
1. INTRODUCTION

The increasing complexity of distributed computer systems
has led researchers to utilise various tools of abstractions in
order to improve the software engineering process. However,
the requirements of an increasing number of computing sce-
narios go beyond the capabilities of traditional computer sci-
ence and software engineering abstractions, such as
object-orientation. According to Zambonelli and Parunak
(2003), four main characteristics distinguish future software
systems from traditional ones:

Situatedness: Software components execute in the context of

an environment, which they can influence and be influ-
enced by;

Openness: Software systems are subject to decentralised
management and can dynamically change their structure;

Locality in control: Software systems components represent
autonomous and proactive loci of control;

Locality in interactions: Despite living in a fully connected
world, software components interact accordingly to local
(geographical or logical) patterns.

These characteristics have led to the emergence of the agent
paradigm in computing: one that views computer systems in
terms of multiple, interacting autonomous agents in a multi-

vol 21 no 2 march 2006 87

Comput Syst Sci & Eng (2006) 3: 87-98
© 2006 CRL Publishing Ltd

Integrating social modelling and
agent interaction through
goal-oriented analysis

Iyad Rahwan*†,Thomas Juan‡ and Leon Sterling‡

*Institute of Informatics, The British University in Dubai P.O.Box 502216, Dubai, United Arab Emirates. Email: iyad.rahwan@buid.ac.ae
†(Fellow) School of Informatics, University of Edinburgh, Edinburgh, Scotland, UK
‡Department of Computer Science & Software Engineering, University of Melbourne, Parkville 3010, Australia. Email: leon,tlj@cs.mu.oz.au

International Journal of

Computer Systems
Science & Engineering

In the Agent-oriented software engineering (AOSE) community, it is now widely recognised that interaction is perhaps the most important single
characteristic of complex software systems. Recently, the focus of AOSE research has shifted towards social (or organisational) modelling, which
allows interaction to be modelled with higher-level constructs like organisational structures and social policies. However, a gap remains between
the social models proposed in AOSE methodologies and the increasing number of sophisticated agent interaction frameworks outside AOSE, such as
those based on auctions, commitments, and dialogue games. Hence, social models in AOSE methodologies need to have more “hooks’’ to enable
integration with rich domain-specific agent interaction frameworks. Towards closer integration between social modelling in AOSE and other agent
interaction frameworks, we extend the ROADMAP methodology and provide a framework for enhancing the analysis of interaction requirements
through goal-oriented analysis and social modelling. More precisely, goal models provide the purpose of interaction, while social models provide
the social dependencies and policies that govern interaction. We show how the resulting requirements specification, complemented by protocol
descriptions, can inform the design of the system’s interaction model. The resulting approach bridges the gap described above by linking high-level
social concepts to low-level, domain-specific design decisions about interaction.

Keywords: agent interaction, social modelling, goal-oriented analysis

agent system (Wooldridge, 2002). The agent paradigm
promises to offer a powerful set of metaphors, concepts and
techniques for conceptualising, designing, implementing and
verifying complex distributed systems (Jennings, 2001). To
this end, our long-term research agenda is to provide an inte-
grated, comprehensive Agent-Oriented Software Engineer-
ing (AOSE) methodology. Our work towards this vision has
been reported through our expanding ROADMAP methodol-
ogy (Juan et al., 2002; Juan et al., 2003; Juan and Sterling,
2004; Kuan et al., 2005).

Agents often need to interact in order to fulfil their objec-
tives or improve their individual or collective performance.
It has been argued consistently that the analysis and design
of multi-agent interaction can benefit from the use of social
metaphors (Dignum, 2004). It is argued that modelling inter-
action can be improved by using higher-level constructs like
organisation structures and social policies. However, a gap
remains between the social models proposed in AOSE
methodologies and the increasing number of sophisticated
agent (run-time) interaction frameworks outside AOSE.

On one hand, within AOSE, work has been done on using
organisational abstractions (structures, policies etc.) to sup-
port the analysis and design stages (Ferber et al., 2003; Zam-
bonelli et al., 2003; Mao and Yu, 2004). On the other hand,
various agent interaction frameworks and protocols are being
proposed outside the AOSE community, such as those based
on auctions (Wurman et al., 2001), commitments (Maudet
and Draa, 2002), or dialogue games (Mcburney and Parsons,
2003), with applications ranging from electronic commerce
(Sandholm, 2002), to computer games (Gros et al., 2004), to
military simulations (Soon et al., 2004) and logistics plan-
ning (Perugini et al., 2004). AOSE methodologies such as
Gaia seem far too abstract, while domain-specific interaction
frameworks are far too precise. Indeed, some multi-agent
interaction mechanisms are very specific and prescriptive,
much like searching and sorting methods in algorithmics.
The gap between the two threads of research makes it diffi-
cult for AOSE methodologies to integrate with and exploit
such rich interaction frameworks. We believe this is because
social models in AOSE lack enough “hooks” to enable easier
integration with rich interaction frameworks.

Our objective in this paper is to give software practition-
ers the appropriate concepts and constructs to enable them to
analyse and express their requirements in a way that exploits
rich interaction mechanisms, i.e. by improving requirements
analysis such that the design-time choices of specific interac-
tion mechanisms become more obvious. To this end, we pro-
pose a change in focus by making social modelling in AOSE
methodologies more open, in the sense that it easily accom-
modates various research results on specific frameworks of
agent interaction. More precisely, we extend the ROADMAP
methodology and provide a framework for enhancing the
analysis of interaction requirements through goal-oriented
analysis and social modelling. Goal models provide the pur-
pose of interaction, while social models provide the social
dependencies and policies that govern interaction. We show
how the resulting requirements specification, complemented
by protocol descriptions, can inform the design of the sys-
tem’s interaction model. The resulting approach bridges the
gap described above by linking high-level social concepts to
low-level domain-specific design decisions about interac-
tion.

In a nutshell, the significance of the contributions of this
paper is as follows. Our framework enables the capture and
analysis of interaction requirements in a protocol-friendly
manner. In doing so, our framework provides a more inte-
grated approach to goal and social modelling, where high-
level analysis constructs (e.g. goals, organisational
structures) and low-level design constructs (e.g. protocols)
fit together. This is done within a framework that is both
simple and flexible. Interaction analysis is enriched and
linked to design-time constructs without committing to a
particular protocol specification language, such as finite
state machines, AUML sequence diagrams, or auction rules.

The rest of the paper is organised as follows. In the next
section, we provide a more detailed motivation of the need to
integrate social modelling with agent interaction frame-
works. In Section 3, we present our approach to making
social modelling more open through goal-oriented modelling
of interaction. We then conclude the paper in Section 4.

