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ABSTRACT
Masdar City in the United Arab Emirates is designed to be
the first modern city powered solely by renewable energy.
However, the stochastic nature of renewable energy genera-
tors has remained a major challenge in their sole and large-
scale deployment. Traditional approaches couple large-scale
storage systems to renewable generators to mitigate the in-
termittency in their supply pattern. More recent approaches
also study how emerging technologies such as electric vehi-
cles and micro-batteries can be used as consumer-side stor-
age. Future smart grids are however likely to contain both
large and micro batteries and it is unclear how both tech-
nologies will work together. Hence in this paper, we present
a novel model of joint-storage management that allows both
renewable energy suppliers and consumers to coordinate in
a decentralized manner by gradually adopting storage abil-
ities. For this model, we present a dynamic storage-pricing
mechanism that makes use of the storage information from
the renewable supplier to generate daily, real-time electricity
prices which are communicated to the consumers. We em-
pirically evaluate the system and show that, when all homes
are equipped with storage devices, the supplier can signif-
icantly improve the efficiency of the system by up to 23%,
while the consumer reduces its costs by up to 35%.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms
Economics,Experimentation

Keywords
Energy and emissions, Simulation

1. INTRODUCTION
The growing threat of climate change and the depletion

of non-renewable energy sources have led to the growth of
sustainable development. In particular, sustainable urban
development has been advocated as one of the factors in
changing the way we use and produce energy. For example,
urban planning in the future would not only involve design-
ing buildings that minimize in-house energy use, it would
also have to consider the effects of distributed energy re-
sources like wind turbines and solar panels on land-use pat-
terns. Furthermore, these technologies will have to be eco-

nomically feasible, for them to be adopted on a wide scale
and non-intrusive, in order not to detract from the living
experience. Thus, future cities would have to be designed
in ways that are sustainable, attractive and commercially
viable. Masdar City1 is built to be a pioneer model for such
future cities.

Masdar city is currently fully powered by onsite renewable
energy. This includes a 1MW roof-top, solar photovoltaic
plant and a 10MW photovoltaic farm covering 22 hectares
of land. However, as the city grows, its energy demands
will increase beyond what can be provided on-site. As such,
the remaining demand will need to be sourced from outside
the city. Likely off-site sources include the 100MW Concen-
trated Solar Power (CSP) plant and the 10MW wind farm
to be built in the western region and the island respectively.

Given the above features of the Masdar city grid and in-
herent intermittency of renewable energy generators, there
arises the challenge of balancing supply and demand on a
constant basis. Previously, conventional energy suppliers
ensured the matching of supply and demand by maintaining
a generation capacity that was always much higher than de-
mand. As such, this resulted in excess generation capacity
during off-peak hours. With renewable generation, main-
taining excess capacity does not solve the problem as excess
capacity is still subject to intermittency and cannot be dis-
patched at will. Therefore, it becomes crucial for renewable
energy suppliers to avail themselves of emerging technologies
to encourage their consumers’ demand to respond to their
particular generation pattern.

Demand response have typically involved the use of direct
load control strategies by the consumer or the utility [8,
13]. While these strategies have been effective in influencing
demand, they are highly dependent on the active partici-
pation or information revelation of the consumers. How-
ever, active participation of the consumer is not guaranteed
just as consumers might also be reluctant in revealing their
true preferences to the utility to avoid exploitation. Renew-
able energy generators thus require a dynamic control signal
that is linked to the variability in their generation patterns
and an enabling technology to dampen (supply power during
deficits and store power during excesses) its volatility.

To address these challenges, electricity storage devices in
the form of large utility-scale batteries and small domes-
tic (household) batteries have been proposed for use with
renewable energy generators. These storage devices could
act as “shock-absorbers” to the system by providing energy
when needed and thereby increasing the reliability and ef-
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ficiency of energy supply. Moreover, they reduce the need
to over-build capacity and thus ensuring a higher return on
investment in renewable generation technologies.

