High Dimensional Linear Regression Without Sparsity: A Lattice-Based Approach

Ilias Zadik, joint work with David Gamarnik

Massachusetts Institute of Technology

MSR ML Ideas Lunch

November 13, 2018
Linear Regression

Let (unknown) $\beta^* \in \mathbb{R}^p$.
For measurement matrix $X \in \mathbb{R}^{n \times p}$, and noise vector $W \in \mathbb{R}^n$, we observe n noisy linear samples of β^*, $Y = X\beta^* + W$.

Goal: Given (Y, X), recover β^*.
Linear Regression

Let (unknown) $\beta^* \in \mathbb{R}^p$.

For measurement matrix $X \in \mathbb{R}^{n \times p}$, and noise vector $W \in \mathbb{R}^n$, we observe n noisy linear samples of β^*, $Y = X\beta^* + W$.

Goal: Given (Y, X), recover β^*.

Notation: n number of samples, p number of features.
Linear Regression

Let (unknown) $\beta^* \in \mathbb{R}^p$.

For measurement matrix $X \in \mathbb{R}^{n \times p}$, and noise vector $W \in \mathbb{R}^n$, we observe n noisy linear samples of β^*, $Y = X\beta^* + W$.

Goal: Given (Y, X), recover β^*.

Notation: n number of samples, p number of features.

Distributional ass.: X has iid $N(0, 1)$ entries and W iid $N(0, \sigma^2)$.
Main Question

Question:
What is the minimum n (as a function of the rest of the parameters) so that efficient and accurate recovery β^* is possible?

An immediate answer under full generality: at least p.

Reason: Even if $W = 0$, we have $Y = X\beta^*$, a linear system with p unknowns and n equations! To solve it, we need at least p equations, i.e. $n \geq p$.

Gamarnik, Zadik (MIT) Regression with LLL algorithm November 13, 2018 3 / 30
Question:

What is the **minimum** n (as a function of the rest of the parameters) so that *efficient and accurate* recovery β^* is possible?

An immediate answer under full generality: at least p.
Question: What is the minimum n (as a function of the rest of the parameters) so that efficient and accurate recovery β^* is possible?

An immediate answer under full generality: at least p.

Reason: Even if $W = 0$, we have $Y = X\beta^*$, a linear system with p unknowns and n equations! To solve it, we need at least p equations, i.e. $n \geq p$.
In many real-life applications of Linear Regression (e.g. natural language processing, genomics, pricing, MRI etc) we observe much more features than samples (i.e. $n \ll p, p \to +\infty$).
In many *real-life applications* of Linear Regression (e.g. natural language processing, genomics, pricing, MRI etc) we observe **much more** features than samples (i.e. $n \ll p, p \to +\infty$).

Question

Is there a way to make the inference of β^* well-posed in such setting?
Structural Assumptions on β^*

- Sparsity: $k \leq p$ non zero coordinates.
 - Vast literature
 - $n > k \log(p/k)$: many known efficient algorithms (Lasso [Wainwright '09], OMP [Fletcher et al '11] etc)
 - $n < k \log(p/k)$: possible but evidence of computational hardness [Gamarnik, Z '17a], [Gamarnik, Z '17b].

- Other assumptions:
 - Block-sparsity [Baron et al',05], Tree-Sparsity [He et al '09], Output of a Generative Model [Bora et al '17]
 - Similar picture: can achieve some $n < p$ but not always small.

Question: Can we make other (natural) assumptions which works for smaller n? (e.g. constant n)
Structural Assumptions on β^*

- **Sparsity!** $k \leq p$ non zero coordinates.
 - Vast literature

- Other assumptions:
 - Block-sparsity [Baron et al',05], Tree-Sparsity [He et al '09], Output of a Generative Model [Bora et al '17]
 - Similar picture: can achieve some $n < p$ but not always small.

Question: Can we make other (natural) assumptions which works for smaller n? (e.g. constant n)
Structural Assumptions on β^*

- **Sparsity!** $k \leq p$ non-zero coordinates.
 - Vast literature
 - $n > k \log \left(\frac{p}{k} \right)$: many known **efficient** algorithms (Lasso [Wainwright '09], OMP [Fletcher et al '11] etc)

Other assumptions:
- Block-sparsity [Baron et al', 05]
- Tree-Sparsity [He et al '09]
- Output of a Generative Model [Bora et al '17]

Similar picture: can achieve some $n < p$ but not always small.

