
Distributed Software Architecture of PEBB-based Plug and Play Power Electronics
Systems

Jinghong Guo, Ivan Celanovic, and Dushan Borojevic
Center for Power Electronics Systems

The Bradley Department of Electrical and Computer Engineering
Virginia Polytechnic Institute and State University

Blacksburg, VA 2406 1-0 179

dbstract- A novel hierarchical software architecture, based
on PEBB concept, is proposed to build flexible, configurable and
reusable power electronics system control software. Some
important issues about software design will be addressed. And
as an example, a three-phase DC-AC inverter will be
implemented under this hierarchical architecture.

I. INTRODUCTION

In traditional centralized digitally controlled power
electronics systems, construction, debugging and
maintenance of the control software are complicated and
difficult because of the lack of standardization and
modularization, and also-because of the strong dependence on
system hardware. In computer research, there have been
many mature technologies addressing similar issues. For
example, an operating system [13 manages system resources,
and handles the interfaces to all kinds of peripherals. The
object-oriented technology [2] provides a successful way to
both reduce software design complexity and modularize
software. Plug and Play (PnP) [3] technology gives a
computer system the capability of automatic configuration, so
that the system construction becomes much user-friendly.

The concept of power electronics building blocks (PEBB)
[4] provides a way to hardware standardization of power
electronics systems. Based on PEBB concept, this paper
proposes to apply some computer software concepts and
technologies to design flexible, reusable, automatically
configurable power electronics system control software.

To do this, the control software will be hnctionally
divided into hierarchical levels. By building modularized
software objects within each level, standardizing interfaces
between levels, the application software will be independent
of the hardware specifications of power stage. A$ long as
supporting the standardized interfaces between levels,
products from different vendors can communicate and work
with each other. Furthermore, if both sides of an interface
support device self-identification and system resources
assignment, then the so-called PnP can be implemented at
t h s interface.

Section I1 will discuss the hierarchical division of control
software of power electronics systems, functionality of each

This work was supported primarily by the ERC Program of the National
Science Foundation under Award Number EEC-9731 677.

level, and how to draw boundaries between levels. Section I11
will address software modularization issues by applying
object-oriented technology. In section IV, other important
software issues surrounding implementation of reliable power
electronics control software will be discussed. Section V will
concentrate on the software design at the middle level of the
whole hierarchical architecture, which implements a
converter control algorithm. In Section VI, a three-phase DC-
AC closed loop inverter is designed as an example to show
the implementation of the hierarchical PnP power electronics
system control software. Experimental results will be shown.

11. HIERARCHICAL SOFTWARE ARCHITECTURE OF PNP POWER
ELECTRONICS SYSTEMS

A . Hierarchical division ofpower electronics control

Fig. 1. shows a way to functionally divide the control in
power electronics systems. In this hierarchical architecture,
the control software is divided into 3 hierarchies-high-level
control, application manager (AM) and hardware manager
(HM). The division is based on functionality. The high-level
control performs tasks at the system level, such as responding
to users’ commands, coordinating performances between
converters, and monitoring system execution, etc. An AM is
a controller at the converter level. It calculates control
information-for example, PWM commands-for a
converter. An HM is a controller at the PEBB level. The HM
for a PEBB generates PWM pulses to control switch
operations, according to the control information received
from the AM, monitors the status of a PEBB, and performs
fast protection within a PEBB.

I

urcr c13

Fig. 1. Plug and Play power electronics system architecture

0-7803-6618-2/01/$10.00 0 2001 IEEE I12

The purpose of drawing boundaries between herarchical
levels is to make each level as functionally self-contained as
possible, and make higher level application software as
independent of lower level hardware as possible. Next, we
will take AM-HM levels as an example to show how to
draw boundaries between levels.

B. Functional division between AM and HM

For AM-HM levels, the control algorithm of a converter
is application specific, and generating pulses for switches is
directly dependent on features of the power stage hardware.
Roughly, the software division between AM and HM can be
drawn in such a way that the AM level implements the
converter control algorithm, the HM level generates switch
pulses, and the interface of AM-HM levels translates PWM
commands into switch PWM pulse related information.

However, how to draw the software boundary between AM
- HM levels accurately, for example, where a modulator
should be implemented, has more than one solution. The
boundary drawing can be arbitrary, which means functions
implemented at each level and data transferred between
hierarchies are well defmed, no matter what kind of hardware
is used at each level. A better solution allows boundaries float
somewhat between different systems and applications, so that
higher system flexibility can be achieved.

