High Dimensional Linear Regression (HDLR)

Recovering unknown coefficients \(\beta \) from few noisy observations and large number of features arises in a broad variety of contexts including:

- pricing of a product in the digital economy (econometrics)
- GPS modeling and signal denoising (telecommunications)
- MRI analysis (compressive sensing)
- Generative Models and GANs (neural networks)

The Model

Setup: Let \(\beta \in \mathbb{R}^d \). For \(X \in \mathbb{R}^{m \times p} \) and \(W \in \mathbb{R}^{m \times n} \) we get \(n \) noisy linear samples of \(\beta, Y \in \mathbb{R}^n \), given by \(Y = X \beta + W \).

Goal: Given data \((Y, X)\) with \(Y = X \beta + W \) recover \(\beta \).

Regularity Assumptions and a Challenge

To achieve \(\beta \), we need structural assumptions on \(\beta \).

- Sparsity! \(k \leq \eta \) non zero coordinates.
- Vast literature.
- For \(X \) with iid \(N(0,1) \) entries and \(W \in \mathbb{R}^{m \times n} \) entries \(\left< x, \beta \right> \) we need \(k \log \left(\frac{p}{\eta} \right) \) samples (Compressed Sensing).
- Other assumptions: Block-sparsity [Baron et al. 05], Tree-sparsity [He et al. 09]

Output of a Generative Model [Bora et al. 17]

Similar issue: can achieve some \(\eta \) but not always small.

This Work

New efficient algorithm for recovering \(\beta \) from \((Y, X)\) under a new regularity assumption (\(\eta \)-rationality assumption)

based on a connection with lattice-based algorithms.

Guarantees: works for any \(n \) (even \(n = 1 \)!) given sufficiently small noise!

The \(\eta \)-Rationality Assumption

Every entry of \(\beta \) is a rational number with denominator \(\eta \).

Alternatively: For \(\beta = [\beta_1, \ldots, \beta_d] \), the goal is to solve: \(\min_{\lambda \in \mathbb{Z}^d} \left< \lambda, \beta \right> \).

Well-studied in Integer Programming and Cryptography.

Why \(\eta \)-rational?

- Large \(Q \): large but finite domain for the coefficients.
- Small \(Q \): standard in wireless communication.

Example: Linear models for GPS [Broid, Hassibi ‘98].

Physics laws imply integer coordinates \(\left< \lambda, \beta \right> \leq 1 \).

Previous Computational Results

Sample size needs to grow!

- Convex Relaxations for \(\beta \in \{-1,1\}^p \). \(\alpha = 0 \) consider \(\min \left< \beta, x \right> \text{ s.t. } Y = X \beta \).

Works if and only if \(n > p/2 \).\(i.e. \) needs linear samples [Chandrasekaran et al. 10], [Amelunxen et al. 13].

- Statistical-Physics based algorithm (AMP) [Donoho et al. ‘11] works for some \(\alpha > 0 \) and any \(\beta \), but we only know \(\alpha = 0 \) (could be any sublinear quantity) and needs delicate choice of \(\lambda \) (not ideal).

Main Results

Theorem 1 (Efficient Recovery with \(\eta \)-rationality assumption)

Let \(\beta \) samples, \(\eta < p \), and \(\sigma \leq \frac{\sqrt{p} \eta}{\sqrt{\log p}} \).

There exists a polynomial-in-\(n, p, \log Q \) time algorithm which with \((Y, X) \) outputs \(\beta \) w.h.p. as \(p \to \infty \).

- The algorithm works with any \(X \) with iid well-behaved continuous entries (or uniform iid integer in a large domain) and any \(W \) with \(\|W\|_\infty \leq \sigma \).

Theorem 2 (Efficient \(\eta \)-rational recovery)

Let \(\eta \) samples, \(\eta < p \), and \(\sigma > \frac{\eta}{\sqrt{\log p}} \).

Then if \(X \) has iid \(N(0,1) \) entries and \(W \) iid \(N(0, \sigma^2) \), its impossible to w.h.p. recover correctly any \(\eta \)-rational \(\beta \).

- If \(\log Q > p \); our algorithm has optimal noise-tolerance!

Shortest Vector Problem (SVP)

For a lattice \(\mathcal{L} \) (integer linear combinations of some vectors \(b_1, \ldots, b_d \)) the goal is to solve: \(\min_{x \in \mathcal{L}} \|x\|_2 \).

Well-studied in Integer Programming and Cryptography.

The LLL Algorithm for SVP

Lattice Basis Reduction

SVP is NP-Hard but Lenstra-Lenstra-Lovasz (LLL) algorithm efficiently approximates \(\beta \); finds \(x \in \mathcal{L} \) with \(\|x\|_2 \leq \sqrt{d} \min_{x \in \mathcal{L}} \|x\|_2 \). \(\|x\|_2 \) Time poly in \(p, \log m, \|h\|_1 \).

Using LLL for HDLR (General Scheme)

Step 1: Create a lattice \(\mathcal{L} = \langle Y, X \rangle \) such that approximately ‘shortest vectors of \(\mathcal{L} \) are multiples of \(\beta \).

Step 2: Use LLL and recover a multiple of \(\beta \).

Step 2: Recover \(\beta \) from a multiple (needs special structure!)

Note: Step 1 is inspired by the use of LLL in cryptography (Lagarias, Odlyzko ‘88; [Frieze ‘96]).

Preliminary Experiments

Integer Data

Assume \(X \) iid uniform in \([0,1]^p \), \(\beta \) iid uniform in \([0,1]^n \) and \(n \) noise.

Preliminary Success. Running time against input size \(n \).

Real-valued Data

Assume \(X \) iid \(U(0,1) \), \(W \) iid \((\sigma e_i, -\sigma e_i) \) and \(\beta \) iid uniform in \([0,1]^n \).

Success is exact recovery.

Plot: Avg Success against noise level \(\sigma \) and truncation level.

Figure 5: \(20 \) instances per dot \(p = 30, n = 1, 10, 30, \alpha = 1/10 \).

Conclusion

- High dimensional linear regression with rational coefficients can be efficiently solved with one sample \(n = 1 \), under small noise!
- New algorithm for high dimensional linear regression using lattice based methods (LLL algorithm).
- The algorithm has guarantees for large \(p \), but also works well for small \(p \).

Open Questions

- Can lattice-based methods also be used for non-linear inference problems?

Example: Phase-Retrieval where \(\beta = \{X_i, \beta_i\} \) (many applications in Crystallography and MRI).

- Can we tolerate higher noise levels for smaller \(Q \)?