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Abstract. Recently Argumentation Mechanism Design (ArgMD) was introduced
as a paradigm for studying argumentation using game-theoretic techniques. To date,
this framework has been used to study under what conditions a direct mechanism
based on Dung’s grounded semantics is strategy-proof (i.e. truth-enforcing) when
knowledge of arguments is private to self-interested agents. In this paper, we study
Dung’s preferred semantics in order to understand under what conditions it is possi-
ble to design strategy-proof mechanisms. This is challenging since, unlike with the
grounded semantics, there may be multiple preferred extensions, forcing a mecha-
nism to select one. We show that this gives rise to interesting strategic behaviour,
and we show that in general it is not possible to have a strategy-proof mecha-
nism that selects amongst the preferred extensions in a non-biased manner. We
also investigaet refinements of preferred semantics which induce unique outcomes,
namely the skeptical-preferred and ideal semantics.

1. Introduction

Argumentation has become a key model for automated reasoning and rational interaction
in artificial intelligence. Key to its success has been Dung’s work on abstract argumen-
tation frameworks [6]. In this model arguments are viewed as abstract entities, with a
binary defeat relation among them. This abstract framework has been beneficial for such
things like the study of criteria (i.e. semantics) for evaluating outcomes of complex ar-
gument structures [1]. However, this body of work assumes that all arguments are given,
a priori, for evaluation by an omniscient reasoner.

Recently there has been interest in studying strategic issues which arise in a multi-
agent view of argumentation. In this setting, each agent has knowledge of some sub-set
of the arguments, which reflects the (possibly conflicting) information available to that
agent. Arguments known to different agents may overlap. However, each agent is self-
interested,1 in the sense that the agent has some preference over which arguments end up
being accepted. As a result, an agent may benefit from acting strategically, by misreport-
ing its private information (i.e. the arguments it is aware of), either passively (by hiding
arguments) or actively (by stating arguments it does not believe to hold).

1Note that self-interest does not necessarily imply selfishness. One’s own interests may well happen to align
with those of others.



The strategic view of argumentation raises a question akin to (game-theoretic) mech-
anism design. Just as an auction (or a voting rule) is a rule that maps the revealed bids
(or preferences) of different agents into a social outcome by allocating resources, an ar-
gumentation semantics maps the arguments revealed by different agents into a set of ac-
cepted arguments (See Figure 1). The question then becomes: what strategic incentives
are imposed by different argument evaluation criteria, when arguments are distributed
among self-interested agents?
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Figure 1. Argumentation mechanism (semantics) analogous to auction or voting mechanism

Rahwan and Larson proposed a new approach which they called Argumentation
Mechanism Design (ArgMD) in which argument-evaluation procedures (or semantic cri-
teria) are analysed to understand which strategic behaviour arises [10]. Rahwan et al un-
dertook a detailed case study of the grounded semantics and, using the ArgMD frame-
work, provided a full characterisation of strategy-proofness (i.e. truth-telling being a
dominant strategy equilibrium) under the grounded semantics when agents can both hide
and lie about their arguments [11].

In this paper we extend the analysis of strategic behaviour in argumentation frame-
works to incorporate the preferred semantics, a more credulous semantics. While the
grounded semantics induces a single outcome, the preferred semantics can result in mul-
tiple outcomes. We study whether this gives rise to new strategic-behaviour on the part of
the agents and provide a graph-theoretical partial characterisation of strategy-proofness
under these semantics. We also provide an analysis of two refinements of the preferred
semantics: the ideal and skeptical-preferred semantics.

2. Background on Abstract Argumentation

In this section we outline key elements of abstract argumentation frameworks. We begin
with Dung’s abstract characterisation of an argumentation system [6].

Definition 1 (Argumentation framework). An argumentation framework is a pairAF =
〈A,⇀〉 where A is a set of arguments and ⇀⊆ A×A is a defeat relation. We say that
argument α defeats an argument β iff (α, β) ∈⇀ and write this as α ⇀ β. For simplicity
we restrict ourselves to finite argument sets.

