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Abstract

Various Artificial Intelligence semantics have been developed
to predict when an argument can be accepted, depending on
the abstract structure of its defeaters and defenders. These
semantics can make conflicting predictions, as in the situa-
tion known as floating reinstatement. We argue that the de-
bate about which semantics makes the correct prediction can
be informed by the collection of experimental data about the
way human reasoners handle these critical cases. The data we
report show that floating reinstatement yields comparable ef-
fects to that of simple reinstatement, thus supporting preferred
semantics over grounded semantics. Besides their theoreti-
cal value for validating and inspiring argumentation semantics,
these results have applied value for developing artificial agents
meant to argue with people.

Keywords: Argumentation; Semantics; Nonmonotonic rea-
soning; Behavioural Experiment;

Introduction
Argumentation has become a very fertile area of research
in Artificial Intelligence (Rahwan & Simari, 2009), where
a highly influential framework for studying argumentation-
based reasoning was introduced by Dung (1995). An argu-
mentation framework is simply a pair AF = 〈A ,⇀〉 where
A is a set of arguments and ⇀⊆ A ×A is a defeat relation
between arguments. This approach abstracts away from the
origin of individual arguments and their internal structures,
and focuses instead on the defeat relationship between them.

Figure 1 shows an example textual argument and its cor-
responding graph structure. This structure is the canonical
example for the notion of reinstatement. In particular, while
argument A is defeated by argument B, the presence of C re-
instates A since C undermines A’s only defeater.1

Given an argument framework (or graph), a semantics as-
signs a status to each argument. Classically, we distinguish
between arguments that are accepted and those that are not
(Dung, 1995). In some cases, all semantics agree on the re-
sult. For example, in Figure 1, all classical argumentation
semantics agree that we should accept C (for lack of any
counter-argument), reject B (because there is a good reason

1While many notions of defeat exist, here we adopt the simple
notion of undercutting: the defeater’s conclusion explicitly negates
the defeated argument’s premise.

A: Tweety flies because it is a bird.
B: Tweety does not fly, because it is a penguin.
C: The observation that Tweety is a penguin is not reliable.

Graphical structure:

Textual argument:

A B C

Figure 1: Defeat structure with reinstatement

to), and accept A (since every objection to it has been de-
feated). When there are cycles, different semantics may pre-
scribe different results.

These semantics typically come from a normative perspec-
tive, which relies on intuition and ad hoc hypothetical exam-
ples as to what constitutes correct reasoning. We will argue
that there are limits to relying solely on this approach, and
we will advocate the use of psychological experiments as a
methodological tool for informing and validating intuitions
about argumentation-based reasoning.

In this paper, we apply this experimental method to the
problem of floating reinstatement. We will show that psycho-
logical experiments can help to evaluate these various seman-
tics, and can provide unique insights even when all formal
semantics are in agreement. Not only can these insights in-
form current and future semantics, but they are relevant to the
design of software agents that can argue persuasively with
humans, or provide reliable support to human evaluation of
arguments (e.g., on top of argument diagramming tools).

Abstract Argumentation Frameworks
This section contains technical background only, whose out-
line is the following. Figure 1 displays the canonical graph of
simple reinstatement, whereas Figure 2 displays the canonical
graph of floating reinstatement. The main question is, in both
cases, whether A can be accepted. For simple reinstatement,
A is accepted by preferred as well as grounded semantics (to
be defined below). For floating reinstatement, A is not ac-
cepted by grounded semantics, but is accepted by preferred
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Figure 2: The canonical graph of defeat and floating reinstate-
ment. Argument A is defeated by B, which is itself defeated
by C as well as D, although C and D are mutual defeaters.

semantics. Additionally, preferred semantics also accept C
and D in the (formally defined) ‘credulous’ sense, but not in
the ‘sceptical’ sense.

We now lay bare the technical background required to ar-
rive at these conclusions. We begin with Dung’s (1995) ab-
stract definition of an argumentation framework.

Definition 1 (Argumentation framework). An argumentation
framework is a pair AF = 〈A ,⇀〉 where A is a set of argu-
ments and ⇀⊆ A ×A is a defeat relation. An argument α

defeats an argument β iff (α,β) ∈⇀, also written α ⇀ β.

