC

|S′ ∩C| − 1
, C ∈ C | δC > 0 and |S′ ∩C| ≥ 2

}}
.

At the end of the iteration, we update the vectors ρ and δ, as well as the sets of elements X ′

and maximal chains C′ to consider in subsequent iterations. In particular, we will show that some

maximal chains need to be removed in order to preserve the conservation law at each iteration.

The algorithm terminates when there are no more elements x∈X with positive ρx. This completes

the discussion of the main points that we need to account for in designing the algorithm. We are

now in the position to formally present Algorithm 1.

Algorithm 1 : Optimal solution of (Q)

Input: Finite nonempty poset P = (X,�), and vectors ρ∈R|X|
+ , δ ∈R|C|

+ .

Output: Vector σ ∈R|P|
+ .

A1: C1←C, ρ1x← ρx, ∀x∈X, δ1C← δC, ∀C ∈ C
1

A2: X1←{x ∈X | ρ1x > 0}, C
1
←{C ∈ C1 | δ1C = 0}, Ĉ1←{C ∈ C1 | δ1C > 0}

A3: k← 1

A4: while Xk 6= ∅ do

A5: Construct the poset P k = (Xk,�
C
k)

A6: Choose Sk the set of minimal elements of P k

A7: wk =min{min{ρkx, x∈ Sk},min{
δkC

|Sk∩C|−1
, C ∈ Ĉk | |Sk ∩C| ≥ 2}}, and σSk←wk

A8: ρk+1
x ← ρkx−wk

1{x∈Sk}, ∀x∈X, and δk+1
C ← δkC −wk(|Sk ∩C| − 1)1{|Sk∩C|≥2}, ∀C ∈ C

A9: Ck+1←{C ∈ Ck | the minimal element of C ∩Xk in P is in Sk}

A10: Xk+1←{x ∈Xk | ρk+1
x > 0}, C

k+1
←{C ∈ Ck+1 | δk+1

C =0}, Ĉk+1←{C ∈ Ck+1 | δk+1
C > 0}

A11: k← k+1

A12: end while

We illustrate Algorithm 1 with an example in Appendix B.

Let n∗ denote the number of iterations of Algorithm 1. Since we have not yet shown that it

terminates, we suppose that n∗ ∈ N ∪ {+∞}. For every maximal chain C ∈ C, let us define the

sequence (πk
C)k∈J1,n∗+1K induced by Algorithm 1 as follows:

π1
C = πC , and for every k ∈ J1, n∗K, πk+1

C = πk
C −wk

1{Sk∩C 6=∅}. (9)

Given k ∈ J1, n∗+1K, πk
C (resp. ρkx) represents the remaining value associated with the maximal chain

C ∈ C (resp. the element x ∈X) after the first k− 1 iterations of the algorithm. For convenience,

we let X0←X.
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We now proceed with proving Theorem 2. Our proof consists of three main parts:

Part 1: Algorithm 1 is well-defined (Proposition 2);

Part 2: it terminates and outputs a feasible solution of (Q) (Proposition 3); and

Part 3: it assigns a total weight
∑n∗

k=1w
k equal to max{max{ρx, x ∈X},max{πC , C ∈ C}} at

termination (Proposition 4).

Part 1: Well-definedness of Algorithm 1. To show that Algorihm 1 is well-defined, we

need to ensure that at each iteration k ∈ J1, n∗K of the algorithm, P k is a poset. Lemma 2 can be

applied to show this, provided that we are able to prove that C
k
preserves the decomposition of

maximal chains intersecting in Xk. This property, and some associated results, are stated below:

Proposition 2. Each iteration of Algorithm 1 is well-defined. In particular, for every k ∈

J1, n∗+1K, the following hold:

(i) For every maximal chain C ∈ C, δkC determines the remaining weight that can be assigned to

subsets that intersect C at more than one element:

∀C ∈ C, δkC =
∑

x∈C

ρkx−πk
C, (10)

∀C ∈ Ck, δkC ≥ 0. (11)

(ii) Ck preserves the decomposition of maximal chains intersecting in Xk−1:

∀(C1,C2)∈ C2 | C1 ∩C2 ∩Xk−1 6= ∅, (C1,C2) ∈ (Ck)2 =⇒ (C2
1 ,C

1
2 )∈ (C

k)2.

(iii) πk satisfies the conservation law on the maximal chains of Ck that intersect in Xk−1:

∀(C1,C2)∈ (Ck)2 | C1 ∩C2 ∩Xk−1 6= ∅, πk
C1 +πk

C2 = πk
C2
1
+πk

C1
2
. (12)

(iv) P k = (Xk,�
C
k) is a poset.

Proof of Proposition 2. We show (i)− (iv) by induction.

First, consider k = 1. Since C1 = C, ρ1 = ρ, π1 = π, and δ1 = δ, then (i) follows from (2) and (4).

Since X0 =X, and C1 = C contains all maximal chains, then (ii) is automatically satisfied. (iii) is

a direct consequence of (3).

Now we apply Lemma 2 to show (iv), i.e., P 1 = (X1,�
C
1) is a poset. Specifically, we show that C

1

preserves the decomposition of maximal chains intersecting in X1. Consider C1,C2 ∈ C
1
such that

C1∩C2∩X1 6= ∅, and let us consider the other two maximal chains C2
1 and C1

2 , which we know from

(ii) are in C1, sinceX1 ⊆X0. We need to show that they are also in C
1
. Let x∗ ∈C1∩C2∩X1, and let

us rewrite C1 = {x−k, . . . , x−1, x0 = x∗, x1, . . . , xn} and C2 = {y−l, . . . , y−1, y0 = x∗, y1, . . . , ym}. Then,

C2
1 = {x−k, . . . , x−1, x

∗, y1, . . . , ym} and C1
2 = {y−l, . . . , y−1, x

∗, x1, . . . , xn}. We now use (i) − (iii):
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Since C1,C2 ∈ C
1
; the conservation law is satisfied by π1 on the maximal chains in C1 intersecting

in X0; C2
1 ,C

1
2 ∈ C

1; and since δ1 ≥ 0 on C1, we have:

n∑

i=−k

ρ1xi +
m∑

j=−l

ρ1yj = π1
C1 +π1

C2 = π1
C2
1
+π1

C1
2
=

∑

x∈C2
1

ρ1x +
∑

x∈C1
2

ρ1x− δ1
C2
1
− δ1

C1
2
≤

n∑

i=−k

ρ1xi +
m∑

j=−l

ρ1yj .

Therefore, δ1
C2
1
= δ1

C1
2
= 0, and C2

1 and C1
2 are in C

1
. From Lemma 2, we conclude that P 1 = (X1,�

C
1)

is a poset.

We now assume that (i)− (iv) hold for k ∈ J1, n∗K, and show that they also hold for k+1:

(i) Since P k is a poset, the k−th iteration of the algorithm is well-defined, and we can consider

the set Sk and the weight wk at that iteration. Then, for every C ∈ C, (A8) and (9) give us:

∑

x∈C

ρk+1
x −πk+1

C =
∑

x∈C

ρkx−πk
C −wk|C ∩Sk|+wk

1{Sk∩C 6=∅} = δkC −wk(|C ∩Sk| − 1)1{Sk∩C 6=∅} = δk+1
C .

Now, consider a maximal chain C ∈ Ck. Since δk ≥ 0 on Ck, then Ck = C
k
∪ Ĉk (from (A10)).

(a) If C ∈ C
k
, then by definition of �

C
k , C∩Xk is a chain in P k. From Lemma 1, we know that

Sk is an antichain of P k. Therefore, |Sk ∩ (C ∩Xk)| ≤ 1. Since Sk ⊆Xk, we obtain that |Sk ∩C|=

|(Sk ∩Xk)∩C|= |Sk ∩ (C ∩Xk)| ≤ 1. Thus, δk+1
C

(A8)
= δkC −wk(|C ∩Sk| − 1)1{|Sk∩C|≥2} = δkC = 0.

(b) If C ∈ Ĉk, then by definition of wk, we have δk+1
C

(A8)
= δkC−wk(|Sk∩C|−1)1{|Sk∩C|≥2}

(A7)

≥ 0.

In summary, for all C ∈ Ck, δk+1
C ≥ 0. Since Ck+1

(A9)

⊆ Ck, then for all C ∈ Ck+1, δk+1
C ≥ 0.

(ii) Consider C1,C2 ∈ Ck+1 ⊆ Ck such that C1 ∩C2 ∩Xk 6= ∅, and let C2
1 and C1

2 be the other

two maximal chains such that C2
1 ∪C

1
2 = C1 ∪C2. Since Xk

(A10)

⊆ Xk−1, then C1 ∩C2 ∩Xk−1 6= ∅.

Therefore, by inductive hypothesis, C2
1 , C

1
2 ∈ C

k as well. Let x1 (resp. y1) denote the minimal

element of the chain C1 ∩Xk (resp. C2 ∩Xk) in P . Since C1, C2 ∈ Ck+1, then (x1, y1)
(A9)

∈ (Sk)2.

Let x∗ ∈Xk denote an intersecting point of C1 and C2. Since C1 ∩Xk is a chain in P , contains

x∗, and whose minimal element is x1, then necessarily, x1 � x∗. Similarly, we obtain that y1 � x∗.

Therefore, the minimal element of C2
1 ∩X

k (resp. C1
2 ∩X

k) is x1 (resp. y1), which is in Sk. Thus,

C2
1 ,C

1
2 ∈ C

k+1, and Ck+1 preserves the decomposition of maximal chains of P intersecting in Xk.

(iii) Now, given C1, C2 in Ck+1 that intersect in Xk, we just proved that C2
1 and C1

2 are in Ck+1

as well. Therefore, ∀C ∈ {C1,C2,C2
1 ,C

1
2}, we have π

k+1
C

(9)
= πk

C −wk (since Sk ∩C 6= ∅). By inductive

hypothesis, since Ck+1 ⊆Ck and Xk+1 ⊆Xk, πk satisfies the conservation law between C1, C2, C2
1 ,

and C1
2 . Thus, we can conclude that πk+1

C1 +πk+1
C2 = πk

C1+πk
C2−2wk = πk

C2
1
+πk

C1
2
−2wk = πk+1

C2
1
+πk+1

C1
2
.

(iv) This is a consequence of (i)− (iii); the proof is analogous to the one derived for the first

step of the induction.

Therefore, we conclude by induction that (i)− (iv) hold for every k ∈ J1, n∗+1K. �
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The proof of Proposition 2 highlights the importance of our construction of Ck+1 for k ∈ J1, n∗K as

given in (A9). This step of the algorithm ensures that Ck+1 preserves the decomposition of maximal

chains intersecting in Xk. It also ensures that each maximal chain in Ck+1 intersects Sk. A direct

consequence is that πk+1 satisfies the conservation law on the maximal chains of Ck+1 that intersect

in Xk. We then deduce that C
k+1

preserves the decomposition of maximal chains intersecting in

Xk+1, which implies that P k+1 is a poset (Lemma 2). The issue however is that some maximal

chains in Ck may be removed when constructing Ck+1, and we must ensure that the corresponding

constraints (6) will still be satisfied by the output of the algorithm. This is the focus of the next

part.

