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ABSTRACT
A conflicting knowledge base can be seen abstractly as a
set of arguments and a binary relation characterising con-
flict among them. There may be multiple plausible ways
to evaluate conflicting arguments. In this paper, we ask:
given a set of agents, each with a legitimate subjective eval-
uation of a set of arguments, how can they reach a collective
evaluation of those arguments? After formally defining this
problem, we extensively analyse an argument-wise plurality
voting rule, showing that it suffers a fundamental limita-
tion. Then we demonstrate, through a general impossibility
result, that this limitation is more fundamentally rooted.
Finally, we show how this impossibility result can be cir-
cumvented by additional domain restrictions.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—multiagent systems, coherence and coordination

General Terms
Theory, Economics

Keywords
Argumentation, Social Choice, Judgement Aggregation

1. INTRODUCTION
Argumentation has recently become one of the key ap-

proaches to automating and analysing reasoning in the pres-
ence of conflicting information. A key milestone in the devel-
opment of argumentation in AI has been Dung’s landmark
framework [8]. Arguments are viewed as abstract entities,
with a binary defeat relation among them (resulting in a
so-called argument graph).

Often, there are multiple reasonable ways in which an
agent may evaluate a given argument graph. Each possi-
ble evaluation corresponds to a so-called extension [8] or
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labelling [5]. We ask: Given an argument structure and a
set of agents, each with a legitimate subjective evaluation of
the given arguments, how can the agents reach a collective
compromise on the evaluation of those arguments?

We formally define the problem of aggregating multiple
evaluations of arguments, in the spirit of preference aggre-
gation [1] and judgement aggregation [10, 11]. We define a
specific aggregation operator (argument-wise plurality vot-
ing) and analyse some of its key properties. We then present
an impossibility result on the existence of good aggregation
operators (in particular, satisfying collective rationality).
Then, we show one way in which the impossibility result
can be avoided. In particular, we provide a full characteri-
sation of the space of individual judgements that guarantees
collective rationality using argument-wise plurality voting.

The paper makes three key contributions to the state-
of-the-art in computational models of argument. Firstly,
the paper defines and analyses the argument-wise plurality
voting mechanism for collective argument evaluation.

Our second contribution is a general impossibility result,
showing that there is no aggregation operator that can sat-
isfy a few simple requirements (common in social choice the-
ory) for arbitrary argument graphs. This result not only
helps us avoid the fruitless pursuit of such operator, but
also because it motivates the need for specialised aggrega-
tion operators that work under more restrictive conditions.

This leads to the third contribution. By showing how the
impossibility result can be avoided by restricting the space
of possible individual judgements, we provide guidance on
circumventing the practical implications of the problem.

2. PRELIMINARIES
We briefly outline key elements of abstract argumentation

frameworks [8], assuming finite sets of arguments.

Definition 1. An argumentation framework is a pair
AF = 〈A,⇀〉 where A is a finite set of arguments and
⇀⊆ A×A is a defeat relation. We say that an argument α
defeats an argument β if (α, β) ∈⇀ (also written α ⇀ β).

An argumentation framework can be represented as a di-
rected graph in which vertices are arguments and directed
arcs characterise defeat among arguments. An example ar-
gument graph is shown in Figure 1. Argument α1 has two
defeaters (i.e. counter-arguments) α2 and α4, which are
themselves defeated by arguments α3 and α5 respectively.
Let S+ = {β ∈ A | α ⇀ β for some α ∈ S}. Also let
α− = {β ∈ A | β ⇀ α}. We first characterise the funda-
mental notions of conflict-free and defence.



α3 α2

α4

α1

α5

Figure 1: A simple argument graph

Definition 2. Let 〈A,⇀〉 be an argumentation frame-
work, let S ⊆ A and α ∈ A.

• S is conflict-free iff S ∩ S+ = ∅.

• S defends argument α iff α− ⊆ S+. Equivalently, we
say that argument α is acceptable with respect to S.

Intuitively, a set of arguments is conflict free if no argument
in that set defeats another. A set of arguments defends a
given argument if it defeats all its defeaters. In Figure 1, for
example, {α3, α5} defends α1. We now look at some ways to
characterise the collective acceptability of a set of arguments.

Definition 3 (Characteristic function). Let AF =
〈A,⇀〉 be an argumentation framework. The characteristic
function of AF is FAF : 2A → 2A such that, given S ⊆ A,
we have FAF (S) = {α ∈ A | S defends α}.

When there is no ambiguity about the argumentation frame-
work in question, we will use F instead of FAF .

Definition 4. Let S be a conflict-free set of arguments
in framework 〈A,⇀〉.

• S is admissible iff it is conflict-free and defends every
element in S (i.e. iff S ⊆ F(S)).

• S is a complete extension if S = F(S).

Intuitively, a set of arguments is admissible if it is a conflict-
free set that defends itself against any defeater – in other
words, if it is a conflict free set in which each argument is
acceptable with respect to the set itself.

An admissible set S is a complete extension if and only if
all arguments defended by S are also in S (that is, if S is
a fixed point of the operator F). There may be more than
one complete extension, each corresponding to a particular
consistent and self-defending viewpoint.