In this paper, we propose the use of both utility-scale and
domestic batteries to form a decentralized energy storage-
solution that can be coupled with sole, large-scale renewable
generators in sustainable cities. Given the decentralized na-
ture of the domestic storage and the different consumption
patterns of houses, each storage unit is best represented as
an autonomous agent that aims to maximize its own prefer-
ences. In particular, with the advent of smart meters, it is
possible to envisage that software agents could be installed
on meters to optimize the energy consumption of houses.
Now, this storage-solution could also be widely applied for
other smart grids as it makes a case for decentralizing stor-
age. Clusters of houses with similar consumption patterns
could be grouped together and provided with medium scale
storage devices.

On the policy side, amongst the key goals of the Abu
Dhabi Economic Vision 2030 are sustainable development
and economic diversification by the year 2030. Thus, the
government is committed to increasing the penetration of
renewable energy as well as providing a conducive regula-
tory environment. For this, we provide a novel mechanism
by which renewable generators can determine the best price
signal to send to their consumers giving their particular sea-
sonal and daily patterns. This dynamic pricing mechanism
improves the system efficiency and consumer savings by up
to 23% and 35% respectively. Thus, it outperforms the ex-
isting fixed price mechanism and further promotes the inte-
gration of renewable energy generators into the wider Elec-
tricity Grid.

This is the first paper that addresses the novel challenge
of joint-storage management with the use of a multiagent
system framework. We thus demonstrate that multiagent
system paradigm can provide fully sustainable cities (and
others) with solutions that help with the sole and/or large-
scale deployment of renewable energy generators. It is im-
portant to note that while this research has been carried
using simulations, it is close to actual deployment as Mas-
dar City is currently testing a fleet of Mitsubishu i-MiEVs2

electric vehicles for use in the city.
Thus, this paper contributes to the state of art in the

following ways:

1. We present the first smart grid framework which com-
bines both centralized utility-side storage and distributed
consumer-side storage.

2. We develop novel algorithms and a pricing mechanism
to enable both the renewable energy supplier and the
consumers to optimize generation and storage deci-
sions taking into account the intermittency of renew-
able energy.

3. We empirically evaluate our approach and show that
our mechanism (compared to the existing pricing mech-
anism of Masdar City) results in up to 23% improve-
ment in efficiency for the supplier and up to 35% sav-
ings for the consumer agents.

2. MODEL DESCRIPTION
2http://www.mitsubishi-motors.com/special/ev/

In this section, we present the models of the energy re-
quirements of Masdar City. The city is designed to be pow-
ered solely by renewable energy with a residential population
of about 40,000. Thus, the grid consists of renewable gen-
erators and batteries (at the supply end) and homes with
electrical appliances and micro-batteries or electric vehicles
(at the consumer end). In the following sections, we detail
each element of our system by providing specific models of
Masdar energy supplier (wind and solar power generation
using real data) and homes (each represented by its agent)
which may possess electricity storage capacity (either bat-
teries or electric vehicles). In our models, we consider fixed
time intervals consisting of single days, each divided into a
set of half-hourly intervals I = 1, 2, ..., 48 such that each par-
ticipant needs to decide its behavior (typically a day ahead)
for each interval.

2.1 The Renewable Supplier
The wind speed data at an elevation of 10m was obtained

from Masdar City Meteorological station for the period of
August 2008 to June 2009. As the speed of wind varies with
height, the data was projected to the wind turbine3 hub
height (84m). The projection was done using the power law
equation [3] shown below:

vh = vr ×

(

h

r

)n

(1)

where vh is the wind speed at hub height, vr is the wind
speed at reading height, h is the hub height, r is the reading
height which in our case was 10m high and n is the power-
law exponent (roughly about 0.1429 for open land [14])

We modeled the stochastic process of the wind speed with
the Weibull probability distribution [14] given by equation
2.
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where vh is the wind speed at hub height, s is the scale
parameter and z is the shape factor. The parameters of
the distribution (s, z) were estimated using the Maximum
Likelihood (ML) method. The estimated parameters are
[4.88, 2.32].The power curve of the wind turbine was approx-
imated by a five-orders polynomial function [14] (as the best
fit for the curve was found at that order) given in equation 3.
The power outputs of the wind turbine at recorded speeds
for each time interval i ∈ I = {1, 2, 3 . . . 48} were thus ob-
tained.

owt
i (vh) =























owt
max, vh ≥ vhmax

(−0.024v5h + 1.88v4h
−53.33v3h + 668.49v2h
−3293.92vh + 5476.07), vhmin < vh < vhmax

0, vh ≤ vhmin

(3)
Where owt

i (vh) is the power output of wind turbine for a
given mean wind speed vhi , o

wt
max is the rated power output

of the wind turbine, vhmin denotes the cut-in wind speed of
the wind turbine and vhmax is the cut-off wind speed of the
wind turbine.