Part 2: Feasibility of Algorithm 1’s output. Now that we have shown the algorithm to

be well-defined, the second main part of the proof of Theorem 2 is to show that the algorithm

terminates, and outputs a feasible solution of (Q). Showing that the algorithm terminates is based

on the fact that there are finite numbers of elements and maximal chains. To show the feasibility of

the solution generated by the algorithm, we need to verify that constraints (5) and (6) are satisfied.

From (A10), we deduce that constraints (5) are automatically satisfied at termination, since an

element x∈X is removed whenever the remaining value ρkx is 0. Similarly, from Proposition 2, we

obtain that constraints (6) are satisfied for all maximal chains in Cn
∗+1, i.e., the maximal chains that

are not removed by the algorithm. As mentioned before, the main issue in showing the feasibility

of Algorithm 1’s output is with regards to the constraints (6) corresponding to the maximal chains

that have been removed at some iteration of the algorithm. For such maximal chains C ∈ C\Cn
∗+1,

we create a finite sequence of “dominating” maximal chains, and show that constraint (6) being

satisfied for the last maximal chain of the sequence implies that it is also satisfied for the initial

maximal chain C. To carry out this argument, we essentially need the following lemma:

Lemma 3. Consider C(1) ∈ C, and suppose that ∃k1 ∈ J1, n∗K such that C(1) ∈ Ck1\Ck1+1 and

C(1) ∩Xk1 6= ∅. Then, ∃C(2) ∈ Ck1+1 such that δk1
C(1) ≥ δk1

C(2) and C(2) ∩Xk1 ⊇C(1) ∩Xk1.

Proof of Lemma 3. Consider C(1) ∈ C, and suppose that ∃k1 ∈ J1, n∗K such that C(1) ∈ Ck1 ,

C(1) ∩Xk1 6= ∅, but C(1) /∈ Ck1+1. This case arises when the minimal element of C(1) ∩Xk1 in P is

not a minimal element of P k1. Then, we can find a chain in P k1 whose maximal element is the

minimal element of C(1)∩Xk1 in P , and whose minimal element is a minimal element of P k1. From

the definition of P k1 and Lemma 2, this chain is contained in a maximal chain in C
k1
. We can then

exploit (i)− (iii) in Proposition 2 to show that there exists a maximal chain in Ck1+1 that satisfies

the desired properties.

Formally, let x∗ denote the minimal element of C(1)∩Xk1 in P . Since C(1) /∈ Ck1+1, then x∗ /∈ Sk1 ,

i.e., x∗ is not a minimal element of P k1. Let C ′ ⊆Xk1 denote a maximal chain of P k1 that contains
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x∗. From Lemma 1, we know that the minimal element of C ′ in P k1, which we denote y1, is a

minimal element of P k1. Therefore y1 ∈ Sk and y1 6= x∗. Thus, C ′ is of size at least two, and

there exists a maximal chain C2 ∈ C
k1

such that C ′ = C2 ∩Xk1 (Lemma 2). Since C(1) ∩ C2 ∩

Xk1−1 ⊇ {x∗} 6= ∅, let us consider the other two maximal chains C2
1 ,C

1
2 ∈ C such that C2

1 ∪C
1
2 =

C(1) ∪C2. Since C(1) and C2 are in Ck1 , then from Proposition 2, C2
1 and C1

2 are in Ck1 as well.

Let us rewrite C(1) = {x−m, . . . , x0 = x∗, . . . , xn}, C
2 = {y−q, . . . , y0, y1, . . . , yp = x∗, . . . , yp+r}, C

2
1 =

{x−m, . . . , x−1, yp, . . . , yp+r}, and C1
2 = {y−q, . . . , yp, x1, . . . , xn}; they are illustrated in Figure 3.

yp−1

x∗

yp+1

x−1

x1

x−m

xn

y1

y0

y−q

y2

yp+r

C(1) C2

C2
1C1

2

Figure 3. Illustration of C(1), C2, C2
1 , and C1

2 . In dark blue are the elements in Xk1 , in light blue are the elements

that may or may not be in Xk1 , and in white are the elements that are not in Xk1 . The “double” node y1 is in Sk1 .

Since x∗ is the minimal element of C(1) ∩Xk1 in P , then ∀i ∈ J−m,−1K, xi /∈Xk1 and ρk1xi = 0.

Since C2 ∈ C
k1

and C2
1 ∈ C

k1 , and from the conservation law between C(1), C2, C2
1 and C1

2 , we

obtain:

πk1

C1
2
−πk1

C(1)

(12)
= πk1

C2 −πk1

C2
1

(10)
=

p+r∑

j=−q

ρk1yj − δk1
C2︸︷︷︸
=0

−
−1∑

i=−m

ρk1xi︸︷︷︸
=0

−

p+r∑

j=p

ρk1yj + δk1
C2
1︸︷︷︸

≥0

(11)

≥

p−1∑

j=−q

ρk1yj . (13)

This implies that:

δk1
C(1)

(10)
=

n∑

i=0

ρk1xi −πk1

C(1) +

p−1∑

j=−q

ρk1yj −

p−1∑

j=−q

ρk1yj
(10)
= δk1

C1
2
+πk1

C1
2
−πk1

C(1) −

p−1∑

j=−q

ρk1yj

(13)

≥ δk1
C1
2
.
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Furthermore, since y1 is the minimal element of C2 ∩Xk1 in P k1 , it is also the minimal element

of C2 ∩Xk1 in P . This implies that y1 is the minimal element of C1
2 ∩X

k1 in P . Since y1 belongs

to Sk1 , we deduce that C1
2 ∈ C

k1+1.

Finally, since ∀i ∈ J−m,−1K, xi /∈Xk1 , then C1
2 ∩X

k1 ⊇ {x∗, x1, . . . , xn} ∩X
k1 = C(1) ∩Xk1 , as

illustrated in Figure 3. In conclusion, given C(1) ∈ Ck1\Ck1+1 such that C(1) ∩Xk1 6= ∅, ∃C(2) :=

C1
2 ∈ C

k1+1 such that δk1
C(1) ≥ δk1

C(2) and C(2) ∩Xk1 ⊇C(1) ∩Xk1 . �

As shown in the next proposition, one of the implications of Lemma 3 is that if a maximal chain

C(1) is removed after the k1-th iteration of the algorithm, then there exists another maximal chain

C(2), which dominates C(1) in the sense that if the output of the algorithm satisfies constraint (6)

for C(2), then it also satisfies that constraint for C(1). Additionally, it is guaranteed that C(2) is not

removed before the k1+1-th iteration of the algorithm. We can now show the second main part of

the proof of Theorem 2:

Proposition 3. Algorithm 1 terminates, and outputs a feasible solution of (Q).

Proof of Proposition 3. We recall that the algorithm terminates after iteration n∗ if Xn∗+1 = ∅.

First, we note thatX1 ⊆X and ∀k ∈ J1, n∗K, Xk+1
(A10)

⊆ Xk. Additionally, Ĉ1 ⊆ C, and from (A8), we

have ∀k ∈ J1, n∗K, Ĉk+1 ⊆ Ĉk. Now, consider k ∈ J1, n∗K, and the weight wk chosen by the algorithm

at iteration k. From (A7), ∃x∈Xk such that wk = ρkx, or ∃C ∈ Ĉ
k such that wk =

δkC
|Sk∩C|−1

. In the

first case, we deduce that x /∈Xk+1, so Xk+1 (Xk. In the second case, either C /∈ Ck+1, or C ∈ Ck+1

and δk+1
C = 0, which both imply that C ∈ C

k+1
. Therefore, C /∈ Ĉk+1 and Ĉk+1 ( Ĉk.

Thus, ∀k ∈ J1, n∗K, |Xk+1 × Ĉk+1| < |Xk × Ĉk|. Since |X1 × Ĉ1| ∈ N, if n∗ were equal to +∞,

we would obtain an infinite decreasing sequence of natural integers. Therefore, we conclude that

n∗ ∈N, i.e., the algorithm terminates. At termination, we have Xn∗+1 = ∅.

Next, we show that the output σ ∈R|P|
+ of the algorithm is a feasible solution of (Q). First, the

equality constraints (5) are trivially satisfied:

∀x∈X, ρx
(A1)
= ρ1x

(A8)
= ρn

∗+1
x︸ ︷︷ ︸
=0

+
n∗∑

k=1

wk
1{x∈Sk}

(A7)
=

n∗∑

k=1

σSk1{x∈Sk} =
∑

{S∈P |x∈S}

σS .

Regarding constraints (6), we first show the following equality:

∀C ∈ C, δn
∗+1

C

(A8)
= δ1C −

n∗∑

k=1

wk(|Sk ∩C| − 1)1{|Sk∩C|≥2}

(A1),(A7)
= δC −

∑

{S∈P | |S∩C|≥2}

σS(|S ∩C| − 1).

Therefore, constraints (6) are satisfied if and only if ∀C ∈ C, δn
∗+1

C ≥ 0.

From Proposition 2, we know that ∀C ∈ Cn
∗+1, δn

∗+1
C ≥ 0. Now, consider C(1) ∈ C, and suppose

that ∃k1 ∈ J1, n∗K such that C(1) ∈ Ck1\Ck1+1. If C(1) ∩Xk1 = ∅, then ∀l ∈ Jk1, n
∗K, |Sl ∩C(1)|= 0
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since Sl
(A6)

⊆ X l andX l
(A10)

⊆ Xk1 . Therefore, since C(1) ∈ Ck1 , we have δn
∗+1

C(1)

(A8)
= δk1

C(1)−
∑n∗

l=k1
wl(|Sl∩

C(1)| − 1)1{|Sl∩C(1)|≥2} = δk1
C(1)

(11)

≥ 0.

If C(1) ∩ Xk1 6= ∅, then ∃C(2) ∈ Ck1+1 such that δk1
C(1) ≥ δk1

C(2) and C(2) ∩ Xk1 ⊇ C(1) ∩ Xk1

(Lemma 3). Consider i∈ Jk1, n
∗K. Since Si

(A6),(A10)

⊆ Xk1 , then Si ∩C(2) ⊇ Si ∩C(1), and we obtain:

∀l ∈ Jk1, n
∗ +1K, δl

C(1)

(A8)
= δk1

C(1) −
l−1∑

i=k1

wi(|Si ∩C(1)| − 1)1{|Si∩C(1)|≥2}

≥ δk1
C(2) −

l−1∑

i=k1

wi(|Si ∩C(2)| − 1)1{|Si∩C(2)|≥2}

(A8)
= δl

C(2) . (14)

In particular, δn
∗+1

C(1) ≥ δn
∗+1

C(2) . We note that C(2) ∈ Ck1+1, and two cases can arise:

1) C(2) ∈ Cn
∗+1. In this case, δn

∗+1

C(2) ≥ 0 (Proposition 2).

2) ∃k2 ∈ Jk1 +1, n∗K such that C(2) ∈ Ck2\Ck2+1. Then we reiterate the same argument:

(a) If C(2) ∩Xk2 = ∅, then δn
∗+1

C(2) = δk2
C(2)

(11)

≥ 0.