Example 1. In Figure 1, the sets ∅, {α3}, {α5}, and
{α3, α5} are all admissible simply because they do not have
any defeaters. The set {α1, α3, α5} is also admissible since it
defends itself against both defeaters α2 and α4. The admis-
sible set {α1, α3, α5} is the only complete extension, since
F({α1, α3, α5}) = {α1, α3, α5}.

There are various approaches to differentiate between dif-
ferent complete extensions (e.g. by defining grounded, pre-
ferred, stable extensions and so on [8]). In this paper, we
will take a liberal approach and consider any complete ex-
tension as a reasonable point of view for an agent, satisfying
the minimal criteria of consistency and self-defence.

Crucial to our subsequent analysis is the notion of ar-
gument labelling [5]. It specifies which arguments are ac-
cepted (labelled in), which ones are rejected (labelled out),
and which ones whose acceptance or rejection could not be
decided (labelled undec). Labellings must satisfy two condi-
tions: (i) an argument is in if and only if all of its defeaters
are out; (ii) an argument is out if and only if at least one of
its defeaters is in.

Definition 5 (Argument Labelling). Let AF = 〈A,⇀
〉 be an argumentation framework. An argument labelling is
a total function L : A → {in, out, undec} such that:

• ∀α ∈ A : (L(α) = out ≡ ∃β ∈ A such that (β ⇀
α and L(β) = in)); and

• ∀α ∈ A : (L(α) = in ≡ ∀β ∈ A : ( if β ⇀
α then L(β) = out))

If none of the two conditions is satisfied, then L(α) = undec

(since L is a total function).

Caminada [5] showed a one-to-one correspondence between
possible labellings and the set of all complete extensions.

3. MOTIVATION AND SCOPE
In this section, we give a simple example and use it to mo-

tivate the paper and highlight the scope of its contributions.
Consider the following simple example.

Example 2 (A Murder Case). A murder case is un-
der investigation. To start with, there is an argument that
the suspect should be presumed innocent (α3). However,
there is evidence that he may have been at the crime scene at
the time (α2), which would counter the initial presumption of
innocence. There is also, however, evidence that the suspect
was attending a party that day (α1). Clearly, α1 and α2 are
mutually defeating arguments since the suspect can only be in
one place at any given time. This problem can be modelled as
an argumentation framework AF = 〈{α1, α2, α3},⇀〉 with
⇀= {(α1, α2), (α2, α1), (α2, α3)}. Possible labellings are:

• L(α1) = in, L(α2) = out, L(α3) = in.

• L′(α1) = out, L′(α2) = in, L′(α3) = out.

• L′′(α1) = undec, L′′(α2) = undec, L′′(α3) = undec.

The graph and possible labellings are depicted in Figure 2.
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α1: There is credible evidence 
that the suspect was at a party.

α2: A witness saw someone 
dressed like the suspect at 
the crime scene.

α3: The suspect is presumed 
innocent.

α1 α2L’’ α3
in out undec

Figure 2: Graph with three possible labellings

Example 2 highlights a situation in which multiple points
of view can be taken, depending on whether one decides to
accept the argument that the suspect was at the party or
the crime scene. Consider the following example.

Example 3 (Three Detectives). A team of three de-
tectives, named 1, 2, and 3, have been assigned to the murder
case described in Example 2. Each detective’s judgement can
only correspond to a legal labelling (otherwise, his/her judge-
ment is not admissible and can be discarded). Suppose that
each detective’s judgement is such that L1 = L, L2 = L′ and
L3 = L′. That is, detectives 2 and 3 agree but differ with de-
tective 1. These labellings are depicted in the labelled graph
of Figure 3. The detectives must decide which (aggregated)
argument labelling best reflects their collective judgement.
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Figure 3: Detectives with different judgements

Example 3 highlights an aggregation problem, similar to
the problems of preference aggregation [1] and judgement
aggregation [10]. It is perhaps obvious in this particular
example that α3 must be rejected (and thus the defendant
be considered guilty), since most detectives seem to think
so. For the same reason, α1 must be rejected and α2 must
be accepted. Thus, labelling L′ (see Example 2) wins by
majority. As we shall see in our analysis below, things are
not that simple, and counter-intuitive situations may arise.
To summarise, the question is as follows: Given a set of
agents, each with a specific subjective labelling of a given set
of conflicting arguments, how can agents reach a collective
decision on how to evaluate those arguments?

Below, we will explore the above question deeply. We in-
troduce the argument-wise plurality voting rule and study
its key properties. We show that while argument-wise plu-
rality voting satisfies many desirable properties (e.g. anon-
imity, strategy-proofness etc.), it can produce counter-intuitive
results. We then generalise this observation by presenting a
general impossibility result on the existence of collectively
rational aggregation operators for argument labelling. We
then fully characterise restrictions on the space of individual
judgements under which the argument-wise plurality voting
avoids the impossibility result.

4. AGGREGATION OF LABELLINGS
The problem we face is that of judgement aggregation [10]

in the context of argumentation frameworks. In particular,
taking as an input a set of individual judgements as to how
each argument in AF must be labelled, we need to come
up with a collective judgement. If each agent i = 1, . . . , n
has a labelling Li, we need to find an aggregation opera-
tor, which we define as a partial function1 F : L(AF )n →
{in, out, undec}A, where L(AF ) is the class of labellings of
AF . This means that for each α ∈ A, F (L1, . . . , Ln)[α] is
the label assigned to α (if F is defined for α).