For the solar generator, the time data series of the power
output from a test PV panel located at Masdar City PV
contest site was used. The output was recorded every 5

3http://nozebra.ipapercms.dk/Vestas
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Figure 1: PV panel output for all days in the month

minutes (288 readings per day) for the period of August
2008 to June 2009. Figure 1 shows the PV output for all
days in the month of June 2009. The average of the six
readings in each half-hour readings was then obtained for
each time interval i ∈ I .

The utility-scale storage was modeled based on the Sodium
Sulphur (NaS) deep-cycle batteries produced by NGK4. Our
choice was based on their high power, energy density and ca-
pacity which makes them suitable for utility scale storage.
They also have a high efficiency and virtually no self dis-
charge.

Each generator and battery model has an associated daily
cost cg for g ∈ G = {b, pv, wt} . This includes fixed costs
(capital,installation) and annual costs (operations and main-
tenance (O&M)). We derive the levelized daily costs by sum-
ming all incurred costs and dividing by the expected lifetime
in days. The approximate values for all costs were obtained
from the manufacturers at the World Future Energy Summit
2011 which took place in Abu Dhabi.5

2.2 The Capacity Planning Problem
Wemodel our supplier as being required to satisfy all of its

consumers’ demand, solely from the energy produced from
its renewable generators. To do this, the supplier needs to
determine the optimal capacity configuration for the gen-
erators and batteries to be installed. A number of poten-
tial ways of finding the optimal design has been proposed
in the literature. This includes analytical approaches as in
([12] and [15]), simulation approaches ([5] and [6]) and op-
timization ([1], [4] and [7]). A key challenge here is for the
renewable supplier to be able to compete favorably in the
wider electricity market to promote the adoption of renew-
able energy. Thus, it needs to ensure that it minimizes the
amount of optimal capacity to install in order to provide
its consumers with competitive electricity prices. Other op-
tions are to design suitable mechanisms that incentivize its
customers to respond to its generation patterns. Here, we
present a cost optimization model and further options such
as the use of a pricing mechanism and learning mechanism
are shown in next section.

The optimization model finds the number of wind turbines
and PV panels that need to be installed and also specifies
the amount of power to either charge into the battery or

4http://www.ngk.co.jp/english/products/power/nas/index
5http://www.worldfutureenergysummit.com/en/wfes-
exhibitors/2011-exhibitor-list.aspx

discharge from it for each time period (i.e. the storage profile
of the battery). Now, the possible power output of each wind
turbine (Equation 3) during time interval i is constrained by
the maximum output power given by:

owt
i ≤ owt

max (4)

Also, the output of each PV panel during time interval i
is constrained by the watt-peak rating of the panel:

opvi ≤ opvmax (5)

where opvmax is the rated maximum output (in Watt-peak) of
the PV panel.

Each battery has a capacity constraint which limits the
amount of power flow into and out of it at each time in-
terval. The power flow of the battery can be calculated as
the difference between stored energies of two consecutive in-
tervals. As there are two possible power modes, charging
and discharging, we define when the battery is charging i.e.
ebi < ebi+1

pchi =
(

ebi+1 − ebi

)

/∆i (6)

And when it is discharging ebi > ebi+1:

pdchi = η ·
(

ebi − ebi+1

)

/∆i (7)

where pchi is the power input to the battery at time i, pdchi is
the power output from the battery at time i, ebi is the energy
stored in the battery at time i, η is the discharging efficiency
of the battery and ∆i is the length of a time interval (which
is 30 minutes in our model).

The power output of each battery during time interval i is
also constrained by the maximum charging and discharging
rates:

pchi < pchmax (8)

pdchi < pdchmax (9)

Lastly, for a sustainable city, total power output from re-
newable generators and batteries should exactly satisfy the
total load demand DA

i at all time intervals. This supply-
demand matching equation for interval i can be expressed
as:

Qi + P dch
i = DA

i + P ch
i (10)

Here Qi represents the total output from both wind tur-
bines and PV panels, P ch

i is the power input to all batteries,
P dch
i is the power output from all batteries and DA

i is the
total demand from consumer agents.

