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Abstract. This paper explains an architecture for a BDI agent that can
learn based on its own experience. The learning is conducted through
explicit procedural knowledge or plans in a goal-directed manner. The
learning is described by encoding abductions within the deliberation
processes. With this model, the agent is capable of modifying its own
plans on the run. We demonstrate that by abducing some complex struc-
tures of plan, the agent can also acquire complex structures of knowledge
about its interaction with the environment.

1 Introduction

The BDI (Beliefs, Desires, Intentions) agent model [10] is a design framework
commonly used in developing agents that behave both deliberatively and reac-
tively in a complex changing environment. The main principle is to use explicit
representations of the agents’ own mental attitudes (in terms of attributes such
as beliefs, desires, and intentions) to direct their actions and decision of choos-
ing the appropriate predefined plan. To develop the system, the designer would
define some initial mental conditions and describing some plans explicitly which
correspond to the agents behavior in a repository of plans. Variability in behavior
can be attained by the process of deliberation.

However, it is always possible that unforeseen conditions require some modi-
fication of the prescribed plans or knowledge instead of just alternating one plan
after another. Although, the exhibition of the behavior can be adaptive in a
reactive way, plans for directing or guiding the behavior in a BDI agent are still
fixed in advance of the system execution. Most existing BDI frameworks are still
incapable of modifying plans or recipes for actions at runtime.

In this paper, we present a new model of learning in BDI agents. We use meta-
level plans, expressed in general programming constructs, to enable the agent
to specify learning and deliberation steps explicitly. This enables the agent to
introspectively monitor its own mental state and update its plans at runtime. The
learning is regarded as a kind of deliberation process in which the agent makes
plausible hypotheses about expected outcomes and creates (or modifies) plans
if the hypotheses are proven. This kind of process is also known as abduction,
a term which was coined by C.S. Peirce [6]. In this case, the agent is not just
selecting the best option available but also expecting useful knowledge to be
acquired if the selection fails.



This work advances the state of the art by combining the strengths of learn-
ing and BDI agent frameworks in a rich language for describing deliberation
processes. In particular, our approach enables domain experts to specify learning
processes and strategies explicitly, while still benefiting from procedural domain
knowledge expressed in plan recipes (as opposed to generating and learning plans
from scratch).

The remainder of this paper is structured as follows. the next section explain
the architecture of a BDI agent. The section also describes the concept of deliber-
ation processes as meta-level plans which can accommodate abductions. Section
3 then explain how learning can be described explicitly in terms of meta-level
plans and deliberation processes. In that section we describe some primitives for
learning and some examples of generic strategies for the experience-based plan
construction. Section 4 illustrates the characteristic of the learning approach
from a case study. Section 5 discusses some related works on learning intentional
agents. Finally, the last section concludes the paper.

2 BDI Agent Architecture

The BDI architecture works as an interpreter interacting with different data
structures. In PRS [4] as the commonly used BDI implementation model, there
are four different types of data structure. Firstly, beliefs or belief base (B) corre-
spond to a model or knowledge about the world which can be updated directly
by events captured on the sensors. Secondly, the agent’s desires or goals (G) cor-
respond to conditions the agent wants to fulfill. The desires invoke finding ways
to achieve them and select one (or some) to act upon. Thirdly, the selected ways
to be committed for execution are the intentions (Γ ). Lastly, the knowledge of
how to achieve certain desires or goals are stored in the plans or the plan library.

The common process of a BDI interpreter that drives the agent’s behavior
is an iteration of steps like updating beliefs based on observation in the world,
deciding what intention to achieve, choosing a plan to achieve intentions, and ex-
ecuting the plan [12]. The interpreter goes through a control loop which consists
of observation, intention filtering, and plan selection. The adopted intention is
committed for execution to its end. If something goes wrong with the intention,
the agent can reconsider its intention, select another plan as an alternative or
just drop the intention and select another intention.

In PRS-like agents, the loop may produce a hierarchical structure of inten-
tions. A selected intention may invoke further deliberations which produce other
intentions having sub-ordinate relations with the former one. This hierarchical
structure is also called the intention structure. The intention structure represents
a stack structure consisting of goals, subgoals, and their intentions. The intention
structure maintains some information about the state of the agent choices and
actions, limits the number of choices to be considered at a deliberation moment,
thus reducing computational complexity at every cycle. By using this structure,
a goal can be broken down further to be more specific while the agent behaves
reactively to changes in the environment.