For example, if the HM has enough calculation capability,
some calculation can be shifted to the HM level. Thus the
workload of the AM can be reduced, while the HM can be
more efficiently used. On the contrary, if the HM is as simple
as a logical circuit of some data buffers and timers, the AM
should take over the calculation work as much as possible.
The data transferred through each interface will vary with the
floating of software boundaries. If the boundary floating is
achieved by software instead of hardware, this method of
interface definition will make the system structure more
flexible and open without additional hardware requirement.

Input

111. MODULARIZE POWER ELECTRONICS CONTROL SOFTWARE

Another important goal of the PEBB-based PnP power
electronics systems design is to modularize and standardize
power electronics control software, hence make construction,
debugging and maintenance of the control software much
easier. In computer research, object-oriented technology [5]
is a main method to achieve software modularization and
reduce software complexity.

Fig. 2. shows the structure of a power electronics software
object. Each object has a well-defined interface, a parameter
field, inside code and exception handler. The interface
indicates the communication with other objects, such as
inputs, output and data format. The interface also defines the
function that the object provides. The inside code implements
the function of the object, with implementation of code
invisible to the outside. The parameter field stores parameters
that may affect or direct the execution of the object, such as

BY OBJECT-ORIENTED TECHNOLOGY

Output Function

Interface

Field O p e r a t i o w Exception
Parameter

Code Handler I
\

Fig. 2. Structure of power electronics control software object.

Fig. 3. shows an example of a current regulator object.
From the outside of the object, what known is this object
works as a current regulator, takes d channel current
reference, q channel current reference, d channel current and
q channel current as input, outputs voltages references for d
and q channels. How the regulator is implemented is invisible
to the outside.

parameter \ T

idref--!-+(? - compensator vd

id

parameter

Fig. 3. An object example: current regulator.

Using object-oriented software structure can also benefit
the reliability of software, which will be discussed later in
section IV.

Iv. TIMER WATCH DOG AND EXCEPTION HANDLING
MECHANISMS

Two other important issues about building reliable control
software will be discussed in this section: ensuring that all the
time constraints can be satisfied, and protecting the system
from exceptions.

Power electronics systems are hard real-time systems. The
correctness of a result does not only mean that the value of
the result is correct, but also means that the result must be
achieved before some time deadline. If the AM embedded
code is stuck for some unknown reason-for example, the
code cannot return from a interrupt service routine (1SR)-
the AM should also give out some converter control
information instead of losing control of the converter. For a
critical system performance, a time limit will be set. If the
time for this performance expires, and the performance is not
finished as expected, then the watch dog timer for the
performance will force the performance to end. And some

773

reasonable but possibly not accurate results will be given out
to keep the converter running.

Object-oriented software offers a method of exception
handling at the object level. Each software object has an
exception handler to deal with exceptions raised within the
object. Only if there is an exception that- cannot be handled
inside the object, will this exception be propagated to the
caller of the object. The purpose is to reduce the effect of an
exception withm an object to the outside as little as possible.

Converter real-time control subsystem

I P
: E

Configuration Manager i 0
' S

1 (Drivalnstaller]

.. F Information Disoatcher
V. SOFTWARE STRUCTURE DESIGN OF AM

So far the hierarchical division of power electronics control
software has been discussed. This section presents the
software design of AM, which implements control at the
converter level.

1

Fig. 4. Software structure of AM.

A. Sofmare structure of AM

Traditionally, converter control means when the converter
is running, the controller should generate proper control
commands every switching period, make sure that all
computations meet their deadlines, and handle certain
exceptions. This is the type of control that AM must perform
at the running time.

To do PnP at the AM-HM level requires additional
hnctionality at AM. Before the AM can control HMs, the
AM must configure the lower level components according to
both application requirements and lower level hardware
specifications, which is called converter configuration. To
support PnP at AM-HM levels, an HM should be able to
provide the self-identification information to the AM, and
accept the system resource assignment from the AM. When
the system starts up, the AM should have the ability to get
PEBB hardware specifications from HMs, and configure
HMs in such a way that the requirements of the specific
applicatio-n can be satisfied. Also the AM should be able to
assign system resources, such as addresses and data buffers,
to HMs without any conflict.

So besides implementing the converter control algorithm,
the AM should also provide some basic system services for
PnP configuration, and handle interfaces to other levels.
Normally, these functions are implemented by operating
system in computer systems. Similarly, an embedded
operating system dedicated for power electronics systems,
named power electronics operating system (PEOS) is
introduced. The whole control software systems at AM are
composed of two subsystems: converter real-time control
subsystem and PEOS, as shown in Fig. 4.

