
Chapter 16
Argumentation and Game Theory

Iyad Rahwan and Kate Larson

1 What Game Theory Can Do for Argumentation

In a large class of multi-agent systems, agents are self-interested in the sense that
each agent is interested only in furthering its individual goals, which may or may
not coincide with others’ goals. When such agents engage in argument, they would
be expected to argue strategically in such a way that makes it more likely for their
argumentative goals to be achieved. What we mean by arguing strategically is that
instead of making arbitrary arguments, an agent would carefully choose its argu-
mentative moves in order to further its own objectives.

The mathematical study of strategic interaction is Game Theory, which was pi-
oneered by von Neuman and Morgenstern [13]. A setting of strategic interaction is
modelled as a game, which consists of a set of players, a set of actions available
to them, and a rule that determines the outcome given players’ chosen actions. In
an argumentation scenario, the set of actions are typically the set of argumentative
moves (e.g. asserting a claim or challenging a claim), and the outcome rule is the
criterion by which arguments are evaluated (e.g. a judge’s attitude or a social norm).

Generally, game theory can be used to achieve two goals:

1. undertake precise analysis of interaction in particular strategic settings, with a
view to predicting the outcome;

2. design rules of the game in such a way that self-interested agents behave in some
desirable manner (e.g. tell the truth); this is called mechanism design;

Both these approaches are quite useful for the study of argumentation in multi-
agent systems. On one hand, an agent may use game theory to analyse a given
argumentative situation in order to choose the best strategy. On the other hand, we
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may use mechanism design to design the rules (e.g. argumentation protocol) in such
a way as to promote good argumentative behaviour. In this chapter, we will discuss
some early developments in these directions.

In the next section, we motivate the usefulness of game theory in argumentation
using a novel game. After providing a brief background on game theory in Section
3, we introduce our Argumentation Mechanism Design approach in Section 4 and
present some preliminary results in Section 5. Finally, we discuss related work in
Section 6 and conclude in Section 7

2 The “Argumentative Battle of the Sexes” Game

Consider the following situation involving the couple Alice (A) and Brian (B), who
want to decide on an activity for the day.1 Brian thinks they should go to a soc-
cer match (argument α1) while Alice thinks they should attend the ballet (argument
α2). There is time for only one activity, however (hence α1 and α2 defeat one an-
other). Moreover, while Alice prefers the ballet to the soccer, she would still rather
go to a soccer match than stay at home. Likewise, Brian prefers the soccer match
to the ballet, but also prefers the ballet to staying home. Formally, we can write
uA(ballet) > uA(soccer) > uA(home) and uB(soccer) > uB(ballet) > uB(home).

Alice has a strong argument which she may use against going to the soccer,
namely by claiming that she is too sick to be outdoors (argument α3). Brian simply
cannot attack this argument (without compromising his marriage at least). Likewise,
Brian has an irrefutable argument against the ballet; he could claim that his ex-wife
will be there too (argument α4). Alice cannot stand her! Using Dung’s abstract ar-
gumentation model [1], which is described in detail in Chapter 2, the argumentative
structure of this situation can be modelled as shown in Figure 16.1(a).

Alice can choose to say nothing, utter argument α2 or α3 or both. Similarly,
Brian can choose to say nothing, utter argument α1 or α4 or both. For the sake of
the example, we will suppose that Alice and Brian use the grounded semantics as
the argumentative foundation of their marriage! The question we are interested in
here is: What will Alice and Bob say? or at least: What are they likely to say?

The strategic encounter, on the other hand, can be modelled as shown in the table
in Figure 16.1(b). Each cell corresponds to a strategy profile in which Alice and
Brian reveal a particular set of arguments. The numbers in the cells correspond to
the utilities they obtain once the grounded extension is calculated on their revealed
arguments. For example, if Alice utters {α2} while Brian utters {α1,α4}, we end up
with a sub-graph of Figure 16.1(a) in which α3 is missing. The grounded extension
of this argument graph admits arguments {α1,α4}. This corresponds to a situation
where Brian wins and the couple head to the soccer. Thus, he gets the highest utility
of 2, while Alice gets her second-preferred outcome with utility 1. This representa-
tion, shown in Figure 16.1(b), is known as a normal form game.

1 We call this the argumentative battle of the sexes game. It is similar, but not identical to the
well-known “Battle of the Sexes” game.
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α4α3

α1: They should go to the soccer.
α2: They should go to the ballet.
α3: Alice too sick for the outdoors.
α4: Brian’s ex-wife at the ballet.

α1 α2

(a) (b)

{α1}

{α2}

{}

0      0 2      1

{} 1      2 0      0

Brian

Alice
{α3} 0      0 0      0

2      1{α2, α3} 2      1

{α4}

0      0

0      0

0      0

0      0

{α1, α4}

1      2

1      2

0      0

0      0

Nash Equilibria:
({α2}, {α1, α4})                ({α2, α3}, {α1})
({}, {α1, α4})                   ({α2, α3}, {})

Fig. 16.1 Simple argumentative scenario and its normal form game representation. The outcome
is decided using grounded semantics.

The normal-form game can be used to deduce a number of things about this
particular scenario. First, it is never in either Alice or Brian’s best interest to utter
their irrefutable argument (α3 or α4) without also stating their preferred activity
(α1 or α2), since by announcing their preferred activity then they may possibly
attend some event (either ballet or soccer) while if one of them only announces their
irrefutable argument then both agents are certain to stay at home (the least preferred
outcome for both Alice and Brian). That is, {α3} is weakly dominated by {α2,α3}
(and {α2}) and α4 is weakly dominated by {α1,α4} (and {α1}).