2.1 Plans and Intentions

A plan represents procedural knowledge or know-how. As a knowledge for ac-
complishing a task, a plan would be used as a recipe which guides an agent in its
decision making process, hence reducing search through alternative solutions [9].
In classical STRIPS planning [2], a plan consists of a set of operators or actions
each with attributes like a list of preconditions, an add list, and a delete list.

Definition 1. An action α is a tuple of 〈Aα, Pα, ∆α, Σα〉 in which Aα is the action
name; Pα is a list of conditions that must be believed to be true prior to the execution
of α; ∆α is a list of conditions that must be believed to be false after the performance of
α; and Σα are those that are believed to be true after the performance of α. Conditions
are expressed as literals which can be propositions or predicate logic statements.

A plan can be considered as an encapsulated description of actions with
its consequences and contexts. It may represent just a single action or it can
describe a complex relationship between actions. Similar to an action, a plan
also has contextual descriptions like preconditions and effects (add or delete
lists). In addition, a plan can also have attributes like a trigger (goal) and a
body that describes relationships between actions.

Definition 2. A plan π can be defined as a tuple 〈ϕπ, Pπ, Σπ, ∆π, Bπ〉 where Pπ, Σπ,
and ∆π are respectively the preconditions, add list, and delete list which have the same
meaning as the corresponding symbols in the action definition above. The trigger ϕπ

is the goal that triggers the activation of the plan. The plan body Bπ describes actions
and their relationships.

The plan goal states the thing that is wanted or desired by executing the
plan. There are two types of goals: achieve and perform. A plan with an achieve

goal says that a condition stated in the goal will hold or be true after performing
actions described in the plan body. A perform goal, on the other hand, tells that
actions described in the goal will be performed if the plan is executed. Actions
described in a perform goal or a plan body are represented in a composite action.

Definition 3. A composite action τC[φ1, ..., φn] states the relationship between ac-
tions. τC is the type of the relation, in which τC ∈ ΥC and φi can be an action, a
proposition, or another composite action forming a nested structure of actions rela-
tionship. If ια is a composite action, ν ← ια is an assignment of the result of the
action ια to the variable ν.

There can be many types of structure in ΥC . Due to space limitations, table 1
only describes some of them which seem to be relevant and important. A variable,
once bound to a value, can be used for a later purpose through variables in term
parameters. For example, the composite action seq[do[X ← select object],
do[grasp(X)]] states that an object X is selected and then grasped. The object
value which is bounded by the variable X as a result of the selection action is
fed into the action grasp.

In the deliberation cycle of the BDI interpreter a plan is selected from the plan
library based on current goals and intentions. The selected plan is instantiated
and incorporated as an intention. The intention is put on the intention structure



Table 1. Action structures and relationships

Relation type Description
do[α] execute a single action α
confirm[c] confirm if condition c is true in the agent’s beliefs
conclude[c] conclude that the condition c is true by asserting it to the

agent’s beliefs
wait[c] wait until the condition c is true
subgoal[ϕ] post the goal ϕ as a subgoal
seq[β1, ..., βn] execute substructures β1 to βn consecutively
seq-choices[β1, ..., βn] try to execute substructures in the list from β1 to βn con-

secutively until a successful execution of one of them
cycle[β1, ..., βn, < until c >] iteratively execute all substructures in the list based on the

order and stop until a condition c (optional)is true

before it is executed later on. A plan instance or an intention stores an index
that locates the current selected goal or action in the corresponding plan body.
It also maintains information about variable bindings and states of the intention.
An intention can be in a scheduled, succeeds, fails, pushed, or wait state.

If the plan body of a plan instance has a nested structure, then the sub-
structure of the composite action becomes a new intention which is concatenated
at the intention of that plan instance. This is also conducted for a composite
action that posts a subgoal. Another plan instance for achieving the subgoal will
be concatenated at that location in the intention structure.

2.2 Meta-level Plans and Abductions

In the previous section we described the model of plans and intentions in a BDI
agent architecture. In this section, we explain the use of meta-level plans for
controlling the deliberation. This section also shows how meta-level plans can
leverage the deliberation process with abductions.

