
Arguments in OWL: A Progress Report

Iyad RAHWAN a,b,1, Bita BANIHASHEMI a

a Faculty of Informatics, The British University in Dubai, Dubai, UAE
b (Fellow) School of Informatics, University of Edinburgh, UK

Abstract. In previous work, we presented an RDFS ontology, based on the Argu-
ment Interchange Format (AIF), for describing arguments and argument schemes.
We also implemented a pilot Web-based system, called ArgDF, for authoring and
querying argument structures represented in RDF. In this paper, we discuss some of
the limitations of our earlier reification of the AIF. We then present a new ontology
which takes advantage of the higher expressive power of OWL. We demonstrate
how this enables the use of automated Description Logic reasoning over argument
structures. In particular, OWL reasoning enables significantly enhanced querying
of arguments through automatic scheme classifications, instance classification, and
inference of indirect support in chained argument structures.

Keywords. Argumentation, Argument Interchange Format, Semantic Web, OWL

1. Introduction

A number of Web 2.0 tools now provide explicit support for argumentation, enabling a
more explicit structuring of arguments. Such tools include Truthmapping,2 Debatabase,3

Standpoint,4 and Standpedia.5 These systems have a number of limitations. There is
limited or no integration between argument repositories. This limits the ability to provide
services (e.g. question answering systems) that make use of arguments from multiple
repositories, or the ability of users to easily access arguments across tools.

Another, related limitation of existing systems is that argument structure is relatively
shallow. Most Web 2.0 applications distinguish only between premises and conclusions,
and possibly between pro- and con- arguments. But they do not distinguish between dif-
ferent types of arguments, or subtle types of attack among arguments. Moreover, existing
tools do not provide semantically rich links among arguments. For example, in truthmap-
ping, while user-contributed text (i.e. premises, conclusions, critiques and rebuttals) can
contain hyperlinks to any Web content including other arguments, which does enable
cross-referencing among arguments, these references carry no explicit semantics (e.g.
expressing that a link represents a support or an attack). This limits the possibilities for
automated search and evaluation of arguments.

1Correspondence to: Iyad Rahwan, the British University in Dubai, P.O.Box 502216, Dubai, UAE. Tel.:
+971 4 367 1959; Fax: +971 4 366 4698; E-mail: irahwan@acm.org.

2http://www.truthmapping.com
3http://www.idebate.org/debatabase/
4http://www.standpoint.com
5http://www.standpedia.com

Semantic Web technologies [1] are well placed to facilitate the integration among
mass argumentation tools. A unified argument description ontology could act as an inter-
lingua between the different tools. If Web 2.0 mass argumentation tools can provide ac-
cess to their content through a common ontology, developers could build tools to ex-
change (e.g. import and export) or integrate arguments between tools. Another benefit
of specifying arguments in standard ontology languages is the potential for automated
inference over argument structures, such as inference based on Description Logic [2]. In
previous work [3], we presented the first (pilot) realisation of a Semantic Web system for
argument annotation, based on the argument interchange format (AIF) [4].

In this paper, we discuss some of the limitations of our earlier AIF reifications. We
then present a new ontology which takes advantage of the higher expressive power of
OWL [5]. We demonstrate how this enables the use of automated Description Logic rea-
soning over argument structures. In particular, OWL reasoning enables significantly en-
hanced querying of arguments through automatic scheme classifications, instance classi-
fication, and inference of indirect support in chained argument structures.

The paper advances the state of the art in the computational modelling of argumen-
tation in two main ways. Firstly, the new OWL ontology significantly enhances our pre-
vious RDF Schema-based implementation [3].6 In particular, we provide a new reifica-
tion of the AIF specification and model schemes as classes (as opposed to instances),
which enables explicit classification of schemes themselves. Secondly, our new system
enables the first explicit use of Description Logic-based OWL reasoning for classifying
arguments and schemes in a Web-based system. This provides a seed for further work
that combines traditional argument-based reasoning techniques [7] with ontological rea-
soning in a Semantic Web environment.

2. Background: The Core Argument Interchange Format

The AIF is a core ontology of argument-related concepts, and can be extended to capture
a variety of argumentation formalisms and schemes. The AIF core ontology assumes that
argument entities can be represented as nodes in a directed graph called an argument
network. A node can also have a number of internal attributes, denoting things such as
author, textual details, certainty degree, acceptability status, etc.

