
Architectures for negotiating agents

Ronald Ashri
�
, Iyad Rahwan

�
, and Michael Luck

�
�

Dept of Electronics and Computer Science, Southampton University,
Southampton, UK

ra00r@ecs.soton.ac.uk�
Department of Information Systems, University of Melbourne

Melbourne, Australia
i.rahwan@pgrad.unimelb.edu.au

Abstract. Automated negotiation is gaining interest, but issues relating to the
construction of negotiating agent architectures have not been addressed suffi-
ciently. Towards this end, we present a novel agent construction model that en-
ables the development of a range of agent architectures based on a common set
of building blocks. In this paper we identify the fundamental components needed
for two generic classes of negotiating agents: simple negotiators and argumen-
tative negotiators, and use our model to describe them. We demonstrate how the
model allows us to reuse fundamental components across these negotiation archi-
tectures.

1 Introduction

In multi-agent environments, agents often need to interact in order to achieve their ob-
jectives or improve their performance. One type of interaction that is gaining increasing
interest is negotiation. We adopt the following definition of negotiation that reconciles
views proposed by [6] and [13], which we believe is a reasonable generalisation of both
the explicit and implicit definitions in the literature.

Negotiation is a form of interaction in which a group of agents, with conflict-
ing interests and a desire to cooperate, try to come to a mutually acceptable
agreement on the division of scarce resources.

Agents typically have conflicting interests when they have competing claims on
scarce resources, which means their claims cannot be simultaneously satisfied. Re-
sources here are taken to be very general. They can be commodities, services, time,
etc. which are needed to achieve something.

To address this problem, a number of interaction and decision mechanisms have
been presented3. There has been extensive work on implementing frameworks of ne-
gotiation based on auction mechanisms (as evident, for example, in the Trading Agent
Competition [12]) and frameworks that adopt heuristic-based bilateral offer exchange

3 For a more comprehensive comparison between different approaches to negotiation, the reader
can refer to [6].



(e.g. [4, 5]). Recently, argumentation-based approaches [7, 8, 10] have been gaining in-
terest. However, there are very few implemented systems that cater for more sophis-
ticated forms of interaction such as argumentation. One of the reasons for this is that
many of these frameworks involve complex systems of reasoning based on logical the-
ories of argumentation, for which there are still many open research questions [9]. An-
other reason is that there are no software engineering methodologies that structure the
process of designing and implementing such systems. This is why in most cases, these
systems are implemented in an ad hoc fashion.

The aim of this paper is to address the software engineering issues related to the de-
velopment of architectures for negotiating agents, ranging from simple classical agents
to more complex argumentative negotiators. More specifically, this paper advances the
state of the art in automated negotiation in the following ways. First, it presents a novel
agent construction model that enables the description of a range of agent architectures
through a common set of concepts and building blocks. Secondly, it uses this agent
construction model in conjunction with a general negotiation framework to design and
describe the architectures of two generic classes of negotiating agents: simple negotia-
tors and argumentative negotiators. The paper demonstrates how a generic architecture
for argumentative negotiators can be achieved by extending the simple negotiator archi-
tecture and reusing its components, and shows how this modularity is facilitated by the
construction model.

We begin by presenting the agent construction model in Section 2, supported by a
brief analysis of the engineering requirements the model seeks to fulfill. In Section 3, we
discuss the negotiation framework before presenting a generic architecture for a basic
negotiating agent. We then explain how the construction model allow us to re-use this
basic negotiation architecture in developing a more complex architecture for an agent
performing argumentation-based negotiation.