Aggregation involves comparing and assessing different
points of view. There are, of course, many ways of do-
ing this, as extensively discussed in the literature of Social
Choice Theory [9]. In this literature, a consensus on some
normative ideals has been reached, identifying what a ‘fair’
way of adding up preferences should be. So for instance, if
everybody agrees, the outcome must reflect that agreement;
no single agent can impose her view on the aggregate; the

1We state that the function is partial to allow for cases in
which collective judgement may be undefined (e.g. when
there is a tie in voting).

aggregation should be performed in the same way in each
possible case, etc.These informal requirements can be for-
mally stated as properties that F should satisfy [10, 7]:

Let AF = 〈A,⇀〉 be an argumentation framework, and
suppose we have n agents.

1. Universal Domain: Every possible profile of labellings
(L1, . . . , Ln) is in the domain of F .

2. Unanimity: If Li = L for i = 1, . . . , n, then
F (L1, . . . , Ln) = L.

3. Anonymity: given any permutation p : {1, . . . , n} →
{1, . . . , n},
F (L1, . . . , Li, . . . , Ln) = F (Lp(1), . . . , Lp(i), . . . , Lp(n)).

4. Independence: for any α ∈ A, and any two profiles
(L1, . . . , Ln) and (L′1, . . . , L

′
n),

if ∀i we have: Li(α) = lα iff L′i(α) = lα,

then F (L1, . . . , Ln)[α] = lα iff F (L′1, . . . , L
′
n)[α] = lα.

5. Systematicity: for any α, β ∈ A and any two profiles
(L1, . . . , Ln) and (L′1, . . . , L

′
n),

if ∀i, Li(α) = L′i(β)

then F (L1, . . . , Ln)[α] = F (L′1, . . . , L
′
n)[β].

6. Monotonicity: For any α ∈ A, lα ∈ {in, out, undec}
is such that given two profiles (L1, . . . , Li, . . . , Ln) and
(L1, . . . , L

′
i, . . . , Ln) (differing only in i’s labelling), if

Li(α) 6= lα while L′i(α) = lα,
F (L1, . . . , Ln)[α] = lα implies that
F (L1, . . . , L

′
i, . . . , Ln)[α] = lα.

7. Non-dictatorship: there is no i such that for any profile
(L1, . . . , Li, . . . , Ln), F (L1, . . . , Li, . . . , Ln) = Li.

8. Collective Rationality: F (L1, . . . , Ln), is a labelling.

In words, universal domain requires that F admits any
logically possible profile of agent judgements. Unanimity
requires that if all agents submit the same labelling, this la-
belling must be the collective one. Anonimity means that all
agents should have equal weight in the aggregation. Inde-
pendence means that collective judgement on each argument
should only depend on individual judgements about that
particular argument. Systematicity combines independence
with neutrality across arguments. Monotonicity states that
if an agent switches its judgement on an argument in favour
of the collective judgement, then the collective judgement
remains the same. Non-dictatorship means that no sin-
gle agent should always determine the collective judgement.
Collective rationality means that the aggregation is always
a legitimate labelling.

Notice that these conditions are not independent since, for
instance, Systematicity implies Independence (just by choos-
ing α ≡ β), but they reflect many properties that researchers
consider a ‘good’ aggregation operator should have.

5. ARGUMENT-WISE PLURALITY VOTING
An obvious candidate aggregation operator to check out is

the plurality voting operator M . In this section, we analyse
a number of key properties of this operator. Intuitively,
for each argument, it selects the label that appears most
frequently in the individual labellings.



Definition 6 (Argument-Wise Plurality). Let AF =
〈A,⇀〉 be an argumentation framework. Given α ∈ A, then
M(L1, . . . , Ln)[α] = lα ∈ {in, out, undec} iff

|{i : Li(α) = lα}| > max
l′α 6=lα

|{i : Li(α) = l′α}|

Otherwise, M(L1, . . . , Ln)[α] = ∅.

Example 4 (Three Detectives (cont.)). Continuing
on Example 3, applying argument-wise plurality:

• M(L1, L2, L3)[α1] = out

• M(L1, L2, L3)[α2] = in

• M(L1, L2, L3)[α3] = out

Note that even in the case of ties, M is well-defined since ∅ is
a member of every set. However, when M(L1, . . . , Ln)[α] =
∅ for some α ∈ A, then the output of M is obviously not a
legal labelling (i.e. Collective Rationality will be violated).

5.1 Strategic Manipulation
First, we ask whether the plurality aggregation rule is

strategy-proof. Before such analysis can be done, it is impor-
tant to define what might motivate agents to behave strate-
gically, i.e. agent’s preferences over labellings.

We define agents’ preferences with respect to restricted
sets of arguments in order to model situations where agents
have potentially different domains of knowledge. As a moti-
vating example, consider a court case where a medical expert
is called as an expert witness. This expert can put forward
arguments related to medical forensics, but would be unable
to comment on legal issues. Similarly, an agent’s arguments
can be limited by their position to know. For example, a
friend may be in a position to comment on someone’s char-
acter, while a stranger’s comments would not be of interest.