2. MOTIVATION

Recall that this paper is motivated by the observation that a
gap exists between social modelling in the AOSE literature
and research carried out in other areas of agent research, par-
ticularly in applying (run-time) agent interaction frameworks
to different application domains. We believe the custom
nature of social modelling constructs in AOSE methodolo-
gies impedes this integration.1 Existing AOSE methodolo-
gies are quick to move into low-level technical details of
interaction without supporting the developer in addressing
higher-level interaction requirements. For example, in Gaia,
the analysis stage starts directly with low-level constructs
like protocols, hence not supporting the developer in
addressing higher-level interaction requirements such as col-
laborative learning.

We argue that social modelling in AOSE can be distilled
into a cleaner framework with more “hooks” available to
enable integration with agent interaction frameworks. We
believe that in order for the integration to be successful,
there must be no conflict between the semantics of the spe-
cific interaction framework and the semantics of the AOSE
methodology, no conflict between the notations and model
presentations of the interaction framework and AOSE
methodology, and no conflict between the development pro-
cesses of the interaction framework and the AOSE method-
ology. To this end, the methodologies must present a simple
view of social modelling and generic concepts and models as
“hooks” around which interactions may happen.

From the analysis before, we propose some initial guide-
lines to assist the improvement of social modelling concepts
and methods in order to integrate more easily with related
research on agent interaction and accommodate related work
under a unifying framework.

1. The concepts used to describe social modelling should be
simple and general. Complex concepts often fail to model

88 computer systems science & engineering

I RAHWAN ET AL

1. By ‘custom nature’ we mean that the social modelling constructs in vari-
ous methodologies are hard to map to one another. For example, it is not
obvious how one could translate social modelling constructs from Opera to
Gaia.

simpler situations. Specialized concepts with specialized
semantics often have the effect of “fitting the problem to
the solution.” The semantics of the concepts must not pre-
clude important issues from the wide variety of agent
application domains.

2. The concept should be presented at the right level of
abstraction, showing the most relevant aspects of the
interaction while hiding unnecessary details. Over-speci-
fying the system at early stages of development may
encourage developers to focus on low level details and
ignore important issues from the application domains.

3. The methods for creating the models should be consistent
and should support easy translation from earlier models to
later ones. Integration with external interaction frame-
works will not be meaningful unless the benefit propa-
gates to design, implementation and later stages of the
development life-cycle.

These guidelines can be understood by looking at how use
cases achieved great success in OOSE. Use cases only offer
few and generic concepts, namely the system boundary,
actors (stick figures) and the associated use cases (oval bub-
bles). The representation is simple and intuitive, which
serves as visual summaries for more detailed text scenarios.
These generic concepts in use cases serve as “hooks” and
allow a wide range of domain specific issues to be integrated
closely into use case models.

2.1 A mobile computing scenario

To help illustrate the need for richer social modelling, we
present a scenario from mobile and pervasive computing.
This scenario will then be used throughout the paper to illus-
trate our approach. Note that this case study is not intended
to be a comprehensive application of the ROADMAP
methodology. Instead, we shall focus on features developed
in this paper.

The natural target for mobile computing is data manage-
ment – devices will acquire information in one situation and
deliver this information (or a processed version thereof) in
another situation where deemed useful. In our scenario (Fig-
ure 1), the user’s fridge recognises the need to purchase
more soft drink as the user opens the last bottle. This infor-
mation is added to the user’s shopping list. It will be useful
to remind the user of this shopping list when he/she is nearby
a supermarket (Figure 1a). Hence, information about the
shopping list is transferred to a mobile device held by the
user which, based on some location-identification service,

recognises the user’s proximity to the supermarket and trig-
gers the appropriate action. This action can range from sim-
ply retrieving a quote from some nearby food store and
presenting it to the user (Figure 1c) to performing complex
negotiations with multiple food stores to find the best deal
(Figures 1b, d).

2.2 Shortcomings of existing approaches

In this sub-section, we use the above scenario in order to
elaborate the need for integrating social modelling with
agent interaction. We explain why existing object-oriented
and agent-oriented approaches fall short from achieving this.

Use cases are not suitable for modelling agent applica-
tions like the mobile computing scenario above as its fea-
tures are not tailored to capturing agent requirements. For
example, the notion of system boundary is not very relevant
in the mobile computing scenario. Traditional software on
PCs or workstations has a clear user interface, and various
functions are hidden inside the interface, so the distinction
between the user outside the system and the functions inside
the system is useful. In the mobile computing scenario, it can
be argued that the system is following the user around, or the
user is immersed inside the system. Indeed, many agent
researchers do not make clear distinctions between users and
other agents in the system and allow human users and soft-
ware agents to be swapped dynamically. Therefore, a system
boundary is not necessary.

Moreover, use cases focus on concrete features of the sys-
tem exposed through the user interface. Agent systems, on
the other hand, are likely to change their features or
behaviours according to the context of the use. It is therefore
undesirable to hard-wire the system features at such an early
stage of development, narrowing prematurely the potential
of the target application. For example, the user of the mobile
computing example may be reminded when he/she is close to
a supermarket. As long as such location/context information
is correctly determined, how it is determined is not as impor-
tant to the user. We consider system features to be at an
excessively low-level of abstraction to be used to specify
agent requirements. The side-effect for operating at this level
is that the developer’s effort must be devoted to gathering
feature information that is not as important while the more
significant information of system objectives may receive
insufficient attention. Therefore a more abstract way to elicit
requirements at higher-level of abstraction is needed.

A main benefit of agents is their ability to act intelligent-
ly, delivering services in a manner appropriate to the context
of use. In another words, the non-functional quality require-
ments of the system play a much more important role in
agent systems than in conventional systems. Whether a ser-
vice is regarded as “intelligent” or “appropriate” depends on
meeting the quality expectations of the users. For example,
the user of the mobile computing scenario may expect the
reminder to be non-intrusive. Use cases offer no assistance
in specifying such quality requirements of the system and are
inadequate for modelling agent systems.

AOSE methodologies offer different methods and models
to elicit social requirements about agent interaction. We
examine a number of AOSE analysis methods, namely
Prometheus (Padgham and Winikoff, 2004), the agent use

89

INTEGRATING SOCIAL MODELLING AND AGENT INTERACTION

vol 21 no 2 march 2006

Figure 1 Mobile-commerce and pervasive computing scenario:
shopping assistant

cases described by Heinze et al. (2000), Gaia (Wooldridge et
al., 2000; Zambonelli et al., 2003) Tropos (Bresciani et al.,
2004), and MAS-ML (Dasilva and Lucena, 2004) with the
above perspective. Gaia and Tropos are designed to support
agent oriented analysis methods natively and are not based
on use cases.

Both Prometheus and agent use cases from Heinze et al.
are based on use cases, and inherit their drawbacks. In partic-
ular, Heinze et al. use another variant of use cases, allowing
agents to be depicted inside the system boundary. The result-
ing requirements are also likely to be low-level while quality
requirements are neglected. The Prometheus methodology
employs a similar form of use cases and scenarios for elicit-
ing requirements. Consequently, Prometheus insists on early
commitment to a system boundary and does not accommo-
date quality goals. Finally, by committing to the BDI archi-
tecture at the design stage, the resulting requirements are
likely to be biased and low-level, with reduced support for
other high-level social issues such as learning.