The- converter real-time control subsystem can be seen as
an object, and is application specific. A converter real-time
control object is invoked once every switching period. It may
have many sub-objects, such as sensor reading, filters,
regulators, etc. Different software object combinations
implement different applications. While the embedded real-
time PEOS provides basic system services, such as system
configuration, system resource allocation and maintenance,

B. Configuration Manager

In the PEOS, an object named configuration manager
(CM) handles the converter PnP configuration. As shown in
Fig. 4., the CM is composed of three components: the device
detector, the driver installer and the device registry. The
device detector searches the AM-HM network for HM that
has not been configured, and assigns unique address to newly
detected HM. The driver Installer installs a software dnver
for a newly detected HM. The device registry is a database,
which contains the driver information of all HMs controlled
by one AM. The CM has two primary functions: to provide
the software interface through which configuration
information can be exchanged between the AM and HMs; to
coordinate between the device detector, the device installer
and the device registry.

C. Drivers

To build open communication between levels, the concept
of driver will be introduced. A driver, in computer
terminology, is defined as a set of functions that manipulates
a hardware device [6] . In AM-HM levels, a dnver is
implemented as software objects, which are used by the AM
to communicate with a specific HM.

In a traditional centralized digitally controlled power
electronics system, the designer of the application software
must know every detail about U 0 ports, the data format of the
converter controller and power stage interface in order to
build up the communication between the controller and the
power stage. Even small changes in the hardware setup will
cause a lot of modifications in the control software. By using
a driver, all the hardware specifications and communication
details will be encapsulated within the driver, so that the
application can be independent of the infrastructure of other
levels.

It has been mentioned in section I1 that floating boundary
definition helps to build flexible and open systems. To
support floating boundary, the format of data, instead of the
content of data, exchanged between levels should be defined.
The data packet format at the AM-HM interface is shown in
Fig. 5. In the packet head, Packet-Type indicates the type of

774

Packet-Type

D. Information Dispatcher

Normally the results from the converter real-time control
are for a whole converter. While each HM needs control
information specific for its PEBB. Information Dispatcher is
such a software object, which decomposes the converter
related control mformation into control information for each
PEBB. Further, a driver translates the control information
into the format that can be understood by its corresponding
HM. With Information Dispatcher and drivers, the control
algorithm can really be independent of the hardware at the
PEBB level.

Src-Addr Dest-Addr Length

B. PnP configuration design

Configuration Manager, based on PES-Net.
Fig. 7. shows the PnP configuration mechanism of the

Device Detector

Message arrives?

A PE66-IDNT packet? * Driver-Installer

J
Get Device-Name and Device-lD

Install driver

Register the Device-ID, Device-Name
and the beginning address of the driver

installed to the Device-Registry

4

No 4
Yes J

J

A Sys-ConfigReg packet?

Convener configuration ends

Return to Main program

Fig. 7. Flow chart of Configuration Manager (CM).

When the converter configuration begins, the device
detector broadcasts a system configuration request to the
AM-HM network. Fig. 8. shows the data format of a system
configuration request packet.
Head

Packet-Type Src- Addr Des t -Addr Length
Sys-Conf ig-Reql 000 ... 0 I 1 1 1 ... 1 I 1

VI. A PEBB-BASED PLUG AND PLAY THREE-PHASE INVERTER
DESIGN

In this section, a three-phase inverter will be presented as
an example to show the implementation of the system control
software on the software architecture and software
technologies discusses above.

A. System architecture

Fig. 6. shows the system architecture. AM-HM level
communication is through PES-Net [7], which is optic fiber
serial link, with transmission capacity of 125Mbps.

optic
Fiber-

comniunicatton

Fig. 8. Data format of Sys-Config-Req packet.

The Packet-Type field indicates that this is a system
configuration request. The Src-Addr field is all zeros, which
is a special address stands for the AM, because for a
converter configuration packet, the sender can only be the
AM. The Dest-Addr is all ones, another special address,
meaning the packet is a broadcast message. Every node in the
network can receive this packet. The only field in the packet
body is Device-ID, which contains the next available device
address for a PEBB that has not been configured.

When a HM receives a converter configuration packet, it
will check itself first to determine whether it has been
configured or not. If the PEBB has been configured, it will
simply pass the packet to the next node on the network. If the
HM has not been configured, it will send its self-
identification packet back to the AM. The data format of the
device self-identification packet is shown in Fig 9. The only
information a PEBB tells the AM is its device name. A
device name is unique for each type of PEBB, which can be
used by the AM to find and install a proper dnver for the
PEBB.

i ' chipset
Fig. 6. System architecture of PEBB based PnP DC-AC converter.