The directed graphs displayed in Figures 1 and 2 will be
our running examples all through the article. The critical is-
sue with these examples is whether argument A can be ac-
cepted in spite of being defeated by argument B.

For a given set S of arguments, S+ is the set of arguments
that are defeated by the arguments in S. Formally, S+ = {β ∈
A | α ⇀ β for α ∈ S}. Conversely, for a given argument α,
the set α− is the set of all arguments that defeat α. Formally,
α− = {β ∈ A | β ⇀ α}.

Definition 2 (Conflict-freedom). Let 〈A ,⇀〉 be an argu-
mentation framework and let S ⊆ A . S is conflict-free iff
S∩S+ = /0.

In other terms, a set of arguments is conflict free if and only
if no argument in that set defeats another.

Definition 3 (Defence). Let 〈A ,⇀〉 be an argumentation
framework, let S ⊆ A , and let α ∈ A . S defends α if and
only if α− ⊆ S+. We also say that argument α is acceptable
with respect to S.

In other terms, a set of arguments defends a given argument
if and only if it defeats all its defeaters.

Example 1. In the graph displayed in Figure 1, the set {A,C}
is conflict free, but the set {A,B} is not, and neither is the
set {B,C}. Because the set {C} defeats all the defeaters of
A, we can say that the set {C} defends argument A. In the
graph displayed in Figure 2, the only conflict-free sets (apart
from trivial ones containing single arguments) are {A,C} and
{A,D}. Either one of the sets {C}, {D}, or {C,D}, defends
A against all its defeaters.

A B C

Figure 3: Single (complete, grounded, and preferred) exten-
sion in simple reinstatement. Accepted arguments are shaded.

C

D

B A

C

D

B A

Figure 4: The two (complete, preferred) extensions in floating
reinstatement. Accepted arguments are shaded.

We now define the characteristic function of an argumen-
tation framework.

Definition 4 (Characteristic function). Let AF = 〈A ,⇀〉 be
an argumentation framework. The characteristic function of
AF is FAF : 2A → 2A such that, given S⊆A , we have FAF(S)
= {α ∈ A | S defends α}.

Applied to an argument set S, the characteristic function re-
turns the set of all arguments defended by S. Because we are
only dealing in this article with one argumentation framework
at a time, we will use the notation F instead of FAF .

We now turn to various so-called extensions that can char-
acterise the collective acceptability of a set of arguments. Es-
sentially, these extensions provide different possible ways to
group self-defending arguments together. These extensions
will be used subsequently to define the argument evaluation
criteria that we study empirically in this paper.

Definition 5 (Complete/grounded/preferred extensions). Let
S be a conflict-free set of arguments in framework 〈A ,⇀〉.

• S is a complete extension iff S = F (S).

• S is a grounded extension iff it is the minimal complete ex-
tension with respect to set inclusion.

• S is a preferred extension iff it is a maximal complete ex-
tension with respect to set inclusion.

S is a complete extension if and only if all arguments de-
fended by S are also in S (that is, if S is a fixed point of the
operator F ). There may be more than one complete exten-
sion, each corresponding to a particular consistent and self-
defending viewpoint.

Example 2. In the graph displayed in Figure 1, the set {C}
is not a complete extension, because it defends A without in-
cluding it. The set {B} is not a complete extension because
it includes B without defending it against C –see Figure 3.
The only complete extension is {A,C}. The graph displayed
in Figure 2 has two complete extensions, {A,C} and {A,D}
–see Figure 4.

A grounded extension contains all the arguments in the
graph that are not defeated, as well as all the arguments



which are defended directly or indirectly by non-defeated ar-
guments. This can be seen as a non-committal view (charac-
terised by the least fixed point of F ). As such, there always
exists a unique grounded extension.

Example 3. The graph in Figure 1 has only one complete
extension, {A,C}, which is also its grounded extension. The
graph in Figure 2 has two complete extensions {A,C} and
{A,D}, but none of this is the grounded extension, because
there is no node in the graph that is initially undefeated. In
that case, the grounded extension is the empty set.

A preferred extension is a bolder, more committed position
that cannot be extended (by accepting more arguments) with-
out causing inconsistency. Thus a preferred extension can be
thought of as a maximal consistent set of hypotheses. There
may be multiple preferred extensions, and the grounded ex-
tension is included in all of them.

