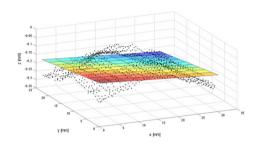


High Dimensional Linear Regression (HDLR)

Recovering unknown coefficients β^* from few noisy observations and large number of features arises in a broad variety of contexts including

- pricing of a product in the digital economy (econometrics)
- GPS modeling and signal denoising (telecommunications)
- MRI analysis (compressive sensing)
- Generative Models and GANs (neural networks)



The Model

Setup: Let $\beta^* \in \mathbb{R}^p$. For $X \in \mathbb{R}^{n \times p}$ and $W \in \mathbb{R}^n$ we get n noisy linear samples of β^* , $Y \in \mathbb{R}^n$, given by, $Y := X\beta^* + W$. **Goal:** Given data (Y, X) with $Y := X\beta^* + W$ recover β^* with $n \ll p$ and $p \to +\infty$.

Regularity Assumptions and a Challenge

To achieve $n \ll p$ we need structural assumption on β^* .

• Sparsity! $k \le p$ non zero coordinates.

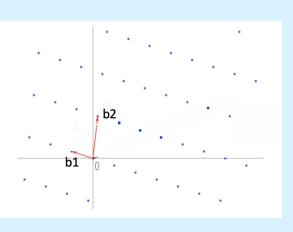
Vast literature. For X with iid N(0,1) entries and W with iid $N(0,\sigma^2)$ entries $(\sigma^2 \ll k)$ we need $k \log \left(\frac{p}{k}\right)$ samples (Compressed Sensing) **Issue:** $k \log \left(\frac{p}{k}\right)$ can still be **too large** for applications.

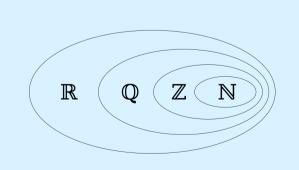
• Other assumptions: Block-sparsity [Baron et al',05], Tree-Sparsity [He et al '09] Ouput of a Generative Model [Bora et al '17] Similar issue: can achieve some n < p but not always small.

This Work

New efficient algorithm for recovering β^* from (Y, X)under a new regularity assumption (**Q**-rationality assumption)

based on a connection with lattice-based algorithms.





Guarantees: works for any n (even n = 1) given sufficiently small noise!

The *Q***-Rationality Assumption**

Every entry of β^* is a **rational number** with fixed denominator Q. Alternatively: For $Q = 2^M$, $\log Q = M$ bits after zero position per entry.

High Dimensional Linear Regression using Lattice Basis Reduction

Ilias Zadik, joint work with David Gamarnik

Operations Research Center, Massachussets Insititute of Technology (MIT)

Why Q-rational?

- Large Q: Large but finite domain for the coefficients.
- Small Q: Standard in wireless communication. *Example:* Linear models for GPS ([Boyd, Hassibi '98]), **Physics laws** imply integer coordinates [Q = 1].

Under *Q*-rationality, One Sample Suffices

Lemma 1 Assume X with iid N(0,1) entries and W with iid $N(0,\sigma^2)$ entries. Given one sample n=1 and small σ we can recover **exactly** the Q-rational β^* .

Intuition for $\sigma = 0$: Each row of X, X₁, has iid N(0, 1) entries and therefore linearly independent entries over rationals. Hence, from $(Y_1 = \langle X_1, \beta^* \rangle, X_1)$ we can recover β^* .

Previous Computational Results

Sample size needs to grow!

• Convex Relaxations For $\beta^* \in \{-1, 1\}^p$ (Q = 1), $\sigma = 0$ consider $\min \|\beta\|_{\infty}, \text{ s.t. } Y = X\beta.$ Works if and only if n > p/2, i.e. needs **linear samples**

([Chandrasekaran et al '10], [Amelunxen et al '13])

- Statistical-Physics-based algorithm (AMP) [Donoho et al' '11] works for some n = o(p) and any Q but
- we only know n = o(p) (could be any sublinear quantity) and – needs delicate choice of X (not iid!)

Main Results

Theorem 1 (Efficient Recovery with n = 1) Let n samples, $n \ll 1$ p, and $0 \leq \sigma \leq \exp\left(-\frac{p\max\{p,\log Q\}}{n}\right)$.