An argumentation framework can be represented as a directed graph in which the
vertices are arguments and the directed edges characterise the defeat relationship among



Figure 2. A simple argument graph. Figure 3. An argumentation framework with a
cycle.

arguments. An example argument graph is shown in Figure 2. Argument A has two
defeaters, B and C, which are themselves defeated by arguments D and E respectively.
Cycles are also allowed in the definition of an argumentation framework, as illustrated
in Figure 3. In this example there are two arguments, A and B, which defeat each other.

Let S+ = {β ∈ A|α ⇀ β for some α ∈ S}. Also let α− = {β ∈ A|β ⇀ α}. We
first characterise the fundamental notions of conflict-free and defence.

Definition 2 (Conflict-free, Defence). Let 〈A,⇀〉 be an argumentation framework and
let S ⊆ A and let α ∈ A.

1. S is conflict-free iff S ∩ S+ = ∅.
2. S defends argument α iff α− ⊆ S+. We also say that argument α is acceptable

with respect to S.

Intuitively, a set of arguments is conflict-free if no argument in that set defeats an-
other. A set of arguments defends a given argument if it defeats all its defeaters. We now
look at the collective acceptability of a set of arguments.

Definition 3 (Characteristic function). Let AF = 〈A,⇀〉 be an argumentation frame-
work. The characteristic function of AF is FAF : 2A → 2A such that, given S ⊆ A, we
have FAF (S) = {α ∈ A|S defends α}.

When there is no ambiguity about the argumentation framework in question, we will
use F instead of FAF .

Definition 4 (Acceptability semantics). Let S be a conflict-free set of arguments in
framework 〈A,⇀〉.

1. S is admissible iff it is conflict-free and defends every element in S (i.e. if S ⊆
F(S)).

2. S is a complete extension iff S = F(S).
3. S is a preferred extension iff it is a maximal (w.r.t. set-inclusion) complete exten-

sion.
4. S is a grounded extension iff it is a minimal (w.r.t. set-inclusion) complete exten-

sion.

Intuitively, a set of arguments is admissible if it is a conflict-free set that defends
itself against any defeater. An admissible set S is a complete extension if and only if all
arguments defended by S are also in S. There may be more than one complete exten-
sion, each corresponding to a particular consistent and self-defending viewpoint. A pre-
ferred extension is the position that cannot be extended without causing inconsistency.
The grounded extension only accepts arguments that are not defeated as well as argu-
ments which are defended directly or indirectly by non-defeated arguments. We note that
there always exists a unique grounded extension, but there may be multiple preferred ex-



tensions. We let GE(AF ) represent the grounded extension of argumentation framework
AF and PE(AF ) denote the set of preferred extensions. For the argumentation frame-
work in Figure 2 we have that GE(AF ) = {D,E,A} which is also the single preferred
extension, while in Figure 3 GE(AF ) = {} and PE(AF ) = {{A}, {B}}. Finally, we
formally define the notions of indirect defeat and defence.

Definition 5 (Indirect defeat and defence [6]). Let α, β ∈ A. We say that α indirectly
defeats β, written α ↪→ β, if and only if there is an odd-length path from α to β in the
argument graph. We say that α indirectly defends β, written α # β, if and only if there
is an even-length path (with non-zero length) from α to β in the argument graph.

3. Argumentation Mechanism Design

In this section we define the mechanism design problem for abstract argumentation as
was introduced by Rahwan and Larson [10]. We define a mechanism with respect to
an argumentation framework 〈A,⇀〉 with semantics S, and we assume that there is a
set {1, 2, . . . , I} of self-interested agents. A key notion in mechanism design is the type
of an agent. An agent’s type is all the information which is relevant to the agent when
formulating its preferences over outcomes. In our framework, we define an agent’s type
to be its set of arguments.

Definition 6 (Agent Type). Given an argumentation framework 〈A,⇀〉, the type of
agent i, Ai ⊆ A, is the set of arguments that the agent is capable of putting forward.