Gaia assumes the availability of requirements and there-
fore does not support requirements elicitation. This is a sig-
nificant drawback in terms of integrating with other social
modelling frameworks. Once the requirements are gathered,
Gaia organises them using organisational structures, roles
and protocols. By moving into low-level constructs like roles
and protocols early, Gaia also makes integration difficult by
committing to specialised constructs early without staying
generic.

Tropos utilises a goal-oriented approach based on i* (Yu,
1995) to model requirements. This approach allows high-lev-
el requirements to be described in terms of actors (roles,
agents and positions) and the relationships between actors.
The relationships between actors must involve a goal, a soft-
goal, a task or a shared resource. While Tropos uses high-
level concepts such as roles, goals and soft-goals, it also
includes low-level concepts such as agents, tasks and
resources. The number of possible constructs and their rela-
tionships can encourage developers to over-specify the sys-
tem up front with too much detail. The modelling of
high-level issues and low-level issues are not clearly separat-
ed to better guide the focus of development efforts. Tropos
also make commitments to the BDI architecture and there-
fore places semantic restrictions on integrating to non-BDI
interaction frameworks.

MAS-ML (Dasilva and Lucena, 2004) is a multi-agent
modelling language based on the TAO (Taming Agents and
Objects) conceptual framework (Dasilva et al., 2003). How-
ever, MAS-ML is mainly concerned with integrating agent-

related concepts from TAO with object-oriented UML via
their meta-models. When it comes to interaction modelling,
MAS-ML extends UML sequence diagrams. Therefore, as it
stands, MAS-ML does not offer integration with other agent
interaction frameworks.

In summary, existing AOSE methodologies present useful
methods to address requirements analysis. However, the con-
cepts and methods of these methodologies tend to be too spe-
cialised in terms of semantics, which encourages low-level
details to be specified. Consequently, integration to other
interaction frameworks of non-AOSE origin is more difficult
as high-level and generic “hooks” are often missing or mis-
placed.

3. OUR APPROACH

In the previous section, we argued for the importance of inte-
grating social modelling with agent interaction. In this sec-
tion, we describe our approach. In particular, we extend the
ROADMAP analysis models in order to provide a structured
approach to specifying rich interaction requirements. We
then show how these can influence design-time models. But
first, we give a brief introduction to ROADMAP as it cur-
rently stands.

3.1 The ROADMAP methodology

ROADMAP (Juan et al., 2002) started as an attempt to
extend Gaia (Wooldridge et al., 2000), a methodology
intended to support the analysis and design of multi-agent
systems (see Figure 2). In the analysis stage, a role model
and interaction model are created. A role is described
through a role schema, which describes the role’s protocols,
activities, permissions and responsibilities. Interaction is
described by providing simple descriptions of each protocol:
the roles responsible for initiating and responding to the pro-
tocol, the input and output information, and a brief textual
description. In the design stage, Gaia requires the specifica-
tion of an agent model, a service model and an acquaintance
model. These are mappings of the role model and interaction
model to concrete constructs (much like the instantiation of
classes as objects in object-oriented methodologies). The
agent model specifies the agents types, which describe the
roles the agent takes, and the number of instances of that
type. The service model describes coherent blocks of func-
tionality, as derived from role activities and protocols.Final-
ly, the acquaintance model is a directed graph between
agents that denotes communication flow.

From Gaia, ROADMAP inherits the organizational view
on multi-agent systems, and the basic definitions of roles,
protocols, agents and services. However, over time the
semantics of these concepts in ROADMAP has become quite
different, making it evolve as a methodology in its own right.
ROADMAP provides the following main additional
features:2

Role Hierarchies: These are organisational structures that
specify societies on different levels of abstraction. A role

90 computer systems science & engineering

I RAHWAN ET AL

2. For a more detailed list, refer to Cernuzz et al. (2004).Figure 2 The Gaia models

can aggregate sub-roles: roles that are part of the super-
role.

Agent Hierarchy: These are actual instantiations of role hier-
archies. Loosely, roles serve as system specification,
while agents serve as system implementation.

Expanding Role Descriptions: ROADMAP requires specify-
ing knowledge components associated with roles, as well
as the specification of pre- and post-conditions of proto-
cols;

Performance Metric: This is a function that evaluates the
performance of the system, and can be associated with a
role, a particular agent, or a resource.

Recall that in this paper, we are mainly concerned with the
requirements analysis stage. Roughly speaking, the analysis
stage in ROADMAP involves the following:

1. Create the goal model to analyse the objectives and pur-
pose of the system. This model involves a hierarchy of
functional and quality goals, roles associated with goals,
and quality goals built from the start. The goal model
consists of a hierarchy of functional goals (represented
via parallelogram symbols) and quality goals (represent-
ed via clouds linked to functional goals), roles associat-
ed with goals (represented by stick figures). The
notation for the ROADMAP goal model is summarised
in Figure 3.

2. Create other models to analyse the requirements of the
system. These models include:

a. The role model involves individual role definitions, and
their interrelationship in the form of a role hierarchy.3

b. The environment model which is divided into a hierarchy
of zones, each with its associated constraints and proper-
ties.

c. The knowledge model which specifies the main ontolo-
gies in the system organised into a knowledge hierarchy.

d. The social model which specifies social aspects such as
norms, interaction policies, team conventions etc.

3. Iteratively improve the models until they are satisfactory

To illustrate how ROADMAP works, we now begin pre-
liminary analysis of the scenario presented in Section 2.1.4
Figure 4 shows a preliminary goal model based on our sce-
nario. The main goal of the system is to handle mobile shop-
ping and, in this case, this is done by identifying an
opportunity for shopping (e.g. based on user proximity to a
supermarket), finding a deal, and reporting the result back to
the user. The opportunity identification must satisfy the
quality goal of being permitted by the user context, however
that may be expressed. At the most basic level, finding a
deal involves identifying available alternatives and negotiat-
ing a specific deal accordingly. Negotiating a deal would
naturally involve one or more other parties enacting the ven-
dor role. The deal found must be the best (however that

might be defined) from the point of view of the user; this is
indicated as another quality goal.

After identifying the goal model, the analyst begins build-
ing the other models. For example, building the role model
would involve further defining the roles “user” and “vendor”
through role schemas. The environment and knowledge
models also need to be defined, but since they are outside the
focus of this paper, we now focus on discussing the extended
goal and social models.

3.2 Extending ROADMAP models for
interaction

Currently, the ROADMAP goal model does not explicitly
distinguish interaction goals at the analysis stage. Interaction
is implicitly and directly addressed in the role schemas,
where each role has a list of the protocols it uses. At the
design stage, this interaction specification is directly instan-
tiated into AUML interaction diagrams (Bauer et al., 2001).
However, the above scenario gives room for “teasing out”
more domain knowledge about interaction at the analysis
stage. For example, what does the interaction between the
vendor and the user mobile device aim to achieve? What
properties does it need to satisfy? And how could these
requirements guide the design-time selection of specific
interaction protocols? Our aim is to provide additional fea-
tures to enable such elicitation and analysis.