Given a game, we are interested in finding the Nash equilibria of the game. A
Nash equilibrium is a strategy profile (a listing of one strategy for each agent) where
no agent wants to change its strategy, assuming that the other agents do not change.
The Nash equilibria are the stable outcomes of the game. Consider the strategy
profile in which Alice says that she is sick and suggests the ballet (i.e. she utters
{α2,α3}) and Brian simply suggests the soccer match (i.e. he utters {α1}). This
outcome is a Nash equilibrium. On one hand, given that Alice states {α2,α3}, Brian
has no incentive to deviate to any other strategy. If he mentions his ex-wife’s atten-
dance at the ballet (uttering {α4} or {α1,α4}), he shoots himself in the foot and
ends up spending the day at home. And if he stays quiet (uttering {}), he cannot
influence the outcome anyway. On the other hand, assuming that Brian announces
{α1} then Alice is best-off stating {α2,α3} since by doing so, she gets the outcome
that she prefers (the ballet). In fact, we list four Nash equilibria in Figure 16.1(b).2

The analysis that we just concluded does not allow us to identify a single outcome
for the example. However, it does identify some interesting strategic phenomena. In
particular, it shows that it is never in Alice and Brian’s interest for them both to use
their irrefutable arguments. For example, if Brian is confident that Alice will state

2 A reader familiar with game theory will note that we only list the pure strategy Nash equilibria.
In addition to these four equilibria, there are three mixed equilibria in which players randomize
their strategies.
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Fig. 16.2 A (pruned) game tree for the argumentative battle of the sexes game.

that she is too sick (α3) then Brian should not bring up his argument against the
ballet.

While the above analysis did not allow us to identify a single outcome of the
scenario, at least we were able to rule out so many unstable outcomes. Indeed, in
some situations, there is a single Nash equilibrium, which makes predicting the
outcome easier.

So far, we used a normal-form representation to model the argument game.
While this representation is useful for many purposes due to its simplicity, it
fails to capture the dynamic aspect of argumentation: the fact that argumenta-
tive moves are normally made interactively over multiple time steps. The appro-
priate tool to model such dynamics are extensive-form games, which we discuss
next.

An extensive-form game with perfect information explicitly captures the fact that
agents may take turns when choosing actions (for example, declaring arguments). A
game tree is used to represent the game. Each node in the tree is associated with an
agent whose turn it is to take an action. A path in the tree represents the sequence of
actions taken, and leafs nodes are the final outcomes, given the actions on the path
to the leaf node. In these games we assume that the actions that each agent takes are
fully observable by all the other agents.

We can model the interaction between Alice and Brian using an extensive-form
game, if we assume that Alice and Brian take turns uttering arguments. We will
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assume that i) an agent can only make one argument at a time, ii) agents can not
repeat arguments, and iii) if at some step an agent decides not to make an argument,
then they are not allowed to make any more arguments in the future. We will also
assume, for the sake of the example, that Alice gets to make the first argument.
Figure 16.2 shows the game tree for the argumentative battle of the sexes game.
Most of the paths which result in an outcome where both agents will get zero have
been pruned from the tree. These paths are not played in equilibrium, and their
removal allows us to focus on the relevant parts of the tree.

Since Alice gets to make the first move, she has to decide whether to offer no
arguments at all {}, suggest that they go to the ballet (α2), or present her counter-
argument to the soccer match before the soccer match is even brought up (α3).
Based on the argument uttered by Alice, Brian then gets to make a decision. If Alice
had made no argument, then as long as Brian announces α1 (and possibly also α4)
then they will go to the soccer match. Brian will receive utility of two and Alice
will receive utility of one (the subtree on the left). If Alice suggested going to the
ballet (α2) then Brian is best off immediately raising his counter-argument to the
ballet (α4). This is because Alice’s best counter-argument is then to say nothing,
which allows Brian to then present soccer (α1) as an alternative. This results in
Brian getting his favorite outcome (soccer) since Alice’s only other option would
be to raise argument α3, resulting in them both staying at home (the least preferred
outcome). If instead, Brian had not made an argument or had uttered α1, then Alice
would have been able to to raise her counter-argument, resulting in them both going
to the ballet. Finally, if Alice first announces her counter-argument to soccer (α3)
then Brian will end up announcing, at most, argument α1 since raising the counter-
argument to the ballet (α4) will result in them both staying at home. This means that
the outcome will be that both Alice and Brian will go to the ballet. Alice uses this
reasoning in order to determine what her initial action should be. She will realize
that if she makes no argument, or initially suggests the ballet (α2) then Brian will
be able to take actions so that they end up going to the soccer match. However,
if Alice starts with her counter-argument to the soccer match (α3) then she can
force Brian into a situation where he is best off not making his counter-argument
to the ballet, and so they will both end up going to the ballet, Alice’s preferred
outcome. Therefore, in equilibrium, Alice will state her objection to soccer (α3)
first, which will force Brian to either make no argument or make (already defeated)
argument α1, which then allows Alice to counter with the ballet proposal (α2). This
equilibrium is called a subgame perfect equilibrium and is a refinement of the Nash
equilibria.