Note that α ∈ Ai is not necessarily true, or even believed by i to be acceptable. It
simply reflects a piece of information the agent has. Indeed, if α involved a contradiction,
it would be self-defeating and hence never accepted by anyone.

A social choice function maps a type profile (vector of agent types) to a subset
of arguments. In particular, we will interpret the set of arguments to be the arguments
which are deemed to be acceptable if the actual types of the agents were known. We will
determine the acceptability of arguments with respect to some specified semantics.

Definition 7 (Argument Acceptability Social Choice Functions). Given an argumenta-
tion framework 〈A,⇀〉 with semantics S, and given a type profile (A1, ...,AI) such
that A1 ∪ . . . ∪ AI ⊆ A, the argument acceptability social choice function f is de-
fined as the set of acceptable arguments given the semantics S. That is, f(A1, ...,AI) =
Acc(〈A1 ∪ ... ∪ AI ,⇀〉,S)

As is common in the mechanism design literature, we assume that agents have pref-
erences over the outcomes o ∈ 2A, and we represent these preferences using utility func-
tions where ui(o,Ai) denotes agent i’s utility for outcome o when its type is argument
set Ai. Agent i prefers outcome o1 to o2 when ui(o1,Ai) > ui(o2,Ai). In this paper,
we assume that agents have focal argument preferences.

Definition 8 (Focal-Argument Preferences). An agent i has focal-argument preferences
if there exists some argument α∗i ∈ Ai such that for any outcomes o1, o2 ∈ O such that
α∗i ∈ o1 and α∗i 6∈ o2 then ui(o1,Ai) > ui(o2,Ai). Otherwise, ui(o1,Ai) = ui(o2,Ai).



Informally, this class of preferences can be interpreted as each agent i having a single
argument, α∗i , in which they are interested, while the other arguments are of interest only
with respect to how they support α∗i .

Agents may not have incentive to reveal their true type because they may be able
to influence the final argument status assignment by lying, and thus obtain higher utility.
We explicitly assume that the defeat relationship, ⇀, is known and understood by all
agents. Then there are two ways in which an agent may lie. First, it might claim to have
arguments which are not in its argument set (but are still part of A). In such a case, we
say that the agent makes up arguments. Second, it might hide arguments. By refusing to
reveal certain arguments, an agent might be able to break defeat chains in the argument
framework, thus changing the final set of acceptable arguments.

A strategy for agent i, si(Ai) ∈ Σi, is a plan that describes what actions the agent
will take for every decision that the agent might be called upon to make, for each possible
piece of information that the agent may have at each time it is called to act. In our model
strategies specify which arguments an agent should reveal when. The notation Σi denotes
the strategy space of agent i and contains all possible legal strategies that an agent may
follow.

Definition 9 (Argumentation Mechanism). Given an argumentation framework AF =
〈A,⇀〉 and semantics S, an argumentation mechanism is defined as

MSAF = (Σ1, ...,ΣI , g(·))

where Σi is an argumentation strategy space of agent i and g : Σ1 × ...× ΣI → 2A.

We are particularly interested in situations where the agents’ strategies are restricted
so that they can only reveal sets of arguments once. Mechanisms with this particular
restriction are called direct mechanisms.

Definition 10 (Direct Argumentation Mechanism). Given an argumentation framework
AF = 〈A,⇀〉 and semantics S, a direct argumentation mechanism is defined as

MSAF = (Σ1, ...,ΣI , g(·))

where Σi = 2Ai and g : Σ1 × ...× ΣI → 2A.

If, given,MSAF all agents are best off selecting a strategy such that si(Ai) = Ai (no
matter what any other agent is doing) then we say that the mechanism is strategy-proof.
That is, agents have incentive to truthfully report their actual arguments.2 The goal of
ArgMD is to understand when and why it is possible or impossible to ensure that a mech-
anism is strategy-proof. The restriction to direct mechanisms is without loss of generality
since the Revelation Principle states that if there exists a mechanism such that agents
reveal their types truthfully, then there is a direct mechanism with this property [8]. Fi-
nally, we define a direct mechanism for argumentation based on the preferred semantics.
We refer to a specific action of agent i as Aoi ∈ Σi.