Figure 1 depicts the original AIF ontology reported by Chesñevar et al [4]. The on-
tology has two disjoint types of nodes: information nodes (or I-Nodes) and scheme nodes
(or S-Nodes). Information nodes are used to represent passive information contained in
an argument, such as a claim, premise, data, etc. On the other hand, S-nodes capture
the application of schemes (i.e. patterns of reasoning). Such schemes may be domain-
independent patterns of reasoning, which resemble rules of inference in deductive logics
but broadened to include non-deductive inference. The schemes themselves belong to
a class of schemes and can be classified further into: rule of inference scheme, conflict
scheme, and preference scheme, etc.

The AIF classifies S-Nodes further into three (disjoint) types of scheme nodes,
namely rule of inference application nodes (RA-Node), preference application nodes
(PA-Node) and conflict application nodes (CA-Node). The word ‘application’ on each
of these types was introduced in the AIF as a reminder that these nodes function as in-

6To our knowledge, the only other OWL specification was by Bart Verheij [6] and predates the AIF.

Node Graph
(argument
network)

has-a

Information
Node

(I-Node)

is-a

Scheme Node
S-Node

has-a

Edge

is-a

Rule of inference
application node

(RA-Node)

Conflict application
node (CA-Node)

Preference
application node

(PA-Node)

Derived concept
applicatoin node (e.g.

defeat)

is-a

...

ContextScheme

Conflict
scheme

contained-in

Rule of inference
scheme

Logical inference
scheme

Presumptive
inference scheme ...

is-a

Logical conflict
scheme

is-a

...

Prefeference
scheme

Logical preference
scheme

is-a

...Presumptive
preference scheme

is-a

uses uses uses

Figure 1. Original AIF Ontology [4]

stances, not classes, of possibly generic inference rules. Intuitively, RA-Nodes capture
nodes that represent (possibly non-deductive) rules of inference, CA-Nodes capture ap-
plications of criteria (declarative specifications) defining conflict (e.g. among a proposi-
tion and its negation, etc.), and PA-Nodes are applications of (possibly abstract) criteria
of preference among evaluated nodes. A property named “uses” expresses the fact that
an instance of a scheme node uses a particular scheme.

The AIF core specification does not type its edges. Edge semantics can be inferred
from the types of nodes they connect. The informal semantics of edges are listed in Table
1. One of the restrictions imposed by the AIF is that no outgoing edge from an I-node
can be directed directly to another I-node. This ensures that the relationship between two
pieces of information must be specified explicitly via an intermediate S-node.

to I-Node to RA-Node to PA-Node to CA-Node
from
I-Node

I-node data used in
applying an inference

I-node data used in applying a
preference

I-node data in conflict with informa-
tion in node supported by CA-node

from RA-
Node

inferring a
conclusion
(claim)

inferring a conclusion in
the form of an inference
application

inferring a conclusion in the form
of a preference application

inferring a conclusion in the form of
a conflict definition application

from PA-
Node

preference
over data in
I-node

preference over
inference application in
RA-node

meta-preferences: applying a
preference over preference
application in supported PA-node

preference application in supporting
PA-node in conflict with preference
application in PA-node supported by
CA-node

from CA-
Node

incoming
conflict to data
in I-node

applying conflict
definition to inference
application in RA-node

applying conflict definition to
preference application in PA-node

showing a conflict holds between a
conflict definition and some other
piece of information

Table 1. Informal semantics of untyped edges in core AIF

A simple propositional logic argument network is depicted in Figure 2(a). We dis-
tinguish S-nodes from I-nodes graphically by drawing the former with a slightly thicker
border. The node marked MP1 denotes an application of the modus ponens inference
rule. An attack or conflict from one information or scheme node to another is captured
through a CA-node, which captures the type of conflict. Since edges are directed, sym-
metric attack would require two sets of edges, one in each direction. Figure 2(b) depicts
a symmetric conflict (through propositional negation) between two simple arguments.

p → q

p

qMP1

(a) Simple argument (b) Attack among two simple arguments

r → p

r pMP2 neg1
A1

A2
p → q

p

qMP1

Figure 2. Examples of simple arguments

3. Re-Examining Scheme Reification

3.1. Overview of Argument Schemes

Recently, there has been increasing interest in classifying arguments into different types
(or schemes) based on the stereotypical inference patterns they instantiate. Many such
schemes are referred to as presumptive inference patterns, in the sense that if the premises
are true, then the conclusion may presumably be taken to be true. Structures and tax-
onomies of schemes have been proposed by many theorists (e.g. Katzav and Reed [8]).
But it is Walton’s exposition (e.g. recently [9]) that has been most influential in compu-
tational work. Each Walton scheme has a name, conclusion, set of premises and a set of
critical questions. Critical questions enable contenders to identify the weaknesses of an
argument based on this scheme, and potentially attack the argument. Here is an example.