We note that by going first, Alice had an advantage over Brian since by carefully
choosing her first argument she could force the outcome that she wanted. If Brian
had gone first, then he would have been best off first announcing α4, his counter-
argument to the ballet. This would have allowed him to get the outcome that he
preferred, that is, the soccer match. Thus in the extensive-form game analysis of
argumentation, the order in which agents make arguments is critical in the analysis
and in the outcome.
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A number of researchers have proposed using extensive-form games of perfect
information to model argumentation. For example, Procaccia and Rosenschein [10]
proposed a game-based argumentation framework where they extend Dung’s
abstract argumentation framework by mapping argumentation frameworks into
extensive-form games of perfect information. A similar approach has recently been
proposed by Riveret et al [12], giving an extensive-form game characterisation of
Prakken’s dialectical framework [8]. In both cases, the authors show how standard
backward induction techniques can be used to eliminate dominated strategies and
characterise Nash equilibrium strategies.

3 Technical Background

Before we present a precise formal mapping of abstract argumentation into game
theory, in this section, we give a brief background on key game-theoretic concepts.
Readers who lack background in game theory may consult a more comprehensive
introduction to the field, such as [5].

3.1 Game Theory

The field of game theory studies strategic interactions of self-interested agents. We
assume that there is a set of self-interested agents, denoted by I. We let θi ∈ Θi

denote the type of agent i which is drawn from some set of possible types Θi. The
type represents the private information and preferences of the agent. An agent’s
preferences are over outcomes o∈O, where O is the set of all possible outcomes. We
assume that an agent’s preferences can be expressed by a utility function ui(o,θi)
which depends on both the outcome, o, and the agent’s type, θi. Agent i prefers
outcome o1 to o2 when ui(o1,θi) > ui(o2,θi).

When agents interact, we say that they are playing strategies. A strategy for agent
i, si(θi), is a plan that describes what actions the agent will take for every decision
that the agent might be called upon to make, for each possible piece of information
that the agent may have at each time it is called to act. That is, a strategy can be
thought as a complete contingency plan for an agent. We let Σi denote the set of
all possible strategies for agent i, and thus si(θi) ∈ Σi. When it is clear from the
context, we will drop the θi in order to simplify the notation. We let strategy profile
s = (s1(θ1), . . . ,sI(θI)) denote the outcome that results when each agent i is playing
strategy si(θi). As a notational convenience we define

s−i(θ−i) = (s1(θi), . . . ,si−1(θi−1),si+1(θi+1), . . . ,sI(θI))

and thus s = (si,s−i). We then interpret ui((si,s−i),θi) to be the utility of agent i with
type θi when all agents play strategies specified by strategy profile (si(θi),s−i(θ−i)).
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Similarly, we also define:

θ−i = (θ1, . . . ,θi−1,θi+1, . . . ,θI)

Since the agents are all self-interested, they will try to choose strategies which
maximize their own utility. Since the strategies of other agents also play a role in de-
termining the outcome, the agents must take this into account. The solution concepts
in game theory determine the outcomes that will arise if all agents are rational and
strategic. The most well known solution concept is the Nash equilibrium. A Nash
equilibrium is a strategy profile in which each agent is following a strategy which
maximizes its own utility, given its type and the strategies of the other agents.

Definition 16.1 (Nash Equilibrium). A strategy profile s∗ = (s∗1, . . . ,s
∗
I ) is a Nash

equilibrium if no agent has incentive to change its strategy, given that no other agent
changes. Formally,

∀i,∀s′i,ui(s∗i ,s
∗
−i,θi)≥ ui(s′i,s

∗
−i,θi).

Although the Nash equilibrium is a fundamental concept in game theory, it does
have several weaknesses. First, there may be multiple Nash equilibria and so agents
may be uncertain as to which equilibrium they should play. Second, the Nash equi-
librium implicitly assumes that agents have perfect information about all other
agents, including the other agents’ preferences.

A stronger solution concept in game theory is the dominant-strategy equilibrium.
A strategy si is said to be dominant if by playing it, the utility of agent i is maximized
no matter what strategies the other agents play.

Definition 16.2 (Dominant Strategy). A strategy s∗i is dominant if

∀s−i, ∀s′i, ui(s∗i ,s−i,θi)≥ ui(s′i,s−i,θi).

Sometimes, we will refer to a strategy satisfying the above definition as weakly
dominant. If the inequality is strict (i.e. > instead of ≥), we say that the strategy is
strictly dominant.

A dominant-strategy equilibrium is a strategy profile where each agent is play-
ing a dominant strategy. This is a very robust solution concept since it makes no
assumptions about what information the agents have available to them, nor does it
assume that all agents know that all other agents are being rational (i.e. trying to
maximize their own utility). However, there are many strategic settings where no
agent has a dominant strategy.

A third solution concept is the Bayes-Nash equilibrium. We include it for the sake
of completeness. In the Bayes-Nash equilibrium the assumption made for the Nash
equilibrium, that all agents know the preferences of others, is relaxed. Instead, we
assume that there is some common prior F((Θ1, . . . ,ΘI)), such that the agents’ types
are distributed according to F . Then, in equilibrium, each agent chooses the strategy
that maximizes it’s expected utility given the strategies other agents are playing and
the prior F .
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Definition 16.3 (Bayes-Nash Equilibrium). A strategy profile s∗ = (s∗i ,s
∗
−i) is a

Bayes-Nash equilibrium if

Eθ−i [ui((s∗i (θi),s∗−i(·)),θi)]≥ Eθ−i [ui((s′i(θi),s∗−i(·)),θi)] ∀θi,∀s′i.