2The term strategy-proof is used when ever all agents have incentive to truthfully report their types, even if
truth-telling is only a weakly dominant strategy [8].



Figure 4. Hiding an argument is beneficial

Definition 11 (Preferred Direct Argumentation Mechanism). A preferred direct ar-
gumentation mechanism for argumentation framework AF = 〈A,⇀〉 is MPEAF =
(Σ1, . . . ,ΣI , g(·)) where Σi ∈ 2A is the set of strategies available to each agent, and
g(Ao1, . . . ,AoI) = Acc(〈Ao1 ∪ . . . ∪ AoI ,⇀〉, SPE) where SPE denotes the preferred
acceptability semantics.

4. Implementing the Preferred Extension

We start this section with an illustrative example showing why agents may have incentive
to be strategic when asked to reveal their arguments.

Example 1. Assume that there are three agents where A1 = {A,D},A2 = {B} and
A3 = {C}, and with focal arguments α∗1 = D,α∗2 = B and α∗3 = C. Assume
also that the defeat relationship ⇀= {(A,B), (B,C), (C,D)}. If all agents reveal their
arguments then the resulting argument graph is shown in Figure 4(a). There is a single
preferred extension where the arguments marked by boxes in Figure 4(a) are accepted.
However, if agent 1 does not reveal argument A then the unique preferred extension is
shown in Figure 4(b). Note that in this outcome, agent 1’s focal argument is accepted,
while in the original outcome, agent 1’s focal argument was not accepted. Thus, agent 1
has incentive to hide its argument A.

This example is also illustrative of another property of argumentation frameworks.
If the underlying argumentation graph is acyclic then the unique preferred extension is
equal to the grounded extension. Thus, it immediately follows that all ArgMD results for
the grounded extension also apply to preferred extensions when the underlying argumen-
tation graph is acyclic [11].

Theorem 1. Suppose each agent i ∈ {1, . . . , I} has a focal argument α∗i ∈ Ai, and
suppose that the underlying argumentation graph is acyclic. If the following conditions
hold:

• no agent type contains an (in)direct defeat against its focal argument
• no argument outside any agent’s type (in)directly defends its focal argument

thenMPEAF is strategy-proof.

In the rest of this paper we focus our attention to argumentation frameworks where
the associated argumentation graph contains at least one cycle. One challenge is that
for these argumentation frameworks, PE may contain more than one set of acceptable
arguments, and thus the social choice function must have some principled way to select
from amongst the elements of PE . We propose two minimal standard properties the
social choice function must exhibit when making such a selection.



Definition 12 (Agent-Anonymous). [8] A social choice function f is agent-anonymous
if for any onto function π : {1, . . . , I} 7→ {1, . . . , I}, and for any type profile
(A1, . . . ,AI) we have f(A1, . . . ,AI) = f(Aπ(1), . . . ,Aπ(I)).

Definition 13 (Argument-Anonymous). LetAF = 〈A,⇀〉 be any argumentation frame-
work and let π : {1, . . . , I} 7→ {1, . . . , I} be an onto function. DefineAFπ = 〈Aπ,⇀π〉
such that for any αi ∈ A then απ(i) ∈ Aπ and if αi ⇀ αj then απ(i) ⇀π απ(j). A
social choice function is argument anonymous if for any type profile (A1, . . . ,AI) we
have f(A1, . . . ,AI) = f(Aπ1 , . . . ,AπI ).

The first property affirms that the names of the agents should not matter, while the
second property states the names of the arguments should not matter. Unfortunately, there
is an immediate problem when trying to enforce these properties when applying them in
the preferred semantics framework.

Theorem 2. No deterministic social choice function which selects an outcome amongst
the preferred extensions is both agent- and argument-anonymous.