Equation 10 is the objective function which completes the
capacity determination model for Masdar City Grid.

2.3 The Home Agents
Here we describe our agent model of the consumer, which

is built upon the recent model for homes equipped with
smart meters by Vytelingum et al [17]. Specifically, we de-
fine the set of consumer agents as A and each agent a ∈ A
has a load (consumption) profile Ca

i ∀i ∈ I defined as the
actual amount of electricity used (consumed) by agent a for
time interval i during each day. In our model we assume
that this load profile is fixed: an agent wants to use cer-
tain amounts of electricity at certain times of the day and
would rather not change its behavior nor reveal its prefer-
ences to its supplier. Thus, we do not attempt to change



the consumption profile of agents rather by giving the agent
storage ability, the time when electricity is demanded can
be decoupled from the time when the electricity is actually
consumed. Thus, we define the demand profile Da

i ∀i ∈ I
as the amount of electricity demanded (purchased) by the
agent from the energy supplier for time interval i during
each day. Furthermore, each agent a ∈ A may also have
some storage available to it, with capacity qa, daily costs ca

and efficiency ηa.

3. THE STORAGE PRICING MECHANISM
In this section, a storage pricing mechanism (SPM) is pro-

posed to help the renewable energy supplier maximize the
efficiency of its system given the intermittency problem of re-
newable generation. The mechanism uses the availability of
real-time storage information (measured in kWh and repre-
senting the amount of electric energy stored in the batteries)
that is known to the supplier. This information involves no
extra communication overhead as the state of its batteries
are easily known to the supplier. For every time interval,
the supplier (in our case study Masdar City) generates elec-
tricity from both its wind turbines and photovoltaic panels.
The amount generated is used to satisfy the demand of its
consumers. Whatever is in excess of demand is then stored
in the batteries. Thus the amount of electric charge in the
batteries captures the amount of renewable generation that
is available but not being demanded by the consumers.

So this storage information embodies two signals:

1. It informs the supplier of the specific periods when
generation exceeds (or lags) demand.

2. It quantifies energy generation i.e. it tells the supplier
how much the excess or deficit is.

Using this information, the supplier can then determine
when to decrease its electricity price to encourage more de-
mand and also by how much it should decrease the price in
order to signal to the consumers by how much they should
also increase their consumption and vice versa. Therefore,
our mechanism uses the correlation between the amount of
charge (or discharge) and the excess (or deficit) generation.
As opposed to [16] where the aggregate consumption of the
homes is divided into two in terms of the amount satisfied
by the supplier and the amount sourced from the grid, the
supplier here identifies two different time periods. The first
period ibat ∈ I are times when the aggregate demand of
the homes exceeds generation such that DA

i > Qi and the
second period i ∈ I when the demand DA

i ≤ Qi.
During period ibat ∈ I , the demand in excess of generation

is supplied from the batteries and thus the supplier incurs
a storage cost ǫ (/kWh). This storage cost is measured in
($/kWh) and represents the cost in dollars per kilowatt-hour
of energy delivered from the batteries to the homes. More
formally, from the optimal configuration derived from the
solution to equation 10, we define the ǫ at each interval as

ǫ =
cb × nb

∑

i∈I
P ch
i

(11)

where cb is the levelized daily cost of each battery, nb is the
optimal number of batteries installed and P dch

i is the power
output from all batteries at time i.

The intuition behind this is that dividing the cost of the
batteries by the amount of useful charge that is obtained

from them gives the marginal cost of using batteries. So
the supplier offers the consumer the incentive of savings in
line with how much it saves when it avoids using storage by
reducing the price by ǫ or it charges them the marginal cost
it incurs by having to supply their demand from batteries.
Thus, we provide retail rates for different periods of time as
follows:

1. For the times ibat ∈ I , the electricity is priced based
on the retail price of electricity pretaili .

2. For all other times i ∈ I , i.e., the time periods when the
amount demanded can be directly satisfied by the sup-
plier from its generation Qi at that time, the electricity
is priced at ǫ less than the retail price of electricity i.e.
pretaili - ǫ.