Example 4. The graph in Figure 1 has only one complete
extension, {A,C}, which is also a preferred extension. The
graph displayed in Figure 2 has two complete extensions
{A,C} and {A,D}, and both qualify as preferred extensions.

Now we can define the status of an individual argument
within the graph, that is, we can define criteria for accepting
or not each individual argument. The main question in this
paper is whether people evaluate a reinstated argument scep-
tically or credulously in accordance with the definition below.

Definition 6 (Argument status). Let 〈A ,⇀〉 be an argumen-
tation framework, and E1, . . . ,En its extensions under a given
semantics. Let α ∈ A and i = 1, . . . ,n.

• α is accepted in the sceptical sense iff α ∈ Ei, ∀Ei.

• α is accepted in the credulous sense iff ∃Ei where α ∈ Ei.

• α is rejected iff @Ei such that α ∈ Ei.

Under the grounded semantics, any argument that belongs
to the unique grounded extension is accepted both in the cred-
ulous and the sceptical sense, and any argument that does not
belong to the unique grounded extension is rejected. Under
the preferred semantics, an argument is sceptically accepted
if it belongs to all preferred extensions; but it can also be
credulously accepted if it belongs to at least one preferred ex-
tension. If an argument is neither sceptically nor credulously
accepted, it is rejected.

Example 5. The graph displayed in Figure 1 has only one
complete extension, {A,C}, which is grounded as well as pre-
ferred. As a consequence, arguments A and C are accepted
by grounded as well as preferred semantics, both in the cred-
ulous and sceptical sense. The graph displayed in Figure 2
has an empty grounded extension, which means that no argu-
ment should be accepted under a grounded semantics. Under
a preferred semantics, though, two extensions are identified,
{A,C} and {A,D}. From these extensions, only A can be
accepted in a sceptical sense, but A, C, and D can all be ac-
cepted in a credulous sense.

What Validates a Semantics?
As established above, different semantics can have different
takes on which arguments can be accepted within a given ar-
gumentation framework. The question then arises of evaluat-
ing the different claims made by different semantics.

Most semantics for argumentation-based reasoning in Arti-
ficial Intelligence are based on intuition as to what constitutes
correct reasoning. This intuition is informed by specific (hy-
pothetical or real) argumentation scenarios in which a par-
ticular semantics draws the desired intuitive answer. This
example-based approach (to borrow a term from Baroni &
Giacomin, 2007) is problematic, since one can often construct
other examples with the same logical structure, in which
the proposed semantics draws counter-intuitive conclusions.
For example, Horty (2002) famously devoted a whole paper
to demonstrate counter-intuitive results with floating conclu-
sions in default reasoning. Baroni and Giacomin (2007) made
a compelling case for the limitations of the example-based ap-
proach, noting that even in relatively simple examples, there
might not be a consensual intuition on what should be the
correct conclusion. In parallel, Prakken (2002) observed that
intuitions about given examples were helpful for generating
new investigations, but less helpful as critical tests between
different semantics.

To overcome the limitations of the example-based ap-
proach, a number of authors recently advocated a more
systematic, axiomatic, principle-based approach. In this
approach, alternative semantics are evaluated by analysing
whether they satisfy certain principles, or quality postulates.
Such postulates include the reinstatement criterion, accord-
ing to which an argument must be included in any extension
that reinstates it, and directionality criterion which requires
that an argument’s status should only be affected by the sta-
tus of its defeaters (Baroni & Giacomin, 2007).

The principle-based approach provides a significant im-
provement over the basic example-based approach, since it
enables claims that transcend individual examples and char-
acterise semantics more generally. The source of the gen-
eral postulates, however, is still the researcher’s intuition as
to what correct reasoning ought to be. In sum, most of the ex-
tent validation of various argumentation semantics, example-
based or principle-based, relies on normative claims based on
intuition. We now suggest that this normative-intuitive per-
spective could be adequately complemented with descriptive,
experimental evidence about how people actually reason from
conflicting arguments.