Question: Can we make other (natural) assumptions which works for smaller n? (e.g. constant n)
Structural Assumptions on β^*

- **Sparsity!** $k \leq p$ non zero coordinates.
 - Vast literature
 - $n > k \log \left(\frac{p}{k} \right)$: many known efficient algorithms (Lasso [Wainwright ’09], OMP [Fletcher et al ’11] etc)
 - $n < k \log \left(\frac{p}{k} \right)$: possible but evidence of computational hardness [Gamarnik, Z ’17a], [Gamarnik, Z ’17b].

- Other assumptions: Block-sparsity [Baron et al’05], Tree-Sparsity [He et al ’09], Output of a Generative Model [Bora et al ’17] etc

Similar picture: can achieve some $n < p$ but not always small.

Question: Can we make other (natural) assumptions which works for smaller n? (e.g. constant n)

Gamarnik, Zadik (MIT)
Structural Assumptions on β^*

- **Sparsity!** $k \leq p$ non zero coordinates.
 - Vast literature
 - $n > k \log \left(\frac{p}{k} \right)$: many known **efficient** algorithms (Lasso [Wainwright ’09], OMP [Fletcher et al ’11] etc)
 - $n < k \log \left(\frac{p}{k} \right)$: possible but evidence of **computational hardness** [Gamarnik, Z ’17a], [Gamarnik, Z ’17b].

- **Other assumptions:**
 Block-sparsity [Baron et al’,05], Tree-Sparsity [He et al ’09], Output of a Generative Model [Bora et al ’17] etc

Similar picture: can achieve some $n < p$ but not always small.
Structural Assumptions on β^*

- **Sparsity!** $k \leq p$ non zero coordinates.
 - Vast literature
 - $n > k \log \left(\frac{p}{k}\right)$: many known **efficient** algorithms
 (Lasso [Wainwright ’09], OMP [Fletcher et al ’11] etc)
 - $n < k \log \left(\frac{p}{k}\right)$: possible but evidence of **computational hardness**
 [Gamarnik, Z ’17a], [Gamarnik, Z ’17b].

- **Other assumptions:**
 Block-sparsity [Baron et al’,05], Tree-Sparsity [He et al ’09], Output of a Generative Model [Bora et al ’17] etc

 Similar picture: can achieve some $n < p$ but not always small.

Question

Can we make other (natural) assumptions which works for smaller n? (e.g. **constant** n)
New efficient algorithm for recovering β^* from (Y, X) under a new generic structural assumption (Q-rationality assumption) based on a connection with lattice-based algorithms.
New efficient algorithm for recovering β^* from (Y, X) under a new generic structural assumption (Q-rationality assumption) based on a connection with lattice-based algorithms.

Guarantees:
works for any n (even $n = 1$) given sufficiently small noise!
Outline of the talk

1. Q-rationality assumption and definition of the model
2. Main results
3. Description of the successful algorithm
4. (Preliminary) experiments
5. Summary and future work
Outline of the talk

1. Q-rationality assumption and definition of the model
2. Main results
3. Description of the successful algorithm
4. (Preliminary) experiments
5. Summary and future work
The Assumption

Every entry of β^* is a **rational number** with denominator Q.

(Alternatively: For $Q = 2^M$, log Q bits after zero position per entry)
The Assumption

Every entry of β^* is a **rational number** with denominator Q.

(Alternatively: For $Q = 2^M$, log Q bits after zero position per entry)

Motivation:
Q-rationality assumption

The Assumption

Every entry of β^* is a **rational number** with denominator Q.

(Alternatively: For $Q = 2^M$, log Q bits after zero position per entry)

Motivation:

1. Large Q: **Large** but **finite domain** for the coefficients.
Q-rationality assumption

The Assumption

Every entry of β^* is a **rational number** with denominator Q.

Alternatively: For $Q = 2^M$, log Q bits after zero position per entry

Motivation:

1. **Large** Q: **Large** but **finite domain** for the coefficients.

2. **Small** Q: Standard in wireless communication.

 E.g. linear models for GPS (e.g. [Boyd, Hassibi ’98]),

 Physics laws imply for half the coordinates $\beta^*_i \in \mathbb{Z} [Q = 1]$.
The Assumption

Every entry of β^* is a **rational number** with denominator Q.

(Alternatively: For $Q = 2^M$, log Q bits after zero position per entry)

Motivation:

1. **Large Q:** Large but **finite domain** for the coefficients.

2. **Small Q:** Standard in wireless communication. E.g. linear models for GPS (e.g. [Boyd, Hassibi ’98]), **Physics laws** imply for half the coordinates $\beta^*_i \in \mathbb{Z} [Q = 1]$.
Q-rationality assumption

The Assumption

Every entry of β^* is a rational number in $[0, 1]$ with denominator Q.
(Alternatively: For $Q = 2^M$, log Q bits after zero position per entry)

Motivation:

(1) Large Q: Large but finite domain for the coefficients.