Let θi ∈ Θi denote the type of agent i ∈ I which is drawn
from some set of possible types Θi. The type represents the
private information and preferences of the agent. More pre-
cisely, θi determines agent i’s preferences are over outcomes
L ∈ L. By L1 �i L2 we denote that agent i weakly prefers
(or simply prefers) outcome L1 to L2. We say that agent i
strictly prefers outcome L1 to L2, written L1 �i L2, if and
only if L1 �i L2 but not L2 �i L1. Finally, we say that
agent i is indifferent between outcomes L1 and L2, written
L1 ∼i L2, if and only if both L1 �i L2 and L2 �i L1.

Here, we consider focal-set-oriented agents. These agents
have a core set of arguments which they care about, and
their only interest is in their exact judgement on those ar-
guments being adopted by the collective.

Definition 7 (focal-set-oriented). An agent i with
labelling Li is focal-set-oriented if there is a set of arguments
Āi ⊆ A, called i’s focal-set, such that for any labelling L:

1. Li ∼i L iff ∀α ∈ Āi, Li(α) = L(α);

2. Li � L otherwise.

Focal-set-orientation defines a very general class of agent
preferences. An example of a focal-set-oriented agent is a
resolute agent, that is only satisfied if the aggregated la-
belling exactly matches its own labelling. At the other ex-
treme is an agent with a focal argument, which only cares

about the final status of a single argument. In this case, the
agent’s focal-set includes a single argument only.

Strategy-proofness (also known as dominant strategy in-
centive compatibility) is an important property in analysing
agents’ strategic incentives [12, page 871].2 In our context,
it asks whether any agent has incentive to misreport its
labelling, given any possible reported labellings by other
agents. Let L−i = {L1, . . . , Ln}\Li denote the set of la-
bellings of agents other than agent i.

Definition 8 (Strategy-Proof). Let i ∈ I be an ar-
bitrary agent with a labelling Li. F is a strategy-proof aggre-
gation operator iff ∀L−i, ∀L∗i 6= Li, F (L1, . . . , Li, . . . , Ln) �i
F (L1, . . . , L

∗
i , . . . , Ln)

In the context of focal-set-oriented preferences, strategy-
proofness means that if the outcome does not agree with
an agent’s labelling of its focal arguments, then the agent
cannot alter this fact by mis-reporting its labelling. For-
mally, let L = F (L1, . . . , Li, . . . , Ln) be the aggregated la-
belling when i reports its own truthfully, and let L∗ =
F (L1, . . . , L

∗
i , . . . , Ln) be the aggregated result when i re-

ports some arbitrary alternative L∗i . Strategy-proofness means
that ∀α ∈ Āi, Li(α) 6= L(α) implies Li(α) 6= L∗(α).

Theorem 1. Let I be a set of focal-set-oriented agents.
The argument-wise plurality rule M(.) is strategy-proof.

Proof. Let i ∈ I be an arbitrary agent with labelling Li.
For convenience, let L = M(L1, . . . , Li, . . . , Ln) be the ag-
gregated labelling when i reports its own truthfully (while oth-
ers may or may not), and let L∗ = M(L1, . . . , L

∗
i , . . . , Ln) be

the aggregated result when i reports L∗i (given the same L−i
reported by others). We need to prove that Li(α) 6= L(α)
implies Li(α) 6= L∗(α) for all α ∈ Āi. We consider two
cases:

(Case 1: L(α) ∈ {in, out, undec}): Suppose Li(α) 6=
L(α) for some α ∈ Āi (assumption). From the definition
of the plurality rule, it follows that the plurality agreed on
L(α) as opposed to any other labelling of α. Formally:

|{j : Lj(α) = L(α)}| > max
l 6=L(α)

|{j : Lj(α) = l}|

But since Li(α) 6= L(α) it follows that, in particular, the
plurality disagrees with i’s labelling of α:

|{j : Lj(α) = L(α)}| > |{j : Lj(α) = Li(α)}|

We now show that the above inequality does not change with
any L∗i 6= Li. We have three possible cases:

1. L∗i (α) = Li(α) but L∗i (β) 6= Li(β) for one or more
β 6= α (be β ∈ Āi or not). But this does not change
the inequality, since M(L1, . . . , Li, . . . , Ln)[α] is only
dependent on votes on α.

2. L∗i (α) = L(α), in which case the number of agents
voting for L(α) increases by 1, while the number of
agents voting for Li(α) decreases by 1.

3. L∗i (α) = {in, out, undec}\L(α) ∪ Li(α), in which case
the number of agents voting for L(α) remains the same,
while the number of agents voting for Li(α) decreases
by 1.

2In the literature, strategy-proofness and incentive compati-
bility are sometimes used to mean the same thing, requiring
us to state explicitly the type of equilibrium under which the
mechanism is implemented (e.g. in dominant strategies).



Either way, the above inequality remains the same. There-
fore, it will always be the case that L∗(α) 6= Li(α) for α ∈
Āi.

(Case 2: L(α) = ∅): If for some α ∈ Āi, L(α) = ∅, then
there exists three different labels, lα, l

′
α, l
′′
α ∈ {in, out, undec}

such that |{j : Lj(α) = lα}| = |{j : Lj(A) = l′α}| ≥
|{j : Lj(A) = l′′α}|. Suppose that Li(α) = lα for α ∈
Āi. Then, if L∗i (α) = l′α or L∗i (α) = l′′α, we still have
M(L1, . . . , L

∗
i , . . . Ln)[α] 6= Li(α).

5.2 Other Social Choice Properties
Having analysed the strategic manipulability of argument-

wise plurality voting, we now turn to analysing whether it
satisfies the properties listed above.

