High Dimensional Linear Regression using Lattice Basis Reduction Ilias Zadik, joint work with David Gamarnik

Operations Research Center, Massachussets Insititute of Technology (MIT)

High Dimensional Linear Regression (HDLR)
Recovering unknown coefficients β^{*} from few noisy observations Recovering large number of features arises in a broad variety of contexts including

- pricing of a product in the digital economy (econometrics) - GPS modeling and signal denoising (telecommunications)
- MRI analysis (compressive sensing)
- Generative Models and GANs (neural networks)

The Model

Setup: Let $\beta^{*} \in \mathbb{R}^{p}$. For $X \in \mathbb{R}^{n \times p}$ and $W \in \mathbb{R}^{n}$ we get n noisy inear samples of $\beta^{*}, Y \in \mathbb{R}^{n}$, given by, $Y:=X \beta^{*}+W$. Goal: Given data (Y, X) with $Y:=X \beta^{*}+W$ recover β^{*} with $n \ll p$ and $p \rightarrow+\infty$.
Regularity Assumptions and a Challenge
To achieve $n \ll p$ we need structural assumption on β.

- Sparsity! $k \leq p$ non zero coordinates.

Vast literature.
For X with iid $N(0,1)$ entries and W with iid $N\left(0, \sigma^{2}\right)$ entries $\left(\sigma^{2} \ll k\right)$ we need $k \log \left(\frac{p}{k}\right)$ samples (Compressed Sensing) Issue: $k \log \left(\frac{p}{k}\right)$ can still be too large for applications.

- Other assumptions:

Block-sparsity [Baron et al',05], Tree-Sparsity [He et al '09] Ouput of a Generative Model [Bora et al '17]
Similar issue: can achieve some $n<p$ but not always small.

This Work

New efficient algorithm for recovering β^{*} from (Y, X) under a new regularity assumption
(Q-rationality assumption)
based on a connection with lattice-based algorithms

Guarantees: works for any n (even $n=1$) given sufficiently small noise!

The Q-Rationality Assumption

Every entry of β^{*} is a rational number with fixed denominator Q. Alternatively: For $Q=2^{M}, \log Q=M$ bits after zero position pe entry.

Why Q-rational?

- Large Q : Large but finite domain for the coefficients.
- Small Q: Standard in wireless communication.

Example: Linear models for GPS ([Boyd, Hassibi '98]) Physics laws imply integer coordinates $[Q=1]$.

(2) ${ }^{2}$

Under Q-rationality, One Sample Suffices Lemma 1 Assume X with iid $N(0,1)$ entries and W with iid $N\left(0, \sigma^{2}\right)$ entries. Given one sample $n=1$ and small σ we can recover exactly the Q-rational β^{*}
ntuition for $\sigma=0$: Each row of X, X_{1}, has iid $N(0,1)$ entries and therefore linearly independent entries over rationals.
Hence, from ($Y_{1}=\left\langle X_{1}, \beta^{*}\right\rangle, X_{1}$) we can recover β^{*}.

Previous Computational Results

Sample size needs to grow

- Convex Relaxations For $\beta^{*} \in\{-1,1\}^{p}(Q=1), \sigma=0$ consider $\min \|\beta\|_{\infty}$, s.t. $Y=X \beta$.
Works if and only if $n>p / 2$, i.e. needs linear sample ([Chandrasekaran et al '10], [Amelunxen et al '13])
Statistical-Physics-based algorithm (AMP) [Donoho et al' '11] for some $n=o(p)$ and any Q but
we only know $n=o(p)$ (could be any sublinear quantity) and needs delicate choice of X (not iid!)

Main Results

Theorem 1 (Efficient Recovery with $n=1$) Let n samples, $n \ll$ p, and $0 \leq \sigma \leq \exp \left(-\frac{p \max \{p, \log Q\}}{n}\right)$.
There exists a polynomial in $)$, Q, input (Y, X) ouputs exactly β^{*} w.h.p. as $p \rightarrow+\infty$

- The theorem works with any X with iid well-behaved contin uous entries (or uniform iid integer in a large domain) and any W with $\|W\|_{\infty} \leq \sigma$!
Theorem 2 Let n samples, $n \ll p$, and $\sigma>\exp \left(-\frac{p \log Q}{n}\right)$
Then if X has iid $N(0,1)$ entries and W iid $N\left(0, \sigma^{2}\right)$ entries, its impossible to w.h.p. recover correctly any Q-rational β^{*} with any algorithm with only access to (Y, X).
- If $\log Q>p$: our algorithm has optimal noise-tolerance!

