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Introduction

Large and complicated networks arise everywhere in society! For
example,

• the Facebook graph,

• the disease transmission graph

• the collaboration graph

• and many others..

Analysis of Networks: Important across fields (sociology, medicine etc),
rich in theory (random graphs, graph algorithms etc)

Privacy on Networks: Huge concern (e.g. Cambridge Analytica Scandal)
and also rich in theory. Many open questions for networks!!
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This work: Limits of Network Estimation under Privacy

New algorithms and impossibility results
for estimating complex network models,
subject to rigorous privacy constraints (node differentially privacy.)

(1) Stochastic Block Model-Estimation of probability matrix:
-new analysis of recent private algorithm (BCS’15)
-matches in many regimes the optimal non-private estimation rate

(2) Erdos-Renyi-Estimation of probability p:
-Compute tightly the optimal estimation rate
-Uses a novel extension lemma, potentially of broad use
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Node Differential Private Algorithms

Intuition: If n-vertex G, G′ differ on one user’s (node’s) data then the
outputs of the algorithm are close (in distribution).

Node-neighbors: We call G, G′ node-neighbors if they differ only on the
neighborhood of one node.

Definition

A randomized A on n-vertex graphs is ε-node-DP if for node-neighbors
G, G′and S,

exp (–ε)P
(
A(G′) ∈ S

)
≤ P (A(G) ∈ S) ≤ exp (ε)P

(
A(G′) ∈ S

)
.
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Modeling Large Networks: k-Stochastic Block Model

1-SBM (Erdos Renyi) G(n, p): n nodes every edge appears
independently with probability p.

2-SBM G(n,

[
p1,1 p1,2
p2,1 p2,2

]
) with p1,2 = p2,1: n nodes, 2 groups (each

node chooses u.a.r.), and each edge between vi, vj with probability
pgroup(vi),group(vj).

Figure: 9 vertices Figure: 2 groups Figure: Assign Edges
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Modeling Large Networks: k-Stochastic Block Model

k-SBM, G(n, B), for sym. B ∈ [0, 1]k×k:
n nodes, k groups (node choice u.a.r.),
each edge between vi, vj with probability Bgroup(vi),group(vj)

.

Constraint (!) : (ρ-sparse) k-SBM, G(n, B), where B ∈ [0, ρ]k×k.

(Vast literature - planted bisection, planted clique, graph limits etc)

Figure: n = 12 Figure: k = 4 Figure: Assign Edges

.
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The Statistical Question

Task: From one sample G from G(n, B) estimate B using an ε-node-DP
estimator A.

Each A has (worst-case over B) error

err(A) = max
B∈[0,ρ]k×k

EG∼G(n,B)

[
1

k2
‖A(G) – B‖22

]
.

The Estimation Rate

Rk (ε) = min
A ε–node-DP

err(A).

(For agnostic learning see paper!)
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k-SBM Upper Bound

Theorem (informal)

For any ε > 0,

Rk(ε) = O

(
ρ

(
k2

n2
+

log k

n

))
+ O

(
ρ2

(k – 1)2 log n

nε
+

1

n2ε2

)
.

.

• Intuition: k2

n2
parametric rate for B, log k

n = log kn

n2
combinatorial rate

• Via a new detailed analysis of an ε-node-DP algorithm proposed in
(BCS ’15).

Borgs, Chayes, Smith, Zadik (MIT) Private Network Estimation 8 / 14



k-SBM Upper Bound

Theorem (informal)

For any ε > 0,

Rk(ε) = O

(
ρ

(
k2

n2
+

log k

n

))
+ O

(
ρ2

(k – 1)2 log n

nε
+

1

n2ε2

)
.

.

• Intuition: k2

n2
parametric rate for B, log k

n = log kn

n2
combinatorial rate

• Via a new detailed analysis of an ε-node-DP algorithm proposed in
(BCS ’15).

Borgs, Chayes, Smith, Zadik (MIT) Private Network Estimation 8 / 14



k-SBM Upper Bound: Optimality in many regimes

Theorem (informal)

For any ε > 0,

Rk(ε) = O

(
ρ

(
k2

n2
+

log k

n

))
︸ ︷︷ ︸

optimal non-private rate (KTV’17)

+O

(
ρ2

(k – 1)2 log n

nε
+

1

n2ε2

)
.

Comments:

• (GLZ’14), (MS’17), (KTV’17): Optimal ε-independent part.

• Many regimes (e.g. ε, k constant and 1
n < ρ < 1

log n):

-(BCS’15) algorithm, optimal over all algorithms!
-No additional error with privacy!
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A lower bound for k ≥ 2

Suppose each node i ∈ [n] chooses the group in a close to uniform way.
(Say each group has probability in [ 1

4k , 4k ].)