2 Engineering Agent Architectures

In this section, we present the design approach that we have applied to the specifica-
tion of architectures for negotiating agents. In essence, we require an agent construction
model that allows the description and development of a range of architectures. In or-
der to achieve this we have two possible avenues to explore. One option is to define
a generic agent architecture and describe other architectures in terms of this generic
architecture. The drawback of this approach is that there may be features of other archi-
tectures that cannot be directly translated to the generic one. The second option, which
we follow, is to provide an architecturally neutral model, so as to avoid this translation
problem. The challenge is to provide a model that is specific enough so that it actu-
ally aids in the construction of agents. Through such a model we can view a range of
architectures based on a common view of agents without any loss in expressive capabil-
ity. Furthermore, any resulting model must also allow for the modular construction of
agents in order to meet general software engineering concerns and to delineate clearly
the different aspects of an architecture, as we discuss below. Such a fine-grained ap-
proach leads to a better understanding of the overall functioning of the agent as well
as how it can be altered. Finally, we need to be able to re-configure the resulting ar-



chitectures easily if possible, even at run-time, in order to deal with dynamic, complex
dependencies that develop in heterogeneous computing environments.

SMART The agent construction model is based on SMART [3] (Structured, Modular
Agent Relationships and Types), which provides us with the foundational agent con-
cepts that allow us to reason about different types of agents, and the relationships be-
tween them, through a single point of view. We chose SMART because it provides us
with appropriate agent concepts without restricting us to a specific agent architecture.
Furthermore, SMART has already been successfully used to describe several existing
agent architectures and systems (e.g. [2]).

We avoid a more complete presentation of SMART and focus on just those concepts
that are used for the agent construction model. In essence, SMART provides a compo-
sitional approach to the description of agents that is based on two primitive concepts,
attributes and actions. Attributes refer to describable features of the environment, while
actions can change the environment by adding or removing attributes. Now, an agent is
described by a set of attributes and a set of capabilities, where capabilities are actions
an agent can perform. An agent has goals, where goals are sets of attributes that repre-
sent desirable states of the environment for the agent. On top of this basic concept of
an agent, SMART adds the concept of an autonomous agent as an agent that generates
its own goals through motivations, which drive the generation of goals. Motivations can
be preferences, desires, etc., of an autonomous agent that cause it to generate goals and
execute actions in an attempt to achieve those goals.

This approach to agent description fits well with our requirement for architecture
neutrality but does not sufficiently address our requirements for modularity and run-
time reconfiguration. We address these issues via a decoupling of the different aspects
of an agent and a component-based approach to agent construction. Both these aspects
of the construction model are described below.

Decoupling description, structure and behaviour In this subsection, we describe
how we extend SMART to provide a more flexible decoupling of agent aspects. SMART
allows systems to be specified based on an observer’s point of view, in terms of their
attributes and goals, as well as the actions they can perform. However, this description
does not show how agents are built or how they behave. In other words, the focus is
on the what and not the why or how. We call this a descriptive specification, since it
essentially describes the agent without analysing the underlying structures that sustain
this description. Along with the descriptive specification we need to have the ability
to specify systems based on their structure, i.e. the individual components that make
up agents, as well as their behaviour. Thus we extend SMART by the addition of a
structural specification and a behavioural specification.

The structural specification enables the identification of relevant building blocks and
how different sets of building blocks enable the instantiation of different agent types.
The behavioural specification of an agent addresses the process through which the agent
arrives at such decisions as what actions to perform. These views, along with the de-
scriptive specification, can provide a more complete picture of the system. The agent



construction model, described next, reflects these concepts by allowing direct access to
these different aspects of agents, based on a clear decoupling at the architectural level.

2.1 Agent construction model

Fig. 1. Agent shell

The basic principles of the model are illustrated in Figure 1. A shell acts as the con-
tainer in which components are placed. It manages the sequence in which components
execute and the flow of information between components. Control policies relating to
the permissions an agent has in a specific environment are defined within the shell in
order to make them independent of the agent architecture. Finally, attributes describing
the agent as a whole are defined as part of the shell.