There exists a **polynomial-in-** $n, p, \log Q$ time algorithm which with input (Y, X) ouputs exactly β^* w.h.p. as $p \to +\infty$.

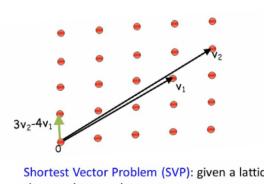
• The theorem works with any X with iid well-behaved contin**uous** entries (or uniform iid integer in a large domain) and any W with $||W||_{\infty} \leq \sigma!$

Theorem 2 Let n samples, $n \ll p$, and $\sigma > \exp\left(-\frac{p \log Q}{n}\right)$. Then if X has iid N(0,1) entries and W iid $N(0,\sigma^2)$ entries, its impossible to w.h.p. recover correctly any Q-rational β^* with **any** algorithm with only access to (Y, X).

• If $\log Q > p$: our algorithm has **optimal noise-tolerance**!

Shortest Vector Problem (SVP)

For a lattice \mathcal{L} (integer linear combinations of some vectors $b_1, \ldots, b_m \in \mathbb{Z}^p$) the goal is to solve: $\min_{x \in \mathcal{L} \setminus \{0\}} \|x\|_2$



Well-studied in Integer Programming and Cryptography.

Using LLL for HDLR (General Scheme)

Step 1: Create a lattice $\mathcal{L} = \mathcal{L}(Y, X)$ such that "approximately" shortest vectors of $\mathcal{L} \leftrightarrow$ multiples of β^* Step 2: Use LLL and recover a multiple of β^* . Step 3: Recover β^* from a multiple (needs special structure!) **Note:** Step 1 is Inspired by the use of LLL in cryptography ([Lagarias, Odlyzko '83], [Frieze '86])

• $X_1 \in \mathbb{Z}^p$ with iid **uniform in** $[2^N]$ entries for large N Step 1: For M sufficiently large enough set $\mathcal{L}_M(Y_1, X_1)$ produced by the columns of

Intuition:

z =

- Choc
- We k

The LLL Algorithm for SVP

Lattice Basis Reduction! SVP is NP-Hard but Lenstra-Lenstra-Lovasz (LLL), algorithm efficiently *approximates* it; finds $\hat{x} \in \mathcal{L} \setminus \{0\}$ with

 $\|\hat{x}\|_2 \le 2^{\frac{p}{2}} \min_{x \in \mathcal{L} \setminus \{0\}} \|x\|_2.$

Time poly in p, $\log \max_i \{ \|b_i\|_{\infty} \}$.

The Algorithm: Special Case

• n = 1, $\sigma = 0$, β^* binary, $Y_1 = \langle X_1, \beta^* \rangle$.

$$A_M := \begin{bmatrix} MX_1 & -MY_1 \\ I_{p \times p} & 0 \end{bmatrix}$$

Lemma: Each $z \in \mathcal{L}_M$, $||z||_2 < M$ is a multiple of $\begin{bmatrix} 0 \\ \beta^* \end{bmatrix}$, w.h.p.

$$A_M \begin{bmatrix} \beta \\ \lambda \end{bmatrix} = \begin{bmatrix} M \langle X_1, \beta \rangle - M \lambda Y_1 \\ \beta \end{bmatrix} = \begin{bmatrix} M \langle X_1, \beta - \lambda \beta^* \rangle \\ \beta \end{bmatrix}$$

Either $|z_1| \ge M \Rightarrow ||z||_2 \ge M$ or $z_1 = 0 \Rightarrow \langle X_1, \beta - \lambda \beta^* \rangle = 0$, low probability with $\beta \neq \lambda \beta^*$!

Step 2: Choose M appropriately so that LLL outputs a multiple of

ose
$$M = \lceil 2^{\frac{p}{2}} \sqrt{p} \rceil + 1.$$

know $A_M \begin{bmatrix} \beta^* \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ \beta^* \end{bmatrix} \in \mathcal{L}.$

• LLL outputs \hat{x} with norm at most $2^{\frac{p}{2}} \| \begin{bmatrix} 0 \\ \beta^* \end{bmatrix} \|_2 \le 2^{\frac{p}{2}} \sqrt{p} < M$.