The Experiment-based Approach
There is a growing concern within the Artificial Intelligence
community that logicians and computer scientists ought to
give serious attention to cognitive plausibility when assess-
ing formal models of reasoning, argumentation and decision-
making. For example, Benthem (2008) strongly supports the
rise of a new psychologism in logic at large, arguing that al-
though logicians and computer scientists have tended to go by



intuition and anecdotal evidence, formal theories can be mod-
ified under pressure from evidence obtained though careful
experimental design.

Pelletier and Elio (2005) also argued extensively for the
importance of experimental data when formalizing default
and inheritance reasoning, arguing that default reasoning is
particularly psychologistic in that it is defined by what peo-
ple do. Their own results have been complemented by a dy-
namic experimental literature consisting of controlled tests
of human default reasoning (e.g., Bonnefon, Da Silva Neves,
Dubois, & Prade, 2008; Ford & Billington, 2000; Pfeifer &
Kleiter, 2009).

Finally, and in close relation to the problems of simple and
floating reinstatement that we have introduced in the previous
section, Horty (2002) implicitly appealed to descriptive vali-
dation when highlighting the issues that floating conclusions
raise for sceptical semantics:

There is a vivid practical difference between the two skepti-
cal alternatives. [. . . ] Which alternative is correct? I have not
done a formal survey, but most of the people to whom I have
presented this example are suspicious of the floating conclu-
sion (p.64).

We believe that the field of computational argumentation can
indeed benefit from the same kind of formal surveys that have
been conducted in the field of default reasoning, and that
have been generally called for in Artificial Intelligence. To
our knowledge, only very few articles have explicitly sought
to inform formal models of argumentation with experimental
evidence, and these experimental data have only been col-
lected in relation to the specific issue of argumentation-based
decision making (e.g., Dubois, Fargier, & Bonnefon, 2008).
What we offer in this article is an experimental investigation
of the basic issue of how people reason from the complex ar-
gument structure corresponding to floating reinstatement, and
whether one of the current available semantics can capture
their reasoning.

Recently, we conducted experiments on the simple rein-
statement structure, across a varied set of linguistic contents
(Madakkatel, Rahwan, Bonnefon, Awan, & Abdallah, 2009).
Our study revealed that participants reasoned in a way that re-
flected the formal notions of defeat and reinstatement: Their
confidence in an argument A decreased when it was attacked
by an argument B, but bounced back up when B itself was at-
tacked by a third argument C. These findings are in agreement
with grounded as well as preferred semantics (and others).
What neither semantics could predict, though, is the finding
that the recovery of argument A was not complete when rein-
stated by argument C: Confidence in A in presence of B and
C did not raise back to its former level, when A was presented
alone.

Our present study offers an experimental comparison of
the simple reinstatement structure to the more complex struc-
ture known as floating reinstatement, shown in Figure 2.The
present study seeks to answer the following questions: Does
floating reinstatement restore the confidence in the conclu-
sion of argument A, and does it do so to the same extent as

simple reinstatement? (A ‘yes’ to both questions would go
against the predictions of grounded semantics.) If so, does
the effectiveness of floating reinstatement require that partic-
ipants manifest a preference for either C over D or D over C?
(A ‘yes’ would provide support to the predictions of credu-
lous preferred semantics, a ‘no’ would provide support to the
predictions of sceptical preferred semantics.)

Method
Fourty-seven participants were randomly approached in of-
fices, shopping malls, and open spaces in Dubai. Partici-
pants read an introduction to the task, informing them that the
purpose of the experiment was to collect information about
how people thought, that the task included no trick question,
and that they simply had to mark the answer that they felt
correct. They were randomly assigned to two experimental
groups corresponding to simple and floating reinstatement,
respectively, then solved 12 problems, following a 3-level, 4-
measure within-participant design.

The 3-level independent variable was the Pattern of the
problem (Base, Defeated, Reinstated). In the Base pattern,
participants were only presented with argument A; in the De-
feated pattern, participants were presented with arguments A
and B; finally, in the Reinstated pattern, participants were pre-
sented with the three arguments A, B, and C (in the simple
reinstatement group) or with the four arguments A, B, C, and
D (in the floating reinstatement group).