Proof. (Sketch) Consider the argumentation framework shown in Figure 3, and assume
that there are two agents such that A1 = {A} and A2 = {B} (and each agent’s focal
argument is its single argument). PE = {{A}, {B}} and there is no justification which
would respect the agent- and argument-anonymity properties to select one extension over
the other.

Theorem 2, as stated, only applies to deterministic social choice functions. It has
been suggested that allowing for randomization with respect to selecting outcomes may
circumvent certain impossibilities [5,9]. We investigate this observation as it applies to
ArgMD by defining a preferred randomized mechanism.

Definition 14 (Preferred Randomized Mechanism). A preferred randomized mechanism
for argumentation framework AF = 〈A,⇀〉 isRMPEAF = (Σ1, ...,ΣI , g(·)) where:

• Σi ∈ 2A is the set of strategies available to each agent;
• g : Σ1 × ... × ΣI → ∆PE where ∆PE is a distribution with full support over
PE .

Given the revealed arguments of the agents, the mechanism selects a preferred ex-
tension at random according to some pre-specified distribution. The full-support require-
ment implies that any preferred extension can potentially be selected. UsingRMPEAF we
study settings where agents’ types do not contain (in)direct defeats against their own
focal argument since this case was strategy-proof for acyclic argumentation frameworks.

Example 2. Assume there are 7 agents with argument sets A1 = {B,F},A2 =
{A},A3 = {C},A4 = {D},A5 = {E},A6 = {G} and A7 = {H}. For agents with
only one argument their sole argument is their focal argument, α∗i . For agent 1, α∗1 = F .
Assume the full defeat relationship (when all arguments are revealed) is shown in Fig-
ure 5. Note that there is no odd-length directed path between arguments B and F , which
is equivalent to stating that there is no (in)direct defeat between them. In fact, there is no
odd-length undirected path between the two arguments.



Figure 5. Argumentation graph if all agents re-
veal their arguments.

Figure 6. Argumentation graph if agent 1 hides
argument B.

Assume the mechanism selects a preferred extension uniformly at random. All agents
with only one argument (i.e. their focal argument) are best off revealing it. If all agents,
including agent 1, reveal their arguments then PE = {{A,B, F,G}, {A,B,E,G},
{A,B,E,H}}. If agent 1 hides argument B then the resulting argumentation graph is
shown in Figure 6 and PE = {{A,D,E,H}, {A,D,F}}. If agent 1 revealed both its
arguments, then the probability that its focal argument was in the chosen outcome is 1

3 .
However, if agent 1 hid argument B, then the probability that its focal argument was in
the chosen outcome increases to 1

2 . Therefore, agent 1 is best off hiding argument B.

The restriction that the distribution must have full support, and our requirements of
agent and argument anonymity mean that no matter what distribution is used agent 1 can
always increase the probability of having its focal argument in the selected outcome by
hiding its other argument. Thus, the properties which induced truth-telling for acyclic ar-
gumentation frameworks are not sufficient for non-acyclic frameworks. We now investi-
gate a sufficient condition for truth-telling. It relies on two structural results for preferred
extensions. Due to space limitation we are unable to include all proofs.

Lemma 1 characterizes the relationship between the preferred extensions of an ar-
gumentation framework, AF = 〈A,⇀〉, and the preferred extensions of argumentation
frameworks induced by particular partitions of A.