Shortest Vector Problem (SVP)

For a lattice \mathcal{L} (integer linear combinations of some vectors
$b_{1}, \ldots, b_{m} \in \mathbb{Z}^{p}$) the goal is to solve: $\min _{r \in \mathcal{L} \backslash\{ \}}\|x\|_{2}$

Well-studied in Integer Programming and Cryptography

The LLL Algorithm for SVP
Lattice Basis Reduction!
SVP is NP-Hard but Lenstra-Lenstra-Lovasz (LLL), algorithm efficiently approximates it; finds $\hat{x} \in \mathcal{L} \backslash\{0\}$ with

$$
\|\hat{x}\|_{2} \leq 2^{\frac{p}{2}} \min _{x \in \mathcal{L} \backslash\{0\}}\|x\|_{2} .
$$

$$
\text { Time poly in } p, \log \max _{i}\left\{\left\|b_{i}\right\|_{\infty}\right\} \text {. }
$$

Using LLL for HDLR (General Scheme)

Step 1: Create a lattice $\mathcal{L}=\mathcal{L}(Y, X)$ such tha Step 2. Us L liple of β^{*}.
Step 3: Recover β^{*} from a multiple (needs special structure!)
Note: Step 1 is Inspired by the use of LLL in cryptography
([Lagarias, Odlyzko '83], [Frieze '86])

The Algorithm: Special Case

- $n=1, \sigma=0, \beta^{*}$ binary, $Y_{1}=\left\langle X_{1}, \beta^{*}\right\rangle^{\prime}$
- $X_{1} \in \mathbb{Z}^{p}$ with iid uniform in $\left[2^{N}\right]$ entries for large N

Step 1: For M sufficiently large enough set $\mathcal{L}_{M}\left(Y_{1}, X_{1}\right)$ produced by the columns of

$$
A_{M}:=\left[\begin{array}{cc}
M X_{1} & -M Y_{1} \\
I_{p \times p} & 0
\end{array}\right]
$$

Lemma: Each $z \in \mathcal{L}_{M},\|z\|_{2}<M$ is a multiple of $\left[\begin{array}{c}0 \\ \beta^{*}\end{array}\right]$, w.h.p. Intuition
$z=A_{M}\left[\begin{array}{l}\beta \\ \lambda\end{array}\right]=\left[\begin{array}{c}M\left\langle X_{1}, \beta\right\rangle-M \lambda Y_{1} \\ \beta\end{array}\right]=\left[\begin{array}{c}M\left\langle X_{1}, \beta-\lambda \beta^{*}\right\rangle \\ \beta\end{array}\right]$,
Either $\left|z_{1}\right| \geq M \Rightarrow\|z\|_{2} \geq M$ or
$z_{1}=0 \Rightarrow\left\langle X_{1}, \beta-\lambda \beta^{*}\right\rangle=0$, low probability with $\beta \neq \lambda \beta^{*}$! Step 2: Choose M appropriately so that LLL outputs a multiple of β^{*}.

- Choose $M=\left\lceil 2^{\frac{p}{2}} \sqrt{p}\right\rceil+1$.
- We know $A_{M}\left[\begin{array}{c}\beta^{*} \\ 1\end{array}\right]=\left[\begin{array}{c}0 \\ \beta^{*}\end{array}\right] \in \mathcal{L}$.
- LLL outputs \hat{x} with norm at most $2^{\frac{p}{2}}\left\|\left[\begin{array}{c}0 \\ \beta^{*}\end{array}\right]\right\|_{2} \leq 2^{\frac{p}{2}} \sqrt{p}<M$.
- Using the lemma we are done!

Step 3: Rescale to get β^{*}.

Special Case \rightarrow General Case

1) One sample $n=1 \rightarrow$ many samples $n>1$. Way: Redesign the Lattice)
(2) Noiseless $\sigma=0 \rightarrow$ noisy $\sigma>0$
(Way. Redesign the Latice)
2) Integer $Y, X \rightarrow$ real Y, X
(Way: Truncate first bits and Rescale the data (Y, X))
(4) Binary coefficients $\beta^{*} \rightarrow Q$-rational β^{*}.
(Way: Translate and Rescale the samples Y)
(Preliminary) Experiments
(joint work with Patricio Foncea and Andrew Zheng) Integer Data
Assume X iid uniform in $\left[2^{N}\right], \beta^{*}$ iid uniform in $[100]$ and no noise iccess is exact recovery.

$$
\text { Plot: Avg Success/ Running Time against input size } N \text {. }
$$

Figure 5: (20 instances per dot) $p=30, n=1,10,30, \alpha \sim 1 / N$

Assume X iid $U(0,1), W$ Reai-valued $U(-\sigma, \sigma)$ and β^{*} iid uniform in [100].
Plot: Avg Success against noise level σ and truncation leve.

Figure 6: (20 instances per dot) $p=30$ and $n=10$.

Conclusion

- High dimensional linear regression with rational co efficients can be efficiently solved with one sam ple $n=1$, under small noise!
- New algorithm for high dimensional linear regression using lattice based methods (LLL algorithm).
- The algorithm has guarantees for large p, but also works well for small p.

Open Questions

- Can lattice-based methods also be used for nonlinear inference problems?
Example: Phase-Retrieval where $Y_{i}=\left|\left\langle X_{i}, \beta^{*}\right\rangle\right|$
(many applications in Crystallography and MRI)
- Can we tolerare higher noise levels for smaller Q ?

