
Programming Deliberative Agents for Mobile
Services: The 3APL-M Platform

Fernando Koch1, John-Jules C. Meyer1, Frank Dignum1, and Iyad Rahwan2

1 Institute of Information and Computing Sciences,
Utrecht University, Utrecht, The Netherlands
fkoch@acm.org, {jj, dignum}@cs.uu.nl

2 Institute of Informatics, The British University in Dubai,
P.O. Box 502216, Dubai, UAE

iyad.rahwan@buid.ac.ae

Abstract. 3APL-M is a platform for building deliberative multi-agent
systems whose components execute on handheld and embedded compu-
tational devices. The solution takes advantage of the 3APL language and
definitions, delivers a methodology for building Belief-Desire-Intention
inference systems and provides an interface to integrate the applications
to the external world. The library is distributed for the Java 2 Micro
Edition (J2ME) programming platform, which is widely adopted by the
hardware manufactures and available for a myriad of mobile computing
devices. The role of agent-based computing for mobile services is ex-
plained, the architecture and programming structures are presented and
proof-of-concept applications are demonstrated.

1 Introduction

The promise of mobile technologies is to remove the bindings between a fixed
space and a person’s information and communication resources. Intelligent mo-
bile services should make use of local processing to reason about the user’s con-
text and predict user’s intents, actions and location. However, mobile computing
introduces issues of resource limitations, security, connectivity and, limited power
supply, which are inherent to the environment [26]. These characteristics call for
the optimal use of local resources, communications and connectivity. Therefore,
the problem is how to create intelligent mobile applications that execute on mobile
computing devices.

Agent-based computing [16] seems to offer a set of features that are very
closely aligned with the requirements of service delivery challenge in mobile com-
puting [18]. For the purpose of this paper, agents are computer systems capable
of flexible autonomous action in dynamic, unpredictable and open environments.

This paper presents the 3APL-M (Triple-A-P-L-M) platform for implement-
ing deliberative autonomous agents that execute on mobile computing devices.
It works as a scaled down implementation of the 3APL language interpreter [14]
re-designed for the requirements of mobile computing applications. The infer-
ence system implements the Belief-Desire-Intention paradigm [25], which intrin-
sically provides the solutions for designing systems capable to creating mental

R.H. Bordini et al. (Eds.): ProMAS 2005, LNAI 3862, pp. 222–235, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Programming Deliberative Agents for Mobile Services 223

models. Moreover, it supplies the programming structures to implement sensors
for context-sensitiveness [12] and actuators for pervasive content delivery.

The paper is organized as follows. Section 2 analyses the use agent-based
computing for the development of mobile service applications. Next, section 3
presents our approach for building the scaled down version of the 3APL plat-
form. Section 4 presents the solution for the 3APL-M system architecture.
Finally, section 5 presents the results, as two proof-of-concept applications im-
plemented using the platform and their running parameters. The paper concludes
by presenting the achieved results and pointing to further works.

2 Motivation and Related Work

In this section, we introduce the role of agent-based computing in delivering
mobile services and present the related works that deliver a platform to build
those applications.

The role of agents in mobile services is to provide the support to the re-
quirements of the future generation of software applications [27]. The support
provided by agents are in the realms of:

– situatedness, as the mobile service must be aware of the environmental con-
ditions surrounding the mobile user;

– openness, as the mobile service’s components must be able to integrate and
adapt to the presence of new modules being integrated to or removed from
the system’s environment;

– local interaction, as the mobile service’s applications and components must
be able to interact to other modules and interact with the environment, and;

– local control, related to the problem of implementing mobile applications
able to run autonomously.

For the sake of demonstration, let us consider the scenario shown in Figure 1:

– (I) the user enters his shopping list at home, in front of his fridge when
running out of a product.

– (II) when the user is walking by a grocery store, the location-based ser-
vice detects the user’s position and notifies the local processing application.
This application holds the user data and has the capability of negotiating

(I)

(II)

(I) user learns about the need of

purchasing more soft-drinks while

grabbing the last can from the refrigerator

at home;

(II) that information will be most useful

when passing by a food store.