(2) Small Q: Standard in wireless communication.
E.g. linear models for GPS (e.g. [Boyd, Hassibi ’98]),
Physics laws imply for half the coordinates $\beta^*_i \in \mathbb{Z} [Q = 1]$.

Gamarnik, Zadik (MIT) Regression with LLL algorithm November 13, 2018 8 / 30
The New Model

Setup: Let \(\beta^* \) be a Q-rational vector. For

- \(X \in \mathbb{R}^{n \times p} \) consisting of entries i.i.d \(N(0, 1) \) random variables
- \(W \in \mathbb{R}^n \) consisting of entries i.i.d. \(N(0, \sigma^2) \) random variables

we get \(n \) noisy linear samples of \(\beta^* \), \(Y \in \mathbb{R}^n \), given by,

\[
Y := X\beta^* + W.
\]
The New Model

Setup: Let β^* be a Q-rational vector. For

- $X \in \mathbb{R}^{n \times p}$ consisting of entries i.i.d $N(0, 1)$ random variables
- $W \in \mathbb{R}^n$ consisting of entries i.i.d. $N(0, \sigma^2)$ random variables

we get n noisy linear samples of β^*, $Y \in \mathbb{R}^n$, given by,

$$Y := X\beta^* + W.$$

Goal: Given (Y, X), recover efficiently and exactly β^* with n as small as possible.
The recovery should happen with probability tending to 1 as p tend to infinity (w.h.p.).
Outline of the talk

(1) Q-rationality assumption and definition of the model
(2) Main results
(3) Description of the successful algorithm
(4) (Preliminary) experiments
(5) Summary and future work
Brute-force with one sample

Any hope for $n = 1$? Recall $y_1 = \langle X_1, \beta^* \rangle + w_1$.
Brute-force with one sample

Any hope for $n = 1$? Recall $y_1 = \langle X_1, \beta^* \rangle + w_1$.

Yes, if $\sigma = 0$! *Reason:* continuous data but discrete β^*.
Brute-force with one sample

Any hope for $n = 1$? Recall $y_1 = \langle X_1, \beta^* \rangle + w_1$.

Yes, if $\sigma = 0$! *Reason:* continuous data but discrete β^*.

Brute Force Algorithm

Check all Q-rational β for

$$y_1 = \langle X_1, \beta \rangle.$$
Brute-force with one sample

Any hope for \(n = 1 \)? Recall \(y_1 = \langle X_1, \beta^* \rangle + w_1 \).

Yes, if \(\sigma = 0 \)! Reason: continuous data but discrete \(\beta^* \).

Brute Force Algorithm

Check all Q-rational \(\beta \) for

\[
y_1 = \langle X_1, \beta \rangle.
\]

Termination Time

\[
(Q + 1)(Q + 1) \ldots (Q + 1) = (Q + 1)^p - \text{not efficient!}
\]

\(p \) terms
Lemma (Brute-force works!)

Suppose β^* Q-rational and $\sigma^2 = 0$, i.e. $y_1 = \langle X_1, \beta^* \rangle$.
There is no Q-rational $\beta \neq \beta^*$ with $y_1 = \langle X_1, \beta \rangle$, almost surely.
Lemma (Brute-force works!)

Suppose β^* is Q-rational and $\sigma^2 = 0$, i.e. $y_1 = \langle X_1, \beta^* \rangle$. There is no Q-rational $\beta \neq \beta^*$ with $y_1 = \langle X_1, \beta \rangle$, almost surely.

Proof Sketch:

For any $\beta \neq \beta^*$,

$$P(y_1 = \langle X_1, \beta \rangle) = P(\langle X_1, \beta^* \rangle = \langle X_1, \beta \rangle) = P(\langle X_1, \beta^* - \beta \rangle = 0) = 0,$$

since $\langle X_1, \beta^* - \beta \rangle \sim N(0, \|\beta^* - \beta\|_2^2)$.

Union bound over Q-rational β: $P(\exists \beta \text{ Q-rational : } y_1 = \langle X_1, \beta \rangle) = 0.$
(1) Consider a **standard** recovery mechanism: $\min ||\beta||_\infty$, s.t. $Y = X\beta$. For $\beta^* \in \{-1, 1\}^p$, $\sigma = 0$ works iff $n > p/2$, i.e. needs linear samples ([Chandrasekaran et al '10], [Amelunxen et al '13]).
(1) Consider a **standard** recovery mechanism: \(\min \| \beta \|_\infty \), s.t. \(Y = X \beta \).