(b) If C(2) ∩Xk2 6= ∅, then there exists C(3) ∈ Ck2+1 such that δk2
C(2) ≥ δk2

C(3) and C(3) ∩Xk2 ⊇

C(2) ∩Xk2 (Lemma 3). Analogous calculations to (14) show that δn
∗+1

C(2) ≥ δn
∗+1

C(3) .

By induction, we construct a sequence of maximal chains (C(s)), a sequence of increasing integers

(ks), and a termination point s∗ ∈N∗, such that ∀s ∈ J1, s∗− 1K, C(s) ∈ Cks\Cks+1, δn
∗+1

C(s) ≥ δn
∗+1

C(s+1) ,

and δn
∗+1

C(s∗) ≥ 0. Note that s∗ exists since ks ≤ n∗ +1. Then, we deduce that δn
∗+1

C(1) ≥ · · · ≥ δn
∗+1

C(s∗) ≥ 0.

Thus, ∀C ∈ C, δn
∗+1

C ≥ 0, and constraints (6) are satisfied by the output σ of the algorithm. In

conclusion, the algorithm outputs a feasible solution of (Q). �

The output of Algorithm 1, by design, satisfies constraints (5), and also constraints (6) for the

maximal chains in Cn
∗+1. Recall that the remaining maximal chains were removed after an iteration

k in order to maintain the conservation law on the resulting set Ck+1. This conservation law played

an essential role in proving Proposition 3, i.e., in showing that constraints (6) are also satisfied for

the maximal chains that are not in Cn
∗+1 (see the proof of Lemma 3). Thus, Algorithm 1’s output

is a feasible solution of (Q). Next, we show that this solution is optimal.

Part 3: Optimality of Algorithm 1. The final part of the proof of Theorem 2 consists in

showing that the total weight used by the algorithm is exactly max{max{ρx, x∈X},max{πC , C ∈

C}}. This is done by considering the following quantity: ∀k ∈ J1, n∗ +1K, W k :=max{max{ρkx, x∈

X},max{πk
C , C ∈ C}}. First, we show that ∀k ∈ J1, n∗K, W k+1 = W k − wk. Then, we show that

W n∗+1 = 0. Using a telescoping series, we obtain the desired result. This part of the proof also uses

Lemma 3 to conclude that max{πk
C , C ∈ C} is attained by a maximal chain C ∈ Ck+1.

Proposition 4. The total weight used by the algorithm when it terminates ismax{max{ρx, x∈

X},max{πC , C ∈ C}}.
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Proof of Proposition 4. For all k ∈ J1, n∗ + 1K, let W k := max{max{ρkx, x ∈X},max{πk
C , C ∈

C}}. First, we show that ∀k ∈ J1, n∗K, W k+1 =W k −wk. Consider k ∈ J1, n∗K, and let C ∈ C\Ck+1.

Then, there exists k1 ≤ k such that C ∈ Ck1\Ck1+1. If C∩Xk1 = ∅, then πk+1
C ≤ πk

C ≤ πk1
C

(10)
= −δk1C

(11)

≤

0. If C ∩Xk1 6= ∅, then ∃C(2) ∈ Ck1+1 such that δk1C ≥ δk1
C(2) and C(2) ∩Xk1 ⊇ C ∩Xk1 (Lemma 3).

This implies that ∀l ∈ Jk1, n
∗ +1K, δlC

(14)

≥ δl
C(2) , and C(2) ∩X l⊇C ∩X l. Then, we obtain:

∀l ∈ Jk1, n
∗ +1K, πl

C

(10)
=

∑

x∈C∩Xl

ρlx− δlC +πl

C(2) + δl
C(2) −

∑

x∈C∩Xl

ρlx−
∑

x∈(C(2)∩Xl)\(C∩Xl)

ρlx
(14)

≤ πl

C(2) .

In particular, we deduce that πk
C ≤ πk

C(2) and πk+1
C ≤ πk+1

C(2) . As in Proposition 3, we construct a

sequence of maximal chains (C(s)), a sequence of increasing integers (ks), and a termination point

s′ ∈ N∗, such that C(1) = C, ∀s ∈ J1, s′ − 1K, C(s) ∈ Cks\Cks+1, πk

C(s) ≤ πk

C(s+1) , and πk+1

C(s) ≤ πk+1

C(s+1) .

At termination, C(s′) ∈ Cks′ , and either ks′ = k + 1, or ks′ < k + 1 and C(s′) ∩Xks′ = ∅. If ks′ =

k + 1, then we conclude that πk
C ≤ πk

C(s′) and πk+1
C ≤ πk+1

C(s′)
, with C(s′) ∈ Ck+1. If ks′ < k + 1 and

C(s′) ∩Xks′ = ∅, then πk+1
C

(9)

≤ πk
C ≤ πk

C(s′)

(9)

≤ π
ks′

C(s′)

(10)
= −δ

ks′

C(s′)

(11)

≤ 0 ≤ ρk+1
x

(8)

≤ ρkx, ∀x ∈X. Thus, we

deduce that W k =max{max{ρkx, x ∈X},max{πk
C , C ∈ Ck+1}}, and W k+1 =max{max{ρk+1

x , x ∈

X},max{πk+1
C , C ∈ Ck+1}}.

Since k ∈ J1, n∗K and Algorithm 1 terminates after the n∗−th iteration, we know that Xk 6= ∅.

Furthermore, since ∀x∈Xk, ρkx ≥ ρk+1
x ≥ 0, and ∀x∈X\Xk, ρkx = ρk+1

x = 0, then max{ρkx, x∈X}=

max{ρkx, x∈Xk}, and max{ρk+1
x , x∈X}=max{ρk+1

x , x∈Xk}.

Next, we consider x ∈Xk\Sk. Then, ∃ y 6= x ∈Xk such that y �
C
k x, and y ∈ Sk is a minimal

element in P k. By definition, ∃C ∈ C
k
such that y,x ∈ C, and y ≺ x. In fact, y is the minimal

element of C ∩ Xk in P k, and C ∈ Ck+1. Since C ∈ C
k
, then πk

C

(10)
=

∑
x′∈C

ρkx′ ≥ ρkx + ρky ≥ ρkx.

Furthermore, since y ∈ Sk, then wk
(A7)

≤ ρky. Thus, we obtain that ρk+1
x = ρkx ≤ πk

C − ρky ≤ πk
C −wk (9)

=

πk+1
C , from which we conclude that W k =max{max{ρkx, x∈ S

k},max{πk
C , C ∈ C

k+1}}, and W k+1 =

max{max{ρk+1
x , x∈ Sk},max{πk+1

C , C ∈ Ck+1}}.

Finally, we note that ∀C ∈ Ck+1, πk+1
C

(9)
= πk

C−wk since Sk ∩C 6= ∅, and ∀x∈ Sk, ρk+1
x

(A8)
= ρkx−wk.

Putting everything together, we conclude:

W k+1 =max{max{ρk+1
x , x∈ Sk},max{πk+1

C , C ∈ Ck+1}}

=max{max{ρkx, x∈ Sk},max{πk
C , C ∈ C

k+1}}−wk =W k−wk.

Next, we show that W n∗+1 = 0. First, we know that ∀x ∈X, ρn
∗+1

x = 0. Secondly, ∀C ∈ Cn
∗+1,

we have πn∗+1
C

(10)
= −δn

∗+1
C

(11)

≤ 0. Thirdly, Sn∗

6= ∅ since P n∗

is a nonempty poset. This implies

that W n∗+1 =max{max{ρn
∗+1

x , x∈ Sn∗

},max{πn∗+1
C , C ∈ Cn

∗+1}}= 0. Finally, using a telescoping

series, we obtain:

∑

S∈P

σS

(A7)
=

n∗∑

k=1

wk =
n∗∑

k=1

W k−W k+1 =W 1−W n∗+1

︸ ︷︷ ︸
=0

(A1),(9)
= max{max{ρx, x∈X},max{πC , C ∈ C}}.

�
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In conclusion, Propositions 2, 3, and 4 enable us to show that Algorithm 1 outputs a feasible

solution of (Q) with objective value equal to max{max{ρx, x ∈X},max{πC , C ∈ C}}. Therefore

z∗(Q) ≤max{max{ρx, x∈X},max{πC , C ∈ C}}. Since we already established the reversed inequality

at the end of Section 2.3, we conclude that z∗(Q) =max{max{ρx, x ∈X},max{πC , C ∈ C}}, thus

proving Theorem 2.

Furthermore, since ∀x∈X, ρx ≤ 1, and ∀C ∈ C, πC ≤ 1, then z∗(Q) ≤ 1. From Proposition 1, this

implies that (D) is feasible: Given the output σ of Algorithm 1, σ̂ obtained from σ by additionally

assigning 1− z∗(Q) to ∅ satisfies (1a)-(1c), and proves Theorem 1.

We note that (Q) is a generalization of a classical graph theoretic problem. The comparability

graph of the poset P = (X,�) is an undirected graph whose set of vertices is X and whose edges are

given by the pairs of comparable elements in P . In the special case where ∀C ∈ C,
∑

x∈C
ρx = πC

(i.e., inequality (2) is tight), (Q) is equivalent to the minimum-weighted fractional coloring problem

on the comparability graph of P . Algorithm 1 can then be refined into Hoàng’s O(|X|2)-time

algorithm [16].

4. Applications to network security. In this section, we use Theorem 1 on the existence

of probability distributions on posets for the purpose of equilibrium analysis of a generic security

game. The game involves a routing entity and an interdictor interacting on a flow network.

4.1. Game-theoretic model. Consider a flow network, modeled as a directed connected

acyclic graph G = (V,E), where V (resp. E) represents the set of nodes (resp. the set of edges) of

the network. For each edge (i, j) ∈ E , let cij ∈ R∗
+ denote its capacity. We consider that a single

commodity can flow in G from a source node s ∈ V to a destination node t ∈ V. An s− t path λ

of size n is a sequence of edges {e1 = (s1, t1), . . . , en = (sn, tn)} such that s1 = s, tn = t, and for all

k ∈ J1, n− 1K, tk = sk+1. We denote Λ the set containing all s− t paths of G.

A flow, defined by the vector f ∈ R
|Λ|
+ , enters the network from s and leaves from t. A flow f

is said to be feasible if the flow through each edge does not exceed its capacity; that is, for all

(i, j)∈ E , fij :=
∑

{λ∈Λ | (i,j)∈λ} fλ≤ cij. Let F denote the set of feasible flows of G. Given a feasible

flow f ∈F , let F (f) =
∑

λ∈Λ fλ denote the amount of flow sent from the node s to the node t. Each

edge (i, j) ∈ E is associated with a marginal transportation cost, denoted bij ∈R
∗
+. Thus, for each

s− t path λ ∈ Λ, bλ :=
∑

(i,j)∈λ
bij represents the cost of transporting one unit of flow through λ.

Given a feasible flow f ∈F , T (f) :=
∑

λ∈Λ bλfλ denotes the total transportation cost of f .