Example 1. (Scheme for Argument from Position to Know)

– Assertion Premise: E asserts that A is true (false)
– Position to know premise: E is in a position to know whether A is true or false;
– Conclusion: A may plausibly be taken to be true (false)

Other schemes include argument from negative consequence, and argument from anal-
ogy, etc. Actual arguments are instances of schemes.

Example 2. (Instance of Argument from Position to Know)

– Premise: The CIA says that Iraq has weapons of mass destruction (WMD).
– Premise: The CIA is in a position to know whether there are WMDs in Iraq.
– Conclusion: Iraq has WMDs.

Note that premises may not always be stated, in which case we say that a given premise
is implicit [9]. One of the benefits of argument classification is that it enables analysts to
uncover the hidden premises behind an argument, once the scheme has been identified.

One way to evaluate arguments is through critical questions, which serve to inspect
arguments based on a particular argument scheme. For example, Walton [9] identified the
following critical question for “argument from position to know” (in addition to ques-
tioning the, possibly hidden, premises themselves):

Example 3. (Critical Questions for Argument from Position to Know)

1. Trustworthiness: Is E an honest (trustworthy, reliable) source?

As discussed by Gordon et al [10], critical questions are not all alike. Some questions
may refer to presumptions required for the inference to go through, while others may

refer to exceptions to the rule, and correspond to Toulmin’s rebuttal [11]. The contem-
porary view is that the main difference between presumptions and exceptions lies in the
burden of proof, but this is beyond the scope of the present paper.

3.2. Schemes in the Original AIF

The initial AIF specification separates the classification of nodes from the classification
of schemes (see Figure 1). S-nodes are classified into nodes that capture inference, con-
flict, etc. Likewise, schemes are classified into similar sub-schemes such as inference
schemes, conflict schemes, etc. S-nodes are linked to schemes via a special edge “uses .”

It should be noted that the original AIF represents an “abstract model,” allowing
a number of different concrete reifications to be made. The reification of the AIF in
the ArgDF ontology defines two classes for representing schemes and nodes [3]. More-
over, ArgDF introduced a new class, Form node (F-node), to capture the generic form
of statements (e.g. presumptions, premises) that constitute presumptive arguments (e.g.,
PremiseDescriptor is a sub-class of F-node that captures the generic form of premises).

E is in a position to
know whether A

E asserts that
proposition A is true

A may plausibly
be true

Argument from
position opinionhasPremiseDesc

hasPremiseDesc
hasConcDesc

Allen says Brazil has
the best football team

Allen is in a position to
know whether Brazil has

the best football team

Brazil has the best
football team

supports

supports

hasConclusion

I-node or one of its sub-types

S-node or one of its sub-types

F-node or one of its sub-types

fulfils
fulfilsPrem

iseD
esc

fulfilsPrem
iseD

esc

fulfilsScheme

Scheme or one of its sub-types

Figure 3. An argument network linking instances of argument and scheme components

In the ArgDF ontology, actual arguments are created by instantiating nodes, while
actual schemes are created by instantiating the “scheme” class. Then, argument instances
(and their constituent parts) are linked to scheme instances (and their part descriptors) in
order to show what scheme the argument follows. Figure 3 shows an argument network
for an “argument from position to know” using the ontology of ArgDF. Each node in
the argument (unshaded nodes) is explicitly linked, via a special-purpose property, to the
form node it instantiates (shaded nodes). These proprieties (e.g. fulfilsScheme) are reifi-
cations of the “uses” relation (between S-nodes and schemes) in the AIF specification.

It is clear that ArgDF’s reification of the AIF causes some redundancy. Both argu-
ments and schemes are described with explicit structure at the instance level. Thus, the
property “fulfilsScheme” does not capture the fact that an S-node represents an instan-
tiation of some generic class of arguments (i.e. scheme). Having such relationship ex-
pressed explicitly can enable reasoning about the classification of schemes (as we shall
demonstrate below). The ontology presented in this paper captures this relationship ex-
plicitly; presenting a simpler and more natural ontology of arguments. The AIF model
is reified by interpreting schemes as classes and S-nodes as instances of those classes; in
this case, the semantics of the “uses” edge can be interpreted as “instance − of ”.

3.3. Classification of Schemes

A notable aspect of schemes, receiving little attention in the literature, is that they do not
merely describe a flat ontology of arguments. Consider the following scheme.