For \(\beta^* \in \{-1, 1\}^p \), \(\sigma = 0 \) works iff \(n > p/2 \), i.e. needs linear samples ([Chandrasekaran et al '10], [Amelunxen et al '13])

(2) **Physics-based** algorithm works for \(n = o(p) \) and any \(Q \) but

(i) we don't know more than \(n = o(p) \) and

(ii) needs delicate \(X \) (not iid!)

([Donoho et al' '11])
(1) Consider a **standard** recovery mechanism: \(\min \| \beta \|_\infty \), s.t. \(Y = X\beta \). For \(\beta^* \in \{-1, 1\}^p \), \(\sigma = 0 \) works iff \(n > p/2 \), i.e. needs linear samples ([Chandrasekaran et al ’10], [Amelunxen et al ’13])

(2) **Physics-based** algorithm works for \(n = o(p) \) and any \(Q \) but
 (i) we don’t know more than \(n = o(p) \) and
 (ii) needs delicate \(X \) (not iid!)
 ([Donoho et al’ ’11])

Question
Is there a computationally efficient algorithm for constant sample size?
Theorem (informal, (Gamarnik, Z. NIPS ’18))

Suppose you have \(n = o(p) \) samples and \(0 \leq \sigma \leq \exp \left(\frac{-p \max\{p, \log Q\}}{n}\right) \).

Then there exists a **polynomial-in-\(n, p, \log Q \)** time algorithm which with input \((Y, X)\) it outputs \(\beta^* \) \textit{w.h.p.} as \(p \to +\infty \).
Theorem (informal, (Gamarnik, Z. NIPS ’18))

Suppose you have \(n = o(p) \) samples and \(0 \leq \sigma \leq \exp\left(-\frac{p \max\{p, \log Q\}}{n}\right) \).

Then there exists a polynomial-in-\(n, p, \log Q \) time algorithm which with input \((Y, X) \) it outputs \(\beta^* \) w.h.p. as \(p \to +\infty \).

1. An efficient algorithm which works for any sample size \(n = o(p) \), also \(n = 1! \).
2. For \(n = 1 \), it works in time poly in \(p, \log Q \), an exponential decrease from brute-force \((Q + 1)^p \).
3. The algorithm works with any \(X \) with iid well-behaved continuous entries (work even for uniform iid integer in a large domain)!
Theorem (informal, (Gamarnik, Z. NIPS '18))

Suppose you have $n = o(p)$ samples and $0 \leq \sigma \leq \exp\left(-\frac{p \max\{p, \log Q\}}{n}\right)$. Then there exists a polynomial-in-$n, p, \log Q$ time algorithm which with input (Y, X) it outputs β^* w.h.p. as $p \to +\infty$.

Call $\sigma_0 = \exp\left(-\frac{p \max\{p, \log Q\}}{n}\right)$. Is this the optimal amount of noise?
Theorem (informal, (Gamarnik, Z. NIPS '18))

Suppose you have \(n = o(p) \) samples and \(0 \leq \sigma \leq \exp\left(-\frac{p \max\{p, \log Q\}}{n}\right) \). Then there exists a polynomial-in-\(n, p, \log Q \) time algorithm which with input \((Y, X)\) it ouputs \(\beta^* \) w.h.p. as \(p \to +\infty \).

Call \(\sigma_0 = \exp\left(-\frac{p \max\{p, \log Q\}}{n}\right) \). Is this the optimal amount of noise?

Theorem (informal, (Gamarnik, Z. NIPS '18))

Suppose you have \(n = o(p) \) samples and \(\sigma > \exp\left(-\frac{p \log Q}{n}\right) \). Then its impossible to w.h.p. recover correctly \(\beta^* \) with any algorithm with only access to \((Y, X)\).
Theorem (informal, (Gamarnik, Z. NIPS ’18))

Suppose you have \(n = o(p) \) samples and \(0 \leq \sigma \leq \exp\left(-\frac{p \max\{p, \log Q\}}{n}\right) \).
Then there exists a polynomial-in-\(n, p, \log Q \) time algorithm which with input \((Y, X)\) it outputs \(\beta^* \) w.h.p. as \(p \to +\infty \).

Theorem (informal, (Gamarnik, Z. NIPS ’18))

Suppose you have \(n = o(p) \) samples and \(\sigma > \exp\left(-\frac{p \log Q}{n}\right) \).
Then it’s impossible to w.h.p. recover correctly \(\beta^* \) with any algorithm with only access to \((Y, X)\).