Consider a two-player strategic game Γ := 〈{1,2}, (F ,I), (u1, u2)〉, played on the flow network

G. Player 1 (P1) is the routing entity that chooses to route a flow f ∈ F of goods through the

network, and player 2 (P2) is the interdictor who simultaneously chooses a subset of edges I ∈ 2E
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to interdict. The action set for P1 (resp. P2) is F (resp. I := 2E). For every edge (i, j) ∈ E ,

dij ∈ R∗
+ denotes the cost of interdicting (i, j). Thus, the cost of any interdiction I ∈ I is given

by C(I) :=
∑

(i,j)∈I
dij. In this model, P2 (resp. P1) gains (resp. looses) the flow that crosses the

edges that are interdicted by P2; furthermore, P1 cannot re-route its flow after P2’s interdiction.1

The effective flow, denoted f I , when a flow f is chosen by P1 and an interdiction I is chosen by

P2 can be expressed as follows: ∀λ∈Λ, f I
λ = fλ1{λ∩I=∅}. We also suppose that the transportation

cost incurred by P1 is for the initial flow f and not for the effective flow f I . This modeling choice

reflects a monetary transaction between the routing entity and the network owner; for example,

an advance fee incurred by the routing entity for accessing and sending a quantity of flow through

the edges of the network.

The payoff of P1 is defined as the value of effective flow assessed by P1 net the cost of trans-

porting the initial flow: u1(f, I) = p1F(f I)−T(f), where p1 ∈R
∗
+ is the marginal value of effective

flow for P1. Similarly, the payoff of P2 is defined as the value of interdicted flow assessed by P2

net the cost of interdiction: u2(f, I) = p2(F(f)− F(f I)) − C(I), where p2 ∈ R∗
+ is the marginal

value of interdicted flow for P2.

We consider that P1 can route goods in the network using a flow f realized from a chosen prob-

ability distribution on the set F , and P2 can interdict subsets of edges according to a probability

distribution on the set I. Specifically, P1 and P2 respectively choose a mixed routing strategy

σ1 ∈∆(F) and a mixed interdiction strategy σ2 ∈∆(I), where ∆(F) = {σ1 ∈R|F|
+ |

∑
f∈F σ1

f = 1},

and ∆(I) = {σ2 ∈R
|I|
+ |

∑
I∈I σ

2
I = 1} denote the strategy sets. Here, σ1

f (resp. σ2
I ) represents the

probability assigned to the flow f (resp. interdiction I) by P1’s routing strategy σ1 (resp. P2’s

interdiction strategy σ2). The players’ strategies are independent randomizations. Given a strategy

profile σ= (σ1, σ2)∈∆(F)×∆(I), the respective expected payoffs are expressed as:

U1(σ
1, σ2) = p1Eσ[F

(
f I

)
]−Eσ[T (f)], (15)

U2(σ
1, σ2) = p2

(
Eσ[F (f)]−Eσ[F

(
f I

)
]
)
−Eσ[C (I)]. (16)

Thus, the mixed extension of the game Γ is 〈{1,2}, (∆(F),∆(I)), (U1,U2)〉.

We seek to study the mixed strategy Nash equilibria of this game. A strategy profile (σ1∗, σ2∗)∈

∆(F)×∆(I) is a mixed strategy Nash Equilibrium (NE) of game Γ if: ∀σ1 ∈∆(F), U1(σ
1∗, σ2∗)≥

U1(σ
1, σ2∗), and ∀σ2 ∈∆(I), U2(σ

1∗, σ2∗)≥U2(σ
1∗, σ2). Equivalently, in a NE (σ1∗ , σ2∗), σ1∗ (resp.

σ2∗) is a best response to σ2∗ (resp. σ1∗). We denote Σ the set of NE of Γ. We will also use the

notations Ui(σ
1, I) =Ui(σ

1,1{I}) and Ui(f,σ
2) =Ui(1{f}, σ

2) for i∈ {1,2}.

We now proceed with the equilibrium analysis of the game Γ.

1 We do not consider partial edge interdictions for the sake of simplicity.
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4.2. Properties of Nash equilibria. We first note that Γ is strategically equivalent to a

zero-sum game. In particular, the following transformation preserves the set of NE:

∀(f, I)∈F ×I,
1

p1
u1(f, I)+

1

p2
C(I) = F

(
f I

)
−

1

p1
T(f)+

1

p2
C(I) =: ũ1(f, I), (17)

∀(f, I)∈F ×I,
1

p2
u2(f, I)−F(f)+

1

p1
T(f) =−F

(
f I

)
+

1

p1
T(f)−

1

p2
C(I) =−ũ1(f, I). (18)

Therefore, Γ and Γ̃ := 〈{1,2}, (F ,I), (ũ1,−ũ1)〉 have the same equilibrium set. Additionally, NE of

Γ are interchangeable, i.e., if (σ1∗, σ2∗)∈Σ and (σ1′, σ2′)∈Σ, then (σ1∗, σ2′)∈Σ and (σ1′, σ2∗)∈Σ.

In principle, NE of Γ can be obtained by using linear programming techniques. However, this

would entail solving a linear program with an infinite number of variables and an exponential

number of constraints (since F is the set of feasible flows in G, and |I| = 2|E|). We now present

our approach for analyzing the NE of the game Γ. Our approach, which utilizes the existence

result on posets Theorem 1, is based on a minimum cost circulation problem. Essentially, we show

that its primal solutions are equilibrium routing strategies for P1, and that its dual solutions give

properties of equilibrium interdiction strategies for P2.

Specifically, consider the following network flow problem:

(M) maximize F (f)−
1

p1
T(f)

subject to
∑

{λ∈Λ | (i,j)∈λ}

fλ ≤min

{
dij

p2
, cij

}
, ∀(i, j)∈ E

fλ ≥ 0, ∀λ∈Λ.

This problem can be viewed as a minimum cost circulation problem in a graph G′ = (V ′,E ′) such

that V ′ = V, E ′ = E ∪ {(t, s)}. The capacity of each edge (i, j) ∈ E is given by min{
dij

p2
, cij}, and

edge (t, s) is uncapacitated. The transportation cost of each edge (i, j)∈ E is given by
bij

p1
, and the

transportation cost of edge (t, s) is −1.

Equivalently, (M) consists in finding a feasible flow f in F that maximizes u1(f,∅) with the

requirement that the flow through each edge (i, j) is no more than
dij

p2
. Game theoretically, this

threshold capturesP2’s best response toP1: If fij >
dij

p2
for some (i, j)∈ E , thenP2 has an incentive

to interdict (i, j), resulting in an increase of P2’s payoff (since u2(f,{(i, j)}) = p2fij − dij > 0).

Thus, (M) can be viewed as the problem in which P1 maximizes its payoff while limiting P2’s

incentive to interdict any of the edges. For each s− t path λ∈Λ, let us denote π0
λ := 1− bλ

p1
. Then,
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the value p1π
0
λ represents the gain in P1’s payoff when one unit of flow traveling along λ reaches

the destination node. The primal and dual formulations of (M) are given as follows:

(MP ) : max
∑

λ∈Λ

π0
λfλ

s.t.
∑

{λ∈Λ | (i,j)∈λ}

fλ ≤
dij

p2
, ∀(i, j)∈ E

∑

{λ∈Λ | (i,j)∈λ}

fλ ≤ cij, ∀(i, j)∈ E

fλ ≥ 0, ∀λ∈Λ

(MD) : min
∑

(i,j)∈E

(
dij

p2
ρij + cijµij)

s.t.
∑

(i,j)∈λ

(ρij +µij)≥ π0
λ, ∀λ∈Λ

ρij ≥ 0, ∀(i, j)∈ E

µij ≥ 0, ∀(i, j)∈ E

Let f ∗ and (ρ∗, µ∗) denote optimal solutions of (MP ) and (MD), respectively. By strong duality,

the optimal value of (MP ) is identical to that of (MD); we denote it by z∗(M). Note that (MP )

and (MD) may have an exponential number of variables and constraints, respectively. However,

equivalent primal and dual formulations of (M) of polynomial size can be derived; see Appendix C.

Thus, f ∗ and (ρ∗, µ∗) can be computed in an efficient manner by using an interior point method

(Karmarkar [18]) or a dual network simplex algorithm (Orlin et al. [23]).

The following properties for a pair of optimal solutions f ∗ and (ρ∗, µ∗) of (MP ) and (MD) can

be obtained from complementary slackness:

∀(i, j)∈ E , ρ∗ij > 0 =⇒ f ∗
ij =

∑

{λ∈Λ | (i,j)∈λ}

f ∗
λ =

dij

p2
, (19)

∀(i, j)∈ E , µ∗
ij > 0 =⇒ f ∗

ij =
∑

{λ∈Λ | (i,j)∈λ}

f ∗
λ = cij, (20)

∀λ∈Λ, f ∗
λ > 0 =⇒

∑

(i,j)∈λ

(ρ∗ij +µ∗
ij) = π0

λ. (21)

These properties, along with Theorem 1, enable us to derive the following result:

Proposition 5. Consider f ∗ and (ρ∗, µ∗) optimal solutions of (MP ) and (MD), respectively.

Theorem 1 guarantees the existence of an interdiction strategy σ̃2 ∈∆(I) satisfying:

∀(i, j)∈ E ,
∑

{I∈I | (i,j)∈I}

σ̃2
I = ρ∗ij , (22)

∀λ∈Λ,
∑

{I∈I | I∩λ6=∅}

σ̃2
I ≥ π∗

λ, (23)

where ∀λ∈Λ, π∗
λ := π0

λ−
∑

(i,j)∈λ
µ∗
ij.

The strategy profile (f ∗, σ̃2) ∈ F ×∆(I) is a NE of the game Γ. The corresponding equilibrium

payoffs are U1(f
∗, σ̃2) = p1

∑
(i,j)∈E cijµ

∗
ij and U2(f

∗, σ̃2) = 0.

Thus, a solution f ∗ (resp. (ρ∗, µ∗)) of the primal (resp. dual) formulation of (M) can be used

to describe a NE of Γ. In particular, f ∗ is a pure equilibrium strategy for P1. Furthermore, for all
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(i, j)∈ E , ρ∗ij is the probability with which edge (i, j) is interdicted by P2 in equilibrium. To draw

this conclusion, we need to show the existence of an interdiction strategy σ̃2 ∈∆(I) satisfying (22)

and (23). In fact, this existence problem is an instantiation of problem (D) that we introduced

earlier, and positively answered in Theorem 1.

Additional properties of P2’s equilibrium interdiction strategy σ̃2 are given by µ∗: Given an

s− t path λ ∈Λ, π0
λ is the probability above which λ should be interdicted in equilibrium by P2.

However, when edges belonging to λ have high interdiction costs, P2 does not interdict these edges,

and may not be able to interdict λ with probability π0
λ. The reduction of interdiction probability

of λ is captured by
∑

(i,j)∈λ
µ∗
ij . Indeed, by complementary slackness (20), µ∗

ij > 0 for (i, j)∈ λ only

when cij = f ∗
ij ≤

dij

p2
, i.e., when the interdiction cost of (i, j) is too high. The resulting interdiction

probability of λ in equilibrium is then given by π∗
λ = π0

λ−
∑

(i,j)∈λ
µ∗
ij.