Example 4. (Scheme for Appeal to Expert Opinion)

– Expertise premise: Source E is an expert in domain D containing proposition A.
– Assertion premise: E asserts that proposition A is true (false).
– Conclusion: A may plausibly be taken to be true (false).

It is clear that this scheme specialises the scheme for argument from position to know.
Apart from the fact that both schemes share the conclusion and the assertion premise,
the statement “Source E is an expert in domain D” can be seen as a specialisation of the
statement that “E is in a position to know (things about A).” Having expertise in a field
causes one to be in a position to know things in that field.7

Consider also the critical questions associated with the scheme for appeal to ex-
pert opinion [9] (again, here we omit Walton’s “field” and “opinion” question since it
merely questions one of the explicit premises). Notice that the trustworthiness question
is repeated, while additional expertise-related questions are added.

Example 5. (Critical Questions for Appeal to Expert Opinion)

1. Expertise: How credible is expert E?
2. Trustworthiness: Is E reliable?
3. Consistency: Is A consistent with the testimony of other experts?
4. Backup Evidence: Is A supported by evidence?

Thus, schemes themselves have a hierarchical ontological structure, based on a clas-
sification of their constituent premises and conclusions. The initial AIF does not classify
schemes according to this level of detail, but rather as whole entities.

4. A New Argument Ontology in Description Logic

Our formalisation is done using the Web ontology language OWL [5] in Description
Logic (DL) notation [2] (see appendix for a short overview of DL). We use a particular
dialect of OWL, called OWL DL, which is equivalent to logic SHOIN (D) [2].

At the highest level, we distinguish between three concepts: statements that can be
made, schemes that represent classes of arguments made up of statements,8 and authors
of those statements and arguments. All these concepts are disjoint.

Scheme v Thing Author v Thing Author v ¬Statement

Statement v Thing Statement v ¬Scheme Author v ¬Scheme

As with the original AIF, we distinguish between rule schemes (which describe the class
of arguments), conflict schemes, preference schemes, etc.

7Indeed, there may be other reasons to be in a position to know A. For example, if E is taken to refer to
society as a whole, then the argument from position to know becomes “argument from popular opinion.”

8We use use the terms “scheme” and “class of arguments” interchangeably.

RuleScheme v Scheme

ConflictScheme v Scheme

PreferenceScheme v Scheme

Each of these schemes can be further classified. For example, a rule scheme may be
further specialised to capture such deductive or presumptive arguments. The same can
be done with different types of conflicts, preferences, and so on.

DeductiveArgument v RuleScheme LogicalConflict v ConflictScheme

PresumptiveArgument v RuleScheme PresumptivePreference v PreferenceScheme

InductiveArgument v RuleScheme LogicalPreference v PreferenceScheme

We define a number of properties (or roles in DL terminology), which can be used
to refer to additional information about instances of the ontology, such as authors of
arguments, the creation date of a scheme, and so on. The domains and ranges of these
properties are restricted appropriately and described below.9

Scheme v ∀hasAuthor.Author > v ∀argT itle.String

Scheme v= 1creationDate > v ∀argT itle−.RuleScheme

RuleScheme v= 1argT itle > v ∀authorName.String

> v ∀creationDate.Date > v ∀authorName−.Author

> v ∀creationDate−.Scheme

To capture the structural relationships between different schemes, we first need to
classify their components. We do this by classifying their premises, conclusions, pre-
sumptions and exceptions into different classes of statements. For example, at the highest
level, we may classify statements to declarative, comparative, and imperative, etc.10

DeclarativeStatement v Statement

ImperativeStatement v Statement

ComparativeStatement v Statement . . .

Actual statement instances have a property that describes their textual content.

> v ∀claimText.String

> v ∀claimText−.Statement

When defining a particular RuleScheme (i.e. class of arguments), we capture the rela-
tionship between each scheme and its components. Each argument has exactly one con-
clusion and at least one premise (which are, themselves, instances of class “Statement”).
Furthermore, presumptive arguments may have presumptions and exceptions.

RuleScheme v ∀hasConclusion.Statement

RuleScheme v= 1hasConclusion

RuleScheme v ∀hasPremise.Statement

RuleScheme v≥ 1hasPremise

9The range and domain of property R are described using > v ∀R.C and > v ∀R−.C (see appendix).
10We avoid an ontological discussion of all types of statements. Our interest is in a (humble) demonstration

of how a classification of argument parts may help automate reasoning about argument types. How individual
parts get categorised into classes (e.g. using automated or manual tagging) is beyond the scope of this paper.