Fig. 1. Mobile Commerce Scenario

224 F. Koch et al.

the stored shopping list. Several aspects of the context could be taken into
consideration during the deliberation. For example, the user’s agenda (the
negotiation should be avoided if the user has an appointment set up for the
next minutes); the user’s preferred stores (the application should be able
to collect the quote from the stores where the user normally does its shop-
ping); availability of computing resource (avoid the negotiation if the device
is running low in power supply), and connectivity.

The requirements to implement this mobile solution are: the structures for
knowledge representation (shopping list, preferred stores, calendar and device
information); the interface to a location detection system; an inference system
that cross relate the internal and context information; a negotiation system, and;
a content delivery interface.

Agent-based software engineering provides the tools to implement these require-
ments, as presented in [18]. The solutions provided by the agent-paradigm are:

– Structures for knowledge representation: existing agent systems can provide
an answer to the situadedness requirement. This ability is an intrinsic problem
in multi-agent systems, and hence inherent in agent architectures, especially
in the belief-desire-intention paradigm. In the demonstration, it provides the
structures to represent the shopping list, preferred stores, device information
and calendar.

– Responsiveness and adaptivity: as pointed out in [16], these are inherent
features provided by agent systems; agents should be able to adapt to con-
stantly changing execution environment. In the demonstration, it provides
the features to either dropping or adapting the negotiation process in answer
to the computing resource availability information.

– Sociability and locality of interaction: also described in [16], agents are able
to interact with other agents or humans when needed. In the demonstration,
this feature would provide the support for the negotiation process.

– Autonomy: as argued in [17], the agent paradigm offers mechanisms that
address varying degrees of autonomy, from basic reactive architectures based
on a set of pre-determined rules, to mechanisms for proactive behaviour
[11] considering the context and user preferences. In the demonstration,
the local processing agent must be able to act autonomously for adapt-
ing the application execution in face to possible computing or connectivity
problems.

Moreover, agent-based software engineering incorporates support for decom-
position, modularity and abstraction [15], which are essential features considering
the distributed nature of mobile computing applications.

2.1 Related Work

Here we introduce the related works that deliver platforms to build agents-
based applications in mobile computing devices. In [21] it is argued that making
agents to run in resource-constrained devices is still not an obvious task. We have

Programming Deliberative Agents for Mobile Services 225

selected a number of available platforms, which we considered to be representa-
tive of what is available.

In [8] it is presented a model of agent construction for ubiquitous computing
which is conceptually grounded and architecture neutral and makes use of a com-
ponent based approach for agent design. The project uses S.M.A.R.T. (Struc-
tural, Modular agent Relationship and Types) framework and actSMART [9] for
the implementation in a Java 2 Micro Edition [13] platform. Although the work
presents a support to generic services in ubiquitous computing environment,
it does not focus on the problem of supporting the development of intelligent
personal assistants.

The Lightweight Extensible Agent Platform (LEAP) [10],is the first attempt
to implement a FIPA [3] agent platform that runs seamlessly on both mobile
and fixed devices over both wireless and wired networks. It uses a set of profiles
that allows one to configure it for execution on various machines, OS and Java
VM. This platform has many strengths and satisfies the requirements for intel-
ligent support (B.D.I. based), collaboration and personal assistance. Although
the platform can be adapted to integrate to, e.g., context-awareness and device
interface support, this feature is not clearly defined in the product.

The MobiAgent platform [22] delivers a solution where neither the platform
nor the agents run locally in the device. In this solution, when the user wants to
delegate a task to an agent, the mobile device connects to the Agent Gateway and
downloads an interface that configures it. The agent performs its task and, later,
reports the results via the same mechanism. The shortcoming of this solution
is the dependency of a reliable connectivity mechanism between the device and
the Agent Gateway.

The kSACI platform [5] is a smaller version of the SACI platform [6]. SACI is
an infrastructure for creating agents that are able to communicate using KQML
[19][20] messages and use a mailbox structure to exchange messages. Although
kSACI platform is usable on small devices running the Java 2 Micro Edition,
the platform is not entirely situated on the small device. Moreover the kSACI is
oriented to communication aspects of multi-agent system and does not provision
for enhanced inference systems.