Consequently, if an s − t path λ ∈ Λ is such that
∑

(i,j)∈λ
µ∗
ij > 0, then each unit of flow sent

through λ increases P1’s payoff by p1
∑

(i,j)∈λ
µ∗
ij . This is captured by P1’s equilibrium strategy

f ∗, which saturates every edge (i, j)∈ E for which µ∗
ij > 0 (see (20)). Since f ∗ only takes s− t paths

that are interdicted with probability exactly π∗ (from (21)-(23)), the resulting equilibrium payoff

for P1 can then be derived from µ∗; see Proposition 5. Recall that f ∗ is such that interdicting any

edge does not increase P2’s payoff. Furthermore, P2 only interdicts edges for which the value of

interdicted flow compensates the interdiction cost (from (19)). Thus, her payoff is 0 in equilibrium.

We note that P1 does not need to randomize its flow in the game Γ. Indeed, for every routing

strategy σ1 ∈∆(F), the flow f̄ defined by ∀λ ∈ Λ, f̄λ = Eσ1 [fλ], satisfies the following properties:

f̄ ∈F , and ∀i∈ {1,2}, ∀σ2 ∈∆(I), Ui(σ
1, σ2) =Ui(f̄ , σ

2).

Proof of Proposition 5. Let f ∗ and (ρ∗, µ∗) be optimal solutions of (MP ) and (MD), respec-

tively. First, we define the following binary relation on E , denoted �G. Given (u, v) ∈ E2, u �G v

if either u = v, or there exists an s− t path λ ∈ Λ that traverses u and v in this order. Since G

is a directed acyclic connected graph, we have the following lemma, which is proven separately in

Appendix A:

Lemma 4. P = (E ,�G) is a poset, whose set of maximal chains is the set of s− t paths Λ.

Thus, showing that there exists σ̃2 ∈ ∆(I) that satisfies (22) and (23) is an instantiation of

problem (D). Since (ρ∗, µ∗) is a feasible solution of (MD), then condition (2) is satisfied, i.e.,

∀λ ∈ Λ,
∑

(i,j)∈λ
ρ∗ij ≥ π∗

λ. Additionally, for any s− t path λ ∈ Λ, π∗
λ = 1−

∑
(i,j)∈λ

(
bij

p1
+ µ∗

ij), and

π∗ is an affine function of the elements constituting each s − t path. Therefore, π∗ satisfies the

conservation law described in (3). Finally, since ∀(i, j) ∈ E , ρ∗ij ∈ [0,1], and ∀λ ∈ Λ, π∗
λ ≤ 1, all

conditions of Theorem 1 are satisfied, and we obtain the existence of an interdiction strategy

σ̃2 ∈∆(I) satisfying (22) and (23).
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Next, we show that (f ∗, σ̃2) is a NE. We can write the following inequality for P1’s payoff:

∀f ∈F , U1(f, σ̃
2)

(15)
= p1

∑

λ∈Λ

fλEσ̃2 [1−1{I∩λ6=∅}]−
∑

λ∈Λ

bλfλ = p1
∑

λ∈Λ

π0
λfλ− p1

∑

λ∈Λ

fλ
∑

{I∈I | I∩λ6=∅}

σ̃2
I

(23)

≤ p1
∑

λ∈Λ

fλ
∑

(i,j)∈λ

µ∗
ij = p1

∑

(i,j)∈E

fijµ
∗
ij ≤ p1

∑

(i,j)∈E

cijµ
∗
ij. (24)

Now, given λ∈Λ such that f ∗
λ > 0, we obtain:

∑

{I∈I | I∩λ6=∅}

σ̃2
I ≤

∑

I∈I

σ̃2
I |I ∩λ|=

∑

(i,j)∈λ

∑

I∈I

σ̃2
I1{(i,j)∈I}

(22)
=

∑

(i,j)∈λ

ρ∗ij
(21),(23)

≤
∑

{I∈I | I∩λ6=∅}

σ̃2
I . (25)

Furthermore, ∀(i, j) ∈ E such that µ∗
ij > 0, f ∗

ij

(20)
= cij. Then, inequality (24) is tight for f ∗, and

U1(f
∗, σ̃2) = p1

∑
(i,j)∈E cijµ

∗
ij.

Similarly, regarding P2’s payoff, we first derive the following inequality:

∀I ∈ I,
∑

(i,j)∈I

dij

p2
≥

∑

(i,j)∈I

∑

{λ∈Λ | (i,j)∈λ}

f ∗
λ =

∑

λ∈Λ

f ∗
λ |I ∩λ| ≥

∑

λ∈Λ

f ∗
λ1{I∩λ6=∅} =F(f ∗)−F

(
f ∗I

)
. (26)

Therefore, ∀I ∈ I, U2(f
∗, I)

(16)
= p2(F (f ∗)−F(f ∗I))−

∑
(i,j)∈I

dij

(26)

≤ 0.

Now, given λ∈Λ such that f ∗
λ > 0, we obtain:

π0
λ−

∑

(i,j)∈λ

µ∗
ij

(21)
=

∑

(i,j)∈λ

ρ∗ij
(22)
=

∑

I∈I

σ̃2
I |S ∩λ| ≥

∑

{I∈I | I∩λ6=∅}

σ̃2
I

(23)

≥ π0
λ−

∑

(i,j)∈λ

µ∗
ij . (27)

Therefore, ∀I ∈ supp(σ̃2), |I ∩ λ| ≤ 1. Furthermore, given I ∈ supp(σ̃2) and (i, j) ∈ I,
∑

{λ∈Λ | (i,j)∈λ} f
∗
λ

(19)
=

dij

p2
, since ρ∗ij > 0. Thus, ∀I ∈ supp(σ̃2), inequality (26) is tight, and U2(f

∗, I) =

0. Therefore, U2(f
∗, σ̃2) = 0, and (f ∗, σ̃2) is a NE. �

We remark that in the simpler case where each s− t path has an identical transportation cost,

(M) can be viewed as a maximum flow problem. Then, our approach simply computes a NE of

the game Γ from a maximum flow for P1, and a minimum-cut set for P2.

Next, we characterize the set of s− t paths (resp. set of edges) that are chosen (resp. interdicted)

in at least one NE. This involves using the notion of strict complementary slackness. Specifically,

optimal solutions f † and (ρ†, µ†) of (MP ) and (MD) satisfy strict complementary slackness if:

∀(i, j)∈ E , either ρ†ij > 0 or f †
ij =

∑

{λ∈Λ | (i,j)∈λ}

f †
λ <

dij

p2
, (28)

∀(i, j)∈ E , either µ†
ij > 0 or f †

ij =
∑

{λ∈Λ | (i,j)∈λ}

f †
λ < cij, (29)

∀λ∈Λ, either f †
λ > 0 or

∑

(i,j)∈λ

(ρ†ij +µ†
ij)>π0

λ. (30)
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We say that f † and (ρ†, µ†) form a strictly complementary primal-dual pair of optimal solutions of

(M). Such a pair is guaranteed to exist by the Goldman-Tucker theorem [12], and can be computed

using any of the existing methods in the literature (see Balinski and Tucker [5], Adler et al. [1],

Jansen et al. [17]). From Proposition 5, we already know that there exists a NE of Γ where P1’s

strategy is f † and P2’s strategy is such that each edge (i, j) is interdicted with probability ρ†ij . In

fact, we can show that f † and ρ† characterize the s− t paths and edges that are chosen by both

players in equilibrium:

Theorem 3. Let f † and (ρ†, µ†) be a strictly complementary primal-dual pair of optimal solu-

tions of (M). The set of s− t paths (resp. the set of edges) that are chosen with positive probability

by P1’s strategy (resp. P2’s strategy) in at least one NE is given by supp(f †) (resp. supp(ρ†)):

⋃

(σ1∗ ,σ2∗ )∈Σ

⋃

f∈supp(σ1∗ )

{λ ∈Λ | fλ > 0}= supp(f †),
⋃

(σ1∗ ,σ2∗ )∈Σ

⋃

I∈supp(σ2∗ )

I = supp(ρ†).

Proof of Theorem 3. Let f † and (ρ†, µ†) be optimal solutions of (MP ) and (MD) that satisfy

strict complementary slackness. We denote σ̃2 ∈∆(I) the interdiction strategy, constructed from

Algorithm 1, which interdicts every edge (i, j) ∈ E with probability ρ†ij , and interdicts every s− t

path λ ∈Λ with probability at least π†
λ := π0

λ−
∑

(i,j)∈λ
µ†
ij . Given Σ the set of NE of the game Γ,

let H1 :=
⋃

(σ1∗ ,σ2∗ )∈Σ

⋃
f∈supp(σ1∗ ){λ∈Λ | fλ > 0} and H2 :=

⋃
(σ1∗ ,σ2∗ )∈Σ

⋃
I∈supp(σ2∗ ) I.

From Proposition 5, we know that (f †, σ̃2) is a NE. Consequently, H1 ⊇ supp(f †), and H2 ⊇

supp(ρ†). To show the reversed inclusions, we exploit properties of zero-sum games: Recall that

the game Γ is strategically equivalent to the game Γ̃ = 〈{1,2}, (F ,I), (ũ1,−ũ1)〉 where ũ1 is given

by (17). Therefore, each player’s payoff in Γ̃ is identical in any NE. We note the following equality:

Eσ̃2 [F
(
f †
)
−F

(
f †I

)
]
(27)
=

∑

λ∈Λ

f †
λEσ̃2 [|I ∩λ|]

(22)
=

∑

λ∈Λ

f †
λ

∑

(i,j)∈λ

ρ†ij
(29),(30)

= z∗(M)−
∑

(i,j)∈E

cijµ
†
ij, (31)

where z∗(M) is the optimal value of (M). This enables us to obtain P1’s equilibrium payoff in the

zero-sum game Γ̃: For every (σ1∗ , σ2∗)∈Σ,

Ũ1(σ
1∗ , σ2∗) = Ũ1(f

†, σ̃2)
(17)
= Eσ̃2 [F

(
f †I

)
]−F

(
f †
)
+F

(
f †
)
−

1

p1
T
(
f †
)
+

1

p2

∑

I∈I

σ̃2
I

∑

(i,j)∈I

dij

(22)
= −Eσ̃2 [F

(
f †
)
−F

(
f †I

)
] + z∗(M) +

1

p2

∑

(i,j)∈E

dijρ
†
ij

(31)
= z∗(M). (32)

Consider (σ1∗, σ2∗)∈Σ. Then, (f †, σ2∗) ∈Σ as well. Thus:

∀I ∈ supp(σ2∗), z∗(M)

(32)
= Ũ1(f

†, I)
(17)
=

1

p2
C(I)+F

(
f †I

)
−F

(
f †
)
+F

(
f †
)
−

1

p1
T
(
f †
) (26)

≥ z∗(M).
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Therefore, for I ∈ supp(σ2∗), (26) is tight, i.e., ∀(i, j)∈ I,
dij

p2
=
∑

{λ∈Λ | (i,j)∈λ} f
†
λ. From (28), we

deduce that ∀(i, j) ∈ I, ρ†ij > 0, i.e., (i, j) ∈ supp(ρ†). We can then conclude that H2 ⊆ supp(ρ†),

and we obtain that H2 = supp(ρ†).