Theorem 2. The argument-wise plurality voting opera-
tor M satisfies properties 1 to 7.

Proof. • Universal Domain follows immediately, since
there are no restrictions on how each labeling Li is de-
fined.

• Unanimity: Consider an argument α and a label lα.
Since Li(α) = lα for each i, we have that |{i : Li(α) =
lα}| = n and therefore M(L1, . . . , Ln)[α] = lα.

• Anonymity: M(L1, . . . , Ln)[α] = lα if only if |{i :
Li(α) = lα}| > maxl′α 6=lα |{i : Li(α) = l′α}| if and
only if |{p(i) : Lp(i)(α) = lα}| > maxl′α 6=lα |{p(i) :

Lp(i)(α) = l′α}|, which is equivalent to
M(Lp(1), . . . , Lp(i), . . . , Lp(n))[α] = lα.

• Independence: Suppose, towards a contradiction, that
Li(α) = lα iff L′i(α) = lα, and M(L1, . . . , Ln)[α] = lα
but M(L′1, . . . , L

′
n)[α] 6= lα. Then |{i : Li(α) = lα}| >

maxl′α 6=lα |{i : Li(α) = l′α}|. But |{i : Li(α) = lα}| =

|{i : L′i(α) = lα}| while for any l′α 6= lα, |{i : Li(α) =
l′α}| = |{i : L′i(α) = l′α}|. Then, |{i : L′i(α) = lα}| >
maxl′α 6=lα |{i : L′i(α) = l′α}|. Contradiction.

• Systematicity: Suppose (towards contradiction) that
for some α, β ∈ A, ∀i, we have Li(α) = L′i(β), and
M(L1, . . . , Ln)[α] = l, but that M(L′1, . . . , L

′
n)[β] 6= l.

Then |{i : Li(α) = l}| > maxl′ 6=l |{i : Li(α) = l′}|.
But since |{i : Li(α) = l}| = |{i : L′i(β) = l}|, we have
|{i : L′i(β) = l}| > maxl′ 6=l |{i : Li(α) = l′}|. And
since |{i : Li(α) = l′}| = |{i : L′i(β) = l′}| for all l′ 6=
l, we have |{i : L′i(β) = l}| > maxl′ 6=l |{i : L′i(β) = l′}|.
This implies M(L′1, . . . , L

′
n)[β] = l. Contradiction.

• Monotonicity: Suppose that for α ∈ A and a label lα
we have that Li(α) /∈ lα while L′i(α) = lα, and we have
that M(L1, . . . , Li, . . . , Ln)[α] = lα while
M(L1, . . . , L

′
i, . . . , Ln)[α] 6= lα. But then,

|{j : Lj(α) = lα}| > maxl′α 6=lα |{j : Lj(α) = l′α}|
in the profile (L1, . . . , Li, . . . , Ln) while in the profile

(L̂1, . . . , L̂i, . . . , L̂n)≡(L1, . . . , L
′
i, . . . , Ln),

we have {j : L̂j(α) = lα} = {j : Lj(α) = lα} ∪ {i}.
Then |{j : L̂j(α) = lα}| > maxl′α 6=lα |{j : L̂j(α) =

l′α}|. Contradiction.

• Non-dictatorship: Suppose, towards a contradiction,
that there exists an agent i such that for any pro-
file (L1, . . . , Li, . . . , Ln), M(L1, . . . , Li, . . . , Ln) = Li.

Now consider α ∈ A, such that Li(α) = lα and L̂ such

in out

α3
L1

α4α2

α1

α3
L2

α4α2

α1

α3
L3

α4α2

α1

α3 M(L1, L2, L3)

α4α2

α1

Figure 4: Counter example to collective rationality

that L̂(α) 6= lα. Then, Li(α) 6= M(L̂, . . . , Li, . . . , L̂).
Contradiction.

Despite these promising results, it turns out that plurality
operator does not satisfy the collective rationality property.

Example 5. Consider arguments α1, α2, α3 and α4, with
the attack relation depicted in Figure 4. Suppose we have
three agents with the labellings L1, L2 and L3. We have:

• M(L1, L2, L3)[α1] = out,

• M(L1, L2, L3)[α2] = out,

• M(L1, L2, L3)[α3] = out,

• M(L1, L2, L3)[α4] = out.

But then, M(L1, L2, L3) is not a labelling (see 4).

The above counter-example is a variant of the discursive
dilemma [10] in the context of argument evaluation, which
itself is a variant of the well-known Condorcet paradox.

It is worth noting that, when the preferences are focal-set
oriented, labellings are partitioned in two classes: top la-
bellings, which satisfy the focal-set assignment of labels and
bottom labellings, which do not. These kinds of preferences
are called dichotomous. Brams and Fishburn [2] showed that
approval voting, a method according to which each voter can
vote for as many candidates as she likes, is strategy-proof
on dichotomous preferences. So why not apply labelling-wise
approval voting instead of argument-wise plurality?

As it turns out, approval voting on labellings also fails
to satisfy collective rationality. Just consider a system with
only two arguments, α and β in a cycle of mutual defeat.
Three rational labellings are possible for (α, β): (in, out),
(out, in) and (undec, undec). Suppose there are only two
agents, 1 and 2, with focal sets, {α} and {β}, respectively.
Then each one will have a top preferred labelling, (in, out)
for 1 and (out, in) for 2. Each one will vote only for her
top labelling. Then, instead of having a single labelling as
an outcome, a tie obtains, i.e. a set of two labellings, which
certainly is not a rational labelling.