By the above, the supplier incentivizes its consumers to
use the green energy it produces directly rather than hav-
ing to store it and later providing it to them from storage.
It is important to note that our storage pricing mechanism
does not just shift storage from suppliers to the consumers.
Rather the pricing mechanism can still be used successfully
to incentivize consumers without storage or with other forms
of demand management systems (such as load control pro-
grams). Also, our pricing mechanism differs from the tradi-
tional time-varying mechanisms because we do not aim to
smooth out peaks. Rather we encourage peak consumption
periods as long as such periods are highly correlated with
periods of peak renewable generation.

4. THE AGENTS’ ADAPTIVE RESPONSE
Given the above dynamic pricing mechanism, a self-interested

agent (with storage ability) that is interested in minimiz-
ing its cost responds by adapting its storage profile in line
with changes in daily electricity prices. In more detail, our
model adopts the day-ahead best-response adaptive strat-
egy for agents by [17]. As opposed to their model however,
the agent does not need to predict the next day’s price for
each time slot as this is given by the supplier on a day-
ahead basis. Rather, it calculates the storage profile for day
(t + 1) based on the published market prices it receives on
day (t). As the storage profile depends largely on the stor-
age capacity, the agent also has to decide how much storage
capacity it should have. Thus, the agent needs to first learn
its optimal storage capacity as a best-response to changing
electricity prices and then optimize its storage profile based
on the determined storage capacity.

The Widrow Hoff Learning mechanism used by [17] is
based on a two-pass approach. In the first pass, the agent
computes the optimal storage capacity ξa (maximum energy
stored daily) required for it to minimize its cost by making
capacity qa, a decision variable in the optimization function
(Equation 12). The agent also obtains the storage profile,

ba = bch,ai −bdch,ai for that day6 by minimizing the same func-
tion. Then in the second pass, the agent gradually adapts
both its capacity and profile.

argmin
ba

∑

i∈I

(

pi
(

bch,ai − bdch,ai + Ca
i

)

+ cabch,ai

)

(12)

6We used IBM ILOG CPLEX 12.2 to implement and solve
the optimization problem



Constraint 1: discharge efficiency

∑

i∈I b
dch,a
i = ηa

∑

i∈I b
ch,a
i

Constraint 2: rated maximum charging capacity

b
ch,a
i ≤ b

ch,a
max,∀i ∈ I

Constraint 3: rated maximum discharging capacity

b
dch,a
i ≤ b

dch,a
max ,∀i ∈ I

Constraint 4: energy that can be stored at a time interval

b
dch,a
i ≤ qa − b

ch,a
0 +

∑i−1
j=1

(

b
dch,a
j − b

ch,a
j

)

,∀i ∈ I

Constraint 5: energy that can be used at a time interval

b
dch,a
i ≤ ηa

(

b
ch,a
0 +

∑i−1
j=1

(

b
dch,a
j − b

ch,a
j

))

, ∀i ∈ I

Constraint 6: no-reselling allowed

Ca
i ≥ b

dch,a
i ,∀i ∈ I

In more detail, constraint 1 expresses the fact that the amount
of energy that can be discharged from the battery is limited
by the efficiency of the battery. Constraint 2 and 3 ensures
that the amount of energy that can be charged or discharged
in any time slot is always less than the rated maximum
charge and discharge capacity of the battery. Constraint 4
and 5 captures the fact that the state of the battery in any
time slot depends on the previous cycles of charge and dis-
charge. Finally, the last constraint implies that the amount
discharged should be at most the electricity consumption at
that time interval. This means that the agent cannot dis-
charge from its battery for the purpose of selling back to the
grid.

Starting from day (t = 0) where the storage capacity
qa(0) = 0, the agent gradually adapts its storage capacity
towards the optimal capacity ξa obtained from solving the
cost minimization function using Equation 13

qa(t+1) = qa(t) + α
(

ξa − qa(t)
)

(13)

where α is the learning rate of the storage capacity qa of
agent a.