3.2 Mechanism Design

The problem that mechanism design studies is how to ensure that a desirable system-
wide outcome or decision is made when there is a group of self-interested agents
who have preferences over the outcomes. In particular, we often want the outcome to
depend on the preferences of the agents. This is captured by a social choice function.

Definition 16.4 (Social Choice Function). A social choice function is a rule f :
Θ1× . . .×ΘI → O, that selects some outcome f (θ) ∈ O, given agent types θ =
(θ1, . . . ,θI).

The challenge, however, is that the types of the agents (the θ ′i s) are private and
known only to the agents themselves. Thus, in order to select an outcome with the
social choice function, one has to rely on the agents to reveal their types. However,
for a given social choice function, an agent may find that it is better off if it does
not reveal its type truthfully, since by lying it may be able to cause the social choice
function to choose an outcome that it prefers. Instead of trusting the agents to be
truthful, we use a mechanism to try to reach the correct outcome.

A mechanism M = (Σ ,g(·)) defines the set of allowable strategies that agents
can chose, with Σ = Σ1× ·· ·×ΣI where Σi is the strategy set for agent i, and an
outcome function g(s) which specifies an outcome o for each possible strategy pro-
file s = (s1, . . . ,sI) ∈ Σ . This defines a game in which agent i is free to select any
strategy in Σi, and, in particular, will try to select a strategy which will lead to an
outcome that maximizes its own utility. We say that a mechanism implements social
choice function f if the outcome induced by the mechanism is the same outcome
that the social choice function would have returned if the true types of the agents
were known.

Definition 16.5 (Implementation). A mechanism M = (Σ ,g(·)) implements social
choice function f if there exists an equilibrium s∗ such that

∀θ ∈Θ , g(s∗(θ)) = f (θ).

While the definition of a mechanism puts no restrictions on the strategy spaces of
the agents, an important class of mechanisms are the direct-revelation mechanisms
(or simply direct mechanisms).

Definition 16.6 (Direct-Revelation Mechanism). A direct-revelation mechanism
is a mechanism in which Σi = Θi for all i, and g(θ) = f (θ) for all θ ∈Θ .

In words, a direct mechanism is one where the strategies of the agents are to an-
nounce a type, θ ′i to the mechanism. While it is not necessary that θ ′i = θi, the
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important Revelation Principle (see below for more details) states that if a social
choice function, f (·), can be implemented, then it can be implemented by a direct
mechanism where every agent reveals its true type [5]. In such a situation, we say
that the social choice function is incentive compatible.

Definition 16.7 (Incentive Compatible). The social choice function f (·) is incen-
tive compatible (or truthfully implementable) if the direct mechanism M = (Θ ,g(·))
has an equilibrium s∗ such that s∗i (θi) = θi.

If the equilibrium concept is the dominant-strategy equilibrium, then the social
choice function is strategy-proof . In this chapter we will on occasion call a mecha-
nism incentive-compatible or strategy-proof. This means that the social choice func-
tion that the mechanism implements is incentive-compatible or strategy-proof.

3.3 The Revelation Principle

Determining whether a particular social choice function can be implemented, and in
particular, finding a mechanism which implements a social choice function appears
to be a daunting task. In the definition of a mechanism, the strategy spaces of the
agents are unrestricted, leading to an infinitely large space of possible mechanisms.
However, the Revelation Principle states that we can limit our search to a special
class of mechanisms [5, Ch 14].

Theorem 16.1 (Revelation Principle). If there exists some mechanism that imple-
ments social choice function f in dominant strategies, then there exists a direct
mechanism that implements f in dominant strategies and is truthful.

The intuitive idea behind the Revelation Principle is fairly straightforward. Sup-
pose that you have a, possibly very complex, mechanism, M, which implements
some social choice function, f . That is, given agent types θ = (θ1, . . . ,θI) there ex-
ists an equilibrium s∗(θ) such that g(s∗(θ)) = f (θ). Then, the Revelation Principle
states that it is possible to create a new mechanism, M′, which, when given θ , will
then execute s∗(θ) on behalf of the agents and then select outcome g(s∗(θ)). Thus,
each agent is best off revealing θi, resulting in M′ being a truthful, direct mechanism
for implementing social choice function f .

The Revelation Principle is a powerful tool when it comes to studying imple-
mentation. Instead of searching through the entire space of mechanisms to check
whether one implements a particular social choice function, the Revelation Prin-
ciple states that we can restrict our search to the class of truthful, direct mecha-
nisms. If we can not find a mechanism in this space which implements the social
choice function of interest, then there does not exist any mechanism which will
do so.

It should be noted that while the Revelation Principle is a powerful analysis tool,
it does not imply we should only design direct mechanisms. Some reasons why one
rarely sees direct mechanisms in the “real world” include (among others);
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• they can place a high computational burden on the mechanism since it is required
to execute agents’ strategies,

• agents’ strategies may be computationally difficult to determine, and
• agents may not be willing to reveal their true types because of privacy concerns.

4 Argumentation Mechanism Design

Mechanism design (MD) is a sub-field of game theory concerned with the follow-
ing question: what game rules guarantee a desirable social outcome when each
self-interested agent selects the best strategy for itself? In other words, while game
theory is concerned with a given strategic situation modelled as a game, mechanism
design is concerned with designing the game itself. As such, one might actually call
it reverse game theory.

In this section we define the mechanism design problem for abstract argumenta-
tion. We dub this new approach ‘Argumentation Mechanism Design’ (ArgMD).