PresumptiveArgument v ∀hasPresumption.Statement

PresumptiveArgument v ∀hasException.Statement

With this in place, we can further classify the above statement types to cater for a va-
riety of schemes. For example, to capture the scheme for “argument from position to
know,” we first need to define the following classes of declarative statements. Each class
is listed an OWL-DL annotation property called formDescription which describes the
statement’s typical form. Annotation properties are used to add meta-data about classes.

PositionToHaveKnowledgeStmnt v DeclarativeStatement

formDescription : “E is in position to know whether A is true (false)”

KnowledgeAssertionStmnt v DeclarativeStatement

formDescription : “E asserts that A is true(false)”

KnowledgePositionStmnt v DeclarativeStatement

formDescription : “A may plausibly be taken to be true(false)”

LackOfReliabilityStmnt v DeclarativeStatement

formDescription : “E is not a reliable source”

Now we are ready to fully describe the scheme for “argument from position to know.”
The following are the necessary as well as the necessary-and-sufficient conditions for an
instance to be classified as an argument from position to know.

ArgFromPositionToKnow ≡ (PresumptiveArgument u
∃hasConclusion.KnowledgePositionStmnt u
∃hasPremise.PositionToHaveKnowledgeStmnt u
∃hasPremise.KnowledgeAssertionStmnt)

ArgFromPositionToKnow v ∃hasException.LackOfReliabilityStmnt

Now, for the “appeal to expert opinion” scheme, we only need to define one additional
premise type, since both the conclusion and the assertion premise are identical to those
of “argument from position to know.”

FieldExpertiseStmnt v PositionToHaveKnowledgeStmnt

formDescription : “source E is an expert in subject domain D containing proposition A”

Similarly, one of the exceptions of this scheme is identical to “argument from position to
know.” The remaining presumptions and exception are added as follows:

ExpertiseInconsistencyStmnt v DeclarativeStatement

formDescription : “A is not consistent with other experts assertions”

CredibilityOfSourceStmnt v DeclarativeStatement

formDescription : “E is credible as an expert source”

ExpertiseBackUpEvidenceStmnt v DeclarativeStatement

formDescription : “E’s assertion is based on evidence”

Likewise, the necessary-and-sufficient conditions of “appeal to expert opinion” are:

AppToExpertOpinion ≡ (PresumptiveArgument u
∃hasConclusion.KnowledgePositionStmnt u
∃hasPremise.F ieldExpertiseStmnt u ∃hasPremise.KnowledgeAssertionStmnt)

AppToExpertOpinion v ∃hasException.LackOfReliabilityStmnt

AppToExpertOpinion v ∃hasException.ExpertiseInconsistencyStmnt

PA1
Arg1 CA/PB1

PB2

PA2 Arg2 CB/PC1

PC2

Arg3 CC

Argument 1 Argument 2 Argument 3

supports

supports

Figure 4. Support among chained arguments

AppToExpertOpinion v ∃hasPresumption.CredibilityOfSourceStmnt

AppToExpertOpinion v ∃hasPresumption.ExpertiseBackUpEvidenceStmnt

It is important to note that a single statement instance might adhere to different
types of premises, conclusions or even presumptions and exceptions as the ontology
should enable re-using existing statement instances and creating interlinked and dynamic
argument networks.

5. OWL Reasoning over Argument Structures

In this section, we discuss ways in which the expressive power of OWL and its sup-
port for reasoning can be used to enhance user interaction with arguments. We focus on
features that extend our previous work on the RDF Schema-based ArgDF system [3].

5.1. Inference of Indirect Support in Chained Arguments

One of the advantages of OWL over RDF Schema is that OWL supports inference over
transitive properties. In other words, if r(X, Y) and r(Y,Z), then OWL reasoners can
infer r(X, Z). This can be used to enhance argument querying.

Arguments can support other arguments by supporting their premises. This results
in argument chaining where a claim acts both as a premise of one argument and as a
conclusion of another. This situation is illustrated in Figure 4. In Argument 1, premises
PA1 and PA2 have the conclusion CA which is used at the same time as premise PB1
of the argument 2. Premises PB1 and PB2 have the conclusion CB which is used at the
same time as premise PC1 of argument 3; PC1 and PC2 have the conclusion CC. Here,
we can say that Argument 1 indirectly supports Argument 3.