If \(Q > 2^p \): our algorithm has optimal noise-tolerance!
Outline of the talk

(1) Q-rationality assumption and definition of the model
(2) Main results
(3) **Description of the successful algorithm**
(4) (Preliminary) experiments
(5) Summary and future work
The Algorithm: Connecting HDLR with Lattices

Key Influence:
The LLL algorithm ['82] and its application on solving randomly generated subset-sum problems [Lagarias, Odlyzko '83], [Frieze '84].
The Algorithm: Connecting HDLR with Lattices

Key Influence:
The LLL algorithm ['82] and its application on solving randomly generated subset-sum problems [Lagarias, Odlyzko '83], [Frieze '84].

Plan
The Algorithm: Connecting HDLR with Lattices

Key Influence:
The LLL algorithm ['82] and its application on solving randomly generated subset-sum problems [Lagarias, Odlyzko '83], [Frieze '84].

Plan

1. Describe LLL guarantees and general strategy

Gamarnik, Zadik (MIT) Regression with LLL algorithm November 13, 2018 16 / 30
Key Influence:
The LLL algorithm ['82] and its application on solving randomly generated subset-sum problems [Lagarias, Odlyzko ’83], [Frieze ’84].

Plan
(1) Describe LLL guarantees and general strategy
(2) Details for using LLL to find β^* in some restrictive case
Key Influence:
The LLL algorithm [’82] and its application on solving randomly generated subset-sum problems [Lagarias, Odlyzko ’83], [Frieze ’84].

Plan

(1) Describe LLL guarantees and general strategy
(2) Details for using LLL to find β^* in some restrictive case
(3) Describe the general algorithm
Let $b_1, \ldots, b_m \in \mathbb{Z}^p$ linearly independent vectors.

Definition

The lattice \mathcal{L} spanned by b_1, \ldots, b_m is the set of all integer combinations of the m vectors.
The LLL algorithm

“The Shortest Vector Problem” $\min_{x \in \mathcal{L} \setminus \{0\}} \|x\|_2$

Shortest Vector Problem (SVP): given a lattice, find a shortest (nonzero) vector
The LLL algorithm

“The Shortest Vector Problem” \(\min_{x \in \mathcal{L} \setminus \{0\}} \|x\|_2 \)

- NP-hard but,
- A famous algorithm proposed by Lenstra-Lenstra-Lovasz (LLL) efficiently *approximates* it; find \(\hat{x} \in \mathcal{L} \setminus \{0\} \) with

\[
\|\hat{x}\|_2 \leq 2^{p/2} \min_{x \in \mathcal{L} \setminus \{0\}} \|x\|_2.
\]

Time poly in \(p, \log \max_i \{\|b_i\|_\infty\} \)
Use LLL for Finding β^*

Main Steps:

• Create a lattice $L = L(Y, X)$ such that "approximately" shortest vectors of L are multiples of β^*

• Use LLL and recover a multiple of β^*.

• Recover β^* from a multiple of β^* (needs some structure).
Use LLL for Finding β^*

Main Steps:

- Create a lattice $\mathcal{L} = \mathcal{L}(Y, X)$ such that “approximately” shortest vectors of \mathcal{L} ↔ multiples of β^*
- Use LLL and recover a multiple of β^*
- Recover β^* from a multiple of β^* (needs some structure)
Use LLL for Finding β^*

Main Steps:

- Create a lattice $\mathcal{L} = \mathcal{L}(Y, X)$ such that “approximately” shortest vectors of $\mathcal{L} \leftrightarrow$ multiples of β^*

- Use LLL and recover a multiple of β^*.
Use LLL for Finding β^*

Main Steps:

- Create a lattice $\mathcal{L} = \mathcal{L}(Y, X)$ such that "approximately" shortest vectors of $\mathcal{L} \leftrightarrow$ multiples of β^*
- Use LLL and recover a multiple of β^*.
- Recover β^* from a multiple of β^* (needs some structure).
The Algorithm (special case, [F ’84])

Assume

- $n = 1$, $\sigma = 0$, β^* binary: $y = \langle X_1, \beta^* \rangle$.
- $X_1 \in \mathbb{Z}^p$ with iid uniform in $[2^N]$ entries for large N (say $N = p^2$).
The Algorithm (special case, [F ’84])

Assume

• \(n = 1, \sigma = 0, \beta^* \) binary: \(y = \langle X_1, \beta^* \rangle \).
• \(X_1 \in \mathbb{Z}^p \) with iid uniform in \([2^N] \) entries for large \(N \) (say \(N = p^2 \)).