Let AF = 〈A,R〉 be an argumentation framework with a set of arguments A and
a binary defeat relation R. We define a mechanism with respect to AF and semantics
S, and we assume that there is a set of I self-interested agents. We define an agent’s
type to be its set of arguments.

Definition 16.8 (Agent Type). Given an argumentation framework 〈A,R〉, the type
of agent i, Ai ⊆ A, is the set of arguments that the agent is capable of putting for-
ward.

There are two things to note about this definition. Firstly, an agent’s type can
be seen as a reflection of its expertise or domain knowledge. For example, medical
experts may only be able to comment on certain aspects of forensics in a legal case,
while a defendant’s family and friends may be able to comment on his/her character.
Also, such expertise may overlap, so agent types are not necessarily disjoint. For
example, two medical doctors might have some identical argument, and so on.

The second thing to note about the definition is that agent types do not include
the defeat relation. In other words, we implicitly assume that the notion of defeat is
common to all agents. That is, given two arguments, no agent would dispute whether
one attacks another. This is a reasonable assumption in systems where agents use
the same logic to express arguments or at least multiple logics for which the notion
of defeat is accepted by everyone (e.g. conflict between a proposition and its nega-
tion). Disagreement over the defeat relation itself requires a form of hierarchical
(meta) argumentation [7], which is a powerful concept, but is beyond the scope of
the present chapter.

Given the agents’ types (argument sets) a social choice function f maps a type
profile into a subset of arguments;

f : 2A× . . .×2A→ 2A
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While our definition of an argumentation mechanism will allow for generic social
choice functions which map type profiles into subsets of arguments, we will be
particularly interested in argument acceptability social choice functions. We denote
by Acc(〈A,R〉,S)⊆A the set of acceptable arguments according to semantics S.3

Definition 16.9 (Argument Acceptability Social Choice Functions). Given an ar-
gumentation framework 〈A,R〉 with semantics S, and given an agent type profile
(A1, . . . ,AI), the argument acceptability social choice function f is defined as the
set of acceptable arguments given the semantics S. That is,

f (A1, . . . ,AI) = Acc(〈A1∪ . . .∪AI ,R〉,S).

As is standard in the mechanism design literature, we assume that agents have
preferences over the outcomes o ∈ 2A, and we represent these preferences using
utility functions where ui(o,Ai) denotes agent i’s utility for outcome o when its
type is argument set Ai.

Agents may not have incentive to reveal their true type because they may be able
to influence the final argument status assignment by lying, and thus obtain higher
utility. There are two ways that an agent can lie in our model. On one hand, an
agent might create new arguments that it does not have in its argument set. In the
rest of the chapter we will assume that there is an external verifier that is capable of
checking whether it is possible for a particular agent to actually make a particular
argument. Informally, this means that presented arguments, while still possibly de-
feasible, must at least be based on some sort of demonstrable ‘plausible evidence.’
If an agent is caught making up arguments then it will be removed from the mech-
anism. For example, in a court of law, any act of perjury by a witness is punished,
at the very least, by completely discrediting all evidence produced by the witness.
Moreover, in a court of law, arguments presented without any plausible evidence
are normally discarded (e.g. “I did not kill him, since I was abducted by aliens at
the time of the crime!”). For all intents and purposes this assumption (also made by
Glazer and Rubinstein [2]) removes the incentive for an agent to make up facts.

A more insidious form of manipulation occurs when an agent decides to hide
some of its arguments. By refusing to reveal certain arguments, an agent might be
able to break defeat chains in the argument framework, thus changing the final set of
acceptable arguments. For example, a witness may hide evidence that implicates the
defendant if the evidence also undermines the witness’s own character. This type of
lie is almost impossible to detect in practice, and it is this form of strategic behaviour
that we will be the most interested in.

As mentioned earlier, a strategy of an agent specifies a complete plan that de-
scribes what action the agent takes for every decision that a player might be called
upon to take, for every piece of information that the player might have at each time
that it is called upon to act. In our model, the actions available to an agent involve
announcing sets of arguments. Thus a strategy si ∈ Σi for agent i would specify for

3 Here, we assume that S specifies both the classical semantics used (e.g. grounded, preferred,
stable) as well as the acceptance attitude used (e.g. sceptical or credulous).
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each possible subset of arguments that could define its type, what set of arguments
to reveal. For example, a strategy might specify that an agent should reveal only
half of its arguments without waiting to see what other agents are going to do, while
another strategy might specify that an agent should wait and see what arguments are
revealed by others, before deciding how to respond. In particular, beyond specifying
that agents are not allowed to make up arguments, we place no restrictions on the
allowable strategy spaces, when we initially define an argumentation mechanism.
Later, when we talk about direct argumentation mechanisms we will further restrict
the strategy space.

We are now ready to define our argumentation mechanism. We first define a
generic mechanism, and then specify a direct argumentation mechanism, which due
to the Revelation Principle, is the type of mechanism we will study in the rest of the
chapter.

Definition 16.10 (Argumentation Mechanism). Given an argumentation frame-
work AF = 〈A,R〉 and semantics S, an argumentation mechanism is defined as

MS
AF = (Σ1, . . . ,ΣI ,g(·))

where Σi is an argumentation strategy space of agent i and g : Σ1× . . .×ΣI → 2A.

Note that in the above definition, the notion of dialogue strategy is broadly con-
strued and would depend on the protocol used. In a direct mechanism, however, the
strategy spaces of the agents are restricted so that they can only reveal a subset of
arguments.