Finally, the AbIMA platform [23] delivers agent-based intelligent mobile assis-
tant that runs on a handheld device and assists the user through the execution
of individual tasks. It makes use of the abstract agent programming language
AgentSpeak(L) [24]. Nevertheless, AbIMA offers support to single-user environ-
ments only.

Table 1 summarises support provided by the aforementioned platforms to the
components in intelligent mobile service solutions: (i) Local Processing is the sup-
port to local execution for personal assistant applications; (ii) Context Awareness
is the support to the component for context awareness in mobile applications;
(iii) Inference is the support to the component for “enhanced deliberation” in
intelligent applications; (iv) Collaboration is the support to the component for
collaboration in multi-user environment, and; (v) Device Interface is the support
to interfacing in mobile computing.

226 F. Koch et al.

Table 1. Classification of Platforms for Agent-Based Applications in Mobile Computing

Classification of Agent-based Platforms for Mobile Computing and Mobile
Personal Assistant Solutions

Platform (i) Local
Process-
ing

(ii) Ctx.
Aware-
ness

(iii) Infer. (iv) Col-
lab.

(v) Dev.
Interface

JADE/LEAP Yes (vari-
ous)

Not Ex-
plicit

Yes (BDI) Yes (FIPA) Not Ex-
plicit

MobiAgent No No No Yes Partial
kSACI Yes

(J2ME)
No No Yes Not Ex-

plicit
AbIMA/ AgentS-
peak(L)

Yes Not Ex-
plicit

Yes (BDI) No Not Config-
urable

Hence, based on the analysis of the related work, we conclude that there is
a unaddressed opportunity to deliver a platform that supports the components
required for in intelligent mobile service solutions. In the next sections, we move
towards the specifications for a platform to build B.D.I. architecture, agent-based
applications in mobile computing devices.

3 Approach

A platform for building agents in mobile devices must provide solutions for the
problems inherent to the environment, such as computing resource availability,
networking, security, interfacing and compatibility. For example, how to execute
the deliberation cycle in the limited computing resources environment?; how
to implement the structures for context awareness and content delivery?; what
agent-oriented language to use for the development of the application knowl-
edge structures?; which programming language to choose for the application
development?

The requirements for the development of 3APL-M are to be:

– compatible with 3APL language and programming environment;
– lightweight enough to be deployed on small devices with as few as 20Mhz

CPU and 512Kb RAM.
– developed in the Java 2 Micro Edition (J2ME) [4][13] programming platform.

J2ME is a reduced version of the Java programming platform tailored to
fit in low profile mobile computing devices. It provides a programming and
runtime environment for Java coded applications. This environment is widely
adopted by the hardware manufactures and available for a myriad of mobile
computing devices;

– optimized for processing, reducing the number of operations per deliberation,
thus ensuring performance and minimum battery utilization, and;

– provide the application programming interface (API) for the integration of
the 3APL application to context-awareness and content-provider structures.

Programming Deliberative Agents for Mobile Services 227

The resulting 3APL-M implementation is fully compatible with the 3APL lan-
guage and syntax. It is a “cut down” version of 3APL, with the structures opti-
mized for the creation of mobile service applications and deployment in mobile
computing devices. Nevertheless, the platform delivers a solution as powerful as
the original 3APL implementations. In fact, when executed in the desktop envi-
ronment, this platform can be an alternative for 3APL solution implementations.

In the next sub-sections, we will introduce the 3APL programming language
and then present the system architecture for 3APL-M platform.

3.1 About 3APL

3APL is a logic-based agent programming language that provides constructs for
implementing agents’ beliefs, plans and capabilities as explicit run-time entities.
It uses practical reasoning rules in order to generate plans (i.e., sequence of
actions) for achieving the applications goals. Each 3APL program is executed
by means of an interpreter that deliberates on the cognitive attitudes of that
agent. More information about the 3APL language, syntax and logic fundament
is available at the 3APL project’s web-site at [2].

3APL Machine

Goal Base

Plan Rule Base

Capability Base

Belief Base

Deliberation
Process

Plan Base

Fig. 2. 3APL Architecture

Figure 2 presents the abstract architecture of 3APL. Each agent has the explicit
representations of its goals in the goal base. For example, the goal to finish an as-
signment may be represented with the predicate finish(assignment). In order to
achieve its goals, the agent decomposes these into sub-goals using planning rules
from the plan rule base. The sub-goals can be further decomposed until basic ac-
tions are reached (i.e., physical actions agents may execute directly in the world).