The linguistic contents of arguments A, B, C, and D were
taken from four different argument sets (see Appendix). All
participants saw each argument set in its Base, Defeated, and
Reinstated versions. The order of argument sets within the
questionnaire was counterbalanced across participants (two
different orders), but the order of Pattern within each argu-
ment set was fixed across the experiment. Participants had to
answer every problem, in the order they appeared in the ques-
tionnaire, without looking at the next problem in the ques-
tionnaire. For each problem, participants had to assess the
conclusion of argument A, using a 7-point scale anchored at
certainly false and certainly true.

In addition, participants rated their understanding of each
problem (‘How clearly did you understand the problem?’) on
a 7-point scale anchored at Not at all and Completely. Lastly,
participants in the floating reinstatement group answered the
following question about the four reinstated problems: Do
you think that (i) C is a better argument than D, (ii) D is a
better argument than C, or (iii) C and D are about equally
good?

Results
Figure 5 displays the average confidence in the conclusion
of A, as a function of Pattern and Type of reinstatement, av-
eraged across the contents and participants. The visual in-
spection of Figure 5 already suggests that the results are very
similar for the two groups. This preliminary intuition was
confirmed by the results of a mixed-design analysis of vari-
ance, using the confidence in the conclusion as a dependent
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Figure 5: Reinstatement is as effective in its floating form
as in its simple form. Confidence in the conclusion of an
argument decreases when the argument is defeated, and is
then imperfectly restored when its defeater is itself defeated,
whether by a single argument (simple reinstatement) or by
two mutually defeating arguments (floating reinstatement).

variable, pattern as a 3-level within-subject predictor (Base,
Defeated, Reinstated), the type of reinstatement as a 2-level
between-group variable (Simple, Floating), and four mea-
sures corresponding to the four linguistic contents.

The multivariate test detected a significant effect of Pattern,
F(8,38)= 6.1, p< .001, η2

p = .56. It did not, however, detect
a significant main effect of Type of reinstatement F(4,42)<
1, p = .79, η2

p = .04, nor a significant interaction between
Pattern and Type, F(8,38) = 1.2, p = .32, η2

p = .20.
The overall effect of Pattern reflected a successful defeat

followed by a successful reinstatement. As shown by con-
trast analysis, confidence ratings in the Defeated condition
were significantly lower than ratings in the Base condition,
F(1,45) = 34.9, p < .001, η2

p = .44, and this difference
was not moderated by the Type of reinstatement (there is
indeed no reason that it should be), F(1,45) < 1, p = .67,
η2

p < .01. The confidence ratings in the Reinstated condi-
tion were significantly greater than in the Defeated condi-
tion, F(1,45) = 13.7, p < .001, η2

p = .23, and this difference
(more interestingly this time) was not moderated by the Type
of reinstatement, F(1,45) < 1, p = .60, η2

p < .01. Just as in
our earlier study (Madakkatel et al., 2009), reinstatement is
not perfect, as ratings in the Reinstated condition remain sig-
nificantly lower than in the Base condition, F(1,45) = 9.0,
p < .01, η2

p = .17. Again, there is no evidence whatsoever of
a moderation by Type of reinstatement, F(1,45)< 1, p= .92,
η2

p < .01.
So far, results suggest that floating reinstatement has an

effect that is identical to classic reinstatement. We further
note that although subjects found the floating reinstatement
problems slightly harder to understand than the simple rein-
statement problems, this difference appeared to play no role
in the ratings they gave for their confidence in the conclusion.
The average understanding rating was 4.6 (SD= 1.1) for sim-
ple reinstatement problems, compared to 4.0 (SD = 0.9) for
floating reinstatement problems, t(45) = 2.0, p = .05. How-

ever, a regression analysis seeking to predict acceptance of
reinstated arguments on the basis of problem understanding,
Type of reinstatement (dummy coded, 1 for floating), and
the interaction term between these two predictors, failed to
find any significant effect. The interaction term in particular
achieved a standardized β of .19, non-reliably different from
zero, t = 0.32, p = .75.

The effectiveness of floating reinstatement does not ap-
pear to result from the subjects manifesting a preference for
one of the mutually defeated arguments. We conducted four
repeated-measure analyses of variance, one for each argu-
ment set, with conclusion acceptance as a dependent vari-
able, pattern as a 2-level predictor (Defeated, Reinstated), and
preference as a dummy coded between-group variable (0 for
subjects who said the two mutually defeating arguments were
equally good, 1 otherwise). The interaction term between pat-
tern and preference did not achieve statistical significance in
any of the four analyses, all Fs in the 0.5− 1.5 range, all ps
in the .23− .48 range.