Components encapsulate specific types of actions that an agent can perform and
are grouped into four categories. Sensors (dashed rectangles) receive information from
the environment, infostores (rounded corner rectangles) store information, actuators
(continuous line rectangles) perform actions that affect the environment and controllers
(accented rounded corner rectangles) are the main decision-making components. Con-
trollers analyse information and delegate actions to other components. By dividing com-
ponents into these categories we can abstract between high level design, providing an
understanding of an architecture early, and low level design, where specific mechanisms
for controllers, sensors or actuators need to be defined. Each component is described
using two types of attributes: stateless attributes refer to persistent characteristics, such
as the kind of communication language the agent uses, while situation attributes refer
to attributes describing the component’s current state (e.g. the parties with whom the
agent is currently negotiating).

Information flows through links that the shell establishes between components.
Links are uni-directional, one-to-one relationships. The information that flows through
links between components is packaged within statements. One component acts as the
producer of a statement and the other as the consumer. Statements are typed, and al-
though currently just two types are defined, INFORM and EXECUTE, designers may
choose to define different ones depending on application needs. Inform-type statements
are used when one component simply notifies another component about something,
while execute-type statements are used when a component wants an action to be per-
formed by another component. All statements are divided into a body and predicates.



The body carries the main information (e.g. an update from a sensor), while the predi-
cates carry additional information (e.g. the source of information or specific conditions
associated with the execution of the action).

The sequence in which components execute is defined as the execution sequence
of the architecture. Execution of a component includes the processing of statements re-
ceived, the dispatch of statements and the performance of any other needed actions. The
execution sequence is an essential aspect of most agent architectures and, by placing the
responsibility of managing the sequence within the shell, we can easily reconfigure it at
any point during the agent’s operation.

Agent design begins with an empty shell. It is then specialised by defining control
policies in order for it to meet application requirements or the demands of the envi-
ronment within which it will operate. Then, shell-specific attributes can be defined to
form part of the description of the agent to the outside world. The components can then
be loaded into the shell, and links, as well as an execution sequence, can be defined.
With the execution sequence in place, the operational cycle of the agent can begin. The
agent lifecycle can be suspended or stopped by stopping the execution sequence and
can be modified by altering the execution sequence, modifying relationships between
components, or by applying alternative control policies.

One of the main benefits of this approach is that it is possible at any moment to have
access to the three views of agents as described previously. The descriptive specification
can be obtained by aggregating the situation attributes and stateless attributes from each
component as well as the attributes contained in the shell; the structural specification is
given by the components themselves; and the behavioural specification is given by the
execution sequence and the links between components.

3 Negotiating Agent Architectures

With the agent construction model in place we can investigate the suitability of our
model for specifying flexible negotiating agent architectures. Before we start describing
negotiating agents, however, we discuss the main components of a negotiation frame-
work. In addition to the negotiating agents, a negotiation framework usually includes a
communication language and an interaction protocol. For example, a negotiation frame-
work based on a simple English Auction protocol would need a communication lan-
guage locution (or performative), say �����	�
����
���� � , that can express bids. The protocol
is the set of rules that specify, at each stage of the interaction, what locutions can be
made, and by whom. In addition, the framework needs a language for representing
information about the world, such as agents, agreements, arguments, and so on. This
information is used within the communication language locutions to form utterances.
For example, a bid might be presented as �����	�
����
����
�	�����������������
���� �!#"%$�� , where � and
� are the sending and receiving agents, and �������������
���� �!#"%$ is the specification of the
proposal. Finally, a negotiation framework usually includes various information stores
needed to keep track of various information during the interaction. This information
may include proposals made by different agents, concessions they have committed to
[13], and so on. Finally, the framework also needs a set of additional non-protocol rules.



These may include rules that identify the winner in a particular negotiation, or rules that
specify that agents cannot retract their previous proposals, and so on.

In this paper, we focus our attention on the construction of the agents within the
framework. So we do not address, for example, how protocols can be specified in a
modular fashion (this has been investigated in [1] for example), or how the locutions
can be verified. We assume that developers have at their disposal definitions of the ap-
propriate negotiating protocols, domain ontologies and communication languages, and
instead deal with the problem of framing such mechanisms within an appropriate agent
architecture. Note that we do not claim to have specified the only way of describing
negotiating agents. Instead, we attempt to provide a construction model that is generic
enough to capture a variety of negotiators.