We now show the remaining inclusion for H1. Given (σ1∗, σ2∗) ∈ Σ, we know that (σ1∗, σ̃2) ∈Σ

as well. Recall that ∀S ∈ supp(σ̃2), (26) is tight. This implies that for every f ∈ supp(σ1∗),

z∗(M)

(32)
= Ũ1(f, σ̃

2)
(17)
=

1

p1
U1(f, σ̃

2)+
1

p2
Eσ̃2 [C (I)]

(26),(31)
=

1

p1
U1(f, σ̃

2)+ z∗(M)−
∑

(i,j)∈E

cijµ
†
ij

(24)

≤ z∗(M).

Therefore, ∀f ∈ supp(σ1∗), (24) is tight, i.e., ∀λ∈Λ | fλ > 0,
∑

{I∈I | I∩λ6=∅} σ̃
2
I = π0

λ−
∑

(i,j)∈λ
µ†
ij .

However, this is not enough to invoke strict complementary slackness (30). We also need to show

(by contradiction) that ∀I ∈ supp(σ̃2), ∀f ∈ supp(σ1∗), ∀λ∈Λ such that fλ > 0, we have |I∩λ| ≤ 1.

Let us assume that ∃ (I ′, f ′, λ′) ∈ supp(σ̃2)× supp(σ1∗)× Λ such that f ′
λ′ > 0 and |I ′ ∩ λ′| ≥ 2.

Since I ′ interdicts at least two edges belonging to λ′, which is taken by a flow in the support of

σ1∗ , then we can construct another interdiction strategy σ2′ that provides P2 with a better payoff

than σ̃2 does. This is done by reassigning some probability initially assigned to I ′ by σ̃2 to a non

trivial partition of I ′. This is possible because no interdiction ∅ belongs to the support of σ̃2, which

is guaranteed by Theorem 2.

Specifically, from Theorem 2, we know that σ̃2
∅ = 1−max{max{ρ†ij , (i, j)∈ E},max{π†

λ, λ∈Λ}}.

Since ∀(i, j)∈ E , bij > 0 and µ†
ij ≥ 0, then ∀λ∈Λ, π†

λ = 1−
∑

(i,j)∈λ
(
bij

p1
+µ†

ij)< 1. By optimality of

ρ† in (MD), we deduce that ∀(i, j) ∈ E , ρ†ij < 1. Therefore, σ̃2
∅ > 0. Now, let ǫ=min{σ̃2

∅, σ̃
2
I′}> 0,

and let e ∈ I ′ ∩ λ′. Then, we construct the strategy σ2′ ∈∆(I) defined by σ2′

I′ = σ̃2
I′ − ǫ, σ2′

I′\{e} =

σ̃2
I′\{e} + ǫ, σ2′

{e} = σ̃2
{e} + ǫ, σ2′

∅ = σ̃2
∅ − ǫ, and σ2′

I = σ̃2
I , ∀I ∈ supp(σ̃

2)\{I ′, I ′\{e},{e},∅}.

First, we note that the edge interdiction probabilities are preserved between σ̃2 and σ2′ , i.e.,

∀(i, j) ∈ E , E
σ2′ [1{(i,j)∈I}] = Eσ̃2 [1{(i,j)∈I}]

(22)
= ρ†ij . Secondly, each s − t path λ ∈ Λ is interdicted

by σ2′ with a probability no less than the probability with which λ is interdicted by σ̃2, i.e.,

∀λ ∈ Λ, E
σ2′ [1{I∩λ6=∅}] ≥ Eσ̃2 [1{I∩λ6=∅}]. Thirdly, given λ′, since |I ′ ∩ λ′| ≥ 2 and e ∈ I ′ ∩ λ′, then

I ′\{e}∩λ 6= ∅ as well. This implies that E
σ2′ [1{I∩λ′ 6=∅}] =Eσ̃2 [1{I∩λ′ 6=∅}] + ǫ.

Putting everything together, we obtain:

U2(σ
1∗ ,σ2′)

(16)

≥ U2(σ
1∗ , σ̃2)+ p2Eσ1∗ [fλ′ǫ]≥U2(σ

1∗ , σ̃2)+ p2σ
1∗

f ′ f ′
λ′ǫ > U2(σ

1∗ , σ̃2).

This contradicts (σ1∗ , σ̃2) being a NE. Therefore, we deduce that ∀I ∈ supp(σ̃2), ∀f ∈

supp(σ1∗), ∀λ∈Λ | fλ > 0, |I ∩λ| ≤ 1. Then, we obtain:

∀f ∈ supp(σ1∗), ∀λ∈Λ | fλ > 0, π0
λ−

∑

(i,j)∈λ

µ†
ij =

∑

I∈I

σ̃2
I1{I∩λ6=∅} =

∑

I∈I

σ̃2
I |I ∩λ|

(22)
=

∑

(i,j)∈λ

ρ†ij .

From (30), we deduce that ∀f ∈ supp(σ1∗), ∀λ∈Λ such that fλ > 0, we have f †
λ > 0 as well, i.e.,

λ∈ supp(f †). Therefore, H1 ⊆ supp(f †), and we can conclude that H1 = supp(f †). �
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Thus, from Theorem 3, we obtain a complete characterization of the s− t paths that are taken

by P1’s equilibrium strategy, and the edges that are interdicted by P2’s equilibrium strategy. By

computing f † and (ρ†, µ†) a strictly complementary primal-dual pair of optimal solutions of (M),

the set of critical s− t paths of the network is given by supp(f †), and the set of critical network

edges is given by supp(ρ†).

We note that in the setting that we consider, P2 may need to interdict edges that are not part of

any minimum-cut set, and can even belong to different cut sets; Figure 4 illustrates an example. In

this example, the equilibrium interdiction strategy targets edges (s,1) and (2, t) that do not belong

to a same cut set. Thus, Theorem 3 generalizes the previously studied max-flow min-cut-based

metrics of network criticality (see Assadi et al. [2], Dwivedi and Yu [11], Gueye et al. [13]).

s 1

2

t
1,2,1

σ̃2
s1 =0.1

1,2,21,2,2

2,3,2

σ̃2
1t = 0.7

Figure 4. NE when p1 = 10, p2 = 1. bij = 1, ∀(i, j) ∈ E . The label of each edge (i, j) represents (f†
ij , cij , dij). Edge

(s,1) is interdicted by the equilibrium interdiction strategy σ̃2, but is not part of the minimum-cut set.

Finally, we can derive additional equilibrium properties for the setting where each edge is poten-

tially worth interdicting by P2, i.e., when
dij

p2
< cij, ∀(i, j)∈ E . Recall that

dij

p2
is the threshold on

the flow fij that determines P2’s incentive to interdict edge (i, j) or not. If edge (i, j) is such that
dij

p2
≥ cij, then for any feasible flow f ∈ F , fij ≤

dij

p2
, and interdicting that edge does not increase

P2’s payoff. On the other hand, if
dij

p2
< cij, then P2 has an incentive to interdict (i, j) if P1 routes

more than
dij

p2
units of flow through that edge. Next, we exploit the strategic equivalence to the

zero-sum game Γ̃, as well as Theorems 1 and 2, to derive additional results for this special case.

Proposition 6. If ∀(i, j)∈ E ,
dij

p2
< cij, then any NE σ∗ = (σ1∗ , σ2∗)∈Σ satisfies the following

properties:

(i) Both players’ equilibrium payoffs are constant and given by: U1(σ
1∗, σ2∗) =U2(σ

1∗, σ2∗) = 0.

(ii) P1’s routing strategy satisfies: Eσ1∗ [p1F(f)−T(f)] = p1z
∗
(M).

(iii) The expected cost of P2’s interdiction strategy is given by: Eσ2∗ [C (I)] = p2z
∗
(M).

(iv) The expected amount of interdicted flow is given by: Eσ∗ [F (f)−F(f I)] = z∗(M).

Proof of Proposition 6. In (32), we established that ∀(σ1∗, σ2∗)∈Σ, Ũ1(σ
1∗ , σ2∗) = z∗(M). Let f

∗

and (ρ∗, µ∗) denote optimal solutions of (MP ) and (MD), respectively. Since ∀(i, j)∈ E ,
dij

p2
< cij,

then ∀(i, j) ∈ E , f ∗
ij ≤

dij

p2
< cij. Therefore, from (20), we deduce that ∀(i, j) ∈ E , µ∗

ij = 0. Let

σ̃2 ∈∆(I) denote the interdiction strategy constructed from Algorithm 1 that satisfies (22) and



Dahan, Amin, and Jaillet: Probability Distributions on Partially Ordered Sets and Network Security Games 29

(23). We denote f 0 ∈F the action of not sending any flow in the network, i.e., f 0
λ = 0, ∀λ∈Λ, and

we denote f ′ := (1+ ǫ)f ∗, with ǫ=min{p2
cij

dij
− 1, (i, j)∈ E}> 0. Then, f ′ ∈F .

Let us consider σ̃1 ∈∆(F) defined by: σ̃1
f ′ = 1

1+ǫ
, and σ̃1

f0 =
ǫ

1+ǫ
. Then, we show that (σ̃1, σ̃2) is

a NE. Regarding P1’s payoff, since µ∗
ij = 0, ∀(i, j)∈ E , we can rewrite (24) as follows:

∀f ∈F , U1(f, σ̃
2)

(15)
= p1

∑

λ∈Λ

π0
λfλ− p1

∑

λ∈Λ

fλ
∑

{I∈I | I∩λ6=∅}

σ̃2
I

(23)

≤ p1
∑

λ∈Λ

π0
λfλ− p1

∑

λ∈Λ

fλπ
0
λ = 0.

Trivially, we obtain that U1(f
0, σ̃2) = 0. Furthermore, we know from (25) that ∀λ∈Λ such that

f ∗
λ > 0,

∑
{I∈I | I∩λ6=∅} σ̃

2
I = π0

λ. Since f ∗
λ > 0⇐⇒ f ′

λ > 0, we deduce that U1(f
′, σ̃2) = 0. Therefore

U1(σ̃
1, σ̃2) = 0.

Regarding P2’s payoff, we know that ∀σ2 ∈ ∆(I), U2(σ̃
1, σ2) = U2(Eσ̃1 [f ], σ2) = U2(f

∗, σ2).

Therefore, U2(σ̃
1, σ̃2) =U2(f

∗, σ̃2)≥U2(f
∗, σ2) =U2(σ̃

1, σ2), ∀σ2 ∈∆(I). Thus, (σ̃1, σ̃2) is a NE.

