Some Linear Algebra Problems

Isabel Vogt

Last Edited: May 24, 2013

Most of these problems were written for my students in Math 23a/b at Harvard in 2011/2012 and 2012/2013.

1. Consider a parallelogram spanned by vectors \vec{v} and \vec{w}.

(a) Prove the “parallelogram law,” which says that the sum of the squares of the lengths of the diagonals of the parallelogram is equal to $2(|\vec{v}|^2 + |\vec{w}|^2)$.

(b) Use vectors to prove that the diagonals of a rhombus are perpendicular.

2. T/F:

(a) For all $\vec{v} \in \mathbb{R}^3$, the set of vectors $\vec{u} \in \mathbb{R}^3$ such that $\vec{u} \times \vec{v} = \vec{0}$ forms a subspace of \mathbb{R}^3.

(b) The set of all invertible $n \times n$ real matrices forms a subspace of \mathbb{R}^{n^2}.

3. A linear transformation $T : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ sends the first standard basis vector \vec{e}_1 to the vector \vec{a}_1. Similarly $T(\vec{e}_2) = \vec{a}_2$ and $T(\vec{e}_3) = \vec{a}_3$. Furthermore $\vec{a}_1 + \vec{a}_2 + \vec{a}_3 = 0$. Does there exist a unique $S = T^{-1}$ such that $S \circ T = T \circ S = \mathbb{I}$. Provide a proof.

4. T/F: The linear transformation $R_\theta : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ given by rotation through angle θ about the origin has at least one real eigenvalue.

5. T/F: If $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ has n linearly independent eigenvectors, then T is invertible.

6. T/F: Given an orthonormal basis $\{\vec{v}_1, ..., \vec{v}_n\}$ for a vector space V, if $\vec{w} \in V$ is in terms of the standard basis, then $\vec{w} = c_1 \vec{v}_1 + ... + c_n \vec{v}_n$ where $c_i = w \cdot \vec{v}_i$.

7. T/F: If $A : \mathbb{R}^n \rightarrow \mathbb{R}^n$ and $B : \mathbb{R}^n \rightarrow \mathbb{R}^n$ are two linear transformations such that $A = C^{-1} \circ B \circ C$ for some invertible C, then $\dim \ker(A) = \dim \ker(B)$

8. T/F: Each of the follow forms a vector space over \mathbb{R} (evaluate them seperately):

(a) $D[\pi, 2\pi]$, the space of discontinuous real-valued functions

\[
d : [\pi, 2\pi] \rightarrow \mathbb{R}
\]

under the composition law $(d_1 + d_2)(x) = d_1(x) + d_2(x)$ and scaling law $r(d_1(x)) = r \ast d_1(x) \ \forall r \in \mathbb{R}$

(b) The space of invertible linear transformations $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ under the composition law $(T_1 + T_2)(x) = T_1(x) + T_2(x)$ and obvious scaling law by elements of \mathbb{R}
(c) The set of symmetric matrices $A \in \text{Mat}(3 \times 3)$ with $\text{trace}(A) = 0$.

(d) Functions from a set $S = \{1, 2, ..., n\}$ to \mathbb{R} under the obvious composition and scaling rules.

(e) The set of real polynomials of degree less than or equal to 3 with a root at $+3$.

9. Does row reduction preserve the kernel and image of a linear transformation $A : \mathbb{R}^n \to \mathbb{R}^m$? If yes, why? If no, what does it preserve?

10. Given that a linear transformation T acting on a real vector space V has at least one eigenvalue, what is the codomain of T? If T has only one eigenvalue what can you say? If T has an eigenbasis without distinct eigenvalues what can you say about geometry of T? Say $T : \mathbb{R}^3 \to \mathbb{R}^3$, $|T| \neq 0$, but $\text{trace}(T) = 0$. If T does not have distinct eigenvalues but has an eigenbasis, what can you say about the eigenvalues of T?

11. Let V be an n-dimensional complex vector space. Consider two linear transformation $A : V \to V$ and $B : V \to V$. Prove that if A and B do no commute (i.e. if $A \circ B \neq B \circ A$) then there cannot exist a basis $\{v_i\}$ for V which is simultaneously an eigenbasis for both A and B. (Hint: proceed by contradiction.)

12. This problem will lead you through a proof and application of the Buckingham π Theorem, one of the most fundamental results in dimensional analysis. Given a system of n physical variables u_i (say the gravitational constant g, mass of an object m, the length of a string l, etc.) in k independent physical dimensions v_i (for example T time, M mass, L length, etc),

(a) Show that the space of fundamental and derived “units” forms a vector space over \mathbb{Q}. (Hint: if L, T, M are fundamental units, then $M \ast L \ast T^{-2}$ is a derived unit, as is $(M \ast L \ast T^{-2})^{3/2}$. How might we represent these derived units in terms of fundamental units? What might we call the “fundamental units”? Note that multiplying a derived/fundamental unit by a scaler is considered an equivalent unit.)

(b) Now consider a matrix M which we will call the dimension matrix for obvious reasons. Each column of M tells how to form the n variables u_i out of the k physical dimensions v_i, i.e. the $(s,t)^{th}$ entry of M is the power of the unit v_s in the constant u_t.

i. What are the dimensions of M?

ii. Describe in words what the result of a matrix multiplication $M \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$ is.

iii. Apply a theorem to find a formula for the number of independent *dimensionless* parameters π_i (combinations of the original n physical variables) in terms of n and some characteristic of the matrix M. What are the bounds on the maximum and minimum number of independent dimensionless parameters?