In the second pass, the agent computes the optimal stor-
age profile required for it to minimize its cost while fixing its
capacity at qa(t+1). The objective function of the optimiza-
tion problem thus becomes:

argmin
ba

∑

i∈I

pi
(

bch,ai − bdch,ai +Ca
i

)

+ caqa(t+1) (14)

and a new optimal storage profile (ba,∗) is obtained.
Next, the agent adapts its daily storage profile towards

the optimal profile (ba,∗ as below:

ba(t+1) = ba(t) + β
(

ba,∗ − ba(t)
)

∀i ∈ I (15)

where ba,∗ is the optimal storage profile subject to a fixed
storage capacity of qa (t+ 1) and β is the learning rate of
the storage profile. In the next section, we evaluate our
storage pricing mechanism for different proportions of the
population with storage devices and for different learning
rates of consumer agents.

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

Time in Half−Hour Intervals

A
m

ou
nt

 (
kW

)

Supply and Demand Profiles on Day 1 without SPM

 

 
Supply Profile on Day 1
Demand Profile on Day 1

Figure 2: Supply Profile compared with Aggregate
Demand Profile on Day 1 without the SPM

5. EMPIRICAL ANALYSIS
This section presents an empirical evaluation of the SPM

applied to the Masdar City Model of a renewable energy
supplier and a group of consumers. The aim is to show that
the proposed mechanism increases the system efficiency and
effectively incentivizes consumers to respond to renewable
generation patterns. We do this by showing how the de-
mand profile responds to the supply profile thereby resulting
in less storage capacity on the part of the supplier. Next,
we demonstrate how the consumers benefit as they gradu-
ally adopt storage. We evaluate this benefit by varying the
proportion of consumers having storage and by varying the
learning rate at which they adapt their storage capacities
and profiles.

5.1 Experimental Setup
The retail price of electricity was set at 0.04$/kWh which

is the current fixed-price of electricity in Abu Dhabi where
Masdar City is located. Our SPM then computes the devia-
tion (equation 11) from the retail price based on the state of
the utility batteries to generate the real-time prices for the
consumers. Each simulation was run for 100 days consist-
ing of 48 half-hourly periods. Running the simulation for
a longer number of days did not offer changes to the sys-
tem as it converges after 100 days. The simulation was run
for varying proportions of the population with storage and
with varying learning rates. The results were collected and
presented in the following sections.

5.2 Effect of SPM on Consumers’ Demand
Given that the main aim of the paper was to incentivize

consumers to respond to renewable generation patterns, the
first result we present is the change in the demand profiles of
the consumers with storage ability. We show that in the sys-
tem with storage pricing mechanism, the consumers’ (with
storage) demand profiles gradually begin to follow the sup-
ply profile until convergence is reached. Figures below show
the change in demand patterns for 100% of the population
with storage devices and with learning rates (α, β) of 0.05.
The optimal storage population and learning rates used here
are based on the results of the other experiments presented
later in Sections 5.5 and 5.6.

As can be seen from Figure 2, the demand profile (with-
out SPM) on day 1 of the simulation shows large deviations
from the supply profile. Specifically, while the demand pro-
file peaks in the evening when the consumers are at home
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Figure 3: Supply Profile compared with Aggregate
Demand Profile after the simulation has been run
with SPM for 100days
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Figure 4: Aggregate Demand Profile of Consumers
Changing in response to Renewable Generation Pat-
tern

and using a lot of electricity, the supply profile dips in the
evening due to the absence of solar irradiation. When the
simulation is run without SPM for 100 days, the demand
profile stays the same as there is no incentive for the con-
sumers to change their profiles. However, when the simu-
lation is run with SPM, the demand profile begins to align
itself with the supply profile (Figure 4) until there is a near
perfect alignment at day 100 as seen in Figure 3. This result
shows that the behavior of a self-interested consumer agent
with storage capability in the presence of SPM is to opti-
mize its cost by changing its demand profile to align with
the supply profile. By so doing, the agent fulfills its electric-
ity demand at minimum cost. This in turn leads to greater
system efficiency as the percentage of renewable energy that
is used directly by the consumers increase.