(1) For \(M \) sufficiently large enough set \(\mathcal{L}_M(y_1, X_1) \) produced by the columns of

\[
A_M := \begin{bmatrix}
MX_1 & -My_1 \\
l_{p \times p} & 0
\end{bmatrix}
\]
The Algorithm (special case, [F ’84])

Assume

- \(n = 1, \sigma = 0, \beta^* \) binary: \(y = \langle X_1, \beta^* \rangle \).
- \(X_1 \in \mathbb{Z}^p \) with iid uniform in \([2^N]\) entries for large \(N \) (say \(N = p^2 \)).

(1) For \(M \) sufficiently large enough set \(\mathcal{L}_M(y_1, X_1) \) produced by the columns of

\[
A_M := \begin{bmatrix}
MX_1 & -My_1 \\
I_{p \times p} & 0
\end{bmatrix}
\]

Lemma: Each \(z \in \mathcal{L}_M, \|z\|_2 < M \) is a multiple of \(\begin{bmatrix} 0 \\ \beta^* \end{bmatrix} \), w.h.p. (\(N \) large)
Assume

- \(n = 1, \sigma = 0, \beta^* \) binary: \(y = \langle X_1, \beta^* \rangle \).
- \(X_1 \in \mathbb{Z}_p \) with iid uniform in \([2^N] \) entries for large \(N \) (say \(N = p^2 \)).

(1) For \(M \) sufficiently large enough set \(L_M(y_1, X_1) \) produced by the columns of

\[
A_M := \begin{bmatrix}
MX_1 & -My_1 \\
l_{p \times p} & 0
\end{bmatrix}
\]

Lemma: Each \(z \in L_M, \|z\|_2 < M \) is a multiple of \(\begin{bmatrix} 0 \\ \beta^* \end{bmatrix} \), w.h.p. (\(N \) large)

Intuition:

\[
z = A_M \begin{bmatrix}
\beta \\
\lambda
\end{bmatrix} = \begin{bmatrix}
M\langle X_1, \beta \rangle - M\lambda y_1 \\
\beta
\end{bmatrix} = \begin{bmatrix}
M\langle X_1, \beta - \lambda \beta^* \rangle \\
\beta
\end{bmatrix},
\]

\[
P(\text{Lemma is false}) \leq P(\exists \beta \neq \lambda \beta^* : \|\beta\|_2 < M, \langle X_1, \beta - \lambda \beta^* \rangle = 0) \to 0.
\]
Choose M appropriately so that LLL outputs a multiple of β^*.

(2) Choose M appropriately so that LLL outputs a multiple of β^*.

We know $A_M[\beta^*] = [0 \beta^*] \in L$.

LLL outputs \hat{x} with norm at most $2p^2 \| [0 \beta^*] \|_2 \leq 2p^2 \sqrt{p} < M$.

Using the lemma we are done!
(2) Choose M appropriately so that LLL outputs a multiple of β^*.

- Choose $M = 2^\frac{p}{2} \sqrt{p} + 1$.
- We know $A_M \begin{bmatrix} \beta^* \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ \beta^* \end{bmatrix} \in \mathcal{L}$.
- LLL outputs \hat{x} with norm at most $2^\frac{p}{2} \| \begin{bmatrix} 0 \\ \beta^* \end{bmatrix} \|_2 \leq 2^\frac{p}{2} \sqrt{p} < M$.
- Using the lemma we are done!
(2) Choose M appropriately so that LLL outputs a multiple of β^*.

- Choose $M = 2^{\frac{p}{2}} \sqrt{p} + 1$.
- We know $A_M \begin{bmatrix} \beta^* \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ \beta^* \end{bmatrix} \in \mathcal{L}$.
- LLL outputs \hat{x} with norm at most $2^{\frac{p}{2}} \left\| \begin{bmatrix} 0 \\ \beta^* \end{bmatrix} \right\|_2 \leq 2^{\frac{p}{2}} \sqrt{p} < M$.
- Using the lemma we are done!

(3) Rescale to get β^*.