3.1 Basic Negotiating Agent

Basic negotiating agents include those participating in auctions or those engaged in
bilateral offer exchanges. The common aspect of these agents is that they engage in in-
teractions in which the primary type of information exchanged between agents are pro-
posals (i.e., potential agreements). We call the agents basic in order to distinguish them
from agents that can engage in more sophisticated forms of negotiation which allow
the exchange of meta-information (or arguments). The proposed architecture for basic
negotiation agents is illustrated in Figure 2 and is described through the three different
views below. We follow the conventions described earlier for illustrating the different
types of components and the connecting arrows illustrate the flow of statements.

Fig. 2. Negotiating Agent Architecture

Descriptive Specification The description of the negotiating agent is based on its
attributes, capabilities, goals and motivations. The goals of the agent, i.e. the desired ne-
gotiation outcomes, can be represented in the Mental Attitudes infostore, and these refer
to specific application domains. However, the architecture does not require explicit rep-
resentation of agent goals. We could have as an overarching goal the achievement of the



environmental state that represents the desired negotiation outcome for the agent. This
desired state would be determined by the mechanisms used by the Proposal Evaluator
and Response Generator components, which ultimately decide when this environmen-
tal state has been reached. Here we see how access to an overarching, architecturally
neutral, agent model allows us to reason about such things as goals even though they
find no explicit representation in the architecture. Attributes of the agent are given by
the information that is stored and interpreted inside components, and flows between
them through statements. These attributes include representations of beliefs about the
opponents, the environment, mental attitudes, negotiation protocols, and so on. Because
all this information is explicitly represented within components, and stateless and state-
dependent information is separated, we can easily extract it. The capabilities of the
agent are given by the aggregation of capabilities of each component and can be under-
stood, in our case, by referring to individual components in the architecture diagram.
This is possible because our architecture attempts to represent the main capabilities with
separate components so as to make clear the various functionalities required. However,
alternative designs could (as in many implementations in the literature) combine a num-
ber of components (e.g. the representation of opponents, mental attitudes and environ-
ment) within a single component. In such cases, the descriptive specification remains
unaltered, since the capabilities exist, but the structural specification refers to different
components that combine those capabilities. Finally, the motivations of the agent, if
the agent were autonomous, form part of the agent’s mental attitudes, and ultimately
guide the agent’s decisions. Exactly how these are defined depends on the application.
In many auction-based mechanisms, for example, the motivations are represented in the
form of a utility function.

Structural specification The structure of the agent refers to the components that
make up the architecture. Messages are received, checked and parsed through the Illo-
cution Interpreter. The Proposals History infostore keeps track of the various proposals
received, while the Negotiation Protocols infostore contains the rules relating to the ne-
gotiation protocols. By separating the rules dictating the protocol from the reasoning
about the protocol we can more easily extend the agent to handle different protocols.
The Opponent Model infostore keeps track of opponent models, while the Environment
Model maintains information about the environment in which the agent is situated. In-
formation such as the agent’s preferences is stored in the Mental Attitudes infostore. De-
cisions are taken by three controllers that, abstractly, support the different negotiation
stages. The Protocol Reasoner checks whether the proposal received by the opponent
is a valid response based on the negotiation protocol. The Proposal Evaluator evaluates
the proposal and the Response Generator generates an appropriate response based on
this evaluation. Finally, the Locution Generator packages responses in the appropriate
message format and handles outgoing communication.