Lemma 1. Let AF = 〈A,⇀〉 be an arbitrary argumentation framework. Let S ⊆
A, R = A \ S be two non-empty subsets of A such that for any α ∈ S and β ∈ R
(α, β) 6∈⇀ and (β, α) 6∈⇀. Define AFS = 〈S,⇀S〉 where ⇀S= {(α, β)|α, β ∈ S ∧
(α, β) ∈⇀}. Define AFR = 〈R,⇀R〉 similarly. Then

1. For any preferred extension P in AF , P ∩S is a preferred extension in AFS and
P ∩R is a preferred extension in AFR.

2. For any preferred extensions PS in AFS and PR in AFR, PS ∪PR is a preferred
extension in AF .

Lemma 2. Let AF = 〈A,⇀〉 where α, α′ ∈ A and AF ′ = 〈A \ {α′},⇀′〉 such that
⇀′ is the restriction of ⇀ to A \ {α′}. Let PrD(α|PE(AF )) denote the probability
that an extension containing α is selected at random under a distribution, D, with full
support over PE(AF ) and which satisfies the anonymity criteria. Assume that there is
no undirected path between α and α′. Then PrD(α|PE(AF )) = PrD′(α|PE(AF ′))
where D′ is the restriction of D to PE(AF ′).

Lemma 2 states that as long as there is no path between two arguments, then whether
or not one argument is revealed can not influence the probability that a preferred exten-



sion containing the other argument will be chosen. We are now able to provide a partial
characterization of strategy-proofness for the preferred semantics, if we assume agents
will only hide arguments.

Theorem 3. Suppose every agent i ∈ {1, . . . , I} has a focal argument α∗i ∈ Ai. If for
each agent i, Ai contains no argument with an undirected path to α∗i , then RMPEAF is
strategy-proof.

Proof. Let pi(〈A,⇀〉) be the probability of a preferred extension containing agent i’s fo-
cal argument to be chosen randomly from preferred extensions in argumentation frame-
work 〈A,⇀〉.

Suppose the randomized mechanism is not strategy-proof, then there exists an ar-
gumentation framework AF = 〈A,⇀〉 such that ∃i, for A′i ⊂ Ai a revelation of agent
i and A′−i = (A′1, ...,A′i−1,A′i+1, ...,A′I) a revelation of all agents not including i,
pi(〈A′i ∪ A′−i,⇀〉) > pi(〈Ai ∪ A′−i,⇀〉).

Let n = |Ai| − |A′i|, {β1, β2, ..., βn} = Ai \ A′i, ∀1 ≤ j ≤ n, there is no path
(disregard direction) from βj to i’s focal argument α̂i. By Lemma 2, pi(〈Ai ∪ A′−i,⇀
〉) = pi(〈(Ai \ {β1})∪A′−i,⇀〉) = pi(〈(Ai \ {β1, β2})∪A′−i,⇀〉) = · · · = pi(〈(Ai \
{β1, β2, ..., βn})∪A′−i,⇀〉) = pi(〈(A′i∪A′−i,⇀〉), which contradicts pi(〈A′i∪A′−i,⇀
〉) > pi(〈Ai ∪ A′−i,⇀〉). Therefore,RMPEAF is strategy-proof.

Theorem 3 states that agents have no incentive to hide arguments when their focal ar-
guments are in subgraphs disconnected from their other arguments. This is a very strong
condition and is significantly stronger than the required condition for strategy-proofness
for acyclic frameworks. We also note that this is only a sufficient condition. There may
be other topological restrictions which would allow for strategy-proofness.

5. Refinements of the Preferred Semantics

One way of handling the multiplicity of preferred extensions is to provide additional re-
finements to the semantics. In this section we look at two such refinements, the skeptical-
preferred semantics and the ideal semantics, both of which provide a unique extension,
thus avoiding the problem faced in the last section.

Definition 15 (Skeptical-Preferred Semantics). [2] Let AF = 〈A,⇀〉 be an argu-
mentation framework and let PE(AF ) be the set of preferred extensions. The skeptical-
preferred extension is SP(AF ) = ∩S∈PE(AF )S.

Clearly the skeptical-preferred extension is unique, but it may not be admissible, and
thus not a complete extension.

Definition 16 (Ideal Semantics). [7] Let AF = 〈A,⇀〉 be an argumentation frame-
work. The ideal extension, I(AF ), is the maximal (w.r.t. set-inclusion) admissible set
that is a subset of each preferred extension.

As shown by Caminada, the ideal extension always exists and is unique [3].