(c) A standard application of dimensional analysis is to determine a relation for the period of a pendulum. The obvious list of physical quantities here are
<table>
<thead>
<tr>
<th>Description</th>
<th>Variable</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>length of string</td>
<td>(l)</td>
<td>(L)</td>
</tr>
<tr>
<td>arc of displacement</td>
<td>(s)</td>
<td>(L)</td>
</tr>
<tr>
<td>gravitational constant</td>
<td>(g)</td>
<td>(L , T^{-2})</td>
</tr>
<tr>
<td>mass at end of string</td>
<td>(m)</td>
<td>(M)</td>
</tr>
<tr>
<td>period of swing</td>
<td>(\tau)</td>
<td>(T)</td>
</tr>
</tbody>
</table>

Where \(L \) is length, \(M \) is mass, and \(T \) is time. Use the methods developed in part (b) and in class to find an expression for the period \(\tau \) of the pendulum in terms of a \(*\)dimensionless constant\(*\) times some relation in the above physical variables.

13. Suppose \(A : \mathbb{R}^3 \to \mathbb{R}^3 \) is a linear transformation such that for three linearly independent \(\vec{v}_1, \vec{v}_2, \vec{v}_3 \) we have

\[
A \vec{v}_1 = \lambda \vec{v}_1, \quad A \vec{v}_2 = \lambda \vec{v}_2, \quad A \vec{v}_3 = \lambda \vec{v}_3
\]

for some \(\lambda \in \mathbb{R} \).

(a) In the eigenbasis, what does \(A \) look like? Justify your answer.
(b) in the standard basis, what does \(A \) look like? Justify your answer.
(c) Give a condition on \(\lambda \) that determines when \(A \) is an isomorphism.

14. Let \(T \) be the linear transformation given by

\[
T : \mathbb{R}^4 \to \mathbb{R}^3, \quad T \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 3x + y \\ 2z \\ y + w \end{bmatrix}
\]

Furthermore, let \(B_1 \) be an alternative basis for \(\mathbb{R}^4 \) given by

\[
B_1 = \left\{ \begin{bmatrix} 1 \\ 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 0 \\ 5 \end{bmatrix} \right\}
\]

And let \(B_2 \) be an alternative basis for \(\mathbb{R}^3 \) given by

\[
B_2 = \left\{ \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 4 \\ 0 \\ 2 \end{bmatrix} \right\}
\]

(a) Find the matrix representation for \(T \) with respect to the standard basis. Is this unique? Find a basis for the image and kernel of \(T \).
(b) Determine the matrix representation for \(T \) with respect to \(B_1 \) in the domain and \(B_2 \) in the codomain in two ways:
 i. Determine how \(T \) acts on the basis vectors \(B_1 \) in terms of \(B_2 \)
ii. Write down an expression in terms of change of basis matrices and evaluate it.

(c) Does T admit an eigenbasis?

15. Let V be a finite dimensional vector space. Prove that any ordered spanning set of vectors can be reduced to a basis by removing vectors from the set, and any ordered linearly independent set of vectors can be expanded to a basis by adding vectors in V.

16. T/F: If A is a 3×3 matrix with an eigenbasis but only 2 distinct eigenvalues, then for any $\vec{w} \in \mathbb{R}^3$, $\{\vec{w}, A\vec{w}, A^2\vec{w}\}$ are linearly dependent.

17. T/F: The operation \times (the cross product) is a linear operator from $(\mathbb{R}^3, \mathbb{R}^3) \rightarrow \mathbb{R}^3$.

18. Approximations

(a) True or False: for every $n \times n$ real matrix A, if A has an eigenvalue, then there is an explicit formula for this eigenvalue in terms of the coefficients of A (i.e. something along the lines of the quadratic formula)

(b) As you may have discovered, it is something of a pain to determine the eigenvalues of an $n \times n$ matrix of dimension greater than 3 using the formulas we derived in class; as n becomes even larger, you can imagine that this becomes unwieldy even for a computer. As such there are many eigenvalue-computing algorithms that approximate the eigenvalues of a matrix.

Assume that A is diagonalizable (i.e. an eigenbasis exists) with λ_1 the unique eigenvalue of greatest magnitude. For a random (you can assume “nice”, but see part D) vector b_0, we define the recursive relation

$$b_{k+1} = \frac{Ab_k}{|Ab_k|}$$

i. First, find an expression for b_{k+1} in terms of the original b_0.

ii. As $k \rightarrow \infty$, what can you hypothesis about b_{k+1}? Use what you know about A to prove your claim. In the process, if you haven’t approximated λ_1 and an associated unit eigenvector, you might want to reconsider.

iii. Bonus: What is the (approximate) rate of convergence of the above algorithm? How does this compare to other algorithms we have seen in this class. (Note: your answer will depend on some characteristic of A).

iv. Where could the above algorithm go wrong (think about b_0).

19. The Trace
(a) Working from the definition of matrix multiplication, prove that $\text{tr}(AB) = \text{tr}(BA)$.

(b) Use this to prove that the trace of a matrix A is preserved under change of basis. This is very good because it says that the trace is an algebraic invariant of the operator A that is independent of coordinate system.

(c) Use the above analysis to conclude that if A has an eigenbasis with eigenvalues $\{\lambda_i\}$, then

$$\text{tr}(A) = \sum_i \lambda_i$$

20. Symmetric Matrices

(a) For A a symmetric matrix which admits an eigenbasis with unique eigenvalues. Prove that for v_i and v_j eigenvectors,

$$v_i \cdot v_j = 0 \text{ for } i \neq j$$

This says that the eigenvectors are pairwise orthogonal.