• Using the lemma we are done!

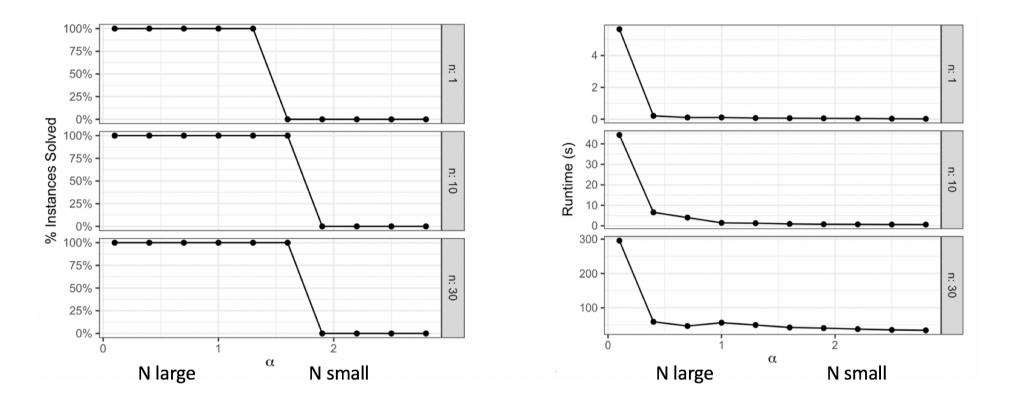
Step 3: Rescale to get β^* .

Special Case \rightarrow General Case

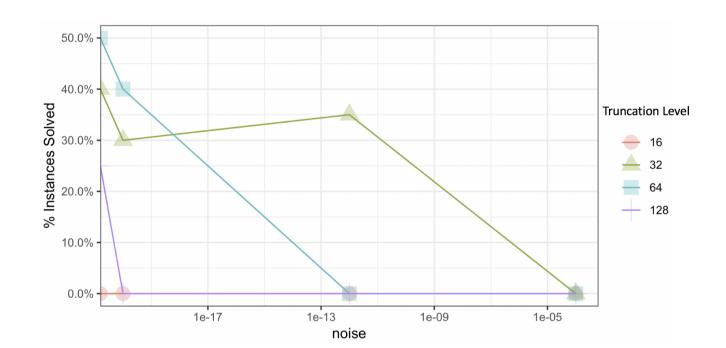
```
(1) One sample n = 1 \rightarrow many samples n > 1.
    (Way: Redesign the Lattice)
(2) Noiseless \sigma = 0 \rightarrow \text{noisy } \sigma > 0.
    (Way: Redesign the Lattice)
(3) Integer Y, X \rightarrow \text{real } Y, X.
    (Way: Truncate first bits and Rescale the data (Y, X))
(4) Binary coefficients \beta^* \to Q-rational \beta^*.
    (Way: Translate and Rescale the samples Y)
```

(joint work with Patricio Foncea and Andrew Zheng) Integer Data

Assume X iid uniform in $[2^N]$, β^* iid uniform in [100] and no noise. Success is exact recovery.



Assume X iid U(0,1), W iid $U(-\sigma,\sigma)$ and β^* iid uniform in [100]. Success is exact recovery. *Plot:* Avg Success against noise level σ and truncation level.



- works well for small p.

(Preliminary) Experiments

Plot: Avg Success/ Running Time against input size N.

Figure 5: (20 instances per dot) p = 30, n = 1, 10, 30, $\alpha \sim 1/N$.

Real-valued Data

Figure 6: (20 instances per dot) p = 30 and n = 10.

Conclusion

 High dimensional linear regression with rational coefficients can be efficiently solved with one sam**ple** n = 1, under small noise!

• New algorithm for *high dimensional linear regression* using lattice based methods (LLL algorithm).

• The algorithm has guarantees for large p, but also

Open Questions

 Can lattice-based methods also be used for non**linear inference** problems?

Example: *Phase-Retrieval* where $Y_i = |\langle X_i, \beta^* \rangle|$ (many applications in Crystallography and MRI). • Can we tolerare **higher noise levels** for smaller Q?