775

Head

-

Device Name
Driver-Entry

AM-PEBB network
Name of the device
The entry address of the driver in the
memory

Body

Device-Name

Fig. 9. Data format of Device-IDNpacket

When the AM receives a device self-identification packet,
the device installer will install a driver for the PEBB
according to the device name it gets from the packet. And the
device installation information will be logged in the device
registry. The device registry is a kind of system resource and
is maintained by the PEOS. It tells the converter control the
code location of the driver for a specific PEBB. Each device
has an entry in device registry. And each entry has three
fields, as shown in TABLE 1 .

TABLE 1
DEVICE-REGISTRY ENTRY

Item Name 1 Description
Device ID I Identification of the PEBB in the

When the AM receives a system configuration request
packet, it knows that all the devices on the AM-HM network
have been configured. This also implies that the system
configuration is finished.

D. Converter control algorithm design

For this three-phase DC-AC PnP inverter application, the
current loop is closed. Fig. 10. shows the inverter control
algorithm implemented by software objects.

Cycle Cycle Cycle
Scalar Scalar Scalar

da db dc
abc-dqo

I I I Id-ref

I 2-DRegulator 3-D Phase Leg Duty Cycle
Generator

la 4 Id-ref I 2-DRegulator

Fig. 10. Closed loop inverter control algorithm implemented by software
objects.

A “ADC Scalar” object takes sensor values as input and
outputs value after scaling and offsetting. Object “abc-dqo”
transforms abc coordinates to dqo coordinates. Object “3-D
phase Leg Duty Cycle Generator” is the information
dispatcher. And Object “Duty Cycle Scalar” transform duty

cycle into clock ticks, which can be used directly by a
specific HM to generate switching pulses.

For the exception handling, before the duty cycle value is
output to HM driver, the validity of the value will be
checked. If the duty cycle is beyond the valid range, for
example, outside [0,1], the stored previous calculation result
will be used as the output.

E. Experimental results

The IGBT devices used in the smart PEBB are
POWEREX, 1200V/300A. Fig. 11. shows the experimental
waveforms under conditions:

1) DC input voltage: 200V;
2) Switching frequency: 20lcHz;
3) Current loop closed;
4) Inductive load: R = 3ohm, L = 0.3mH.

0 T e k ~ S O O k s / r 33 Acqs
t - -7 - . , I

Unstibie
histogram

C4 Mean 104.4 v

CO Pk-Pk 240 V

Fig. 1 1. Phase current and voltage waveforms

In Fig. I l . , Chl shows the voltage of phase A, with
200Vfdiv; Ch2 shows the phase current of phase A, with
SAfdiv; Ch3 and Ch4 shows the voltage and current of phase
B respectively.

VII. CONCLUSION AND FUTURE WORK

This paper presents a novel hierarchical software structure
of PEBB-based PnP power electronics systems. In the
hierarchical structure, the power electronics system control
software is divided into three levels-high-level control,
application manager and hardware manager. Software design
issues, such as boundary definition, software modularization,
exception handling, are addressed. Software design of AM is
discussed in detail. A three-phase DC-AC PEBB-based PnP
inverter is implemented as an example to show the
implementation of the AM.

Future work includes investigating more suitable software
architecture for control distribution, concurrent execution and
software reuse. Dataflow is a promising candidate. Also more
flexible control partition method needs to look into.

REFERENCES

[13 S. Haisler, “ The design of operating systems for small
computer system,” A Wiley-Interscience Publication, 1983,
pp. 18-26.

[2] G . Blair, J. Gallagher, D. Hutchison and D. Shepherd,
“Object-oriented languages, systems and applications,” An
Imprint ofJohn Wiley &Sons, 1991, pp.1-3.

[3] J. Kelsey, “Programming Plug and Play,” by Snms Publishing, 1995,
PP. 2.

[4] T. Ericsen and A. Tucker, “Power electronics building blocks
and potentia1 power modulator applications,” IEEE Conference
Record of the 23rd International Power Modulator Symposium,
New York, NY, pp. p.12-15; 1998.

[5] G. Booch, “Object oriented design”, by the
BenjaminKummings Publishing Company, 199 1, pp.32-37.

[6] K. Hazzah, “Writing windows VxDs and device
drivers”, [5] Karen Hazzah, “Writing windows VxDs and
device drivers,” by RdtD books, 1997, pp.1.

[7] 1. Milosavljevic, D. Borojevic., I. Celanovic,
“Modularized Communication and Control Structure for
Power Converters,” 8‘‘ European Conference on Power
Electronics and Applications, EPE, September 1999.

777