5.3 Effect of SPM on System Efficiency
Given that the SPM helps to achieve demand response as

shown in the previous experiment, we now analyze quanti-
tatively how the efficiency of the system improves. We mea-
sure the efficiency of the system as the ratio of the amount of
electricity that is demanded immediately by the consumers
and the total amount of electricity supplied. We benchmark
the SPM against an optimal system where there is no stor-
age taking place and all the energy produced by the supplier
is immediately demanded by the consumers. Such a system
will have an efficiency of 100% which is the maximum effi-
ciency attainable. From Figure 5, we see that the system
is only 74.4% efficient with the current fixed pricing mech-
anism. This translates to about a quarter of the energy
produced by the supplier is being stored. With the use of
our storage-pricing mechanism however, the efficiency of the
system gradually increases and approaches the optimal ef-
ficiency. The efficiency converges at about 97.4% with the
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Figure 5: Storage efficiency of the system with SPM.
At the start of simulation, the system is only 74.4%
efficient
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Figure 6: Average savings on electricity cost for con-
sumers with storage and with electricity prices de-
termined by SPM for different proportions of the
population with storage.

whole population adopting their micro-storage with a learn-
ing rate of 0.05. We show in section 5.5 that the efficiency
of the system still increases even with smaller proportions
of the population adopting micro-storage.

5.4 Effect of SPM on Consumers’ Electricity
Cost

In this section, we evaluate the effect on the electricity
bill of consumers given a fixed pricing mechanism versus
the storage pricing mechanism. Specifically, we consider
the cases where the cost of using utility storage is priced
via a fixed pricing mechanism versus via our storage pricing
mechanism. The question we wish to answer here is: should
the supplier adopt utility storage alone and charge the con-
sumers for its use or the should consumers adopt micro-
storage (distributed on the grid) and pay the cost of their
individual storage. We know that if the utility alone adopts
storage, all consumers pay a fixed price of electricity which
comprises of the retail cost of producing electricity and the
marginal cost of storage. This fixed cost is independent of
the consumers’ demand profiles and the generator’s supply
pattern. An individual consumer cannot reduce its costs in
any way (given a fixed price of electricity) either through
the use of storage or through load control. For the second
scenario however, we see in Figure 6 an increase in savings
for consumers as an increasing proportion of the population
adopt storage. This is because an increase in population of



0 10 20 30 40 50 60 70 80 90 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Simulation Length in Days

S
ys

te
m

 E
ffi

ci
en

cy

System Efficiency vs Storage Population

 

 

POP 1.0
POP 0.75
POP 0.5
POP 0.25
POP 0.0

Figure 7: System efficiency for different populations
of consumer with storage and with electricity prices

0 10 20 30 40 50 60 70 80 90 100
0.4

0.5

0.6

0.7

0.8

0.9

1

Simulation Length in Days

S
ys

te
m

 E
ffi

ci
en

cy

System Efficiency vs Learning Rates of Agents

 

 

LR 0.0
LR 0.005
LR 0.01
LR 0.05
LR 0.1
LR 0.15
LR 0.2

Figure 8: System efficiency for different learning
rates of consumer agents and with electricity prices
determined by SPM

micro-storage means there is more collective response to the
supply patterns.

5.5 Effect of Consumers’ Learning Rate and
Storage Population on System Efficiency

Here, we analyze the sensitivity of the system efficiency
(the ratio of the amount of electricity that is demanded im-
mediately by the consumers and the total amount of electric-
ity supplied) to the storage population and learning rates of
the agents. Figure 7 shows that the smaller the storage pop-
ulation, the less efficient the system. This is to be expected
as a smaller storage population means that fewer consumer
agents are able to respond to the storage pricing mecha-
nism. Thus, the supplier still has to use utility-storage to
meet the demands of consumers without storage. In fact,
we see that when there is no storage in the system, the sys-
tem efficiency remains constant at 74.4%. As the storage
population begins to increase, the efficiency of the system
increases until it converges at 97.4%. Thus, the system is
most efficient when all the consumers have storage and are
able to optimize their demand profiles in response to the
storage pricing mechanism. Next, we show the sensitivity
to the learning mechanism. When the consumer agents are
learning at higher rates (α = 0.25, 0.2 e.t.c.), the system
efficiency improves faster initially but then it converges to
a lower equilibrium value. As we reduce the learning rate,
the convergence is steeper, smoother and results in a higher
equilibrium value. From Figure 8, we see that the system
achieves the best possible efficiency at a learning rate of 0.05.
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Figure 9: Average savings on electricity cost for con-
sumers with storage and with electricity prices de-
termined by SPM for different learning rates