Gamarnik, Zadik (MIT)
Regression with LLL algorithm
November 13, 2018
21 / 30
Restricted case:

(1) One sample $n = 1$.
(2) Noiseless $\sigma = 0$
(3) Integer X
(4) Binary coefficients β^*
Restricted case \rightarrow General case:

1. One sample $n = 1 \rightarrow$ many samples $n > 1$.
2. Noiseless $\sigma = 0 \rightarrow$ noisy $\sigma > 0$
3. Integer $Y, X \rightarrow$ real Y, X
4. Binary coefficients $\beta^* \rightarrow$ Q-rational β^*
Towards the General Algorithm

Restricted case → General case:

1. One sample $n = 1 \rightarrow$ many samples $n > 1$.
2. Noiseless $\sigma = 0 \rightarrow$ noisy $\sigma > 0$
3. Integer $Y, X \rightarrow$ real Y, X
4. Binary coefficients $\beta^* \rightarrow$ Q-rational β^*

Methods:

1),(2) follow by redesigning the lattice basis.
3),(4) follow by reductions to the integer case using the linear structure.
Step 1: $n > 1$ and $\sigma > 0$

Key Idea

Change the lattice basis to the columns of the $(2n + p) \times (2n + p)$ matrix

$$A_M := \begin{bmatrix}
 MX & -MDiag_{n \times n} (Y) & MI_{n \times n} \\
 I_{p \times p} & O_{p \times n} & 0_{p \times n} \\
 O_{n \times p} & 0_{n \times n} & I_{n \times n}
\end{bmatrix}$$
Step 1: \(n > 1 \) and \(\sigma > 0 \)

Key Idea

Change the lattice basis to the columns of the \((2n + p) \times (2n + p)\) matrix

\[
A_M := \begin{bmatrix}
MX & -M\text{Diag}_{n \times n}(Y) & MI_{n \times n} \\
I_{p \times p} & 0_{p \times n} & 0_{p \times n} \\
0_{n \times p} & 0_{n \times n} & I_{n \times n}
\end{bmatrix}
\]

- Extra columns to use more observations and handle noise
- Similar proof
Step 2: Real-valued (Y, X) and Q-rational β^*

Real-valued (Y, X)

Truncate (Y, X) to the first N coordinates and reduce it to integer (Y, X).

$$y = \langle x, \beta^* \rangle + w \rightarrow 2^N y = \langle 2^N x, \beta^* \rangle + 2^N w \rightarrow \lfloor 2^N y \rfloor = \langle \lfloor 2^N x \rfloor, \beta^* \rangle + w'.$$

Q rational β^*

Reduce to integer β^* with $\gcd(\beta^*) = 1$, so that it is recovered from any multiple of β^*!

First, $y = \langle x, \beta^* \rangle + w$ implies $Qy = \langle x, Q\beta^* \rangle + Qw$.

Second, for random Z, $y + \langle x, Z \rangle = \langle x, \beta^* + Z \rangle + w$ and $\gcd(\beta^* + Z) = 1$, w.h.p. (analytic number theory argument)
Step 2: Real-valued \((Y, X)\) and Q-rational \(\beta^*\)

Real-valued \((Y, X)\)

Truncate \((Y, X)\) to the first \(N\) coordinates and reduce it to integer \((Y, X)\).

\[
y = \langle x, \beta^* \rangle + w \rightarrow 2^Ny = \langle 2^Nx, \beta^* \rangle + 2^Nw \rightarrow [2^Ny] = \langle [2^Nx], \beta^* \rangle + w'.
\]
Step 2: Real-valued \((Y, X)\) and Q-rational \(\beta^*\)

Real-valued \((Y, X)\)

Truncate \((Y, X)\) to the first \(N\) coordinates and reduce it to integer \((Y, X)\).

\[
y = \langle x, \beta^* \rangle + w \rightarrow 2^N y = \langle 2^N x, \beta^* \rangle + 2^N w \rightarrow \lfloor 2^N y \rfloor = \langle \lfloor 2^N x \rfloor, \beta^* \rangle + w'.
\]

Q rational \(\beta^*\)

Reduce to integer \(\beta^*\) with \(\gcd(\beta^*) = 1\), so that it is recovered from any multiple of \(\beta^*\)!
Step 2: Real-valued \((Y, X)\) and Q-rational \(\beta^*\)

Real-valued \((Y, X)\)

Truncate \((Y, X)\) to the first \(N\) coordinates and reduce it to integer \((Y, X)\).

\[
y = \langle x, \beta^* \rangle + w \rightarrow 2^N y = \langle 2^N x, \beta^* \rangle + 2^N w \rightarrow \lfloor 2^N y \rfloor = \langle \lfloor 2^N x \rfloor, \beta^* \rangle + w'.
\]

Q rational \(\beta^*\)

Reduce to integer \(\beta^*\) with \(\gcd(\beta^*) = 1\), so that it is recovered from any multiple of \(\beta^*\)!