In order to improve interaction requirements analysis, we
extend the goal model and social model. In the design stage,
these improved models inform the design of the protocol
model and interaction model. Below is a brief description of
our approach:

91

INTEGRATING SOCIAL MODELLING AND AGENT INTERACTION

vol 21 no 2 march 2006

3. At the detailed design stage, these role hierarchies are instantiated into
agent hierarchies which are run-time entities.
4. Note that we only demonstrate ROADMAP to the extent needed to moti-
vate the extensions reported in this paper. Hence, we do not fully demon-
strate all ROADMAP’s features, such as environment and knowledge
models, rich role models etc.

Figure 4 A ROADMAP goal model

Figure 3 Goal model notation

Step 1: Analyse interaction goals through the extended goal
model. In addition to denoting functional and quality
goals, this model now explicitly encodes interaction
goals.

Step 2: Analyse the organisational structure through the
extended social model. This model captures the different
relationships among agents in order to elicit high-level
policies that govern their interaction.

Step 3: Based on the social policies resulting from the
extended social model, (i) refine the interaction goals in
the goal model, and (ii) encode social policies in the form
of quality goals over interaction goals.

Step 4: Concretise the social policies by giving them more
precise meaning suitable for the design or selection of
protocols in the protocol model.

Step 5: Design the protocol model, which is similar to the
earlier ROADMAP protocol model. It consists of a set of
protocol schemas, each describing various aspects of a
particular protocol. Examples of protocols include: auc-
tion protocols, team formation protocols, delegation pro-
tocols etc.

Step 6: Design the final interaction model. This model is
where specific interaction patterns are specified. These
interaction patterns use protocols from the protocol model
as building blocks, while making sure they fulfil the inter-
action goals and adhere to the social policies.

The enhanced models, and the flow of information between
them, are depicted in Figure 5. The new goal model and
social model provide additional tools for eliciting and
analysing interaction requirements. Then, the protocols in
the protocol model can be identified (from reusable compo-
nents or designed from scratch) based on the interaction
requirements. Together, the goal model, social model and
protocol model can then be used to produce the low-level
interaction model. This approach clearly extends the original
approach taken in ROADMAP, in which protocols are speci-
fied in AUML and associated directly with role descriptions.

The ROADMAP models and their interrelationships have
undergone various changes (see, for example, Juan et al.,
(2002, 2003) and Juan and Sterling (2004)). We change these
yet again in order to cater for the new above-mentioned mod-
els,5 and the resulting structure of various models within the
ROADMAP methodology is shown in Figure 6. The models
are grouped into two categories. The environment model and

knowledge model contain reusable high-level domain speci-
fications. The protocol model and service model, on the oth-
er hand, describe potentially reusable low-level software
components. All other models are considered, more or less,
application specific. The shaded boxes denote those models
that form a key part of interaction requirements analysis and
interaction design.

Next, we describe our approach to interaction require-
ments analysis in more detail. In particular, we focus on the
elements of the goal model and social model, and then show
how these can guide the two design-time models (i.e. proto-
col model and interaction model).

3.3 Interaction requirements analysis

In this section, we extend the ROADMAP goal model and
social model in order to support interaction requirements
analysis. This process consists of identifying the interaction
goals, organisational structure and social policies.

3.3.1 Identify Interaction Goals
The first step in interaction requirements analysis is to iden-
tify the objectives of interaction among agents, which we
shall refer to as the interaction goals (as a specialisation of
functional goals described earlier). As the name indicates,
interaction goals are goals that require, for their achieve-
ment, some form of interaction among roles. And any such
interaction goal must ultimately contribute towards some of
the functional system goals as identified in the goal model
(i.e. communication must be purposeful). For example, a
functional goal to “place an order” may require communica-
tion between a customer role and a vendor role in order to
determine the terms of the transaction.

Interaction goals are added to the goal model. For this
purpose, we introduce a slightly modified graphical notation
(dotted parallelogram) to indicate that a goal is an interac-
tion goal. Figure 7 shows a modified version of Figure 4
with interaction goals. The goal “negotiate deal” directly
involves interaction among a vendor and a user. Therefore,
it makes more sense to cast it as an interaction goal. The
goal “identify alternatives,” on the other hand, requires
seeking information about products on offer. For this

92 computer systems science & engineering

I RAHWAN ET AL

Figure 5 The new design-time interaction-related models

5. We believe this ability to change is a strength, not a weakness, as it
reflects ROADMAP’s natural flow of concepts between different stages.

Figure 6 The models within the ROADMAP methodology

reason, a new interaction goal “seek information” is added
to the goal model. Interaction goals themselves might also
be decomposed hierarchically. For example, the interaction
goal “seek information” may be further decomposed into
two goals: “query yellow pages” which requires communi-
cation with a role providing a yellow-pages service to find
who offers the products needed, and “request products on
offer” which requires communication with the vendor role
to obtain information about features of specific products.
In order to properly exploit interaction analysis, we need to
ensure that the new goal model is sufficiently rich to aid sub-
sequent design of interaction protocols. For example, the
analyst might be tempted to cast the goal “identify alterna-
tives” as a leaf-level interaction goal. However, this level of
specification is not very informative since it does not give
clues about the types of interaction protocols that might be
needed to achieve this goal. We therefore present the analyst
with a set of primitive interaction goals, described in Table
1. These interaction goals are sufficiently abstract to provide
flexibility while, at the same time, sufficiently concrete to
provide useful guidance for the selection of specific interac-
tion protocols at the design stage. These interaction goals are
based on a typology of dialogues from argumentation theory
(Walton and Krabbe, 1995). Note that this list is neither
exhaustive nor disjoint, as some goals may be related or sub-
sumed by one another, which can be done easily through
interaction goal decomposition. For example, “negotiation”
may involve a form of “persuasion” in which a seller
attempts to convince a potential buyer of the quality of a

particular product. We believe the list provides a set of
potentially useful concepts at the analyst’s disposal.

3.3.2 Identify Organisational Structure
The organisational structure describes the relationships and
dependencies between roles (Zambonelli et al., 2001) and
can therefore provide clues about the types of protocols that
might be suitable for their interaction (Mao and Yu, 2004).
Hence, specifying the organisational structure is an essential
step in the analysis of interaction requirements.

Currently, the ROADMAP social model is simple. Firstly,
hierarchies constitute the only form of organisational struc-
ture among roles. There is no support (conceptually or nota-
tionally) for specifying more complex types of
organisational structures. However, the relationship between
a vendor and a buyer is clearly non-hierarchical. Therefore,
it would be instrumental to have conceptual tools that enable
requirements analysis in a way that reflects a variety of
social structures.