Proposition 1. [3] Let AF = 〈A,⇀〉 be an argumentation framework. There exists
exactly one maximal (w.r.t. set-inclusion) admissible set that is a subset of each preferred
extension.

The above proposition implies that I(AF ) ⊆ SP(AF ).
Given these two new semantics, we define argumentation mechanisms in a simi-

lar way as we did for the preferred semantics. In particular MSPAF is an argumentation
mechanism where the outcome is selected using the skeptical-preferred semantics, while
MIAF is an argumentation mechanism where the outcome is selected using the ideal se-
mantics. Since both the skeptical-preferred and ideal semantics result in a unique exten-
sion, we do not require randomization.

We first look at the case where agents’ strategies are restricted so that they can
only hide their arguments. While, due to space limitations, we focus onMIAF , we first
present Lemma 3 which states what happens to the skeptical-preferred extension when
a new argument is added to an argumentation framework. Any argument that had been
initially acceptable w.r.t. the skeptical-preferred extension, remains acceptable in the new
argumentation framework as long as the new argument did not (in)directly defeat it.

Lemma 3. For AF1 = 〈A,⇀1〉 and AF2 = 〈A ∪ {α′},⇀2〉 such that ⇀1⊆⇀2 and
(⇀2 \ ⇀1) ⊆ ({α′} × A) ∪ (A× {α′}). If α is in the skeptical preferred extension of
AF1, and α′ doesn’t indirectly defeat α, then α is still in the skeptical preferred extension
in AF2.

A similar result can be extended for the ideal extensions.

Lemma 4. For AF1 = 〈A,⇀1〉 and AF2 = 〈A ∪ {α′},⇀2〉 such that ⇀1⊆⇀2 and
(⇀2 \ ⇀1) ⊆ ({α′} × A) ∪ (A × {α′}). If α is in the ideal extension of AF1, and α′

doesn’t indirectly defeat α, then α is still in the ideal extension in AF2.

Proof. In an argumentation framework, the ideal extension is always a subset of the
skeptical preferred extension.

Let S be the set of arguments in the ideal extension of AF1 which are either α
or (in)direct defenders of α. Then S must be admissible. Moreover, S is a subset of
the ideal extension of AF1 thus a subset of the skeptical preferred extension. ∀β ∈
S, β is in the skeptical preferred extension of AF1 and α′ doesn’t indirectly defeat β
since in such case α′ will indirectly defeat α. Therefore, β is in the skeptical preferred
extension of AF2 by Lemma 3. Thus S is a subset of the skeptical preferred extension
of AF2. Clearly S is still conflict-free in AF2. Since α ∈ S, if S is admissible in AF2,
by Proposition 1 and Definition 16, the ideal extension in AF2 is a superset of S thus
contains α, a contradiction. If S is not admissible in AF2, the only possible way to break
the admissibility is to have α′ defeat one argument β ∈ S in AF2. But since β is an
indirect defender of α, α′ therefore indirectly defeats α, a contradiction. Hence, α is still
in the ideal extension of AF2.

Theorem 4. Suppose every agent i ∈ {1, . . . , I} has a focal argument α∗i ∈ Ai. If each
agent’s type contains no (in)direct defeat against α∗i , thenMIAF is strategy-proof.

Proof. (Sketch) Due to space limitations we only provide a sketch of the induction proof
by describing the base case and induction step. The goal is to show formally that ∀i ∈



{1, . . . , I}, ui(Acc(〈A′1 ∪ . . . ∪ Ai ∪ . . . ∪ A′I , ⇀〉,SI),Ai) ≥ ui(Acc(〈A′1 ∪ . . . ∪
A◦i ∪ . . . ∪ A′I , ⇀〉,SI),Ai) for any A◦i ⊂ Ai and A′j ⊆ Aj .

