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High Dimensional Linear Regression
(HDLR)

Recovering unknown coefficients β∗ from few noisy observations
and large number of features arises in a broad variety of contexts
including

• pricing of a product in the digital economy (econometrics)
•GPS modeling and signal denoising (telecommunications)
•MRI analysis (compressive sensing)
•Generative Models and GANs (neural networks)

The Model
Setup: Let β∗ ∈ Rp. For X ∈ Rn×p and W ∈ Rn we get n noisy
linear samples of β∗, Y ∈ Rn, given by, Y := Xβ∗ +W.
Goal: Given data (Y,X) with Y := Xβ∗ +W
recover β∗ with n� p and p→ +∞.

Regularity Assumptions and a Challenge
To achieve n� p we need structural assumption on β∗.
• Sparsity! k ≤ p non zero coordinates.

Vast literature.
For X with iid N(0, 1) entries and W with iid N(0, σ2) entries
(σ2� k) we need k log

(p
k

)
samples (Compressed Sensing)

Issue: k log
(p
k

)
can still be too large for applications.

•Other assumptions:
Block-sparsity [Baron et al’,05], Tree-Sparsity [He et al ’09]
Ouput of a Generative Model [Bora et al ’17]
Similar issue: can achieve some n < p but not always small.

This Work
New efficient algorithm for recovering β∗ from (Y,X)
under a new regularity assumption
(Q-rationality assumption)
based on a connection with lattice-based algorithms.

Guarantees: works for any n (even n = 1) given suffi-
ciently small noise!

The Q-Rationality Assumption
Every entry of β∗ is a rational number with fixed denominator Q.
Alternatively: For Q = 2M , logQ = M bits after zero position per
entry.

Why Q-rational?

• Large Q: Large but finite domain for the coefficients.

• Small Q: Standard in wireless communication.
Example: Linear models for GPS ([Boyd, Hassibi ’98]),
Physics laws imply integer coordinates [Q = 1].

Under Q-rationality, One Sample Suffices
Lemma 1 Assume X with iid N(0, 1) entries and W with iid
N(0, σ2) entries. Given one sample n = 1 and small σ we can
recover exactly the Q-rational β∗.

Intuition for σ = 0: Each row of X, X1, has iid N(0, 1) entries and
therefore linearly independent entries over rationals.
Hence, from (Y1 = 〈X1, β

∗〉 , X1) we can recover β∗.

Previous Computational Results
Sample size needs to grow!

•Convex Relaxations For β∗ ∈ {−1, 1}p (Q = 1), σ = 0 consider
min ‖β‖∞, s.t. Y = Xβ.
Works if and only if n > p/2, i.e. needs linear samples
([Chandrasekaran et al ’10], [Amelunxen et al ’13])
• Statistical-Physics-based algorithm (AMP) [Donoho et al’ ’11]

works for some n = o(p) and any Q but
– we only know n = o(p) (could be any sublinear quantity) and
– needs delicate choice of X (not iid!)

Main Results
Theorem 1 (Efficient Recovery with n = 1) Let n samples, n �
p, and 0 ≤ σ ≤ exp

(
−pmax{p,logQ}

n

)
.

There exists a polynomial-in- n, p, logQ time algorithm which with
input (Y,X) ouputs exactly β∗ w.h.p. as p→ +∞.

• The theorem works with any X with iid well-behaved contin-
uous entries (or uniform iid integer in a large domain) and any
W with ‖W‖∞ ≤ σ!

Theorem 2 Let n samples, n� p, and σ > exp
(
−p logQn

)
.

Then if X has iid N(0, 1) entries and W iid N(0, σ2) entries, its
impossible to w.h.p. recover correctly any Q-rational β∗ with any
algorithm with only access to (Y,X).

• If logQ > p: our algorithm has optimal noise-tolerance!