5.6 Effect of Learning Rate on Consumers’ Ben-
efits

Similar to the experiment above, here we analyze the ef-
fect of the learning rate on the benefits to consumers. The
effect of storage population size on consumer savings has
been previously analyzed. We see from Figure 9 that as the
learning rate of agents increases, the average savings also in-
creases until it peaks at a learning rate of 0.05. Thereafter,
the savings only decrease with increasing learning rate. This
result is consistent with the results obtained for the system
efficiency with varying learning rate in Section 5.5 above.
Thus, the maximum savings to the consumers and also to
the supplier is achieved when the consumer agents are learn-
ing to adapt their storage at a learning rate of 0.05.

6. RELATED WORK
The use of large-scale storage systems with renewable gen-

erators has been extensively studied in the literature. There
is however no known published work on the coupling of both
utility-scale storage and micro-storage. Similarly, a num-
ber of pricing incentives have been proposed in the litera-
ture to help achieve demand response and field trials have
been carried out to evaluate the effectiveness of these mech-
anisms. For example, California’s utilities [2, 9] conducted
the Statewide Pricing Pilot to evaluate the effect of Time-Of-
Use mechanism (this mechanism divides the day into slots
with fixed prices) and showed an estimated reduction in peak
period energy use of 5.9% during the summer months. Fur-
thermore, Xcel Energy [10, 11] also conducted a pilot pro-
gram that tested the effectiveness of Critical Peak Pricing
mechanism (this identifies some exceptional days with very
high demand) given an enabling technology with partici-
pants achieving reductions of about 44.81%. Yet another
pricing mechanism, Peak-Time Rebate (PTR) was evalu-
ated by Wolak [18]. In this, participants received a rebate
of 0.35$/kWh for reductions relative to their typical peak
period consumption on non-PTR days. Participants how-
ever have the potential to game the system (as discovered by
[18]) by increasing their electricity use during the period in
which baselines are established. While the aforementioned
pricing mechanisms have the ability to effect a reduction in
peak demand, they usually involve active participation on
the part of the consumers. Also, these mechanisms often
just shift the peak demand to other times that have been



deemed to be off-peak. We believe that given the variability
in the renewable energy generation, there is a need to syn-
chronize and influence exactly where the shifted peak goes
to in order to ensure system stability. In general, none of
these pricing mechanisms deal specifically with the variabil-
ity of supply when renewable energy generators are involved.
In this regard, we note the recent work by Ramchurn et al
[16] where they present a carbon pricing mechanism that is
designed specifically for a renewable energy supplier that is
operating in the electricity market. This paper is inspired
by their work, but differs in that we look at the issue of a
renewable energy supplier that has storage capability. Also,
our work is targeted at the Masdar City model of a totally
self-sustained city. This implies that, unlike their work, the
supplier does not have the ability to meet the demand that
exceeds its supply from the external electricity grid.

7. CONCLUSION
In this paper, we presented a multiagent framework for

joint-storage management and a pricing mechanism, SPM,
for renewable energy suppliers and consumers with storage
devices. We simulated the performance of the mechanism
based on the Masdar City model and evaluated it in terms
of the system efficiency and consumer benefits. The results
showed that unlike the fixed pricing mechanism (currently
in use in UAE) which achieves a system efficiency of 74%,
the storage pricing mechanism achieved a system efficiency
of up to 97.4% with all consumers having storage devices
and smart meters installed in their homes. Moreover, the
consumers with storage devices were able to make an av-
erage savings on their electricity bills of 35% when all the
consumers are equipped with storage devices. Due to lack of
availability of high-resolution household data in the UAE, we
utilized time-shifted UK data. Having said that, our work
provided a proof-of-concept for policy recommendation to
the UAE government to not only install smart meters in
homes, but we also showed that the adoption of a dynamic
pricing mechanism for Masdar City Grid will increase the ef-
ficiency of the system. Furthermore, the institution of poli-
cies (e.g. subsidies) which facilitate the wider adoption of
joint-storage solutions will help in the integration of renew-
able energy generators to the National Grid.
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