6. IS ‘GOOD’ AGGREGATION POSSIBLE?
In the previous section, we analysed a particular judge-

ment aggregation operator (namely, argument-wise plurality
voting). We showed that while it satisfies most key prop-
erties, it fails to always generate collectively rational judge-
ments. This is a significant limitation, and gives rise to a
more important question of whether any such operator ex-
ists. We now give a negative answer to this question, then
show how this impossibility result can be avoided by restrict-
ing the domain of the voting rule.

6.1 An Impossibility Result
Social Choice Theory has been built around an impossi-

bility result on the aggregation of preferences (Arrow’s The-
orem). A similar result has been found on the aggregation
of judgements in propositional settings [10] and extended
to more general logics [7]. The theorem below provides a
counter-part for abstract argumentation framework.

We now show that there exists no possible aggregation op-
erator F that satisfies collective rationality along with only
four other minimal conditions, namely: universal domain,
anonymity, systematicity, and unanimity.

Theorem 3. There exists no F satisfying Universal Do-
main, Anonymity, Systematicity, Unanimity, and Collec-
tive Rationality.

Proof. By Universal Domain we can consider any profile
of labellings. Let us just focus on two profiles (L1, . . . , Ln)
and (L′1, . . . , L

′
n) such that there exists a permutation p :

{1, . . . , n} → {1, . . . , n} such that L′i = Lp(i) for each i.
By Anonymity F must yield the same outcomes over both
profiles over any particular argument.

By systematicity, we have the following implication:

∀α, β ∈ A if ∀i, Li(α) = L′i(β)

then F (L1, . . . , Ln)[α] = F (L′1, . . . , L
′
n)[β] (1)

which can be rewritten as (with LAB = {in, out, undec}):

∀α, β ∈ A if ∀l ∈ LAB , {i : Li(α) = l} = {i : L′i(β) = l}
then F (L1, . . . , Ln)[α] = F (L′1, . . . , L

′
n)[β] (2)

Moreover, by Anonimity we have:

F (L′1, . . . , L
′
n)[β] = F (L1, . . . , Ln)[β]

So, the above implication can be rewritten again as:

∀α, β ∈ A if ∀l ∈ LAB , {i : Li(α) = l} = {i : L′i(β) = l}
then F (L1, . . . , Ln)[α] = F (L1, . . . , Ln)[β] (3)

Now, by Universal Domain consider without loss of gener-
ality an argumentation framework AF = 〈{a, b, c},⇀〉 with
⇀= {(a, b), (b, a), (a, c), (b, c)}. This graph is shown in the
figure below, with all its three possible labellings. By Univer-
sal Domain, assume there is an even number n of agents.
Now, define profile (L1, . . . , Ln) such that:

- Li(a) = out, Li(b) = in, and Li(c) = out for i =
1, . . . , n

2
;

- Li(a) = in, Li(b) = out, and Li(c) = out for i =
n
2

+ 1, . . . , n.

Both these cases correspond to legitimate labellings.
Now, define profile (L′1, . . . , L

′
n) such that

c

b

a

in out undec

c

b

a

c

b

a

- L′i(a) = in, L′i(b) = out, and L′i(c) = out for i =
1, . . . , n

2
;

- L′i(a) = out, L′i(b) = in, and L′i(c) = out for i =
n
2

+ 1, . . . , n.

Clearly, (L′1, . . . , L
′
n) is a permutation of (L1, . . . , Ln). And

we have:

{i : Li(a) = out} = {i : L′i(b) = out} = {1, . . . , n
2
} (4)

Likewise, we have:

{i : Li(a) = in} = {i : L′i(b) = in} = {n
2

+ 1, . . . , n} (5)

From formulas 5 and 4, we have:

∀l ∈ LAB , {i : Li(a) = l} = {i : L′i(b) = l} (6)

By formulas 3 and 6, it follows that:

F (L1, . . . , Ln)[a] = F (L1, . . . , Ln)[b] (7)

Now consider F (L1, . . . , Ln). Note that a and b cannot be
both in or both out, since this would violate collective ra-
tionality. The only outcome consistent with formula 7 is
F (L1, . . . , Ln)[a] = undec and F (L1, . . . , Ln)[b] = undec.
However, as a consequence of collective rationality, this would
yield F (L1, . . . , Ln)[c] = undec, which violates unanimity
(because ∀i, Li(c) = out and therefore unanimity requires
that F (L1, . . . , Ln)[c] = out). Therefore, one cannot simul-
taneously satisfy universal domain, anonymity, systematic-
ity, and unanimity.

The proof is, in words, as follows. Given any profile and
its permutation, any supposed aggregation operator yields
the same result. By systematicity the result should be ob-
tained on the same profile (recall that the other just obtains
by permutating the names of the agents) in the same way
for any pair of arguments. But this means that the number
of agents that vote for the ‘winning’ labellings on both ar-
guments must be the same. Then a profile is constructed,
for which the aggregation operator is unable to yield an out-
come without violating this last requirement.