A user may wish to retrieve all arguments that directly or indirectly support
conclusion CC. RDF Schema does not provide straightforward support for retriev-
ing this information. We added a transitive property supports to the ontology, link-
ing the supporting argument to the supported argument in a chain: RuleScheme v
∀supports.RuleScheme. By using this edge, and the description logic reasoner, small
and elegant queries can retrieve the desired information.

5.2. Automatic Classification of Argument Schemes and Instances

As explained above, due to the hierarchy of specialisation among different descriptors
of scheme components (i.e. statements) as well as the necessary and sufficient condi-

tions defined on each scheme, it is possible to infer the classification hierarchy among
schemes.

Example 6. (Inferring scheme relationships) Following from the statement and scheme
definitions of “appeal to expert opinion” and “argument from position to know” outlined
earlier, the reasoner infers that the former is a sub-class of the latter.

Similar inferences can be undertaken over other classes. A more elaborate example
involves inferring the “fear appeal argument” scheme as sub-class of “argument from
negative consequence.” Consider the specification of the argument schemes of “argument
from negative consequence” and “fear appeal argument.” The necessary-and-sufficient
part of scheme description of the above arguments are detailed as follows.

ArgNegativeConseq ≡ (PresumptiveArgument u
∃hasConclusion.ForbiddenActionStmnt u ∃hasPremise.BadConsequenceStmnt)

FearAppealArg ≡ (PresumptiveArgument u ∃hasConclusion.ForbiddenActionStmnt u
∃hasPremise.FearfulSituationStmnt u
∃hasPremise.FearedBadConsequenceStmnt)

The statements are defined as follows. Note that the “Feared Bad Consequence”
statement is a specialisation of “Bad Consequence” statement, since it limits the bad
consequence to those portrayed in the fearful situation.

BadConsequenceStmnt v DeclarativeStatement

formDescription : “If A is brought about, bad consequences will plausibly occur”
ForbiddenActionStmnt v DeclarativeStatement

formDescription : “A should not be brought about”
FearfulSituationStmnt v DeclarativeStatement

formDescription : “Here is a situation that is fearful to you”
FearedBadConsequenceStmnt v BadConsequenceStmnt

formDescription : “If you carry out A, then the negative consequences portrayed in this fearful
situation will happen to you”

As a result of classification of scheme hierarchies, instances belonging to a certain
scheme class will also be inferred to belong to all its super-classes. For example, if the
user queries to return all instances of “argument from negative consequences,” the in-
stances of all specializations of the scheme, such as all argument instances from “fear
appeal arguments” are also returned.

5.3. Inferring Critical Questions

Since the schemes are classified by the reasoner into a hierarchy, if certain presumptions
or exceptions are not explicitly stated for a specific scheme but are defined on any of its
super-classes, the system is able to infer and add those presumptions and exceptions to
instances of that specific scheme class. Consider the critical questions for “fear appeal
argument” and “argument from negative consequence” described below.

Example 7. (Critical Questions for Fear Appeal Argument)

1. Should the situation represented really be fearful to me, or is it an irrational fear
that is appealed to?

2. If I don’t carry out A, will that stop the negative consequence from happening?
3. If I do carry out A, how likely is it that the negative consequence will happen?

Example 8. (Critical Questions for Argument From Negative Consequence)

1. How strong is the probability or plausibility that these cited consequence will
(may, might, must) occur?

2. What evidence, if any, supported the claim that these consequence will (may,
might, must) occur if A is brought about?

3. Are there consequence of the opposite value that ought to be taken into account?

“Fear appeal argument” is classified as a sub-class of “argument from negative conse-
quence.” The critical questions 2 and 3 of “argument from negative consequence” have
not been explicitly defined on “fear appeal argument,” but can be inferred. Since crit-
ical questions provide a way for evaluation of an argument, inferring such additional
questions for can enhance the analysis process.

6. Implementation

In this section, we describe our implementation (in-progress) of a Web-based system for
creating, manipulating, and querying complex argument structures. The core Website is
built on Java. Jena11 provides the programming environment for manipulating the ontol-
ogy model. Moreover, ARQ12 libraries are used to provide the SPARQL[12] query en-
gine. Pellet [13], an open source description logic reasoner for OWL-DL enables infer-
ence over the ontology model generated by Jena. The ontology and instances are stored in
an SQL Server database. In brief, the new implementation offers the following features:

– Creation of new semantically annotated arguments, using new or existing au-
thored statements. While this feature was implemented in ArgDF, the new sys-
tem uses subsumption reasoning to infer and add critical questions to each new
argument instance.