We now consider (σ1∗ , σ2∗) ∈Σ. Then, we know that (σ1∗ , σ̃2) ∈Σ and (σ̃1, σ2∗) ∈Σ. Since f 0 ∈

supp(σ̃1), we obtain that p2Ũ1(f
0, σ2∗)

(17)
= Eσ2∗ [C (I)]

(32)
= p2z

∗
(M). Similarly, since ∅ ∈ supp(σ̃2), then

p1Ũ1(σ
1∗ ,∅)

(17)
= Eσ1∗ [p1F(f)−T(f)]

(32)
= p1z

∗
(M). We deduce the players’ equilibrium payoffs:

U1(σ
1∗ , σ2∗)

(17)
= p1Ũ1(σ

1∗ , σ2∗)−
p1
p2

Eσ2∗ [C (I)]
(32)
= p1z

∗
(M)− p1z

∗
(M) =0,

U2(σ
1∗ , σ2∗)

(18)
= p2(−Ũ1(σ

1∗ , σ2∗))+ p2Eσ2∗ [F (f)−
1

p1
T(f)]

(32)
= −p2z

∗
(M) + p2z

∗
(M) =0.

Finally, we characterize the expected amount of flow that is interdicted in any equilibrium:

Eσ∗ [F (f)−F(f I)] = 1
p2
U2(σ

1∗ , σ2∗)+ 1
p2
Eσ2∗ [C (I)] = z∗(M). �

From (i)− (iv) in Proposition 6, we observe that some quantities (such as expected interdiction

cost and expected amount of interdicted flow) in equilibrium can be computed in closed form using

the parameters of the game and the optimal value of (M). Thus, our results in Section 4 provide a

new approach to study the generic security game Γ, and derive equilibrium properties for settings

involving heterogeneous cost parameters and general network topologies.

5. Concluding remarks. In this article, we studied an existence problem of probability

distributions over partially ordered sets, and showed its implications to a class of security games

on flow networks. In the existence problem, we considered a poset, where each element and each

maximal chain is associated with a value. Under two practically relevant conditions on these values,

we showed that there exists a probability distribution over the subsets of this poset, with the

following properties: the probability that each element (resp. maximal chain) is contained in a

subset (resp. intersects with a subset) is equal to (resp. as large as) the corresponding value. We

provided a constructive proof of this result by designing a combinatorial algorithm that exploits

structural properties of the problem.
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By applying this existence result, we were able to study a generic formulation of network security

game between a routing entity and an interdictor. To overcome the computational and analytical

challenges of the formulation, we proposed a new approach for analyzing equilibria of the game.

This approach relies on our existence result on posets, as well as optimal primal and dual solutions

of a minimum cost circulation problem. Furthermore, we showed that a pair of optimal solutions of

the circulation problem that satisfy strict complementary slackness provides a new characterization

of the critical network components that are chosen in equilibrium by both players.

Appendix A: Remaining proofs.

Proof of Lemma 1. Let P be a finite nonempty poset, and let S be the set of minimal elements

of P . If |S| = 1, then S is an antichain of P . Now, assume that |S| ≥ 2, and consider x 6= y ∈ S.

Since x (resp. y) is a minimal element of P , then y ⊀ x (resp. x ⊀ y). Therefore, x and y are

incomparable, and S is an antichain of P .

Now, consider a maximal chain C ∈ C, and assume that C does not contain any minimal element

of P . Let x be the minimal element of (C,�
C
). Since x is not a minimal element of P , there exists

y ∈X\C such that y≺ x. By transitivity of �, we deduce that y≺ x′, ∀x′ ∈C. Therefore, C ∪{y}

is a chain containing C, which contradicts the maximality of C. Thus, every maximal chain of P

intersects with the set of minimal elements of P . �

Proof of Lemma 2. Consider X ′ ⊆X, and C′ ⊆ C that preserves the decomposition of maximal

chains intersecting in X ′. Let us show that �C′ defined in Section 2.1 is a partial order on X ′:

– Reflexivity: For every x∈X ′, x�C′ x by definition.

– Antisymmetry: Consider (x, y) ∈ (X ′)2 such that x�C′ y and y �C′ x. If x 6= y, then we would

have x≺ y and y ≺ x, which contradicts � being a partial order. Therefore, x= y.

– Transitivity: Consider (x, y, z) ∈ (X ′)3, and assume that x�C′ y and y�C′ z. If x= y or y= z,

then we trivially obtain that x �C′ z. Now, let us assume that x 6= y and y 6= z. By definition

of �C′ , ∃C1 ∈ C′ | (x, y) ∈ (C1)2 and x ≺ y. Similarly, ∃C2 ∈ C′ | (y, z) ∈ (C2)2 and y ≺ z. We

can rewrite C1 and C2 as follows: C1 = {x0, . . . , xl = x,xl+1, . . . , xl+m = y,xl+m+1, . . . , xl+m+n} and

C2 = {y0, . . . , yq = y, yq+1, . . . , yq+r = z, yq+r+1, . . . , yq+r+s}. Now, consider the maximal chain C2
1 =

{x0, . . . , xl = x,xl+1, . . . , xl+m = y, yq+1, . . . , yq+r = z, yq+r+1, . . . , yq+r+s}, as illustrated in Figure 5.

Since C1 and C2 intersect in y ∈ X ′, and C′ preserves the decomposition of maximal chains

intersecting in X ′, we deduce that C2
1 ∈ C

′ as well. Furthermore, (x, z) ∈ (C2
1)

2, and the transitivity

of � implies that x≺ z. Therefore, x�C′ z.

Thus, �C′ is a partial order on X ′, and P ′ = (X ′,�C′) is a poset.

Let C ⊆ X ′ be a maximal chain of P ′ of size at least two. Let us rewrite C = {x1, . . . , xn}

with n≥ 2, where ∀k ∈ J1, n− 1K, xk ≺:C′ xk+1. We show by induction on k ∈ J2, nK that ∃C ′ ∈ C′
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x

y

zC1

C2

C
2

1

Figure 5. Illustration of the transitivity of �C′ . C2
1 is represented by the thick chain.

such that {x1, . . . , xk} ⊆ C ′. If k = 2, then by definition, ∃C ′ ∈ C′ such that {x1, x2} ⊆ C
′. Now,

assume that the result is true for k ∈ J2, n − 1K. Consider C1 ∈ C′ such that {x1, . . . , xk} ⊆ C1.

Since xk ≺C′ xk+1, then ∃C
2 ⊆ C′ such that (xk, xk+1) ∈ (C2)2. Analogously, we can show that C2

1

(illustrated in Figure 5), which is in C′, contains {x1, . . . , xk+1}. Therefore, by induction, we obtain

that ∃C ′ ∈ C′ such that C = {x1, . . . , xn} ⊆C ′. Since C ⊆X ′, then we have C =C ∩X ′ ⊆C ′ ∩X ′.

Now, assume that ∃x′ ∈C ′∩X ′\C. For every k ∈ J1, nK, (xk, x
′)∈ (C ′)2. Therefore, x′ is compa-

rable in P ′ with every element of the chain C. This implies that C ∪ {x′} is a chain in P ′, which

contradicts the maximality of C in P ′. Therefore, C =C ′ ∩X ′. �

Proof of Lemma 4. Let us show that �G is a partial order on E .

– Reflexivity: For every u∈ E , u�G u by definition.

– Antisymmetry: Consider (u, v)∈ E2 such that u�G v and v�G u. If u 6= v, then there exists λ1

and λ2 in Λ such that λ1 traverses u and v in this order, and λ2 traverses v and u in this order.

They can be written as follows: λ1 = {u1, . . . , un, u, un+1, . . . , un+m, v, un+m+1, . . . , un+m+p} and

λ2 = {v1, . . . , vq, v, vq+1, . . . , vq+r, u, vq+r+1, . . . , vq+r+s}. Then, {u,un+1, . . . , un+m, v, vq+1, . . . , vq+r} is

a cycle (see Figure 6), which contradicts G being acyclic. Therefore u= v.

s

1 2

3 4

t

u

v

λ1

λ2

Figure 6. Proof of antisymmetry of �G by contradiction: if u�G v, v�G u, and u 6= v, then one can see that u and

v necessarily belong to a cycle (shown in thick edges), although G is acyclic.

– Transitivity: Consider (u, v,w) ∈ E3, and assume that u�G v and v �G w. If u= v or v = w,

then we trivially obtain that u �G w. Now, let us assume that u 6= v and v 6= w. Then, there

exists λ1 and λ2 in Λ such that λ1 traverses u and v in this order, and λ2 traverses v and w

in this order. They can be written as λ1 = {u1, . . . , un, u, un+1, . . . , un+m, v, un+m+1, . . . , un+m+p}
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and λ2 = {v1, . . . , vq, v, vq+1, . . . , vq+r,w, vq+r+1, . . . , vq+r+s}. Then, λ2
1 =

{u1, . . . , un, u, un+1, . . . , un+m, v, vq+1, . . . , vq+r,w, vq+r+1, . . . , vq+r+s} is an s− t path (see Figure 7),

and traverses u and w in this order. Therefore, u�G w.

s 1 2 3 4 5 6 t
vuλ1

λ2

w
λ

2

1

Figure 7. Proof of transitivity of �G : if u�G v, and v�G w, then one can construct an s− t path λ2
1 (in thick line)

that traverses u and w in this order.

In conclusion, P = (E ,�G) is a poset.

Next, we prove that the set of maximal chains C of P is Λ. First, we show that C ⊆Λ. Consider a

maximal chain C ∈ C of P . If C = {u} is of size 1, then necessarily u= (s, t), because G is connected.

Therefore, C = {u} is an s− t path. Now, assume that |C| ≥ 2. Let us write C = {u1, . . . , un}, where

∀k ∈ J1, n−1K, uk ≺:G uk+1. Since u1 ≺G u2 and u2 ≺G u3, then there exist λ1 and λ2 in Λ such that

λ1 traverses u1 and u2 in this order, and λ2 traverses u2 and u3 in this order. When showing the

transitivity of �G in the proof of Lemma 4, we deduced that there exists λ2
1 ∈Λ that traverses u1,

u2, and u3 in this order. If we repeat this process, we obtain an s− t path λ∈Λ such that C ⊆ λ.

Now, assume that ∃u∈ λ\C. Since C ⊆ λ, and u∈ λ, then we deduce (by definition of �G) that

u is comparable with every element of C. Therefore C ∪{u} is a chain in P , which contradicts the

maximality of C. Therefore C = λ and C ⊆Λ.

To show the reversed inclusion, consider an s− t path λ ∈ Λ. From the definition of �G, λ is a

chain in P . Let us assume that λ is not a maximal chain of P , i.e., there exists a maximal chain

C ∈ C such that λ ( C. Let us write λ = {u1, . . . , un} where ∀k ∈ J1, n− 1K, uk ≺G uk+1, and let

v ∈C\λ. Since λ⊂C and v ∈C, then v is comparable with every element of λ. By transitivity of

�G, if ∃k ∈ J1, nK such that v ≺G uk, then ∀l ∈ Jk,nK, v ≺G ul. Similarly, if ∃k ∈ J1, nK such that

uk ≺G v, then ∀l ∈ J1, kK, ul ≺G v. Therefore, three cases can arise:

– v≺G u1. In this case, ∃λ1 = {w1, . . . ,wn, v,wn+1, . . . ,wn+m, u1,wn+m+1, . . . ,wn+m+p} ∈Λ. How-

ever, since λ is an s− t path, then the start node of u1 is s, which is also the start node of w1.