In our extension, identifying the organisational structure
takes place by identifying the various relationships based on
the existing role model and labelling the resulting structure.
Relationships are identified in such a way as to achieve the
interaction goals discussed above. Below, we elaborate on
how this may be done.

One way is to view relationships in terms of the specific
types of influence agents can exert on each other and their
environments (Ashri et al., 2003a; Panzarasa and Jennings,
2002). Another way to identify relationships is using binary
relations (Dignum, 2004). We take the latter approach here
since it is more abstract and less committal about the under-
lying representation of agent mental attitudes and the envi-
ronment.

Relationships are identified as follows. First, the roles
that constitute the ROADMAP role model are listed and
each is defined through a role schema (Juan et al., 2002).
Then, a set of role dependencies are identified. Essentially,
role dependencies correspond to a set of binary relations on
the set of roles. For example, the triple <user, directory_ser-
vice, dependency_info> may be used to denote that the enac-
tor of the user role has a dependency on information
resources provided by an agent enacting the role of directo-
ry_service. Role dependencies are not confined to “delega-
tion.” They may represent any kind of social relationship.
Following we provide a list of typical types of relationships
that may exist between agents:

• delegation: where one role can delegate tasks to another
role;

• control: where one role has authority over another role,
enabling it to change the latter’s state;

• influence: where one role can influence another role’s
state (this is weaker than “control,” which enables influ-
ence over all state attributes);

• dependency: where one role relies on resources (e.g.
actions or information) from another role;

• collaboration: where two or more roles rely on each oth-
ers’ resources for the achievement of common goals;

• authorisation: where one role requires authorisation from
another role in order to execute particular behaviours;

These relationships are extensible. It is possible to define

93

INTEGRATING SOCIAL MODELLING AND AGENT INTERACTION

vol 21 no 2 march 2006

Figure 7 Example goal model with interaction goals

Table 1 Types of primative interaction goals

different types of relationships to the ones mentioned above.
Based on the relationships between roles, the analyst can

identify the organisational structure of the system. At the
most abstract level, there are two main social structures
found in the literature, namely:

• Hierarchy: where agents are organised into a hierarchy.
This structure is suitable for representing relationships
such as decompositional dependency, delegation and
authority.

• Peer Network: where all agents have equal status and
interact with one another in a peer-to-peer fashion. This is
suitable for representing cooperative teams and competi-
tive markets.

These structures may be specialised into various other types
of structures, based on the types of relationships that hold
between agents. For example, a market is typically a peer
network, since all agents are regarded as equal. A team can
be seen either as a peer network (where team members are
regarded as equal) or as a hierarchy (where some members
have a coordinating function among their subordinates).

In Figure 8 we illustrate the graphical notation for
describing different types of structures.6 The links between
roles represents relationships among them, with the annota-
tion describing the relationship type. Note that these rela-
tionship types do not denote the interaction protocols among
these roles. Instead, they denote a more abstract description
of their relationship. Later, specific interaction protocols can
specialise relationships as appropriate.

While the organisational structure is being identified, the
analyst needs to make sure that the structures correspond
correctly to the interaction goals, and potentially refining
both the interaction goals and organisational structure until
they are satisfactory. This iterative process of refinement
yields a coherent goal model with clear interaction goals,
along with an organisational structure among roles that
reflects such a goal model. For example, it would not make
sense for an interaction goal that require negotiation to be
associated with a control relationship, since negotiation by
definition requires autonomy. In general, what is an appro-
priate linking between the relationship/organisational struc-
ture and the interaction goal model will depend on the
application domain.

Note that the organisational structure produced in the

analysis stage does not necessarily correspond to that of the
design stage. Indeed, the designer may choose more efficient
organisational structure. Nevertheless, as we shall see in the
next section, the analysis-stage organisational structure pro-
vides a means for analysing the social policies (discussed
next) that are useful for enriching interaction requirements.

3.3.3. Identify Social Policies
Having defined the organisational structures that describe
the agent society, the next step is to define the social policies
that control interaction among various roles. Social policies
are constraints on interaction and behaviour. They can repre-
sent anything from access rights, to social norms, to obliga-
tions, etc. The analyst identifies social policies based on the
relationships and dependencies between roles, which are
now available from the organisational structure.

In order to integrate these policies with interaction more
clearly, they need to be linked to the interaction goals elicit-
ed in the goal model. We propose a simple but powerful
approach to achieving this. We view social policies as quali-
ty goals over the interaction goals: they are constraints that
control or measure the achievement of interaction goals. As
a result, social policies can be linked to interaction goals in
the goal model diagram in a similar way that normal quality
goals are added to normal goals.

Figure 9 shows a portion of the model described earlier
with three elicited quality goals representing social policies.
Below is a textual description of these policies.7

• Pareto efficiency: This social policy requires that the deal
achieved by the “negotiate deal” interaction goal must be
Pareto efficient, i.e. there must be no other deal which
makes one party better off without making the other party
worse off. This policy is a common requirement in frame-
works for automated negotiation among self-interested
agents (Binmore and Vulkan, 1997).

• Commitments are binding: This social policy requires that
if agents agree on a deal, they should not be allowed to
decommit on that deal. In design time, this may translate
to a choice of a specific protocol that imposes heavy
penalties on decommitment.

• Timely response: This quality goal requires that information
about the available alternative products or services is

94 computer systems science & engineering

I RAHWAN ET AL

7. Of course, a more formal description (e.g. using logical axioms) can also
be used if needed.

Figure 8 Examples of organisational structures

6. This notation extends the earlier role model notation in ROADMAP in
which only hierarchies are allowed, and in which links are not labelled.

Figure 9 Portion of Figure 7 appended with social policies represented as
quality goals over interaction

provided in a timely fashion. In the design and implementa-
tion stages, this may translate into specific time-out periods
by which the response must be provided even though, for
example, the list of alternatives is still incomplete.

Other social policies may be specified as quality goals. For
example, in an application that requires collaborative inter-
action and a team structure, one might specify that no team
member might leave without notice.

At this stage, developers focus on nominating the social
policies and analysing them qualitatively. Therefore, once
the social policies have been identified, the developer can
put the corresponding quality goals (and other quality goals
not related directly to interaction) into a hierarchy. The
dependencies and potential conflicts can be modelled using
positive or negative contribution relationships (denoted by
“+” and “–” signs). The same framework can allow you to
represent other influences from the environment that can
affect your quality goals. In addition to quality goals, the
developer can also add other notions from the environment
to the hierarchy to capture their influences. Figure 10 shows
an example of such hierarchy. It shows that both goals
“timely response” and “commitment is binding” contribute
towards achieving a “better deal.” However, there is conflict
between achieving a better deal and a “timely processing” of
the mobile shopping.8

Note that the social policies identified at the analysis
stage are relatively abstract. The precise manner in which
social policies are defined at the design and implementation
stages will depend on the specifics of the domain, as we
shall see below.