Behavioural Specification The behaviour of the agent is largely dictated by the
flow of information through the architecture. It begins by message interpretation and
storage in the Proposals History. The current proposal and information of the history of
proposals is sent to the Protocol Reasoner, which uses rules in the Negotiation Protocols
infostore to check the validity of the proposal. If it is valid it is forwarded to the Proposal
Evaluator, which retrieves information about the opponent from the Opponent Model



infostore. This controller uses this information along with information from the Mental
Attitudes, Environment Model and Proposal History to evaluate the proposal. The result
of the evaluation is sent to the Response Generator, and the opponent model may be
updated. This controller also uses information from the now updated opponent model,
the mental attitudes and environment model in order to generate a response. It also takes
into account the negotiation protocol rules in order to generate the appropriate response.
The response is packaged in the appropriate format by the Locution Generator before
it is sent to the opponent.

3.2 Argumentative Negotiating Agent

Here, we instantiate the architecture of the basic negotiating agent in order to provide
a generic description of agents capable of conducting argumentation-based negotiation
(ABN). An argumentative negotiator shares many components with the basic negotiator.
For example, it also needs to be able to evaluate proposals, generate proposals and so on.
What makes argumentative agents different is that they can exchange meta-information
(or arguments) in addition to the simple proposal, acceptance, and rejection utterances.
These arguments can potentially allow agent to (i) justify their negotiation stance; or (ii)
influence the counterparty’s negotiation stance [7]. This may lead to a better chance of
reaching agreement; and/or higher-quality agreements. In ABN, influencing the coun-
terparty’s negotiation stance takes place as a result of providing it with new information,
which may influence its mental attitudes (e.g., its beliefs, desires, intentions, goals, and
so on). This might entice (or force) the agent to accept a particular proposal, or concede
on a difficult issue. Arguments can range from threats and promises (e.g. [11]) to logical
discussion of the agent’s beliefs (e.g. [8]) or underlying interests [10].

In order to facilitate ABN, the logical and communication language usually needs
to be capable of expressing a wider range of concepts. For example, the proposal might
instead be represented as �����	�
����
����
�	���'&(�')*� where � and � are agents, & is a proposal,
and ) is a supporting argument denoting why the recipient should accept that proposal.
ABN frameworks may also allow agents to explicitly request information from one
another. This may be done, for example, by posing direct questions about agent’s pref-
erences or beliefs, or by challenging certain assumptions the agent adopts. Since in this
paper we are more interested in the abstract structures within the agents, we shall not
discuss these issues in more detail. In order to be capable of engaging in ABN, an agent
needs the following additional capabilities:

1. Argument Evaluation: This component encompasses the ability of the agent to as-
sess an argument presented by another, which may cause updates to its mental state.
This is the fundamental component that allows negotiators’ positions to change.

2. Argument Generation: This component allows the agent to generate possible ar-
guments, either to support a proposal, or as an individual piece of meta-information.
The locution generated may also be a question to present to the opponent.

3. Argument Selection: Sometimes, there might be a number of possible arguments
to present. For example, an agent might be able either to make a promise or a
threat to its opponent. A separate component is needed to allow the agent to choose
the more preferred argument. Selection might be based on some analysis of the
expected influence of the argument, or on the commitments it ties the utterer to.



Fig. 3. Argumentation-based negotiation agent Architecture

Figure 3 shows the specification of an argumentative agent using our construction
model. All components from the basic negotiating agent have been used, complemented
by the additional capabilities needed for ABN. Note that the diagram has been sim-
plified for clarity (e.g. a bidirectional link stands for a pair of unidirectional links).
Furthermore, the link from Negotiation Protocol to Response Generator and Argument
Generator has been omitted although it is, of course, necessary. Below we show how
the descriptive and behavioural specification are changed. The structural specification
changes by adding the three new components that deal with ABN.

Descriptive Specification A crucial difference between the simple negotiation agent
and the ABN agent is that arguments from opponents can change the agent’s mental at-
titudes so the agent’s goals or motivations may change based on the new information
obtained. As a result, even this aspect of the descriptive specification is dynamic and
the ability to refer to this changing descriptive specification directly, at run-time, by ex-
tracting the relevant attributes is crucial. The descriptive specification must also include
the new decision-making capabilities of the agent.