The original PRS model assumes that the deliberation process is handled
by the use of meta-level plans [5]. The instance of meta-level plans can obtain
information from the intention structure and change it at runtime. A meta-
level plan for the deliberation process can be characterized as a plan which
contains some meta-actions or actions that deal with goals, intentions, and plans.
For example, the composite action described below shows some parts of the
deliberation process.

cycle[
do[observe], G ← do[consider options], I ← do[filter options(G)],
P ← do[select plan(I)],do[intend(I, P )]]

This structure of composite actions can be put initially in the intention struc-
ture. It works as an infinite loop of observe for updating belief, consider options

for generating options, filter options for selecting intentions, select plan for se-
lecting a plan instance, and intend that insert the selected plan to its corre-
sponding intention and put them on the intention structure. Objects passed or



exchanged between actions are goal options (G), selected intentions (I), and
a plan (P ). The intention execution and reconsideration parts of the loop are
skipped for simplification and it is assumed that executing the intention in the
intention structure is done by the interpreter as a default process.

Based on the process of deliberation and execution, it is possible to say that
the agent decides a plan and selects an action based on its beliefs and goals. We
assume that if the agent has a plan for achieving a goal, it means also that the
agent believes that executing the actions described in the plan will bring about
the goal. This kind of process of selecting and adopting a plan instance can be
regarded as a deductive inference. When there is a failure in executing the plan,
a re-deliberation or re-selection process can be conducted from the beginning
with a refreshed condition of beliefs. A more sophisticated technique is retaining
the history of the past failures so that a failed plan instance will never be chosen
for the second time.

In this paper, we suggest that abductions can incorporate the deliberation
process so that the agent may not just re-deliberate to deal with failures and
changes but also anticipate what would happen. The agent tries to develop
explanations about possible failures while it tries to achieve the goal. In our
model, the abduction is activated by the deliberation. The agent decides not
just the goal and the intention to fulfill but also some proofs of hypothetical
failures. The composite action for the deliberation cycle becomes as follows:

cycle[
do[observe], G ← [do[consider options]], I ← do[filter options(G)],
P ← do[select plan(I)], H ← do[make hypothesis(G, I)],
P ′ ← do[select testing plan(H, I)],do[intend(I, P )],do[intend(H,P ′)]]

The action make hypothesis generates hypotheses based on prescribed be-
liefs about what kind of situation would come up. The hypothesis made can
be expressed as a composite action describing the sequence of events or actions
that would happen. The plan for testing the hypothesis can be described as a
meta-level plan. This meta-level plan involves types of actions that can capture
changes in the agent’s mental state (e.g. wait, confirm). The successful execution
of testing will produce or revise a belief about something that is hypothesized.

When a test to prove a hypothesis fails, it will just be dropped or removed
from the intention structure just like a normal plan execution. The testing plan
will be re-activated in the next deliberation cycle if the same goal is still needed
to be achieved. The testing plan may also update the beliefs about quality,
preference, or confidence levels of a plan so that the plan will have a greater
chance of being picked up by the action select plan in the next cycle of the
deliberation loop.

Different proving or testing strategies can be used for testing different hy-
potheses. For example, a hypothesis testing plan can have a composite action
like the following: seq[wait[done(I)], confirm[success(I)],do[assert belief(H, I)]].
This composite action can be used to prove that the intention I will be executed
successfully so that a new belief about the hypothesis H in relation with I can
be asserted. The action wait waits for I until its finish before confirming its
success.



In another case, a different testing strategy might have a more complex com-
posite action like the following:

seq-choices[cycle[wait[done(I)], confirm[not success(I)],
H ← do[append(H, I)]],do[assert belief(H, I)]]

This composite action can be used to prove that actions in the intention I will
eventually succeed or reach the goal if they are repeated for a certain number of
times. The first branch of the seq-choices captures an unsuccessful attempt and
updates the hypothesis with an additional step. The second branch is executed
when a successful attempt is found and a belief about the repetition structure
can be asserted. This hypothesis testing strategy still has a flaw in dealing with
a single alternative of action only. An infinite loop might be produced if the
goal can not be attained. However, the structure can trivially be amended by
inserting some confirm actions on both branches to test if the length of the
repetition exceeds a certain limit.