3.4 Moving towards design: the protocol
and interaction models

By now, the analysis stage will have produced the complete
set of interaction requirements based on the extended goal
and social models. These requirements are produced without
any commitments about the system design. Yet, these inter-
action requirements provide very rich models that can aid
the design stage. In particular:

• the new goal model shows the main goals that require
interaction among agents, described in hierarchies of
interaction goals, explicitly stated and linked purposefully
to functional goal;

• the organisational structure provides a description of the
dependencies between different roles, giving further clues
about the kinds of suitable protocols;

• the social policies, described as quality goals over inter-
action goals, provide a set of criteria that interaction
needs to fulfil, and a performance metric that can also be
used for validating interaction at run-time;

The bulk of this paper was focused on the analysis stage. For
the sake of illustration, however, we now briefly discuss
how interaction requirements influence the interaction-relat-
ed design-time models (namely, the protocol model and

interaction model).9

3.4.1 Concretise Social Policies
Recall that in the analysis stage, social policies are described
abstractly, and not necessarily given precise meaning. For
example, a quality goal like “timely response” might have
different interpretations when considered in the context of
different applications. In the design stage, social policies
need to be concretised and given precise meaning. This can
be done by nominating measurement functions for quality
goals, which can have quantitative meaning.

In order to maintain generality, we do not prescribe a spe-
cific method for concretising social policies. They can be
expressed, for example, in the form of a quantitative mea-
sure of some value, or in the form of logical axioms that
must be satisfied by any run of the system. Following is a
concretisation of the social policy requiring the Pareto effi-
ciency of negotiation outcomes through a mathematical
function:

Let O be the set of all possible outcomes and let Ui(O)
be the utility that agent i receives if outcome O ∈ O

was reached. Any negotiation outcome O reached in
the system must achieve the following condition: ∃/ O′
∈ O: ∃i ∈ Agents, Ui(O′) > Ui(O) and ∀j ∈ Agents,
Uj(O′) ≥ Uj(O)

Similar definitions might be given for other social
policies/quality goals. For example, the performance with
respect to the goal “timely processing” might be easily mea-
sured using a measurement function based solely on the time
logged between the triggered context change (according to
the user’s location) and the production of offers on the
screen. This function gives a range of performances based
on, for example, the difference between the time taken and
the average expected time.

The relative importance of quality goals can also be quan-
tified. For example, if “timely processing” is three times
more important than getting the best deal, then the agent is

95

INTEGRATING SOCIAL MODELLING AND AGENT INTERACTION

vol 21 no 2 march 2006

8. Recall that “timely processing” is a quality goal that relates to the top-
level functional goal in Figure 4.

Figure 10 Hierarchy of quality goals (both interaction and non-interaction
related)

9. Hence, we do not demonstrate all features related to the design stage,
such as instantiating agents and defining specific services.

to devote three times the resource on finding a deal over
obtaining information about all available nearby shops.

Diagrammatically, the designer could annotate the quality
goal hierarchy shown in Figure 10 with weights on the
arrows (reflecting the strength of the positive of negation
contribution between quality goals) and numbers within the
clouds (reflecting the degree of importance of that goal).

The concretised policies can serve two purposes. First,
they can provide directly implementable specifications of
performance measures, which might be handy either for test-
ing or for run-time reasoning about the compliance with
social policies. Second, they offer more concrete criteria for
selecting and designing interaction protocols.

3.4.2 Identify Protocol Model
ROADMAP has a distinct protocol model, which is part of
the design stage. The ROADMAP protocol model describes a
set of protocols: reusable message sequences that serve spe-
cific objectives. Each protocol is given two complementary
descriptions:

• An abstract protocol schema that describes various
aspects of the protocol, including when and for what it can
be used;

• A protocol, that specifies the precise sequence of mes-
sages that constitute the protocol as a message sequence
specified in an AUML sequence diagram. This constitutes
the runtime realisation of the protocol.

The protocol schema is a table that specifies the following:

• Protocol name;
• Goals achieved (including soft goals);
• Initiating roles: roles that can initiate the protocol;
• Responding roles: role in charge of responding to the protocol;
• Sub-protocols.

The idea of sub-protocols enables capturing more complex
protocols in terms of simpler ones. For example, a purchas-
ing protocol may consist of an information-seeking protocol
for finding possible items to purchase, and a negotiation
protocol for reaching agreement on the terms of transaction
for a particular item. Figure 11 shows an instantiated proto-
col schema for purchasing a service.

The protocol model can be obtained in two ways: it can be
built from scratch;10 or it can be based on a selected set of pro-
tocols from a repertoire of reusable protocols. In both cases,
the design or selection of protocols must take into account the
interaction goals, social policies and organisational structure.

The first requirement a designed/selected protocol must
fulfil is that the protocol’s goals must be correspond directly
to a (bottom-level) interaction goal. For example, in order to
achieve the interaction goal “negotiate deal” shown above,
the protocol chosen must be a negotiation protocol.

Secondly, the designed/selected protocol must be consis-
tent with the organisational structure. For example, a

negotiation protocol does not normally make sense between
two roles amongst which there is a strong authority and influ-
ence relationship. It is more natural for negotiation to occur
among peers since negotiation departs, by definition, from a
situation of conflict that cannot be resolved through unilater-
al authoritative decisions.

Finally, the designed/selected protocol must be consistent
with the social policies. This is where the specific properties
of the protocol become an important design factor, as the
designer relates them to the concretised social policies. In
particular, this aspect of design demonstrates the benefit of
integrating social concepts more closely with agent interac-
tion. In our example, the negotiation protocol designed/
selected must ensure Pareto efficiency while providing a
timely response. Not all negotiation protocols ensure this
requirement is fulfilled, but some do (Kraus, 2001; Rosen-
schein and Zlotkin, 1994). Moreover, to ensure the deal
reached is the “best deal,” the user agent needs to negotiate
with all available vendors in the nearby area. This means that
a one-to-many negotiation protocol (such as an auction or
concurrent bilateral negotiation protocol (Rrahwan et al.,
2002) or an auction protocol (Wurman, 1999) is more suit-
able than a one-to-one protocol (such as the bilateral negotia-
tion protocol of Faratin (2000).

3.4.3 Identify Interaction Model
Having defined or selected a set of suitable protocols that
meet the interaction and social requirements, the designer
can now instantiate the protocol model in order to identify
specific patterns of interaction, resulting in the interaction
model. We only provide brief clues as to how this may be
done since detailed design is not the main focus of this paper.

Since the interaction model is part of the (detailed) design
stage, it is built in conjunction with the agent model and ser-
vice model. The agent model includes specific agent classes,
instantiated based on role schemas from the role model. Sim-
ilarly, the service model includes specific services and activi-
ties agents need to perform. Specific interaction protocols are
instantiated in order to facilitate the interaction among
agents. In doing so, the interaction model brings social and
goal modelling of interaction to design-time constructs.