First, \(y = \langle x, \beta^* \rangle + w\) implies \(Qy = \langle x, Q\beta^* \rangle + Qw\).
Step 2: Real-valued \((Y, X)\) and \(\mathbb{Q}\)-rational \(\beta^*\)

Real-valued \((Y, X)\)

Truncate \((Y, X)\) to the first \(N\) coordinates and reduce it to integer \((Y, X)\).

\[
y = \langle x, \beta^* \rangle + w \rightarrow 2^N y = \langle 2^N x, \beta^* \rangle + 2^N w \rightarrow \lfloor 2^N y \rfloor = \langle \lfloor 2^N x \rfloor, \beta^* \rangle + w'.
\]

\(\mathbb{Q}\) rational \(\beta^*\)

Reduce to integer \(\beta^*\) with \(\gcd(\beta^*) = 1\), so that it is recovered from any multiple of \(\beta^*\)!

First, \(y = \langle x, \beta^* \rangle + w\) implies \(Qy = \langle x, Q\beta^* \rangle + Qw\).

Second, for random \(Z\),

\[
y + \langle x, Z \rangle = \langle x, \beta^* + Z \rangle + w\quad \text{and} \quad \gcd(\beta^* + Z) = 1, \text{ w.h.p.}
\]

(*analytic number theory argument*)
Outline of the talk

1. Q-rationality assumption and definition of the model
2. Main results
3. Description of the successful algorithm
4. (Preliminary) experiments
5. Summary and Future Work
Preliminary Experimental Results (small p)-Integer Data

Figure: 20 instances per dot: $p = 30$, $n = 1, 10, 30$, X Uniform in $[2^N]$, noiseless, $\alpha \sim 1/N$.

(Work with Patricio Foncea, Andrew Zheng)
Figure: 20 instances per dot: X, W Gaussian, $p = 30$ and $n = 10$.

(Work with Patricio Foncea, Andrew Zheng)
Outline of the talk

(1) Q-rationality assumption and definition of the model
(2) Main results
(3) Description of the successful algorithm
(4) (Preliminary) experiments
(5) **Summary and future work**
(1) **New rationality assumption** to perform high dimensional inference for linear regression.
(1) **New rationality assumption** to perform high dimensional inference for linear regression.

(2) Coefficients \(\beta^* \) are **efficiently recoverable** even when \(n = 1 \) and noise is small. Optimal noise tolerance for large \(Q \).
Summary

(1) **New rationality assumption** to perform high dimensional inference for linear regression.

(2) Coefficients β^* are **efficiently recoverable** even when $n = 1$ and noise is small. Optimal noise tolerance for large Q.

(3) **Algorithmic connection** between Linear Regression and Shortest Vector Problem.
(1) New rationality assumption to perform high dimensional inference for linear regression.

(2) Coefficients β^* are efficiently recoverable even when $n = 1$ and noise is small. Optimal noise tolerance for large Q.

(3) Algorithmic connection between Linear Regression and Shortest Vector Problem.

(4) Preliminary Synthetic experiments suggest the algorithm works also for small p.
Future Directions

1. Other discrete prior distributions - ongoing work.

2. Other similar noiseless problems - ongoing work, e.g., Phase Retrieval $y_i = |\langle X_i, \beta^* \rangle|$.

3. Increase the noise level tolerance for small Q.

4. Perform more systematic experiments to verify method for small p.

Thank you!!
(1) Other discrete prior distributions - ongoing work.

(2) Other similar noiseless problems - ongoing work
 e.g. Phase Retrieval! \(y_i = |\langle X_i, \beta^* \rangle| \).

(3) Increase the noise level tolerance for small \(Q \).
 Also: use rationality and sparsity together as assumptions?

(4) Perform more systematic experiments to verify method for small \(p \).

Thank you!!
Future Directions

1. Other discrete prior distributions - ongoing work.

2. Other similar noiseless problems - ongoing work
 e.g. *Phase Retrieval!* \(y_i = |\langle X_i, \beta^* \rangle| \).

3. Increase the noise level tolerance for small \(Q \).
 Also: use *rationality and sparsity* together as assumptions?
Future Directions

(1) Other discrete prior distributions - ongoing work.

(2) Other similar noiseless problems - ongoing work
 e.g. Phase Retrieval! \(y_i = |\langle X_i, \beta^* \rangle| \).

(3) Increase the noise level tolerance for small Q.
 Also: use rationality and sparsity together as assumptions?

(4) Perform more systematic experiments to verify method for small p.
(1) Other discrete prior distributions - ongoing work.

(2) Other similar noiseless problems - ongoing work e.g. Phase Retrieval! \((y_i = |\langle X_i, \beta^* \rangle|) \).

(3) Increase the noise level tolerance for small Q. Also: use rationality and sparsity together as assumptions?

(4) Perform more systematic experiments to verify method for small p.

Thank you!!