To deal with complex situations and problems, different abduction plans can
be given to test different possible structures of actions upon several attempts of
goal achievements. The abduction plans can be provided by the domain expert
or the agent designer as heuristics for acquiring knowledge.

3 Representing Learning Processes

Learning in BDI agents can be defined as abduction-deliberation processes which
can result in the improvement of the agent’s performance. The approach of
improvement suggested in this paper is by modifying or generating plans in
the plan library. The hypotheses confirmed through the abduction process are
candidate plans. The steps of confirmation are followed by a plan generation or
modification. For example, the following composite action can be considered as
the body of a learning plan:

seq-choices[cycle[wait[done(I)], confirm[not success(I)],
H ← do[add plan step(H, I)]],do[create plan(H, I)]]

This composite action is similar with the example of a composite action for
hypothesis testing mentioned above. It captures repetitive actions for achieving
the goal. However, the end result of the testing process is a new plan. In this
case, the hypothesis H is a template of the possible plan. The learning plan can
be said as trying to confirm that there is a sequence of repetitive actions that
eventually reaches the goal. If a repetition of actions is confirmed, a new plan
with a repetition or a sequence structure can be asserted.

4 Case study

This section shows some examples of learning plans and the development of
the agent’s knowledge when the agent is given certain tasks and is situated in
a certain environment. In order to implement the experiment for studying the



characteristic of the learning agent, we have developed a special type of a BDI
interpreter which supports introspective plans monitoring and modification at
runtime.

4.1 The Rat’s World

The Rat’s World is an implemented simulation inspired by the psychological
experiment of operant conditioning. An artificial rat agent is put on a designated
place with some desires of getting some rewards (metaphorically some cheese).
To get the reward the agent must select (press) some buttons in a particular
order. Assume there are two buttons each with different colors (let say black
and white buttons).

If the appropriate order has been setup so that the reward can be obtained
by firstly pressing the black button followed by the white one, the rat can learn
the combination by pursuing several trials of the same situation and converge to
the right sequence (Some reinforcement learning algorithms like Q-learning can
learn this kind of task very well). However, a simple modification can make this
problem non-trivial. In particular, the situation becomes complicated when the
position of the buttons is randomly swapped for every trial.

At one moment, the agent has beliefs about the buttons’ positions and its
own last action. Following the Markovian model of decision processes, these
beliefs represent a state. Let’s say, initially, the agent has the following belief
based on its initial perception: button pos(black, white) which states that
the black button is on the left and the white one is on the right. The predicate
last act(A) is used to refer to the last action taken, and is added after the
agent do the first action. The A can be press(left) for pressing the button on
the left or press(right) for pressing the one on the right.

The agent is provided with some initial plans for getting the reward. One
plan contains actions like do[press(left)] and the other has do[press(right)].
With these initial plans, a deliberation process will cause the agent to press the
left or the right button in a random fashion to get the reward. A simple learning
plan can be made which is triggered by a drop in its performance level (high
rate of failures). The body of the learning plan (hypothesis testing) can be as
follows

seq[
wait[done(I)], S ← do[observe], seq-choices[

seq[confirm[success(I)], P ← do[create plan(I, S)]],
seq[wait[done(I ′)], confirm[success(I ′)], P ← do[create plan(I, S),
G ← do[obtain goal(I)], P ← do[add plan step(P, subgoal(G))]

]
],do[generate plan(P )]

] (Learning Plan 1)

The learning plan monitors events produced by the intention I on the in-
tention structure. When I succeeds straightaway, a new plan is created by the
action create plan with the instance of actions in the intention I as its plan
body and the observed state S as its precondition. Otherwise, it waits for an-
other intention I ′ that succeeds straightaway, and a new plan is created with



the plan instance of the intention I, the precondition S, but a subgoal posting
action is appended at the end. Learning Plan 1 produced two types of plan.
One type of plan maps a belief state directly to an action. The other type
maps a belief state to an action that reach an intermediate state and post the
same subgoal recursively. For example, one plan produced has only the following
structure in its body do[press(right)] and another one with the following struc-
ture seq[do[press(right)], subgoal[get reward]]. Each generated plan has a precon-
dition. For example,
button pos(black, white) and last act(do[press(right)]).