During plan generation, the agent takes into account its belief base, which
stores the contextual information in form of predicates. For example, the predi-
cate near(fernando, storeA) denotes that the agent believes Fernando is currently
located near the storeA. The capability base describes basic actions by the agent
and user. A planning rule takes the form head ← guard|body, and means that
if the agent has goal g that unifies to the head of the plan head and the con-
dition declared in guard is satisfied (i.e., it unifies to the contents of the belief
base), then goal g can be achieved by executing the sequence of actions (or set
of sub-goals) listed in body.

228 F. Koch et al.

As it will be presented in the next section, the application architecture is
influenced by the features of the 3APL language and the platform requirements.

4 System Architecture

The 3APL-M platform architecture is presented in Figure 3. The main features
are: sensor and actuator modules, which provide the interface to integrate to
context-awareness and content delivery solutions; the 3APL machinery, which
includes the infrastructures for the B.D.I. based inference systems, and; the
communicator module, which provides the support for communication in a multi-
agent system.

The modules in the 3APL-M architecture are explained below:

– the 3APL machine encapsulates the 3APL language components and pro-
vides the programming interface for the integration of the logic structures to
the Java programming language. This module provides a runtime interpreter
for the complete semantics of the 3APL language;

– the belief, capabilities, goal and plan rules modules are implementations of
the 3APL structures. These elements are part of the 3APL machinery and
provide the internal data and processing structures for the platform;

– the deliberation process is the implementation of the executive module (de-
liberation cycle);

– the plan base is the data structure that holds the list of current plans gen-
erated by the deliberation process;

– the m-prolog is an implementation of the PROLOG language engine, op-
timized to be used for the low-level inference processing in 3APL-M. The
m-prolog programming interface holds special structures to make it more
compatible to 3APL engine programming. However, it is a fully compatible
PROLOG language implementation and, in fact, PROLOG applications can
be executed in this environment.

3APL Machine

M-Prolog

Goal Base

Plan Rule Base

Capability Base

Belief Base

S
en

so
r

In
te

rf
ac

e
A

ctuator Interface

Communicator

Deliberation
Process

S
en

so
r I

S
en

so
r I

I

S
en

so
r I

II

E
nv

iro
nm

en
t

Sensor

A
ctuator III

A
ctuator II

A
ctuator I

E
nvironm

ent

Actuator

Inference

Fig. 3. 3APL-M Architecture

Programming Deliberative Agents for Mobile Services 229

– the sensor and actuator are the programming interfaces for the integration
of the 3APL-M machinery to the external world. The sensor module pro-
vides the infrastructure for the creation of context-aware application (i.e.
environmental sensors) and system input (i.e., device’s keyboard). The ac-
tuator module provides the means for content delivery (i.e., integration to
the device’s display interface) and acting upon the environment.

– the communicator module provides the is the generic interface for the data
exchange infrastructure, required for multi-agent system module integration
and communication to external services. The module provides internal sup-
port for FIPA communication [7][10], however any other protocol or data
representation can be plugged in the system through the programming in-
terface.

The 3APL-M architecture emphasizes the sensor module as the input in-
terface for data from the external world. Popular BDI models have neglected
“perceptions” as the mental state component that is the basis of communication
and interaction. In the classic BDI architecture data is collected by some inter-
face structure and inserted into the BDI belief base. In some BDI approaches,
perceptions are indeed treated as beliefs. However, this is clearly unsatisfactory,
both conceptually and technically. Conceptually, perceptions are transient, while
beliefs are persistent. Hence, the introduction of a sensor module provides the
technical support to map the perception of an event can into a corresponding
event has happened belief, thus avoiding a irrelevant perceptions that would lead
to an overflow of the belief/knowledge base of an agent.

Moreover, for the deliberation process, the 3APL-M platform provides the
Java programming class Agent, which implements the basic deliberation cycle
[14]. Due to space limitation, this work shall not discuss the deliberation process
in detail but introduce the general idea. For detailed information, we refer to
Hindriks et al [14] and Dastani et al [11].