Definition 16.11 (Direct Argumentation Mechanism). Given an argumentation
framework AF = 〈A,R〉 and semantics S, a direct argumentation mechanism is de-
fined as

MS
AF = (Σ1, . . . ,ΣI ,g(·))

where Σi = 2A and g : Σ1× . . .ΣI → 2A.

In Table 16.1, we summarise the mapping of multi-agent abstract argumentation
as an instance of a mechanism design problem.

MD Concept ArgMD Instantiation
Agent type θi ∈Θi Agent’s arguments θi = Ai ⊆A
Outcome o ∈O Accepted arguments Acc(.)⊆A

Utility ui(o,θi) Preferences over 2A (what arguments end up being accepted)
Social choice function f : Θ1× . . .×ΘI →O f (A1, . . . ,AI) = Acc(〈A1 ∪ . . .∪AI ,R〉,S).

by some argument acceptability criterion
Mechanism M = (Σ ,g(·)) where
Σ = Σ1×·· ·×ΣI and g : Σ →O Σi is an argumentation strategy, g : Σ → 2A

Direct mechanism: Σi = Θi Σi = 2A (every agent reveals a set of arguments)
Truth revelation Revealing Ai

Table 16.1 Abstract argumentation as a mechanism
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5 Case Study: Implementing the Grounded Semantics

In this section, we demonstrate the power of our ArgMD approach by showing
how it can be used to systematically analyse the strategic incentives imposed by
a well-established argument evaluation criterion. In particular, we specify a direct-
revelation argumentation mechanism, in which agents’ strategies are to reveal sets
of arguments, and where the mechanism calculates the outcome using sceptical
(grounded) semantics.4 That is, we look at the grounded semantics as if it was
designed as a mechanism and analyse it from that perspective. We show that, in
general, this mechanism gives rise to strategic manipulation. We prove, however,
that under various conditions, this mechanism turns out to be strategy-proof.

In a direct argumentation mechanism, each agent i’s available actions are Σi =
2A. We will refer to a specific action (i.e. set of declared arguments) as A◦i ∈ Σi.

We now present a direct mechanism for argumentation based on a sceptical ar-
gument evaluation criteria. The mechanism calculates the grounded extension given
the union of all arguments revealed by agents.

Definition 16.12 (Grounded Direct Argumentation Mechanism). A grounded di-
rect argumentation mechanism for argumentation framework 〈A,R〉 is M

grnd
AF =

(Σ1, . . . ,ΣI ,g(.)) where:

– Σi ∈ 2A is the set of strategies available to each agent;
– g : Σ1×·· ·×ΣI→ 2A is an outcome rule defined as: g(A◦1, . . . ,A

◦
I ) = Acc(〈A◦1∪

·· ·∪A◦I ,R〉,Sgrnd) where Sgrnd denotes sceptical grounded acceptability seman-
tics.

To simplify our analysis, we will assume below that agents can only lie by hiding
arguments, and not by making up arguments. Formally, this means that ∀i, Σi ∈ 2Ai .

For the sake of illustration, we will consider a particular family of preferences
that agents may have. According to these preferences, every agent attempts to max-
imise the number of arguments in Ai that end up being accepted. We call this pref-
erence criteria the individual acceptability maximising preference.

Definition 16.13 (Acceptability maximising preferences). An agent i has indi-
vidual acceptability maximising preferences if and only if ∀o1,o2 ∈ O such that
|o1∩Ai| ≥ |o2∩Ai|, we have ui(o1,Ai)≥ ui(o2,Ai).

Let us now consider aspects of incentives using mechanism M
grnd
AF through an

example.

Example 16.1. Consider grounded direct argumentation mechanism with three agents
x, y and z with types Ax = {α1,α4,α5}, Ay = {α2} and Az = {α3} respectively.
And suppose that the defeat relation is defined as follows: R = {(α1,α2), (α2,α3),
(α3,α4), (α3,α5)}. If each agent reveals its true type (i.e. A◦x = Ax; A◦y = Ay; and

4 In the remainder of the chapter, we will use the term sceptical to refer to sceptical grounded,
since the chapter focuses on the grounded semantics.
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α1 α2 α3

α4

α5

(a) Argument graph in case of full revelation 

α4

α3α2

α5

(b) Argument graph with α1 withheld

Fig. 16.3 Hiding an argument is beneficial (case of acceptability maximisers)

A◦z = Az), then we get the argument graph depicted in Figure 16.3(a). The mecha-
nism outcome rule produces the outcome o = {α1,α3}. If agents have individual ac-
ceptability maximising preferences, with utilities equal to the number of arguments
accepted, then: ux(o,{α1,α4,α5}) = 1; uy(o,{α3}) = 1; and uz(o,{α2}) = 0.

It turns out that the mechanism is susceptible to strategic manipulation, even if
we suppose that agents do not lie by making up arguments (i.e., they may only
withhold some arguments). In this case, for both agents y and z, revealing their
true types weakly dominates revealing nothing at all. However, it turns out that
agent x is better off revealing {α4,α5}. By withholding α1, the resulting argument
network becomes as depicted in Figure 16.3(b), for which the output rule produces
the outcome o′ = {α2,α4,α5}. This outcome yields utility 2 to agent x, which is
better than the truth-revealing strategy.

Remark 16.1. Given an arbitrary argumentation framework AF and agents with ac-
ceptability maximising preferences, mechanism M

grnd
AF is not strategy-proof.