Behavioural Specification Here the flexibility provided by the agent construction
model is particularly evident. The agent essentially has the same links and informa-
tion flows, and is simply extended with links to the new controllers and refined through
changes to the execution sequence. The opponent model, mental attitudes and environ-
ment model are now updated by the evaluation of the argument received before the
proposal is evaluated. The response is not sent directly to the opponent but arguments
may be attached to the proposal by the Argument Generator and Argument Selector
components. Finally, both the Response Generator and Argument Generator use the
negotiation rules in order to determine what type of responses are possible.



4 Conclusions and Future Work

Automated negotiation is gaining increasing interest, but this growth is not matched by
appropriate agent-oriented software engineering methodologies that cater for a variety
of negotiating agent architectures. In this paper, we have taken a step towards enabling
more effective design of negotiating agents, in which negotiation capabilities are de-
fined in a modular fashion, allowing for reuse, dynamic reconfiguration, and recovery.
Furthermore, initial implementations of the construction model have shown that the
practical development process is also greatly aided by the ability to separate concerns
along the different agent views.

This paper sets up the ground for a further investigation of the formal specification
and verification of negotiating agent architectures through appropriate conceptual mod-
els as well as their empirical analysis through the direct implementation of such models.
As such, it brings closer the possibility of negotiating-agent construction toolkits, which
allow designers to easily configure their negotiators based on application requirements.

References

1. C. Bartolini, C. Preist, and N. R. Jennings. Architecting for reuse: A software framework for
automated negotiation. In Proc. of AOSE-02, pages 87–98, 2002.

2. M. d’Inverno and M. Luck. Engineering AgentSpeak(L): A Formal Computational Model.
Journal of Logic and Computation, 8(3):233–260, 1998.

3. M. d’Inverno and M. Luck. Understanding Agent Systems. Springer-Verlag, 2001.
4. P. Faratin. Automated Service Negotiation Between Autonomous Computational Agents. PhD

thesis, UCL, Queen Mary and Westfield, Dept. of Electronic Engineering, 2000.
5. S. Fatima, M. Wooldridge, and N. R. Jennings. Multi-issue negotiation under time con-

straints. In C. Castelfranchi and L. Johnson, editors, Proc. of AAMAS-02, pages 143–150.
ACM Press, 2002.

6. N. R. Jennings, P. Faratin, A. R. Lomuscio, S. Parsons, C. Sierra, and M. Wooldridge. Auto-
mated negotiation: prospects, methods and challenges. Int. Journal of Group Decision and
Negotiation, 10(2):199–215, 2001.

7. N. R. Jennings, S. Parsons, P. Noriega, and C. Sierra. On argumentation-based negotiation.
In Proc. of the Int. Workshop on Multi-Agent Systems, pages 1–7, Boston, USA, 1998.

8. S. Parsons, C. Sierra, and N. Jennings. Agents that reason and negotiate by arguing. Journal
of Logic and Computation, 8(3):261–292, 1998.

9. H. Prakken and G. Vreeswijk. Logics for defeasible argumentation. In D. Gabbay and
F. Guenthner, editors, Handbook of Philosophical Logic, volume 4, pages 219–318. Kluwer,
2nd edition, 2002.

10. I. Rahwan, L. Sonenberg, and F. Dignum. Towards interest-based negotiation. In Proc. of
AAMAS-03 (to appear), Melbourne, Australia, 2003.

11. C. Sierra, N. R. Jennings, P. Noriega, and S. Parsons. A framework for argumentation-based
negotiation. In M. Singh, A. Rao, and M. Wooldridge, editors, Intelligent Agent IV: Proc. of
ATAL 1997, volume 1365 of LNCS, pages 177–192. Springer, 1998.

12. TAC. The Trading Agent Competition. World Wide Web, http://www.sics.se/tac/, 2003.
13. D. N. Walton and E. C. W. Krabbe. Commitment in Dialogue: Basic Concepts of Interper-

sonal Reasoning. SUNY Press, Albany, NY, USA, 1995.