The experiment conducted has shown that the learning plan described above
is not effective in dealing with the dynamic situation. This is because the agent
can not distinguish some observed states when the buttons stay still from states
where the buttons have just been swapped. The agent only relies on chances and
the probability distribution of the learnt plans in dealing with uncertainties.

Figure 1(i) shows that the performance of learning with Learning Plan 1 is
not much different than without learning at all. From 400 learning trials for each
20 cases, the performance on average still stays just slightly above 50% chances
with a relatively high level of variability. The performance level is measured by
the rate of successful attempts (getting the rewards).

Fig. 1. Performance of agent in the Rat’s World domain (i) with Learning Plan 1. (ii)
with Learning Plan 2.

We modified the learning plan by encoding a different hypothesis. The agent
is made to wait one more action before producing a sequence of actions. The
composite action of the learning plan above is modified as follows

seq[
S ← do[observe],wait[done(I)],wait[done(I ′)]
confirm[I 6= I′], confirm[fails(I)], confirm[success(I′)],
P ← do[create plan(I, S),P ← do[add plan step(P, planbody(I ′))],
do[generate plan(P )]

] (Learning Plan 2)

This learning plan waits for two consecutive execution of actions from inten-
tions I and I ′. If both actions are different and the first action failed while the
second one succeeded, then a new plan is generated with the two consecutive



actions in the plan body and the observational state as the precondition. The
result of the learning is one type of plan with a sequence of different actions
as follows seq[do[press(left)],do[press(right)]]. The plan is also provided with ap-
propriate preconditions based on observations. The experiment using Learning
Plan 2 produced much better results. Figure 1(ii) shows that successful attempts
raise the performance quickly to maximum values. In all cases, it is demonstrated
that the performance always reaches the maximum. This can happen because
the right interaction between the agent and the buttons can be modeled as a
composite action. By hypothesizing a pattern of consecutive actions underlying
the right interaction, a significant number of combinations of plan structures to
be searched can be pruned.

The experiments in the Rat’s World domain have clearly shown that a simple
mapping between an observational state with a single action is not enough to
make the agent learn the right model of interaction in a changing situation. The
agent should first make assumptions about the model of its interaction with the
environment. It is also indicated that applying different patterns of hypotheses
influences the capability of the agent to learn something from the environment.
Using complex patterns of hypotheses would also make the agent learn complex
things.

5 Related Works

There is some previous work on making BDI agents learn [1, 3] by making learn-
ing as a separate process conducted by separate modules. For example, Hernan-
dez etal. [3] apply an inductive decision-tree learning algorithm that learns new
plans by feeding in logged events produced by the BDI engine to the learning
program. In contrast, the learning processes suggested in this paper are mainly
heuristics or knowledge that describe learning and abduction as parts of the BDI
architecture. Other works have considered learning as parts of the BDI mecha-
nism [7, 8, 11], however they still assume the creation of plans based on direct
mappings of observational states to corresponding plans or actions. As demon-
strated in the last section, this kind of plan creation may lead to the perceptual
aliasing problem in which the agent would not be able to distinguish one state
from another.

The advantage of putting the learning as part of the explicit knowledge in
the BDI architecture is that it enables the agent developer to specify learning
processes and strategies from domain or expert knowledge easily. In any case,
the main feature of the BDI agent architecture is that the behavior of the agent
is driven mainly by the procedural domain knowledge which can be prescribed
as plan recipes as opposed to generating plans from scratch.

6 Conclusion

In this paper, we describe a model of learning in the BDI agent architecture.
We use meta-level plans to program learning as an explicit part of the agent’s
behavior. The meta-level plans enable the agent to introspectively monitor their



own mental conditions and update their plans at runtime. The learning can
be described as a process of abduction that tries to confirm the occurrences
of structures of plans. The experiments conducted have shown that the agent
needs to make assumptions about its possible interactions with the environment.
Direct observations might be insufficient to learn the appropriate model.

Although the heuristics shown in this paper are problem specific, they can
still be useful in a range of different situations. By providing a set of different
types of heuristics for different classes of problems, the learning might cover
various domains of application. Moreover, the learning can be multi-strategic
and reactive to the change in the environment. However, further work is still
needed for seeking the appropriate set of heuristics so that the approach can be
practically useful.
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