Shortest Vector Problem (SVP)
For a lattice L (integer linear combinations of some vectors

b1, . . . , bm ∈ Zp) the goal is to solve: minx∈L\{0} ‖x‖2

Well-studied in Integer Programming and Cryptography.

The LLL Algorithm for SVP
Lattice Basis Reduction!

SVP is NP-Hard but Lenstra-Lenstra-Lovasz (LLL), algorithm
efficiently approximates it; finds x̂ ∈ L \ {0} with

‖x̂‖2 ≤ 2
p
2 min
x∈L\{0}

‖x‖2.

Time poly in p, log maxi{‖bi‖∞}.

Using LLL for HDLR (General Scheme)
Step 1: Create a lattice L = L(Y,X) such that
“approximately” shortest vectors of L ↔ multiples of β∗
Step 2: Use LLL and recover a multiple of β∗.

Step 3: Recover β∗ from a multiple (needs special structure!)
Note: Step 1 is Inspired by the use of LLL in cryptography

([Lagarias, Odlyzko ’83], [Frieze ’86])

The Algorithm: Special Case

• n = 1, σ = 0, β∗ binary, Y1 = 〈X1, β
∗〉.

•X1 ∈ Zp with iid uniform in [2N ] entries for large N

Step 1: For M sufficiently large enough set LM (Y1, X1) produced
by the columns of

AM :=

[
MX1 −MY1
Ip×p 0

]
Lemma: Each z ∈ LM , ‖z‖2 < M is a multiple of

[
0
β∗

]
, w.h.p.

Intuition:

z = AM

[
β
λ

]
=

[
M 〈X1, β〉 −MλY1

β

]
=

[
M 〈X1, β − λβ∗〉

β

]
,

Either |z1| ≥M ⇒ ‖z‖2 ≥M or
z1 = 0⇒ 〈X1, β − λβ∗〉 = 0, low probability with β 6= λβ∗!

Step 2: Choose M appropriately so that LLL outputs a multiple of
β∗.
•Choose M = d2

p
2
√
pe + 1.

•We know AM

[
β∗

1

]
=

[
0
β∗

]
∈ L.

• LLL outputs x̂ with norm at most 2
p
2‖

[
0
β∗

]
‖2 ≤ 2

p
2
√
p < M .

•Using the lemma we are done!

Step 3: Rescale to get β∗.

Special Case→ General Case

(1) One sample n = 1→ many samples n > 1.
(Way: Redesign the Lattice)

(2) Noiseless σ = 0→ noisy σ > 0.
(Way: Redesign the Lattice)

(3) Integer Y,X → real Y,X.
(Way: Truncate first bits and Rescale the data (Y,X))

(4) Binary coefficients β∗→ Q-rational β∗.
(Way: Translate and Rescale the samples Y )

(Preliminary) Experiments
(joint work with Patricio Foncea and Andrew Zheng)

Integer Data
Assume X iid uniform in [2N ], β∗ iid uniform in [100] and no noise.

Success is exact recovery.
Plot: Avg Success/ Running Time against input size N .

Figure 5: (20 instances per dot) p = 30, n = 1, 10, 30, α ∼ 1/N .

Real-valued Data
Assume X iid U(0, 1), W iid U(−σ, σ) and β∗ iid uniform in [100].

Success is exact recovery.
Plot: Avg Success against noise level σ and truncation level.

Figure 6: (20 instances per dot) p = 30 and n = 10.

Conclusion
•High dimensional linear regression with rational co-

efficients can be efficiently solved with one sam-
ple n = 1, under small noise!
•New algorithm for high dimensional linear regression

using lattice based methods (LLL algorithm).
•The algorithm has guarantees for large p, but also

works well for small p.

Open Questions
•Can lattice-based methods also be used for non-

linear inference problems?
Example: Phase-Retrieval where Yi = | 〈Xi, β

∗〉 |
(many applications in Crystallography and MRI).
•Can we tolerare higher noise levels for smaller Q?