The basic deliberation cycle is depicted in Figure 4. In this case, the agents
generate their plans by choosing the first applicable rule that matches a par-

Planner Sub-System

Basic or
Composed

Action?

Find Capabilities
matching Beliefs

Execute
Pos-Conditions

Find PlanRules
matching Beliefs

Generate PlanBase
Select Plan to

Execute

GOALBASE

Execute Plan

Basic
Action!

BELIEFBASE

PLAN-RULES PLAN BASE

Select Goal

used by used bygenerates

sub-goals get added to goal base

used by

us
ed

 b
y Environment

External actions
impact environment

Internal actions
update Belief Base

Composed
Action!

Fig. 4. Basic Deliberation Cycle

230 F. Koch et al.

ticular goal/desire. This means that an agent generates only one plan for each
achievable goal, and only generates other plans if the initial plan fails.

4.1 Programming

The 3APL-M platform works as a library loaded in the distribution package.
This library supplies the application-programming interface (API) for the 3APL
machine modules. The Java application makes calls to the library’s modules
for loading information, configuring the deliberation engine and executing the
applications. Figure 5 presents: (A) the 3APL-M programming interface for the
Agent class (simplified view), and; (B) a simple Hello World Java-3APL-M code
example.

(A) Agent class programming interface
(simplified view)

(B) HelloWorld source code

 void addBelief (String beliefStr) // Add a belief.
 void addCapability (String capabilityStr) // Add a capability
 void addGoal(String goalStr) // Add a goal
 void addPlanRule (String planRuleStr) // Add a plan
 void addProlog (String prologStr) // Add Prolog knowledge
 void addActuator (String actionStr ,

ActuatorInterface actuator) // Add actuator
 void addSensor (String id, Sensor sensor, int interval,
 boolean addGoalNotification) // Add Sensor
 void deliberate() // Starts deliberation cycle
 void destroy() // Terminate agent
 String sendMessage (String msgId , String to,
 String performative , String data) // Send a message
 void setFipaCommunication (boolean enabled)

public class HelloWorldExample {
 public void startApp () {
 Agent ag = new Agent("hello");

 // load knowledge
ag.addCapability ("{} Print(X) { GUI(print, X)}");
ag.addPlanRule (" <- TRUE | Print('hello world')");
ag.addGoal ("print");

 // add J2ME display actuator
ag.addActuator ("GUI(Type,Message)",

 new J2MEGUI(this));

 // deliberate
ag.deliberate ();

 }
}

Fig. 5. Programming with 3APL-M

Figure 5(B) presents an example for the programming steps. The code must
instantiate a new Agent object and to load the 3APL information (i.e., beliefs
capabilities, goals, plan rules) using the Agent methods (presented in Figure
5(A)). Next, sensors and actuators can be initialized and attached using the
addSensor(.) and addActuator(.) methods. Finally, the deliberation process is
started by calling the deliberate() method.

For detailed information about programming in 3APL-M, we refer to the
documentation and source code examples available at the project’s web-site [1].

5 Results

This section presents two proof-of-concept implementations using 3APL-M plat-
form. These are simple applications aiming to present the programming struc-
tures, running parameters and integration of Java and 3APL code. The source
code for these and other demonstration applications can be found at the project’s
web-site [1].

Programming Deliberative Agents for Mobile Services 231

5.1 Block World Demonstration Application

The Block world demonstration is presented to show the compatibility between
the 3APL-M and the 3APL standard specifications. This is the example provided
at the 3APL web-site [2].

The application is composed by a robot that needs to arrive to a base in a
grid world. The robot knows where are the bases and the rules for the decision
process. The knowledge representation and deliberation process is implemented
in 3APL and the GUI manipulation is done in Java. Figure 6 presents: (A) the
application running on a HP iPaq hardware; (B) the 3APL code, and; (C) the
3APL-M and Java code integration.