– Attacking and supporting parts of existing arguments.
– Retrieving supporting or attacking arguments/claims for a given claim. In case of

support, both direct and indirect supporting arguments are listed.
– Retrieving scheme details, in order to inspect them, such as the conclusion,

premise, presumption or exception descriptors as well as the scheme’s inferred
super-class(es) and sub-class(es).

– Creation of new schemes through the user interface.
– Search for arguments based on keywords, authors, schemes. When searching for

arguments of a specific scheme type, inference is used to return all the arguments
that are instances of that specific scheme as well as instances that belong to any
of its sub-classes.

Although some of the above features have already appeared in ArgDF, the key feature
of the current implementation is its use of OWL inference to enhance the retrieval of
arguments (as described in detail in Section 5).

11http://jena.sourceforge.net/
12http://jena.sourceforge.net/ARQ/

7. Conclusion

We reported on ongoing work that exploits the OWL language for creating, navigating
and manipulating complex argument structures. The new ontology enhances our previous
RDF Schema-based implementation [3]. In particular, we now model schemes as classes
(as opposed to instances), which enables detailed classification of schemes themselves.
Secondly, our new system enables the first explicit use of Description Logic-based OWL
reasoning for classifying arguments and schemes in a Web-based system. This provides
a seed for further work that combines traditional argument-based reasoning techniques
[7] with ontological reasoning in a Semantic Web environment. Once the system im-
plementation is complete, we aim to focus on content acquisition. We will explore the
integration of arguments from other repositories into our system. We will also work on
integrating effective argument visualisation techniques, which can help in acquisition as
well as interaction with the argument repository.

Acknowledgement

We are grateful for the detailed comments received from the anonymous reviewers.

References

[1] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American, pages 29–37, May
2001.

[2] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors. The Description
Logic Handbook. Cambridge University Press, Cambridge, UK, 2003.

[3] I. Rahwan, F. Zablith, and C. Reed. Laying the foundations for a world wide argument web. Artificial
Intelligence, 171(10–15):897–921, 2007.

[4] C. I. Chesñevar, J. McGinnis, S. Modgil, I. Rahwan, C. Reed, G. Simari, M. South, G. Vreeswijk, and
S. Willmott. Towards an argument interchange format. The Knowledge Engineering Review, 21(4):293–
316, 2007.

[5] D. L. McGuinness and F. van Harmelen. OWL web ontology language overview. W3C Recommendation
REC-owl-features-20040210/, World Wide Web Consortium (W3C), February 2004.

[6] B. Verheij. An argumentation core ontology as the centerpiece of a myriad of argumentation formats.
Technical report, Agentlink Argumentation Interchange Format Technical Forum, 2005.

[7] C. I. Chesñevar, A. Maguitman, and R. Loui. Logical models of argument. ACM Computing Surveys,
32(4):337–383, 2000.

[8] C. Reed and J. Katzav. On argumentation schemes and the natural classification of arguments. Argu-
mentation, 18(2):239–259, 2004.

[9] D. N. Walton. Fundamentals of Critical Argumentation. Cambridge University Press, New York, USA,
2006.

[10] T. F. Gordon, H. Prakken, and D. Walton. The carneades model of argument and burden of proof.
Artificial Intelligence, 171(10–15):875–896, 2007.

[11] S. Toulmin. The Uses of Argument. Cambridge University Press, Cambridge, UK, 1958.
[12] E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF. W3C Candidate Recommen-

dation CR-rdf-sparql-query-20070614, World Wide Web Consortium (W3C), 2007.
[13] E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical OWL-DL reasoner.

Web Semantics, 5(2):51–53, 2007.

Appendix: Description Logics

Description Logics (DLs) [2] are a family of knowledge representation languages which
can be used to represent the terminological knowledge of an application domain. The
idea is to define complex concept hierarchies from basic (atomic) concepts, and to define
complex roles (or properties) that define relationships between concepts.

Table 2 shows the syntax and semantics of common concept and role constructors.
The letters A, B are used for atomic concepts and C, D for concept descriptions. For
roles, the letters R and S are used and non-negative integers (in number restrictions) are
denoted by n, m and individuals (i.e. instances) by a, b. An interpretation I consists
of a non-empty set ∆I (the domain of the interpretation) and an interpretation function,
which assigns to every atomic concept A a set AI ⊆ ∆I and to every atomic role R a
binary relation RI ⊆ ∆I ×∆I .

A DL knowledge base consists of a set of terminological axioms (often called
TBox) and a set of assertional axioms or assertions (often called ABox). A finite set of
definitions is called a terminology or TBox if the definitions are unambiguous, i.e., no
atomic concept occurs more than once as left hand side.