The following theorem provides a full characterisation of strategy-proof mech-
anisms for sceptical argumentation frameworks for agents with acceptability max-
imising preferences.

Theorem 16.2. Let AF be an arbitrary argumentation framework, and let EGR(AF)
denote its grounded extension. Mechanism M

grnd
AF is strategy-proof for agents with

acceptability maximising preferences if and only if AF satisfies the following con-
dition: ∀i ∈ I,∀S ⊆ Ai and ∀A−i, we have |Ai ∩ EGR(〈Ai ∪A−i,R〉)| ≥ |Ai ∩
EGR(〈(Ai\S)∪A−i,R〉)|.

Although the above theorem gives us a full characterisation, it is difficult to apply
in practice. In particular, the theorem does not give us an indication of how agents
(or the mechanism designer) can identify whether the mechanism is strategy-proof
for a class of argumentation frameworks by appealing to their graph-theoretic prop-
erties. Below, we provide an intuitive, graph-theoretic condition that is sufficient to
ensure that M

grnd
AF is strategy-proof when agents have focal arguments.

Let α,β ∈ A. We say that α indirectly defeats β , written α ↪→ β , if and only if
there is an odd-length path from α to β in the argument graph.
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Theorem 16.3. Suppose agents have individual acceptability maximising prefer-
ences. If each agent’s type corresponds to a conflict-free set of arguments which
does not include (in)direct defeats (formally ∀i�α1,α2 ∈ Ai such that α1 ↪→ α2),
then M

grnd
AF is strategy-proof.

Note that in the theorem, ↪→ is over all arguments in A. Intuitively, the condition
in the theorem states that all arguments of every agent must be conflict-free (i.e.
consistent), both explicitly and implicitly. Explicit consistency implies that no argu-
ment defeats another. Implicit consistency implies that other agents cannot possibly
present a set of arguments that reveal an indirect defeat among one’s own argu-
ments. More concretely, in Example 16.1 and Figure 16.3, while agent x’s argument
set Ax = {α1,α4,α5} is conflict-free, when agents y and z presented their own argu-
ments α2 and α3, they revealed an implicit conflict in x’s arguments. In other words,
they showed that x contradicts himself (i.e. committed a fallacy of some kind).

In addition to characterising a sufficient graph-theoretic condition for strategy-
proofness, Theorem 16.3 is useful for individual agents. As long as the agent knows
that it is not possible for a path to be created which causes an (in)direct defeat among
its arguments (i.e., a fallacy to be revealed), then the agent is best off revealing all its
arguments. The agent only needs to know that no argument imaginable can reveal
conflicts among its own arguments.

We now ask whether the sufficient condition in Theorem 16.3 is also necessary
for agents to reveal all their arguments truthfully. Example 16.2 shows that this is
not the case. In particular, for certain argumentation frameworks, an agent may have
truthtelling as a dominant strategy despite the presence of indirect defeats among its
own arguments.

α1

α6

α2 α3

α4

α5

Fig. 16.4 Strategy-proofness despite indirect self-defeat

Example 16.2. Consider the variant of Example 16.1 with the additional argument
α6 and defeat (α6,α3). Let the agent types be Ax = {α1,α4,α5,α6}, Ay = {α2}
and Az = {α3} respectively. The full argument graph is depicted in Figure 16.4.
Under full revelation, the mechanism outcome rule produces the outcome o =
{α1,α4,α5,α6}.

Note that in Example 16.2, truth revelation is now a dominant strategy for x (since
it gets all its arguments accepted) despite the fact that α1 ↪→ α4 and α1 ↪→ α5. This
hinges on the presence of an argument (namely α5) that cancels out the negative
effect of the (in)direct self-defeat among x’s own arguments.
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6 Related Work

6.1 Pareto Optimality of Outcomes

A well-known property of the grounded semantics is that it is extremely sceptical,
accepting only undefeated arguments and arguments defended by undefeated argu-
ments. An interesting question, then, is whether it is possible to be more inclusive
(i.e. being more credulous) in order to produce argumentation outcomes that are
more socially desirable. For example, consider the simple argument graph in Figure
16.5 and suppose we have two agents with types A1 = {α1} and A2 = {α2} who
both reveal their arguments. The grounded extension (Figure 16.5(a)) is empty here.

α2 α1

(a)

α2 α1

(b)

α2 α1

(c)

Fig. 16.5 Preferred extensions ‘dominate’ the grounded extension

Suppose the judge chooses one of the preferred extensions instead (Figure
16.5(b) or (c)). Clearly, when compared to outcome (a), each preferred extension
makes one agent better-off without making the other worse-off. Formally, we say
that outcomes (b) and (c) each Pareto dominates outcome (a). An outcome that is
not Pareto dominated is called Pareto optimal.

Recently, Rahwan and Larson [11] presented an extensive analysis of Pareto op-
timality in abstract argumentation, and established correspondence results between
different semantics on one hand and the Pareto optimal outcomes on the other.