In this example, the Java code initializes the agent (new Agent(.)), loads
the knowledge (3APL code) from an input stream (ag.consult(.)) and attaches
the Block World interface actuator (ag.addActuator(.)). Next, the application
triggers the deliberation process (ag.deliberate()). The 3APL machinery will load
the intention from the goal base (goBase). From the deliberation, the 3APL code
will end up calling the Block world actuator passing the argument ”west”. The
Java coded BlockWorldActuator.actuator([”west”]) will be executed to update
the interface.

The test was executed using 3APL-M version 1.3. On the HP iPaq device,
this application executes using 142.7 Kbytes of RAM memory and takes approx-
imately eight seconds to find a solution (including interface update time). In

CAPABILITIES:
{ pos(X, Y)} West { NOT pos(X, Y), pos(X - 1, Y), BlockMove(west)}.
{ pos(X, Y)} East { NOT pos(X, Y), pos(X + 1, Y), BlockMove(east)}.
{ pos(X, Y)} North { NOT pos(X, Y), pos(X, Y + 1), BlockMove(north)}.
{ pos(X, Y)} South { NOT pos(X, Y), pos(X, Y - 1), BlockMove(south)}.
{} BlockMove(X) {EXTERNAL}.

RULEBASE:
goBase <- pos(X, Y) AND base(X, Y) | SKIP.
goBase <- pos(X, Y) AND base(A, B) AND X > A | West, goBase.
goBase <- pos(X, Y) AND base(A, B) AND X < A | East, goBase.
goBase <- pos(X, Y) AND base(A, B) AND Y > B | South, goBase.
goBase <- pos(X, Y) AND base(A, B) AND Y < B | North, goBase.

BELIEFBASE:
pos(9, 9).
base(0, 0).

GOALBASE:
goBase.

(A) BlockWorld on HP iPaq (B) 3APL code for robot deliberation

 /**
 * Midlet Interface
 */
 public void startApp () {
 // create agent
 Agent ag = new Agent("robot");
 // load knowledge bases

ag.consult (System.getResourceAsStream ("robotAgent.tapl "));
 // attach actuator

ag.addActuator ("BlockMove(X)", new BlockWorldActuator (this.blockWorld));
 // deliberate

ag.deliberate ();
 }

(C) 3APL-M and Java integration

Fig. 6. BlockWorld demonstration interface and code

232 F. Koch et al.

total, it process 38 deliberation steps and requires 539 unifications operations
on the PROLOG engine.

5.2 Mobile Commerce Demonstration Application

This demonstration presents the 3APL-M based implementation for the mobile
commerce problem from Figure 1. For simplicity, the demonstration will con-
centrate on the 3APL code and Java integration and overlook technical details
about the location-based service and connectivity. It is assumed that there is a
location-based service feeding the agent’s belief base with landmark proximity
information and there is stable connectivity.

The 3APL code for this solution is presented in Figure 7(B) and the screen-
shots from the running application in a mobile phone simulator are depicted in
Figure 7(A).

Basically, when a landmark proximity is detected (near grocery store), the
location service provider adds the context information to the agent’s belief base
(location(near, storeA)), the goal resolve to the goal base and starts the deliber-
ation process. The sequence of actions will be created by processing the plan rule
named resolve if there is a location(.) and shoppingList(.) available in the belief
base. The sequence of actions are: to ask the confirmation on the negotiation
process to the user (AskConfirmation(.)); in case of positive answer, to request
the quote from the store (getQuote(.)); once the quote is received, to assert that
information in the belief base (Assert(receivedQuote(.)), and; finally, to display
the received quote in the devices interface (displayQuote(.)).

(A) Screen shots

CAPABILITIES:
{ shoppingList (List)} AddItemToList (Item)
{ NOT shoppingList (List), shoppingList (List + Item)}.
{} AskConfirmation (Message) { GUI(promptYesNo , Message)}.
{} Display(Message) { GUI(promptOk , Message)}.
{} GUI(Type, Message) {EXTERNAL}.

RULEBASE:
addItemToList (Item) <- TRUE |
AddItemToList (Item).

displayQuote (Shopping, Quote) <- TRUE |
Display([Quote received from , Shopping, is $, Quote]).

getQuote (Shopping, List, Result) <- TRUE |
Send(MsgId , Shopping, query- ref , quote(List)),
Receive(MsgId , Shopping, Performative , Result, 4).

resolve <- location(near, Shopping) AND shoppingList (List) |
AskConfirmation ([Near , Shopping, . Request for quote?]),
getQuote (Shopping, List, Result),
Assert(receivedQuote (Shopping, List, Result)),
displayQuote (Shopping, Result).