Name Syntax Semantics

Concept & Role Constructors
Top > ∆I

Bottom ⊥ ∅
Concept Intersection C uD CI ∩DI

Concept Union C tD CI ∪DI

Concept Negation ¬C ∆I \ CI

Value Restriction ∀R.C {a ∈ ∆I | ∀b.(a, b) ∈ RI → b ∈ CI}
Existential Quantifier ∃R.C {a ∈ ∆I | ∃b.(a, b) ∈ RI ∧ b ∈ CI}
Unqualified ≥ nR {a ∈ ∆I || {b ∈ ∆I | (a, b) ∈ RI} |≥ n}
Number ≤ nR {a ∈ ∆I || {b ∈ ∆I | (a, b) ∈ RI} |≤ n}
Restriction = nR {a ∈ ∆I || {b ∈ ∆I | (a, b) ∈ RI} |= n}
Role-value- R ⊆ S {a ∈ ∆I | ∀b.(a, b) ∈ RI → (a, b) ∈ SI}
map R = S {a ∈ ∆I | ∀b.(a, b) ∈ RI ↔ (a, b) ∈ SI}
Nominal I II ⊆ ∆I with | II |= 1

Universal Role U ∆I ×∆I

Role Intersection R u S RI ∩ SI

Role Union R t S RI ∪ SI

Role Complement ¬R ∆I ×∆I \RI

Role Inverse R− {(b, a) ∈ ∆I ×∆I | (a, b) ∈ RI}
Transitive Closure R+

⋃
n≥1(RI)n

Role Restriction R|c RI ∩ (∆I × CI)

Identity id(C) {(d, d) | d ∈ CI}

Teminological Axioms
Concept Inclusion C v D CI ⊆ DI

Concept Equality C ≡ D CI = DI

Role Inclusion R v S RI ⊆ SI

Role Equality R ≡ S RI = SI

Table 2. Some Description Logic Role Constructors, Concept Constructors, and Terminological Aximos

To give examples of what can be expressed in DLs, we suppose that Person and Fe-
male are atomic concepts. Then PersonuFemale is DL concept describing, intuitively,
those persons that are female. If, in addition, we suppose that hasChild is an atomic
role, we can form the concept Personu∃hasChild, denoting those persons that have a
child. Using the bottom concept, we can also describe those persons without a child by
the concept Person u ∀hasChild.⊥. These examples show how we can form complex
descriptions of concepts to describe classes of objects.

The terminological axioms make statements about how concepts or roles are related
to each other. It is possible to single out definitions as specific axioms and identify ter-
minologies as sets of definitions by which we can introduce atomic concepts as abbrevi-
ations or names for complex concepts.

An equality whose left-hand side is an atomic concept is a definition. Definitions
are used to introduce symbolic names for complex descriptions. For instance, by the
axiom Mother ≡ Woman u ∃hasChild.Person, we associate to the description on
the right-hand side the name Mother. Symbolic names may be used as abbreviations in
other descriptions. If, for example, we have defined Father analogously to Mother, we
can define Parent as Parent ≡Mother t Father. Table 3 shows a terminology with
concepts concerned with family relationships.

The sentence > v ∀hasParent.Person expresses that the range of the property
hasParent is the class Person (more technically, if the property hasParent holds
between any concept and another concept, the latter concept must be of type Person).

Name DL Syntax Example

Constructor / axiom
Concept Intersection C uD Woman ≡ Person u Female

Concept Union C tD Parent ≡Mother t Father

Concept Negation ¬C Man ≡ Person u ¬Woman

Existential Quantifier ∃R.C Mother ≡Woman u ∃hasChild.Person

Value Restriction ∀R.C MotherWithoutSons ≡Mother u ∀hasChild.Woman

MinCardinality ≥ nR MotherWithAtLeastThreeChildren ≡Motheru ≥ 3hasChild

Cardinality = nR FatherWithOneChild ≡ Fatheru = 1hasChild

Bottom ⊥ PersonWithoutAChild ≡ Person u ∀hasChild.⊥
Transitive Property R+ v R ancestor+ v ancestor

Role Inverse R ≡ S− hasChild ≡ hasParent−

Concept Inclusion C v D Woman v Person

Disjoint with C v ¬D Man v ¬Woman

Role Inclusion R v S hasDaughter v hasParent

Range > v ∀R.C > v ∀hasParent.Person

Domain > v ∀R−.C > v ∀hasParent−.P erson

Table 3. A terminology (TBox) with concepts about family relationships