The above impossibility result highlights a major barrier
to reaching good collective argument evaluation in general.
This is similar in flavour to List and Pettit’s impossibility
theorem on judgement aggregation in propositional logic [10]
(with the addition of unanimity). In our context, the result
means that rational aggregation on argument evaluation can
only be achieved at a cost to universal domain, unanimity,
anonymity or systematicity.

6.2 Circumventing the Impossibility
Faced with the impossibility result, how can agents guar-

antee, in some way, reaching collective argument evaluation



that is collectively rational? Following the tradition of social
choice theory, we explore what restrictions on the domain of
the argument-wise plurality voting rule guarantee collective
rationality. In particular, we provide a full characterisation
of the space of labelling profiles that guarantees collective
rationality using the argument-wise plurality voting rule.

We first need a few conditions. The first is the no-tie
condition which, as the name suggests, means that agents
can always make a collective decision on each argument.

Definition 9 (No-Tie). Labelling profile (L1, . . . , Ln)
satisfies the no-tie condition if for any α ∈ A, there exists a
label l such that |{i : Li(α) = l}| > maxl′ 6=l |{i : Li(α) = l′}|.

Next, we present the notion of Condorcet winner, which
captures the plurality winner on an individual argument.

Definition 10 (Condorcet Winner). We say that a
label lα ∈ {in, out, undec} of an argument α ∈ A is a Con-
dorcet Winner with respect to a labelling profile (Li)

n
i=1, de-

noted CW (α, lα, (Li)
n
i=1) iff |{i : Li(α) = lα}| > |{i : Li =

l′α}| for every label l′α 6= lα.

Next, we list the Condorcet defeat condition. Intuitively,
this condition means that if an argument α is collectively
rejected by the agents, then the agents must also collec-
tively agree (via plurality) on accepting at least one of the
counter-arguments against α. In other words, the agents’
individual attacks on α are not arbitrary, but must exhibit
some minimal degree of consensus.

Definition 11 (Condorcet Defeat). A labelling pro-
file (L1, . . . , Ln) satisfies Condorcet defeat if and only if the
following holds:
CW (α, out, (Li)

n
i=1) if and only if ∃β ∈ A, such that β ⇀ α

and CW (β, in, (Li)
n
i=1).

Finally, we need the following condition, which we call non-
Condorcet indecision. Intuitively, it requires that if an ar-
gument α is collectively accepted by the agents, then the
agents must never collectively be undecided on or accept
any of the counter-arguments against α. Notice that, unlike
the existence condition in Condorcet defeat, here the lack of
indecision must hold for all defeaters.

Definition 12 (non-Condorcet Indecision). A la-
belling profile satisfies non-Condorcet indecision if and only
if the following holds:
CW (α, in, (Li)

n
i=1) if and only if @β ∈ A, such that β ⇀ α

satisfies either CW (β, undec, (Li)
n
i=1) or CW (β, in, (Li)

n
i=1).

We are now ready to define the necessary and sufficient
restrictions on labelling profiles that guarantee collective ra-
tionality under argument-wise plurality voting.

Theorem 4. The argument-wise plurality voting rule M
satisfies collective rationality if and only if each labelling
profile (L1, . . . , Ln) in its domain satisfies Condorcet De-
feat, Non-Condorcet Indecision and the No-Tie condition.

Proof. ⇐: Let L = (L1, . . . , Ln) be an arbitrary profile
in the domain of F satisfying coordinated collective defeat.
By the No-Tie condition, for any profile M(L1, . . . , Ln)[α] ∈
{in, out, undec}. We now need to show that F satisfies the
conditions of legal labelling [3].

• Suppose M(L1, . . . , Ln)[α] = in. We want to prove
that ∀β such that β ⇀ α, we have M(L1, . . . , Ln)[β] =
out. By hypothesis, |{i : Li(α) = in}| > maxl′α 6=in |{i :

Li(α) = l′α}|. In particular:

|{i : Li(α) = in}| > |{i : Li(α) = out}| (8)

But since each Li is a labelling, we have that ∀i, if
Li(α) = in then for every β ⇀ α, Li(β) = out. That
is:

|{i : Li(α) = in}| ≤ |{i : Li(β) = out}| (9)

Now let us suppose (by contradiction) that for some
β ⇀ α, M(L1, . . . , Ln)[β] = in. Then we have |{i :
Li(β) = in}| > maxl′

β
6=in |{i : Li(β) = l′β}|. Hence, in

particular:

|{i : Li(β) = in}| > |{i : Li(β) = out}| (10)

By transitivity (from Equations 9 and 10) we have:

|{i : Li(β) = in}| > |{i : Li(α) = in}| (11)

But on the other hand, by definition of labelling, for
each i such that Li(β) = in we have that Li(α) = out.
This means that {i : Li(β) = in} ⊆ {i : Li(α) = out},
which in turn implies that

|{i : Li(β) = in}| ≤ |{i : Li(α) = out}| (12)

But then (from Equations 11 and 12) we get:

|{i : Li(α) = out}| ≥ |{i : Li(β) = in}|
> |{i : Li(α) = in}| (13)

Contradiction (between Equations 8 and 13).

Suppose, on the other hand, that for some β → α,
M(L1, . . . , Ln)[β] = undec. This cannot hold since it
contradicts the non-Condorcet indecision assumption.

Thus, ∀β ∈ A, if β ⇀ α, we have M(L1, . . . , Ln)[β] =
out, and the labelling condition is satisfied.