BELIEFBASE:
addressBook (storeA , http:// localhost :50001).
shoppingList ([productA , productB]).
location(near, storeA).

(B) 3APL code

Fig. 7. Mobile Commerce Solution: (A) Conceptual Model and (B) 3APL code

Programming Deliberative Agents for Mobile Services 233

From the sequence of actions above, some will be decomposed in sub-goals and
added to the goal base while others will trigger capabilities. The capabilities are
executed based on the definition in the capability base, built-in capabilities (e.g.,
Assert(.), Send(.), Receive(.)) or through attached actuators (e.g., GUI(.)). For a
complete list of the built-in capabilities, we refer to the documentation available
in the project’s web-site [1].

Once again, this is a simplified demonstration application and several im-
provements are possible. The test was executed using 3APL-M version 1.3 and
run on the phone simulator supplied in the J2ME Wireless Toolkit 2.1, from
Sun Corporation. The execution utilized 163.8 Kbytes of RAM memory and
processed eight deliberation steps.

6 Conclusion

3APL-M provides the support technology to develop deliberative multi-agent
systems to be executed in mobile computing devices. The main features are
the sensor and actuator modules, which provide the interface to integrate to
context-awareness and content delivery solutions; the 3APL machinery, which
includes the infrastructures for the B.D.I. based inference systems, and; the
communicator module, which provides the support for communication in a
multi-agent system. Hence, the platform provides the infrastructures for the
technologies required by the new generation of mobile applications: context-
sensitiveness, mental modelling, local processing, and pervasive content
delivery. The B.D.I.-based inference module provides the solutions for applica-
tions capable of creating mental models and to represent the human thought
structures.

The platform delivers a development environment compatible with the 3APL
language structures. The demonstration applications proved that the result-
ing applications are small enough to be deployed on small devices with 20Mhz
CPU and less than 512Kb RAM. The platform is compatible with Java 2 Micro
Edition (J2ME) development and running environment, which has a large de-
velopment community. Consequently, several development environments, plat-
forms and programming libraries are commercially available. The strength of
J2ME is industry adoption and to be Java-compatible, thus this running en-
vironment is present in a myriad of commercially available mobile computing
devices.

There are several possible enhancements and optimizations for the platform.
A future line of work is to better position the project against FIPA standards [3]
especially for communication and community management. Moreover, security
is a major area of research to be explored by this project. While there are
limitations already imposed by the running environment – e.g., Java 2 Micro
Edition sandbox security – the high-level security must be implemented by means
of platform structures and logic operations.

For detailed information about programming in 3APL-M, downloads, demon-
stration codes and documentation, we refer to the project’s web-site [1].

234 F. Koch et al.

Acknowledgments

This work was conducted while Fernando Koch and Iyad Rahwan were working
at the Department of Information Systems, University of Melbourne. The au-
thors are thankful to the folks in that department for the discussions surrounding
the paper topic.

References

1. 3APL-M web-site, http://www.cs.uu.nl/3apl-m.
2. 3APL web-site, http://www.cs.uu.nl/3apl.
3. Foundation for Intelligent Physical Agents (FIPA) web-site, http://www.fipa.org.
4. Java 2 Micro Edition (J2ME) web-site, sun corporation, http://java.sun.com/j2me.
5. kSACI web-site, http://www.cesar.org.br/ rla2/ksaci/.
6. Simple Agent Communication Infrastructure (SACI) web-site,

http://www.lti.pcs.usp.br/.
7. M. Aparicio, L. Chiariglione, E. Mamdani, F. McCabe, R. Nicol, D. Steiner, and

H. Suguri. FIPA - intelligent agents from theory to practice. Telecom 99, October
1999.

8. R. Ashri and M. Luck. An agent construction model for ubiquitous computing
devices. In Proceedings of AAMAS Workshop in Agent Oriented Software Engi-
neering, New York, USA, 2004.