Proposition (informal)

For k ≥ 2 and any ε > 0,

R∗k(ε) = Ω

(
1

n2ε2

)
,

where R∗k stands for the rate for the new variant of the SBM.

Proof: reduction to privately estimating q ∈ [0, 1] out of n samples from
Bern(q).
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The case k = 1: Learning privately Erdos Renyi graphs

Observe simply a G(n, p): estimate privately p!

Upper bound by main result, Laplace noise to edge density, median of
degrees etc.
Lower bounds, by vanilla methods such as packing arguments.

What is the true ε-dependent rate?!
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The case k = 1: 1
n4ε2 ≤ ε – dep. ≤ 1

n2ε2

Theorem

For ε > log n
n ,

R1(ε) = O(
1

n2
+

log n

n3ε2
).

Many novel techniques including a general extension lemma (next slide)!

Proposition (n3 is tight!)

Furthermore, if G is sampled u.a.r. from graphs with a fixed number of
edges (conditional Erdos Renyi) for ε constant,

R′1(ε) = Ω(
1

n3ε2
).
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The extension lemma: beyond networks

Technical challenge with designing differential private algorithms:

• Privacy constraint should hold for any pair of datasets

• Accuracy guarantee suffice to hold for typical datasets of our input
distribution.

Key contribution: Suffices to be private only for typical datasets of our
input distribution!

Proposition (“Extending Private Algorithms at ε-cost”)

Let Â ε-DP on a subset of the input space H ⊆M. Then there exists A
defined on M which is 1) 2ε-DP on M and 2) for every D ∈ H,

A(D)
d
= Â(D).

Generalizes “extensions” from (KNRS’13), (BBDS’13), (CZ’13),
(BCS’15), (RS’15).
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Summary of Contributions

(1) We focus on optimal private estimation of Stochastic Block Model
and Erdos Renyi models.

(2) Stochastic Block Model: new analysis of existing algorithm
(BCS’15) matches optimal non-private rate in many regimes.
Graphons (k-SBM for k→ +∞) and agnostic learning in the paper!

(3) Erdos-Renyi: “almost” tight optimal rate.

(4) Proved an extension lemma - potentially of broad use.

Thank you!!

Borgs, Chayes, Smith, Zadik (MIT) Private Network Estimation 14 / 14



Summary of Contributions

(1) We focus on optimal private estimation of Stochastic Block Model
and Erdos Renyi models.

(2) Stochastic Block Model: new analysis of existing algorithm
(BCS’15) matches optimal non-private rate in many regimes.
Graphons (k-SBM for k→ +∞) and agnostic learning in the paper!

(3) Erdos-Renyi: “almost” tight optimal rate.

(4) Proved an extension lemma - potentially of broad use.

Thank you!!

Borgs, Chayes, Smith, Zadik (MIT) Private Network Estimation 14 / 14



Summary of Contributions

(1) We focus on optimal private estimation of Stochastic Block Model
and Erdos Renyi models.

(2) Stochastic Block Model: new analysis of existing algorithm
(BCS’15) matches optimal non-private rate in many regimes.
Graphons (k-SBM for k→ +∞) and agnostic learning in the paper!

(3) Erdos-Renyi: “almost” tight optimal rate.

(4) Proved an extension lemma - potentially of broad use.

Thank you!!

Borgs, Chayes, Smith, Zadik (MIT) Private Network Estimation 14 / 14



Summary of Contributions

(1) We focus on optimal private estimation of Stochastic Block Model
and Erdos Renyi models.

(2) Stochastic Block Model: new analysis of existing algorithm
(BCS’15) matches optimal non-private rate in many regimes.
Graphons (k-SBM for k→ +∞) and agnostic learning in the paper!

(3) Erdos-Renyi: “almost” tight optimal rate.

(4) Proved an extension lemma - potentially of broad use.

Thank you!!

Borgs, Chayes, Smith, Zadik (MIT) Private Network Estimation 14 / 14



Summary of Contributions

(1) We focus on optimal private estimation of Stochastic Block Model
and Erdos Renyi models.

(2) Stochastic Block Model: new analysis of existing algorithm
(BCS’15) matches optimal non-private rate in many regimes.
Graphons (k-SBM for k→ +∞) and agnostic learning in the paper!

(3) Erdos-Renyi: “almost” tight optimal rate.

(4) Proved an extension lemma - potentially of broad use.

Thank you!!

Borgs, Chayes, Smith, Zadik (MIT) Private Network Estimation 14 / 14