We use induction over the sets of arguments agent i may reveal, starting from the
focal argument α∗i . We show that, considering any strategyA′′i ⊆ Ai, revealing one more
argument can only increase i’s chance of getting α∗i accepted, i.e. it (weakly) improve i’s
utility. Base Step: IfAi = {α̂i}, then trivially, revealingAi weakly dominates revealing
∅.
Induction Step: Suppose that revealing argument set A′′i ⊆ Ai weakly dominates re-
vealing any subset ofA′′i . We need to prove that revealing any setA′i, whereA′′i ⊂ A′i ⊆
Ai and |A′i| = |A′′i |+ 1, weakly dominates revealing A′′i . This follows from Lemma 4.

We note that a similar characterisation is possible under the skeptical-preferred se-
mantics. Interestingly, Theorem 4 provides the same characterization for when argument
hiding is not beneficial for agents as for the grounded semantics [11]. This is true even
though the underlying structure of the extensions is quite different, and the properties
required for the grounded semantics characterisation do not immediately translate to the
skeptical-preferred and ideal semantics due to the difference in their definitions. It is also
interesting to note that if we study the situation where agents may also make up argu-
ments, then we again obtain a similar characterisation as for the grounded semantics.
We state the theorem for the ideal semantics, but an identical theorem also holds for the
skeptical-preferred semantics.

Theorem 5. Suppose every agent i ∈ {!, . . . , I} has a focal argument α∗i ∈ Ai, and that
agents can both hide or lie about arguments. If the following conditions hold:

1. each agent’s type contains no (in)direct defeat against α∗i (formally ∀i ∈ I, @β ∈
Ai such that β ↪→ α∗i );

2. for any agent i, no argument outside i’s type (in)directly defends α∗i (formally
∀i ∈ I, @β ∈ A \ Ai such that β # α∗i );

thenMIAF is strategy-proof.

Proof. (Sketch)
What we want to prove is that for an arbitrary S 6= Ai: α∗i /∈ I(〈Ai ∪ A−i,⇀〉)

implies α∗i /∈ I(〈S ∪ A−i,⇀〉). where I(AF ) is the ideal extension of argumentation
framework AF . The rest of the proof follows a similar logic as that for the grounded
extension. Due to space restrictions we refer the reader to [11].

6. Conclusion

ArgMD is a useful paradigm for reasoning about argumentation among self-interested
agents using game-theoretic techniques. To date it has been applied only to the grounded
semantics, which is often criticized as taking an overly skeptical stance with respect to
argument acceptability. In this paper we applied the ArgMD framework to the preferred
semantics.

Unlike grounded semantics which yield a unique extension, multiple preferred ex-
tensions may exist for arbitrary argumentation frameworks. We proposed some minimal



properties which ensured non-bias with respect to agents and arguments when selecting
from amongst the preferred extensions. We illustrated that it was impossible to satisfy
our minimal anonymity properties with a deterministic social choice function. By in-
corporating randomization into our mechanism, we determined conditions under which
agents had incentive to reveal all their arguments. We intend to investigate less restrictive
requirements on agents types, or other possible restrictions or extensions of the mecha-
nism, so as to ensure strategy-proofness.

We also studied refinements of the preferred semantics which result in unique ex-
tensions. In particular, we were able to provide a similar characterization of strategy-
proofness for the skeptical-preferred and ideal semantics, as had previously been pro-
vided for the grounded semantics. We found this interesting since the underlying struc-
ture of the extensions is quite different. We conjecture that the uniqueness of the exten-
sions is important in the characterization, and intend to investigate other unique exten-
sions (for example, the eager extension [3]).

We assumed, throughout this paper, that agents’ preferences had a particular struc-
ture, that is agents had focal-argument preferences. One obvious question is whether the
results in this paper are also applicable if agents have different preference structures,
which opens up another line of future research.

It is worth noting how work reported in this paper differs from recent work on judge-
ment aggregation in argumentation [12,4]. In judgement aggregation, all arguments are
given, and each agent has preferences over how these arguments should be evaluated. In
our work, on the other hand, the arguments themselves are distributed among the agents,
and different argument graphs emerge based on what they choose to reveal.
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