9. R. Ashri, M. Luck, and M. d’Inverno. actsmart - building a smart system. In
M. d’Inverno and M. Luck, editors, Understanding Agent Systems. Springer-Verlag,
2nd edition edition, 2003.

10. F. Bergenti, A. Poggi, B. Burg, and G. Claire. Deploying FIPA-compliant systems
on handheld devices. IEEE Internet Computing, 5(4):20–25, 2001.

11. M. Dastani, F. Dignum, and J.-J. Meyer. Autonomy and agent deliberation. In
M. Rovatsos and M. Nickles, editors, The First International Workshop on Com-
putatinal Autonomy - Potential, Risks, Solutions (Autonomous 2003), pages 23–35,
Melbourne, Australia, July 2003.

12. A. K. Dey. Providing Architectural Support for Building Context-Aware Applica-
tions. PhD thesis, Georgia Institute of Technology, November 2000.

13. E. Guigere. Java 2 Micro edition: The ultimate guide on programming handheld
and embedded devices. John Wiley and Sons, Inc., USA, 2001.

14. K. V. Hindriks, F. S. De Boer, W. Van Der Hoek, and J.-J. Ch. Meyer. Agent
programming in 3APL. Autonomous Agents and Multi-Agent Systems, 2(4):357–
401, 1999.

15. N. R. Jennings. An agent-based approach for building complex software systems.
Communications ACM, 44(4):35–41, 2001.

16. N. R. Jennings and M. Wooldridge. Applications of intelligent agents. Agent
technology: foundations, applications, and markets, pages 3–28, 1998.

17. F. Koch and I. Rahwan. Classification of agents-based mobile assistants. In Pro-
ceedings of the AAMAS Workshop on Agents for Ubiquitous Computing (UbiA-
gents), New York, USA, Jul 2004.

18. F. Koch and I. Rahwan. The role of agents in mobile services. In Proceedings of the
Pacific Rim International Workshop on Multi-Agents (PRIMA2004), Auckland,
NZ, August 2004.

Programming Deliberative Agents for Mobile Services 235

19. Y. Labrou and T. Finin. A semantics approach for kqml a general purpose commu-
nication language for software agents. In Proceedings of International Conference
on Information and Knowledge Management, 1994.

20. Y. Labrou, T. Finin, and Y. Peng. Agent communication languages: The current
landscape. Intelligent Systems, 14(2):45–52, 1999.

21. Z. Maamar, W. Binder, and B. Benatallah. Agent for Ubiquitous Computing,
chapter 19, pages 395–412. Kluwer Academic Publishers, 2004.

22. Q. Mahmoud. Mobiagent: An agent-based approach to wireless information sys-
tems. In Proceeding of the 3rd International Bi-Conference Workshop on Agent-
Oriented Information Systems, Montreal,Canada, 2001.

23. T. Rahwan, T. Rahwan, I. Rahwan, and R. Ashri. Agent-based support for mobile
users using agentspeak(l). In P. Giorgini, B. Hederson-Sellers, and M. Winikoff, ed-
itors, Agent Oriented Information Systems, Lecture Notes in Artificial Intelligence.
Springer Verlag, Berlin, Germany, 2004.

24. A. Rao. Agentspeak(l): Bdi agents speak out in a logical computable language. In
W. V. de Velde and J. W. Perram, editors, Proceedings of the Seventh European
Workshop on Modelling Autonomous Agents in a Multi-Agent World, volume 1038
of LNAI. Springer, 1996.

25. A. S. Rao and M. P. Georgeff. BDI-agents: from theory to practice. In Proceedings
of the First International Conference on Multiagent Systems, San Francisco, USA,
1995.

26. M. Satyanarayanan. Pervasive computing: vision and challenges. IEEE Personal
Communications, 8(4):10–17, 2001.

27. F. Zambonelli and H. V. D. Parunak. Towards a paradigm change in computer
science and software engineering: a synthesis. The Knowledge Engineering Review,
2004. (to appear).

	Introduction
	Motivation and Related Work
	Related Work

	Approach
	About 3APL

	System Architecture
	Programming

	Results
	Block World Demonstration Application
	Mobile Commerce Demonstration Application

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