Therefore, {w1, . . . ,wn, v,wn+1, . . . ,wn+m} is a cycle, which is a contradiction.

– un ≺G v. In this case, ∃λ1 = {v1, . . . , vq, un, vq+1, . . . , vq+r, v, vq+r+1, . . . , vq+r+s} ∈ Λ. Analo-

gously, we deduce that the end nodes of un and vq+r+s are the destination node t, which implies

that {vq+1, . . . , vq+r, v, vq+r+1, . . . , vq+r+s} is a cycle in the acyclic graph G.

– uk ≺G v ≺G uk+1 for k ∈ J1, n − 1K. In this case, there exist two s −

t paths λ1 = {v1, . . . , vq, uk, vq+1, . . . , vq+r, v, vq+r+1, . . . , vq+r+s} ∈ Λ and λ2 =

{w1, . . . ,wn, v,wn+1, . . . ,wn+m, uk+1,wn+m+1, . . . ,wn+m+p} ∈ Λ. One can verify that
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{vq+1, . . . , vq+r, v,wn+1, . . . ,wn+m} is a cycle in G since the start node of vq+1 is the end node of

wn+m. This is in fact the end node of uk, which is also the start node of uk+1 since λ is a path.

This contradicts G being acyclic.

Thus, λ=C, and Λ⊆C. In conclusion, C =Λ. �

Appendix B: Illustration of Algorithm 1. Consider the poset P represented by the Hasse

diagram given in Figure 8.

1 2

3

4 5

Figure 8. Hasse diagram of a poset P .

In this poset P , the set of maximal chains is given by C = {{1,3,4},{2,3,5},{1,3,5},{2,3,4}}. We

assume that the values assigned to each maximal chain are π134 = π135 = 0.8 and π234 = π235 = 0.6,

and the values assigned to each element are ρ1 = 0.4, ρ2 = 0.3, ρ3 = 0.5, ρ4 = 0.5, ρ5 =0.7.

First, we can see that ∀C ∈ C,
∑

x∈C
ρx ≥ πC , and π134+π235 = π135+π234. Therefore, conditions

(2) and (3) are satisfied, and we can run Algorithm 1 to optimally solve (Q) (and construct a

feasible solution of (D)). Figure 9a (resp. Figure 9b), illustrates each iteration of the algorithm

using the poset P (resp. the posets P k, for k ∈ J1, n∗K).

• k= 1 : X1 =X = J1,5K, C1 = C, ρ1x = ρx, ∀x ∈X. Note that δ134 = 0.6, δ235 = 0.9, δ135 = 0.8,

and δ234 = 0.7. Since ∀C ∈ C, δ1C = δC > 0, then C
1
= ∅, and Ĉ1 = C. Therefore, each pair of elements

in P 1 = (X1,�
C
1) is incomparable, and S1 = {1,2,3,4,5}. Then one can check that minx∈S1 ρ1x =0.3

and min{C∈Ĉ1 | |S1∩C|≥2}
δ1C

|S1∩C|−1
=0.3. Therefore, σS1 =w1 = 0.3= ρ12 =

δ1134
|S1∩{1,3,4}|−1

.

Next, the values are updated as follows: ρ21 = 0.1, ρ22 = 0, ρ23 = 0.2, ρ24 = 0.2, ρ25 = 0.4, and

δ2134 =0, δ2235 = 0.3, δ2135 = 0.2, δ2234 = 0.1. Since each maximal chain’s minimal element is in S1, then

C2 = C. We conclude the first iteration of the algorithm by letting X2 = {1,3,4,5}, C
2
= {{1,3,4}},

and Ĉ2 = {{2,3,5},{1,3,5},{2,3,4}}.

• k= 2 : The set of minimal elements of the new poset P 2 = (X2,�
C
2) is given by S2 = {1,5}

(see Figure 9b). Furthermore, minx∈S2 ρ2x = 0.1 and min{C∈Ĉ2 | |S2∩C|≥2}
δ2C

|S2∩C|−1
= 0.2, which imply

that σS2 = w2 = 0.1 = ρ21. Then, the values are updated as follows: ρ31 = 0, ρ32 = 0, ρ33 = 0.2, ρ34 =

0.2, ρ35 = 0.3, and δ3134 =0, δ3235 = 0.3, δ3135 =0.1, δ3234 = 0.1.

Now, one can see that the minimal element of {2,3,5}∩X2 and {2,3,4}∩X2 in P is 3, which does

not belong to S2. Therefore, C3 = {{1,3,4},{1,3,5}}. The new sets are then given by X3 = {3,4,5},

C
3
= {{1,3,4}}, and Ĉ3 = {{1,3,5}}.
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• k= 3 : The set of minimal elements of P 3 = (X3,�
C
3) is given by S3 = {3,5} (see Figure 9b).

Since minx∈S3 ρ3x = 0.2, and min{C∈Ĉ3 | |S3∩C|≥2}
δ3C

|S3∩C|−1
= 0.1, then σS3 = w3 = 0.1 =

δ3135
|S3∩{1,3,5}|−1

.

The values are updated as follows: ρ41 = 0, ρ42 = 0, ρ43 =0.1, ρ44 = 0.2, ρ45 =0.2, and δ4134 = 0, δ4235 =

0.2, δ4135 = 0, δ4234 = 0.1. Then, X4 = {3,4,5}, C4 = C3, C
4
= {{1,3,4},{1,3,5}}, and Ĉ4 = ∅.

• k= 4 : The set of minimal elements of P 4 = (X4,�
C
4) is S4 = {3} (see Figure 9b). Then,

σS4 =w4 =minx∈S4 ρ4x = ρ43 = 0.1, and the new values are: ρ51 = 0, ρ52 =0, ρ53 = 0, ρ54 = 0.2, ρ55 = 0.2,

and δ5C = δ4C , ∀C ∈ C. The new sets are X5 = {4,5}, C5 = C4, C
5
= {{1,3,4},{1,3,5}}, and Ĉ5 = ∅.

• k= 5 : The set of minimal elements of P 5 = (X5,�
C
5) is given by S5 = {4,5} (Figure 9b),

and the weight associated with it is σS5 = w5 = ρ54 = ρ55 = 0.2. The updated values are given by:

ρ6x =0, ∀x∈X, and δ6C = δ5C , ∀C ∈ C.

Since X6 = ∅, the algorithm terminates, and outputs σ. One can check that σ satisfies constraints

(5) and (6), and has a total weight
∑

S∈P σS of 0.8 = max{max{ρx, x ∈ X},max{πC , C ∈ C}}.

Therefore, from Theorem 2, σ is an optimal solution of (Q). Since 0.8≤ 1, then σ̂ ∈R|P|
+ given by

σ̂S = σS, ∀S ∈P\∅, and σ̂∅ = 0.2, is a feasible solution of (D).
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0.0 0.0

0.0

0.2 0.2

σS1 = 0.3 σS2 = 0.1 σS3 = 0.1 σS4 = 0.1 σS5 = 0.2

(a) Poset P at the beginning of each iteration of the algorithm. The solid nodes are in Xk, the dashed nodes

are in X\Xk, and the blue nodes are in Sk. An edge is solid if there exists a maximal chain in C
k
that contains

both end nodes of the edge. The values ρkx are given next to each element.

1 2 3 4 5 1

3

4

5 3

4

5 3

4 5

4 5

0.4 0.3 0.5 0.5 0.7 0.1

0.2

0.2

0.4 0.2

0.2

0.3 0.1

0.2 0.2

0.2 0.2

P 1 P 2 P 3 P 4 P 5

σS1 = 0.3 σS2 = 0.1 σS3 = 0.1 σS4 = 0.1 σS5 = 0.2

(b) P k, for k ∈ J1,5K. The values ρkx are given next to each element. Sk is given by the blue nodes.

Figure 9. Illustration of Algorithm 1 for the poset P given in Figure 8.
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Appendix C: Minimum cost circulation problem. Primal and dual linear formulations

of (M) of polynomial size are given as follows:

(M′
P ) maximize

∑

{i∈V | (i,t)∈E}

fit−
∑

(i,j)∈E

bij
p1

fij

subject to
∑

{j∈V | (j,i)∈E}

fji =
∑

{j∈V | (i,j)∈E}

fij, ∀i∈ V\{s, t}

0≤ fij ≤ cij, ∀(i, j)∈ E

0≤ fij ≤
dij

p2
, ∀(i, j)∈ E .

(M′
D) minimize

∑

(i,j)∈E

cijρij +
dij

p2
µij

subject to yi− yj + ρij +µij ≥−
bij
p1

, ∀(i, j)∈ E | i 6= s and j 6= t

−yj + ρsj +µsj ≥−
bsj
p1

, ∀j ∈ V | (s, j)∈ E

yi+ ρit +µit ≥ 1−
bit
p1

, ∀i∈ V | (i, t)∈ E

ρij ≥ 0, ∀(i, j)∈ E

µij ≥ 0, ∀(i, j)∈ E .

Let z∗(M′) denote the optimal value of (M′
P ) and (M′

D). We show the following result:

Lemma 5. Any s − t path decomposition of any optimal solution f ′ of (M′
P ) is an optimal

solution of (MP ). Furthermore, given any optimal solution (ρ′, µ′, y′) of (M′
D), (ρ

′, µ′) is an optimal

solution of (MD).

Proof of Lemma 5. Let f ∗ ∈ R
|Λ|
+ be an optimal solution of (MP ). Then, f ′ ∈ R

|E|
+ defined

by f ′
ij =

∑
{λ∈Λ | (i,j)∈λ} f

∗
λ is a feasible solution of (M′

P ). Therefore, z∗
(M′)

≥
∑

{i∈V | (i,t)∈E} f
′
it −

∑
(i,j)∈E

bij

p1
f ′
ij =

∑
λ∈Λ π

0
λf

∗
λ = z∗(M). Now, let f

′ ∈R|E|
+ be an optimal solution of (M′

P ). From the flow

decomposition theorem, there exists a vector f ∗ ∈R|Λ|
+ such that ∀(i, j)∈ E , f ′

ij =
∑

{λ∈Λ | (i,j)∈λ} f
∗
λ .

Since f ∗ is a feasible solution of (MP ), we deduce that z∗(M) ≥ z∗
(M′)

. In conclusion, z∗(M) = z∗
(M′)

,

and an optimal solution of (MP ) can be obtained by decomposing an optimal solution of (M′
P )

into s− t paths.

Now, consider an optimal solution (ρ′, µ′, y′) of (M′
D). Then, one can verify that for every s− t

path λ∈Λ,
∑

(i,j)∈λ
(ρ′ij +µ′

ij)≥ 1− 1
p1

∑
(i,j)∈λ

bij = π0
λ (the y′ cancel in a telescopic manner along

each s − t path). Therefore, (ρ′, µ′) is a feasible solution of (MD). Since z∗
(M′)

= z∗(M), we can

conclude that (ρ′, µ′) is an optimal solution of (MD). �
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