• Suppose, on the other hand, that M(L1, . . . , Ln)[α] =
out. We want to prove that M(L1, . . . , Ln)[β] = in,
for some β ⇀ α. By Condorcet Defeat, ∃β ∈ A,
β ⇀ α, such that |{i : Li(β) = in}| > maxl′

β
6=in |{i :

Li(β) = l′β}|. That is, M(L1, . . . , Ln)[β] = in.

• Finally, let us suppose that M(L1, . . . , Ln)[α] = undec.
We want to prove that ∃β ∈ A such that β ⇀ α and
M(L1, . . . , Ln)[β] = undec. Since M(L1, . . . , Ln)[α] =
undec, M(L1, . . . , Ln)[α] 6= in. By non-Condorcet In-
decision we have that there exists β ⇀ α such that ei-
ther M(L1, . . . , Ln)[β] = undec or M(L1, . . . , Ln)[β] =
in. But since M(L1, . . . , Ln)[α] 6= out, by Condorcet
defeat we have ∀β such that β ⇀ α, M(L1, . . . , Ln)[β] 6=
in. Then, M(L1, . . . , Ln)[β] = undec.

⇒: Suppose that M satisfies the Collective Rationality
condition. By definition each profile in its domain satisfies
the No-tie condition. To see that it satisfies also the Con-
dorcet defeat and non-Condorcet indecision condition, just
consider for every α ∈ A two possible cases:

• if M(L1, . . . , Ln)[α] = out, then by definition of Col-
lective Rationality, ∃β ∈ A, with β ⇀ α such that
M(L1, . . . , Ln)[β] = in. But this means that |{i :



Li(β) = in}| > |{i : Li(β) = l′β}| for every l′β 6= in.
But then, CW (β, in, (Li)

n
i=1). Conversely, if there ex-

ists β ⇀ α such that |{i : Li(β) = in}| > |{i : Li(β) =
l′β}| for every l′β 6= in, we have that M(L1, . . . , Ln)[β] =
in. Then, by Collective Rationality, M(L1, . . . , Ln)[α] =
out. Thus, Condorcet defeat is satisfied.

• If M(L1, . . . , Ln)[α] = in for some α ∈ A, then by def-
inition of Collective Rationality ∀β ∈ A with β ⇀ α,
M(L1, . . . , Ln)[β] = out. But this trivially means that
@β′ ∈ A, β′ ⇀ α such that either M(L1, . . . , Ln)[β′] =
undec or M(L1, . . . , Ln)[β′] = in. Conversely, sup-
pose @β ∈ A with β ⇀ α such that M(L1, . . . , Ln)[β] =
undec or M(L1, . . . , Ln)[β′] = in. Then, for every
β ⇀ α, we have M(L1, . . . , Ln)[β] = out. But then, by
Collective Rationality, M(L1, . . . , Ln)[α] = in. Thus,
non-Condorcet indecision is always satisfied.

The careful reader will notice that the conditions of Con-
dorcet Defeat and non-Condercet Indecision, required for
the result, actually correspond to the requirements of well-
defined labellings (recall Definition 5). Indeed, this shows
that collective rationality requires strong conditions on the
collective structure of agents’ labellings. These conditions
are quite strong, in the sense that they cannot be reduced
to properties of the individual labellings.

The full characterisation provided above has another con-
sequence. In order to achieve collective rationality while
only appealing to restrictions on individual labellings, we
would need to make even stronger assumptions to those in
Theorem 4. For example, we could require that whenever
an agent labels an argument as out, then it must label each
of its defeaters as in, and so on. While these kinds of re-
strictions guarantee the necessary partial consensus among
agents, they are extremely unrealistic (even less realistic
than the ones shown in the theorem). This reveals that
satisfying collective rationality is not easily achievable in
practice with a kind of argument-wise plurality vote.

7. CONCLUSION & RELATED WORK
In this paper, we explored the following question: Given

an argument structure and a set of agents, each with a legit-
imate subjective evaluation of the given arguments, how can
the agents reach a collective compromise on the evaluation of
those arguments? We presented three important results: (1)
proved that argument-wise plurality voting satisfies many
well-known social choice properties, albeit not collective ra-
tionality; (2) proved the impossibility of any aggregation
operator that simultaneously satisfies collective rationality
together with universal domain, unanimity, anonymity and
systematicity; and (3) fully characterised the space of in-
dividual judgements that guarantees collective rationality
using argument-wise plurality voting.

Recently, Caminada and Pigozzi [4] presented some op-
erators for aggregating multiple argument labellings into a
single labelling. They focused on a ‘compatibility’ property:
that the social outcome must not go against any individual
judgement, and showed that this can be achieved together
with collective rationality. However, they did not explore
whether these operators could satisfy other classical social-
choice properties. Our results provide an important comple-

ment to their work, by identifying bounds on what can be
achieved simultaneously by any aggregation operator.

Coste-Marquis etal explored the problem of aggregating
multiple argumentation frameworks [6]. However, each agent
contributes a different argument graph altogether, rather
than a judgement of how a given graph must be evaluated.

We have only scratched the surface of the intersection be-
tween ‘judgement aggregation’ and collective argument eval-
uation. A key research agenda is studying which ‘judgement
aggregation’ results carry over, and how this is affected by
the structure of the collective argument evaluation problem.
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