4. DISCUSSION AND CONCLUSION

In this paper we presented the idea of creating more “hooks”
in AOSE methodologies to assist integration to other
research effort on agent interaction frameworks. Implement-
ing this idea appropriately allows rich domain-specific inter-
action frameworks outside AOSE to be reused seamlessly, to
serve the needs of specialised agent application domains.

We outlined some initial guidelines to improve AOSE
methodologies. The central theme is to avoid unnecessary or

I RAHWAN ET AL

96 computer systems science & engineering

10. For example, using a run-time protocol specification language such as
AUML (Bauer et al, 2001), auction parametrisation rules (Wurman et al.,
2001), dialogue-games (Mcburney and Parsons, 2003), commitment
machines (Yolum and Singh, 2001), or Flores and Kremer’s framework
based on the negotiation of social commitments (Flores and Kremer, 2004).

Figure 11 Protocol schema for purchasing a service

premature commitments to conceptual, representational and
process restrictions in social modelling, or at least delay the
commitments if possible. By staying high-level and generic
in social modelling practices, external interaction frame-
works with their distinctive high-level issues can be incorpo-
rated and accommodated in AOSE methodologies.

We illustrated this idea by extending ROADMAP with
goal modelling, and linking the goals to social dependencies
and policies via interaction goals. The interaction goals are
further refined to interaction protocols. The goal models are
generic in the sense that no explicit logical relationships are
required between sub-goals. We believe the goal modelling
techniques are pitched at the right level of abstraction and
allow developer to focus on the essence of interaction without
going into technical details too early. Quality goals, which also
represent social policies, are open to iterative refinement and
their semantics are captured in modular measurement func-
tions. The interaction protocols are connected to the interac-
tion goals through smooth transition from analysis to design.

The various entities described in our approach act as
generic “hooks” around which interaction frameworks can be
integrated and their distinct high-level issues represented and
clarified. We consider this approach a successful first step
towards integrating AOSE methodologies with agent interac-
tion research outside AOSE.

Our future work includes extending the same approach to
integrate broader aspects of social modelling into ROADMAP,
such as organisational changes, learning in organisations and
organisational knowledge management. Furthermore, the rela-
tionships between ROADMAP entities are inherently dynamic
and can change at runtime. However, further work is still
needed to clarify the details for integrating dynamic relation-
ships in ROADMAP to other dynamic relationship formation
frameworks such as the runtime negotiation of social contracts
described in Dignum (2004). Another area of future work is
the integration of our approach with more elaborate require-
ments analysis frameworks (e.g. Donzelli and Bresciani, 2004)
and with other AOSE methodologies such as Tropos.

It is worth noting that while preparing the final version of
this paper after acceptance, we learned of a new methodolo-
gy named Hermes (Cheong and Winikoff, 2005), which pro-
vides a goal-oriented approach to designing interaction
protocols and a process for mapping design artefacts to an
executable implementation. Indeed, Hermes also uses the
notion of interaction goal hierarchy as a starting point, and
shows how such specification can be turned into run-time
protocol implementation. A promising direction of research
is the integration between our approach to goal-oriented
interaction requirements analysis, and the Hermes approach
to goal-oriented interaction design.

ACKNOWLEDGEMENTS

The authors are grateful to the anonymous reviewers for pro-
viding insightful feedback, and particularly to reviewer 2 for
bringing to our attention the recent methodology Hermes
(Cheong and Winikoff, 2005).

During part of this work, Iyad Rahwan was supported by
an Australian Research Council’s Linkage Grant (ARC
LP0348797) and the Special Research Centre on Perceptive
and Intelligent Machines in Complex Environments (PIM-

CE). The first author is grateful to Ronald Ashri for discus-
sions regarding agent relationships, and to Fernando Koch
for providing the scenario and Figure 1.

REFERENCES

Ashri, R., Luck, M. and d’Inverno, M. (2003) On identifying and
managing relationships in multi-agent systems. In: G. Gottlob
and T. Walsh, editors, Proceedings of the 18th International
Joint Conference on Artificial Intelligence (IJCAI), pp.
743–748, San Francisco CA, Morgan Kaufmann.

Bauer, B., Müller, J. and Odell, J. (2001) Agent UML: A formal-
ism for specifying multiagent interaction. In: P. Ciancarini and
M. Wooldridge, editors, Agent-Oriented Software Engineering,
volume 1957 of Lecture Notes in Computer Science, pp. 91–103.
Springer Verlag, Berlin.

Binmore, K. and Vulkan, N. (1997) Applying game theory to
automated negotiation. Proceedings of the DIMACS workshop
on economics, game theory and the Internet, New Brunswick
NJ, USA, April. Rutgers University.

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F. and
Mylopoulos, J. (2004) Tropos: An agent-oriented software
development methodology. Autonomous Agents and Multi-
Agent Systems, 8(3): 203–236.

Cernuzzi, L., Juan, T., Sterling, L. and Zambonelli, F. (2004)
The Gaia methodology: Basic concepts and extensions. In: F.
Bergenti, M. P. Gleizes, and F. Zambonelli, editors, Methodolo-
gies and Software Engineering for Agent Systems. Kluwer Aca-
demic.

Cheong, C. and Winikoff, M. (2005) Hermes: Designing goal-ori-
ented agent interactions. In: J. M¨uller and F. Zambonelli, edi-
tors, Proceedings of the 6th International Workshop on
Agent-Oriented Software Engineering (AOSE), Utrecht.

da Silva, V. T. and Lucena, C. (2001) From a conceptual frame-
work for agents and objects to a multi-agent system modeling
language. Autonomous Agents and Multi-Agent Systems, 9(1–2):
145–189.

da Silva, V. T., Garcia, A., Brandòao, A., Chavez, C., Lucena, C.
and Alencar, P. (2003) Taming agents and objects in software
engineering. In: A. Garcia, C. Lucena, F. Zambonelli, A. Omici-
ni, and J. Castro, editors, Software Engineering for Large-Scale
Multi-Agent Systems, volume 2603 of Lecture Notes in Comput-
er Science, pp. 1–26. Springer Verlag, Berlin.

Dignum, V. (2004) A model for organizational interaction: based
on agents, founded in logic. PhD thesis, Institute of Information
and Computing Sciences, Utrecht University, The Netherlands.

Donzelli, P. and Bresciani, P. (2004) Improving requirements
engineering by quality modelling: a quality-based requirements
engineering framework. Journal of Research and Practice in
Information Technology, 36(4): 277–294.

Faratin, P. (2000) Automated Service Negotiation Between
Autonomous Computational Agents. PhD thesis, University of
London, Queen Mary and Westfield College, Department of
Electronic Engineering.

Ferber, J., Gutknecht, O. and Michel, F. (2003) From agents to
organizations: An organizational view of multi-agent systems.
In: P. Giorgini, J. P. Müller, and J. Odell, editors, Agent-Orient-
ed Software Engineering IV, volume 2935 of Lecture Notes in
Computer Science, pp. 214–230. Springer-Verlag, Berlin.