Discussion
We applied the experimental approach to understand how
people deal with floating reinstatement in argument-based
reasoning, a case that has puzzled theoreticians for many
years. Our results suggest that, empirically speaking, floating
reinstatement works exactly as well as simple reinstatement.
Participants’ confidence in an argument A decreased when it
was attacked by an argument B, but bounced back up when
B itself was attacked by two mutually defeating arguments
C and D. These results clearly speak in favour of preferred
semantics. Results also suggest that the sceptical version of
preferred semantics might be more cognitively plausible than
the credulous version, since the effect of floating reinstate-
ment was not dependent on participants showing a preference
for one of the two mutually defeating arguments. This ques-
tion is not yet settled, though, since the data do not make it
clear whether participants would be willing to commit to ac-
cepting one of the mutually defeating arguments C and D.
This aspect requires further investigation.

Besides their theoretical value, our results also have ap-
plied value for developing agents that are meant to argue
with human users. We already know that artificial agents
can achieve better negotiation results with human users when
they do not play normative equilibrium strategies, but rather
adopt boundedly rational strategies inspired from human be-
havioural data (Lin, Kraus, Wilkenfeld, & Barry, 2008). Gen-
erally speaking, we may expect that artificial agents may sim-
ilarly be more successful when arguing with human users, if
they can anticipate human reactions to various abstract argu-
mentation frameworks. With that goal in mind, our results
suggest that artificial agents may be better off avoiding dis-
cussion that may reveal a defeater, even if the agent has a
counter-argument to that defeater; but should be ready to use
floating reinstatement as well as simple reinstatement in order
to neutralise a defeater raised by the human user. These kinds



of heuristics can be incorporated into a decision-theoretic
model of a persuasive agent that interacts with users using
natural language (e.g. to promote a healthy diet (Mazzotta,
Rosis, & Carofiglio, 2007). Going beyond our specific re-
sults, by building up a corpus of argument structures and how
they are evaluated, it may be possible to use machine learning
techniques to build models that predict how people will react
to novel argument structures.

Independently of our specific results, we hope to have con-
vinced the reader that the wealth of scientific methodology
from psychology can give a new perspective on the problems
raised when formalising argumentation and developing argu-
ment evaluation semantics. We hope that our claims and find-
ings can prompt researchers working on the computational
modelling of argument to explore new avenues of investi-
gation inspired by, and validated against, empirical evidence
from psychology and cognitive science.

We also hope to have excited cognitive scientists about
the growing literature on formal models of argumentation.
These models, and their associated normative properties, have
great potential in complementing existing research on human
reasoning, and providing conceptual means for dealing with
highly complex inference structures.
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Materials
Argument Set 1
(A) Cody does not fly. Therefore, Cody is unable to escape by fly-

ing.

(B) Cody is a bird. Therefore, Cody flies.

(C) Cody is a rabbit. Therefore, Cody is not a bird.

(D) Cody is a cat. Therefore, Cody is not a bird.

Argument Set 2
(A) Smith does not follow American spelling. Therefore, Smith

writes ‘colour’ instead of ‘color’.

(B) Smith speaks American English. Therefore, Smith follows
American spelling.

(C) Smith was born and brought up in England. Therefore, does
not speak American English.

(D) Smith was born and brought up in Australia. Therefore, does
not speak American English .

Argument Set 3
(A) The car did not slow down. Therefore, the car approached the

signal at the same speed or higher.

(B) Louis applied the brake. Therefore, the car slowed down.

(C) Louis applied the accelerator instead. Therefore, Louis did not
apply the brake.

(D) Louis applied the clutch instead. Therefore, Louis did not apply
the brake.

Argument Set 4
(A) Stephen is not guilty. Therefore, Stephen is to be free from

conviction.

(B) Stephen was seen at the crime scene at the time of the crime.
Therefore, Stephen is guilty.

(C) Stephen was having dinner with his family at the time of crime.
Therefore, Stephen was not seen at the crime scene at the time
of the crime.

(D) Stephen was watching football with his friends in the stadium
at the time of the crime. Therefore, Stephen was not seen at the
crime at the time of the crime.