6.2 Glazer and Rubinstein’s Model

Another game-theoretic analysis of argumentation was presented by Glazer and Ru-
binstein [2]. The authors explore the mechanism design problem of constructing
rules of debate that maximise the probability that a listener reaches the right con-
clusion given arguments presented by two debaters. They study a very restricted
setting, in which the world state is described by a vector ω = (w1, . . . ,w5), where
each ‘aspect’ wi has two possible values: 1 and 2. If wi = j for j ∈ {1,2}, we say
that aspect wi supports outcome O j. Presenting an argument amounts to revealing
the value of some wi. The setting is modelled as an extensive-form game and anal-
ysed. In particular, the authors investigate various combinations of procedural rules
(stating in which order and what sorts of arguments each debater is allowed to state)
and persuasion rules (stating how the outcome is chosen by the listener). In terms of
procedural rules, the authors explore: (1) one-speaker debate in whichone debater
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chooses two arguments to reveal; (2) simultaneous debate in which the two debaters
simultaneously reveal one argument each; and (3) sequential debate in which one
debater reveals one argument followed by one argument by the other. Our mecha-
nism is closer to the simultaneous debate, but is much more general as it enables
the simultaneous revelation of an arbitrary number of arguments. Glazer and Rubin-
stein investigate a variety of persuasion rules. For example, in one-speaker debate,
one rule analysed by the authors states that ‘a speaker wins if and only if he presents
two arguments from {a1,a2,a3} or {a4,a5}.’ In a sequential debate, one persuasion
rule states that ‘if debater D1 argues for aspect a3, then debater D2 wins if and only if
he counter-argues with aspect a4.’ These kinds of rules are arbitrary and do not fol-
low an intuitive notion of persuasion (e.g. like scepticism). The sceptical mechanism
presented in this chapter provides a more natural criterion for argument evaluation,
supplemented by a strong solution concept that ensures all agents have incentive to
reveal their arguments, and thus for the listener to reach the correct outcome. More-
over, our framework for argumentation mechanism design is more general in that it
can be used to model a variety of more complex argumentation settings.

6.3 Game Semantics

It is worth contrasting our work with work on so-called game semantics for logic,
which was pioneered by logicians such as Paul Lorenzen [4] and Jaakko Hintikka
[3]. Although many specific instantiations of this notion have been presented in
the literature, the general idea is as follows. Given some specific logic, the truth
value of a formula is determined through a special-purpose, multi-stage dialogue
game between two players, the verifier and falsifier. The formula is considered true
precisely when the verifier has a winning strategy, while it will be false whenever
the falsifier has the winning strategy. Similar ideas have been used to implement
dialectical proof-theories for defeasible reasoning (e.g. by Prakken and Sartor [9]).

In a related development, Matt and Toni recently proposed a game-theoretic ap-
proach to characterise argument strength [6]. Thus, the acceptability of each argu-
ment is rated between 0 and 1 by using a two-person zero-sum game with imperfect
information between a proponent and an opponent.

There is a fundamental difference between the aims of game semantics and our
ArgMD approach. In game semantics, the goal is to interpret (i.e., characterise the
truth value of) a specific formula by appealing to a notion of a winning strategy.
As such, each player is carefully endowed with a specific set of formulae to en-
able the game to characterise semantics correctly (e.g. the verifier may own all the
disjunctions in the formula, while the falsifier is given all the conjunctions).

In contrast, ArgMD is about designing rules for argumentation among self-
interested players who may have incentives to manipulate the outcome given a va-
riety of possible individual preferences (specified in arbitrary instantiations of a
utility function). Our interest is in conditions that guarantee truth-revelation given
different classes of preferences. Game semantics have no similar notion of strategic
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manipulation by hiding information. Moreover, our framework allows an arbitrary
number of players (as opposed to two agents).

6.4 Argumentation and Cooperative Games

Another notable early link between argumentation and cooperative game theory has
been proposed by Dung in his seminal paper [1]. Let A = {a1, . . . ,a|A|} be a set
of agents. A cooperative game is defined by specifying a value to V (C) to each
coalition C ⊆ A of agents. An outcome of the game is a vector u = (ua1 , . . . ,ua|A|) ∈
R|A| specifying a vector of utilities, one per agent.

Outcome u dominates outcome u′ if there is a (nonempty) coalition K ⊆ A in
which agents get more utility (as a whole) in u than in u′. An outcome is said to be
stable if no outcome dominates it (i.e. if no subset of agents has incentive to leave
their own coalition and be all individually better off). A solution of the cooperative
game is a set of outcomes S satisfying the following conditions:

1. No s ∈ S is dominated by an s′ ∈ S.
2. Every s /∈ S is dominated by some s′ ∈ S.

Dung argued that an n-person game can be seen as an argumentation framework
〈A,R〉 in which the set of arguments A is the set of all possible outcomes of the co-
operative game, and the defeat relation is defined as R = {(u,u′) | u dominates u′}.
Dung shows that with this characterisation, the set of solutions to the cooperative
game corresponds to the set of stable extensions of an abstract argumentation frame-
work. This enabled Dung to describe the well-known stable marriage problem as a
problem of finding a stable extension.

Another important notion in cooperative game theory is that of the core: the
set of (feasible) outcomes which are not dominated by any other outcome. Dung
showed that the core corresponds to F(∅) where F is the characteristic function of
the corresponding argumentation framework.

7 Conclusion

In this chapter, our aim was to demonstrate the importance of game theory as a
tool for analysing strategic argumentation. We showed how normal form games and
extensive-form games can be used to analyse equilibrium strategies in strategic ar-
gumentation. We then introduced Argumentation Mechanism Design (ArgMD) as
a new framework for designing and analysing argument evaluation criteria. With
ArgMD, designing new argument acceptance criteria becomes akin to designing
auction protocols in strategic multi-agent settings. The goal is to design rules that
ensure, under precise conditions, that agents have no incentive to manipulate the



16 Argumentation and Game Theory 339

outcome. We believe this approach will become increasingly important before argu-
mentation can be applied in open agent systems.
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