Flores, R. A. and Kremer, R. C. (2004) A principled modular
approach to construct flexible conversation protocols. In: A. Y.
Taw k and S. D. Goodwin, editors, Advances in Artificial Intel-
ligence, 17th Conference of the Canadian Society for Computa-
tional Studies of Intelligence, Canadian AI 2004, London,
Ontario, Canada, May 17-19, 2004, number 3060 in Lecture
Notes in Computer Science, pp. 1–15. Springer Verlag, Berlin.

97vol 21 no 2 march 2006

INTEGRATING SOCIAL MODELLING AND AGENT INTERACTION

Grosz, S., Kraus, S., Talman, B., Stossel, B. and Havlin, M.
(2004) The influence of social dependencies on decision-mak-
ing: Initial investigations with a new game. Proceedings of the
Third International Joint Conference on Autonomous Agents
and Multiagent Systems – Volume 2 (AAMAS 2004), pp.
294–301, New York, NY. IEEE Computer Society.

Heinze, C., Papasimeon, M. and Goss, S. (2000) Specifying agent
behaviour with use cases. Proceedings of the Pacific Rim Work-
shop on Multi-Agents.

Jennings, N. R. (2001) An agent-based approach for building com-
plex software systems. Communications of the ACM, 44(4):
35–41, 2001.

Juan, T. and Sterling, L. (2004) Achieving dynamic interfaces
with agent concepts. In: N. R. Jennings, C. Sierra, L. Sonen-
berg, and M. Tambe, editors, Proceedings of the 3rd Interna-
tional Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pages 688–695, Washington DC.

Juan, T., Pearce, A. and Sterling, L. (2002) ROADMAP: Extend-
ing the Gaia methodology for complex open systems. In: C.
Castelfranchi and W. L. Johnson, editors, Proceedings of the
First International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS 2002), Bologna, Italy, pp. 3–10,
New York City, NY.

Juan, T., Sterling, L., Martelli, M. and Mascardi, V. (2003) Cus-
tomizing aose methodologies by reusing aose features. Proceed-
ings of the second international joint conference on
Autonomous agents and multiagent systems (AAMAS-2003), pp.
113–120.

Kraus, S. (2001) Strategic Negotiation in Multi-Agent Environ-
ments. MIT Press, Cambridge, MA.

Kuan, P. P., Karunasekera, S. and Sterling, L. (2005) Improving
goal and role oriented analysis for agent based systems. Pro-
ceedings of the Australian Software Engineering Conference
(ASWEC), pp. 40–47.

Mao, X. and Yu, E. (2005) Organizational and social concepts in
agent oriented software engineering. In: J. Odell, P. Giorgini,
and J. P. Müller, editors, Agent-Oriented Software Engineering
V: 5th International Workshop, AOSE 2004, New York, NY.
Volume 3382 of Lecture Notes in Computer Science, pp. 1–15.
Springer Verlag.

Maudet, N. and Chaib-draa, B. (2003) Commitment-based and
dialogue-game based protocols – new trends in agent communi-
cation language. Knowledge Engineering Review, 17
(2):157–179.

McBurney, P. and Parsons, S. (2003) Dialogue game protocols.
In: M.-P. Huget, editor, Communication in Multiagent Systems,
volume 2650 of Lecture Notes in Computer Science, pp.
269–283. Springer Verlag.

Padgham, L. and Winikoff, M. (2004) Developing Intelligent
Agent Systems: A Practical Guide. John Wiley.

Panzarasa, P. and Jennings, N. R. (2002) Social influence, negoti-
ation and cognition. Simulation Modelling Practice and Theory,
10(5–7): 417–453.

Perugini, D., Lambert, D., Sterling, L. and Pearce, A. (2004)
Provisional agreement protocol for global transportation

scheduling. Proceedings of the Workshop on Agents in Traffic
and Transportation, held in conjunction with the International
Conference on Autonomous Agents and Multi Agent Systems
(AAMAS), New York, NY.

Rahwan, I., Kowalczyk, R. and Pham, H. H. (2002) Intelligent
agents for automated one-to-many e-commerce negotiation. In:
M. Oudshoorn, editor, Proceedings of the 25th Australasian
conference on Computer science, pp. 197–204. Australian Com-
puter Society Press.

Rosenschein, J. and Zlotkin, G. (1994) Rules of Encounter:
Designing Conventions for Automated Negotiation among Com-
puters. MIT Press, Cambridge, MA.

Sandhol, T. (2002) eMediator: A next generation electronic com-
merce server. Computational Intelligence, Special issue on
Agent Technology for Electronic Commerce, 18 (4): 656–676.

Soon, S., Pearce, A. and Noble, M. (2004) Adaptive teamwork
coordination using graph matching over hierarchical intentional
structures. Proceedings of the Third International Joint Confer-
ence on Autonomous Agents and Multiagent Systems – Volume
1 (AAMAS 2004), pp. 294–301, New York, NY.

Walton, D. N. and Krabbe, E. C. W. (1995) Commitment in Dia-
logue: Basic Concepts of Interpersonal Reasoning. SUNY
Press, Albany, NY.

Wooldridge, M., Jennings, N. R. and Kinny, D. (2000) The Gaia
methodology for agent oriented analysis and design.
Autonomous Agents and Multi-Agent Systems, 3(3): 285–312.

Wooldridge, M. J. (2002) An Introduction to MultiAgent Systems.
John Wiley, Chichester.

Wurman, P. R. (1999) Market Structure and Multidimensional
Auction Design for Computational Economies. PhD thesis, Uni-
versity of Michigan, August.

Wurman, P. R., Wellman, M. P. and Walsh, W. E. (2001) A
parametrization of the auction design space. Games and Eco-
nomic Behavior, 35(1–2): 304–338.

Yolum, P. and Singh, M. P. (2001) Commitment machines. In: J.-
J. C. Meyer and M. Tambe, editors, Intelligent Agents VIII, 8th
International Workshop, ATAL 2001 Seattle, WA, volume 2333
of Lecture Notes in Computer Science, pp. 235–247. Springer
Verlag.

Yu, E. (1995) Modelling Strategic Relationships for Process
Reengineering. PhD thesis, University of Toronto, Toronto,
Canada.

Zambonelli, F. and Parunak, H. V. D. (2003) Towards a
paradigm change in computer science and software engineering:
a synthesis. The Knowledge Engineering Review, 18(4):
329–342.

Zambonelli, F., Jennings, N. R. and Wooldridge, M. (2001)
Organisational rules as an abstraction for the analysis and
design of multi-agent systems. Software Engineering and
Knowledge Engineering, 11(3): 303–328.

Zambonelli, F., Jennings, N. R. and Wooldridge, M. (2003)
Developing multiagent systems: the Gaia methodology. ACM
Trans on Software Engineering and Methodology, 12 (3):
317–370.

I RAHWAN ET AL

98 computer systems science & engineering

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

